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Es gibt Stunden,  

in denen der Mensch von aller 

Unzulänglichkeit befreit ist.  

Man steht dann auf einem  

kleinen Flecken eines kleinen Planeten,  

schaut erstaunt die Schönheit des Ewigen,  

des in der Tiefe Unergründlichen.  

Man fühlt, es gibt nicht mehr Werden und Vergehen,  

es gibt nicht mehr Tod und Leben,  

sondern nur das Sein. 

 

Albert Einstein 
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Abstract 

Formyl peptide receptors (Fprs) are important and broadly tuned G protein-coupled 

pathogen-sensors. The murine and human Fpr gene families are comprised of seven and three 

genes, respectively. Fpr1 and Fpr2 of both species have been studied extensively, but the 

functions of murine and human Fpr3 are poorly understood. This study provides new insight 

into the expression and function of murine Fpr3 in the vomeronasal and immune systems and 

reports the existence of natural knockout strains of this receptor. 

A key result of this thesis is the discovery of a large panel of distinct mouse strains that 

exhibit severely altered Fpr3 expression and function. Two Fpr3 receptor variants, such as 

Fpr3wt and Fpr3424–435, which showed distinct expression patterns, were identified using two 

newly generated Fpr3-specific antibodies. Thereby, a lack of receptor expression was 

attributed to a 12 nucleotide in-frame deletion in the Fpr3424–435 gene. The lack of four 

amino acids produced an unstable and truncated Fpr3424–435 receptor protein. In line with 

these findings, calcium imaging in an in vitro expression system and in dendritic endings of 

vomeronasal sensory neurons showed a lack of function for this receptor variant. Fpr3424–435 

was present in at least 19 mouse strains, whereas Fpr3wt was encoded in at least 13 other 

strains. These data suggest a large number of mouse strains with no known Fpr3 function. The 

discovery of a multitude of natural Fpr3 knockout mouse strains will be valuable to study 

murine Fpr3 function in the context of various genetic backgrounds. 

A second key finding is the dual detection of murine Fpr3 protein expression in 

chemosensory neurons of the olfactory system and in specific immune cells. Significant 

sequence overlap and common expression in immune cells suggested a similar biological role 

for murine and human Fpr3. In addition, comparative in vitro calcium imaging experiments 

showed that the functional properties of murine and human Fpr3 are similar but differed 

drastically from those of Fpr1 and Fpr2. Thereby, Fpr3 of both species shared strongly 

overlapping agonist response patterns. These data provide clear evidence that murine and 

human Fpr3 are functional orthologous genes. However, concentration-response curves and 

structural derivative testing of a typical Fpr agonist revealed subtle tuning differences 

between murine and human Fpr3. Taken together, these data suggest a similar biological role 

for human and mouse Fpr3 with subtle functional adaptations in murine Fpr3 for olfactory 

system requirements. 
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Zusammenfassung 

Formylpeptidrezeptoren (Fprs) sind wichtige G-Protein gekoppelte Pathogensensoren, die 

ein breites Ligandenspektrum aufweisen. Die Fpr-Genfamilie der Maus umfasst sieben Gene, 

während die des Menschen aus drei Genen besteht. Fpr1 und Fpr2 beider Spezies sind 

weitreichend erforscht, allerdings ist die Funktion des murinen und menschlichen Fpr3 

unzureichend verstanden. Diese Arbeit liefert neue Erkenntnisse über die Expression und 

Funktion des Fpr3 der Maus im Vomeronasalorgan und Immunsystem, und zeigt das 

Vorkommen natürlicher Knockout-Stämme für diesen Rezeptor. 

Ein Hauptergebnis dieser Studie ist die Entdeckung einer großen Anzahl an Mausstämmen, 

die gravierende Unterschiede in Expression und Funktion des Fpr3 aufweisen. Mit Hilfe von 

zwei neu generierten Fpr3-spezifischen Antikörpern konnten zwei Fpr3 Rezeptorvarianten 

identifiziert werden – Fpr3wt and Fpr3424-435 –, die unterschiedliche Expressionsmuster 

zeigen. Dabei konnte fehlende Rezeptorexpression einer zwölf Nukleotide umfassenden 

in-frame Deletion im Fpr3424-435 Gen klar zugeordnet werden. Das Fehlen von vier 

Aminosäuren führte zu einem instabilen und gekürzten Fpr3424-435 Rezeptorprotein. 

Übereinstimmend mit diesen  Feststellungen, zeigte Calcium-Imaging in einem in vitro 

Expressionssystem und in dendritischen Endungen vomeronasaler sensorischer Neurone einen 

Funktionsmangel für diese Rezeptorvariante. Fpr3424-435 lag in mindestens 19 Mausstämmen 

vor, während Fpr3wt von mindestens 13 anderen Stämmen kodiert wurde. Diese Daten weisen 

auf eine große Zahl an Mausstämmen ohne bekannte Fpr3 Funktion hin. Die Entdeckung 

einer Vielzahl natürlicher Fpr3 Knockout-Mausstämme wird beitragen die Funktion des 

murinen Fpr3 im Kontext vielfältiger genetischer Hintergründe zu untersuchen. 

Eine zweite Schlüsselentdeckung ist der duale Nachweis der Proteinexpression des 

murinen Fpr3 in chemosensorischen Neuronen des olfaktorischen Systems und in speziellen 

Immunzellen. Signifikante Sequenzübereinstimmungen und eine gemeinsame Expression in 

Immunzellen legen eine ähnliche biologische Rolle des murinen und menschlichen Fpr3 nahe. 

Darüber hinaus zeigten vergleichende in vitro Calcium-Imaging Experimente ähnliche 

funktionelle Eigenschaften für den murinen und menschlichen Fpr3, die sich drastisch von 

denen des Fpr1 oder Fpr2 unterscheiden. Dabei teilten Fpr3 beider Spezies stark überlappende 

Agonisten-Antwortmuster. Diese Daten liefern klare Hinweise dafür, dass die Gene des 

murinen und menschlichen Fpr3 funktionell orthologe Gene sind. Jedoch zeigten 

Konzentrations-Antwortkurven und Strukturderivat-Tests eines typischen Fpr-Agonisten 

subtile Sensitivitätsunterschiede zwischen den beiden Rezeptoren. Zusammengefasst weisen 

die Daten auf eine ähnliche Rolle für den murinen und menschlichen Fpr3 mit subtilen 



 

IX 

funktionellen Anpassungen des murinen Fpr3 an Anforderungen des olfaktorischen Systems 

hin. 
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INTRODUCTION 

1 

1 INTRODUCTION 

 

1.1 Social Recognition and Olfactory Pathogen Recognition 

Important information about the social status of conspecifics is conveyed by olfactory cues 

in rodents (Restrepo et al., 2006; Chamero et al., 2007; Brennan, 2009; Li et al., 2013). 

Chemical signals used to transmit information between conspecifics are commonly called 

pheromones. Pheromones are substances secreted to the outside by an individual and received 

by another individual of the same species that trigger distinct reactions, such as behaviors or 

developmental processes (Karlson and Lüscher, 1959). 

The first ever described pheromone-mediated effect in mammals was the “Whitten effect”. 

In 1956, Wesley Whitten observed the induction of estrus in anestrus female mice upon 

exposure to male pheromones (Whitten, 1956). Soon after, the “Bruce effect” was 

demonstrated by Hilda Bruce in 1959 (Bruce, 1959). She described that newly mated female 

mice experience a pregnancy block and return to estrus if exposed to unfamiliar males prior to 

implantation of the embryo. A third mammalian pheromone effect that communicates the 

social status of an animal was discovered in 1969 by John Vandenbergh (Vandenbergh, 

1969). The “Vandenbergh effect” portrays the acceleration of puberty in female mice upon 

exposure to male chemosignals. Interestingly, a delay in puberty could be induced by 

exposure to female pheromones (Cowley and Wise, 1972; Vandenbergh, 1973; Novotny et 

al., 1986; Jemiolo and Novotny, 1994). Since then, many other important social behavioral 

effects induced by olfactory cues have been reported, including sexual behavior and 

preference, parental behavior, and discrimination of individuals (Jemiolo et al., 1991; Leypold 

et al., 2002; Haga et al., 2010), parental behavior (Brouette-Lahlou et al., 1999; Numan et al., 

2006), aggression (Stowers et al., 2002; Chamero et al., 2011), and the discrimination of 

individuals (Hurst et al., 2001; Restrepo et al., 2006; Kelliher et al., 2006). 

Despite the many benefits of social behaviors, close interactions among conspecifics 

increase the risk of parasite transmission and pathogenic infection (Altizer et al., 2003; 

Kavaliers et al., 2004). To prevent these events, mice and other rodents are able to recognize 

infected conspecifics and display aversive responses to contagious individuals. Behavioral 

and genetic evidence suggests the involvement of the sense of smell in this process (Penn and 

Potts, 1998; Kavaliers et al., 2004). The best studied system is the health status-dependent 

choice of mating partners. In 1982, William Hamilton and Marlene Zuk first suggested that 

animals examine urine and fecal cues to identify disease and parasite-free mates (Hamilton 

and Zuk, 1982). Mice preferentially select parasite-free or parasite-resistant mating partners 
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(Hamilton and Zuk, 1982; Kavaliers et al., 2000; Ehman and Scott, 2002). Female mice were 

shown to discriminate odors from healthy males against others infected with different 

parasites, such as nematodes, (Kavaliers and Colwell, 1995; Ehman and Scott, 2001; 

Kavaliers et al., 2003a), protozoans (Kavaliers and Colwell, 1993; Kavaliers et al., 1997), 

influenza virus (Penn et al., 1998), or lice (Lehmann, 1993; Kavaliers et al., 2003b). In all 

cases, the female mice actively avoided infected males or their odors (Kavaliers et al., 2005). 

Male mice also showed aversion to urine odors of other males infected with parasites 

(Kavaliers et al., 2004). They refused to copulate with females infected with nematodes 

(Edwards and Barnard, 1987) and displayed aversive behavior to them (Gourbal and Gabrion, 

2004) or their odors (Kavaliers et al., 1998). Resistance to the nematode 

Heligomosomoides polygyrus is heritable (Wahid et al., 1989). Thus, this odor-based mate 

selection is considered an indicator of “good genes” (Kavaliers et al., 2005). 

Although many social interactions based on odors of infected conspecifics are known, the 

underlying molecular and cellular basis for perceiving an olfactory pathogen is unclear. The 

olfactory system of most mammals is subdivided into two principal subsystems, the main 

olfactory and the vomeronasal systems, which both trigger innate avoidance behaviors 

(Kobayakawa et al., 2007; Papes et al., 2010). Furthermore, two other olfactory structures, 

such as the septal organ of Masera and the Grueneberg ganglion, also play roles detecting 

pheromones and pheromone-driven behaviors (Roppolo et al., 2006; Ma, 2007; Tirindelli et 

al., 2009). One study provided clear evidence for involvement of the murine 

vomeronasal organ (VNO) mediating the avoidance of sick conspecifics (Boillat et al., 2015). 

The authors demonstrated a preference of mice for healthy conspecifics over mice that were 

injected with lipopolysaccharide (LPS). LPS is an endotoxin produced by Gram-negative 

bacteria that activates the immune system and mimics a bacterial infection (Dantzer et al., 

2008). They also described aversive behavior to urine of mice infected with the mouse 

hepatitis virus (MHV) (Boillat et al., 2015). Mice without a functional VNO showed no 

aversion (Figure 1). Hence, the VNO may function as a sensor of infection. 

In line with the idea that the VNO is involved in pathogen sensing, odors from sick 

animals activate neurons in the vomeronasal pathway of wild-type mice (Boillat et al., 2015). 

However, mice without a functional VNO lack this activation (Boillat et al., 2015). In line 

with these experiments, sensory cells in the VNO detect inflammatory markers and bacterial 

peptides, which are typical activators of formyl peptide receptors (Fprs) found in the immune 

system (unpublished data). Furthermore, several members of the murine Fpr gene family are 
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expressed in the VNO (Liberles et al., 2009; Rivière et al., 2009). Thus, Fprs expressed in the 

VNO are prime candidates for olfactory pathogen sensing. 

 

Figure 1. Olfactory perception is crucial for sick 

conspecific aversion. Mice with an intact VNO (upper right) 

avoid mice or urine infected with LPS or MHV (left). Mice 

with a non-functional VNO (lower right) show no aversion. 

Figure was adapted from Boillat et al., 2015. 

 

 

 

 

 

 

 

 

 

1.2 The Vomeronasal Organ 

 

1.2.1 General Function of the Vomeronasal Organ 

The VNO is the receptor organ of the accessory olfactory system. It contributes to social 

recognition and chemical communication – processes that are mediated by pheromones 

(Halpern and Martínez-Marcos, 2003). The crucial function of the VNO as a pheromone 

sensing system is well-established. Several studies examined mice after removal of the organ 

and reported the absence of typical pheromone-driven effects, such as the associated estrus 

induction (Whitten effect) (Sánchez-Criado and Gallego, 1979; Sánchez-Criado, 1982; Mora 

and Cabrera, 1997), pregnancy block (Bruce effect) (Reynolds and Keverne, 1979; Bellringer 

et al., 1980), and puberty acceleration (Vandenbergh effect) (Lomas and Keverne, 1982). All 

these effects were still observable in control mice that possessed a functional VNO. 

Pheromone-driven effects and behaviors were also attenuated by ablation of different genes 

expressed in the VNO. Tissue-specific deletion of signal transduction elements, such as genes 

encoding the G protein alpha o subunit (Go), the G protein gamma 8 subunit (G8), or a 

family of nine nonclassical class I major histocompatibility complex (MHC) genes, the 

H2-Mv genes, severely reduced aggression (Chamero et al., 2011; Montani et al., 2013; 

Leinders-Zufall et al., 2014). Additionally, Go gene removal impaired a wide range of 

reproductive pheromone-regulated behaviors in adult mice, including estrus induction 
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(Whitten effect) and puberty acceleration (Vandenbergh effect) (Oboti et al., 2014). 

Furthermore, mice deficient for Trpc2, another essential signal transduction component for 

VNO function, showed striking behavioral defects in regulating a wide range of sexual and 

social behaviors (Zufall, 2005; Zufall et al., 2005). In summary, these findings show that the 

VNO is a key element for pheromone perception. 

An important function of the VNO beyond pheromone recognition is the detection of 

predator odors (Papes et al., 2010; Isogai et al., 2011). Specific substances contained in these 

odors, so-called kairomones, elicit powerful fear-like reactions in prey species that facilitate 

escape, induce freezing and avoidance, and can increase stress hormone levels (Apfelbach 

et al., 2005). Known kairomones include trimethyl-thiazoline, a volatile component of fox 

odor (Kobayakawa et al., 2007), several lipocalins found in rat urine and cat saliva (Papes 

et al., 2010), and 2-phenylethylamine that is produced in many carnivore urines (Ferrero 

et al., 2011). Kairomones can derive from different odor sources, such as urine, feces, saliva, 

and fur. Interestingly, different kairomones are detected by the VNO and the main olfactory 

epithelium and detection mechanisms may depend on stimulus volatility (Liberles, 2014). 

In line with this observation, growing evidence emerges for the contribution of the main 

olfactory epithelium to the detection of social chemosignals (Spehr et al., 2006a). Some 

non-volatile chemosignals established earlier as sensory stimuli of the VNO were shown to 

activate cells in the main olfactory epithelium (Ziesmann et al., 2002; Lin et al., 2004; Xu 

et al., 2005; Spehr et al., 2006b). Hence, the main olfactory epithelium is also involved in 

mediating social behaviors. In line with these thoughts, impairment of sexual behavior in mice 

lacking a functional main olfactory epithelium but possessing an intact VNO provided clear 

evidence for the involvement of the main olfactory epithelium in social behaviors (Keller et 

al., 2006). However, behavioral tests using mice with genetic and surgical lesions showed that 

stimulation of each system by the same substance can result in differing behavioral effects. 

This suggests that the same chemosignals can convey distinct social behaviors through 

differential activation and processing through different olfactory systems (Spehr et al., 2006a; 

Pérez-Gómez et al., 2014). 

 

1.2.2 Anatomy of the Vomeronasal Organ 

The VNO was first described in 1813 by Danish anatomist Ludwig Jacobson (Jacobson, 

1813). It is a sensory organ that is present in most mammals (Liberles, 2014). Anatomically, 

the VNO consists of a pair of bilateral symmetrical cylinders. It is located at the base of the 

anterior nasal septum. There, it is protected by a boney capsule that is formed by the vomer 
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bone. On the posterior side it ends blindly, whereas on the anterior side it is connected with 

the nasal cavity via a water-filled duct (Broman, 1920). Substances can enter the nasal cavity 

through sniffing (Halpern, 1987; Dulac and Torello, 2003; Liberles, 2014). Vomeronasal 

agonists resolved in fluids have to be sucked actively into the nasal cavity. An active pumping 

mechanism generated by pulsing blood vessels located laterally of the lumen in the 

non-sensory epithelium creates a suction that transports the substances through the lumen to 

the crescent-shaped vomeronasal sensory epithelium (Figure 2) (Døving and Trotier, 1998). 

The vomeronasal sensory epithelium houses vomeronasal sensory neurons (VSNs). These are 

specialized nerve cells express distinct receptors that detect pheromone substances (Brennan 

and Zufall, 2006). 

 

 

Figure 2. Organization of the murine vomeronasal organ. Midsaggital view of the nasal cavity and forebrain. 

Sensory neurons in the main olfactory epithelium (MOE) project their axons to glomeruli in the main olfactory 

bulb (MOB). Vomeronasal sensory neurons (VSNs) in the apical (red) or basal (green) layer of the vomeronasal 

organ (VNO), which is located at the base of the nasal septum (S), project to the anterior (red) or posterior 

(green) side of the accessory olfactory bulb (AOB). Figure was adapted and modified from Zufall et al., 2005. 

 

 

In 1970 the segregation of axon projections to the main olfactory bulb and the accessory 

olfactory bulb, specialized anterior brain areas, was documented in rodents (Winans and 

Scalia, 1970). The data suggested two parallel projection pathways to the brain, one for the 

VNO and one for the main olfactory epithelium (Raisman, 1972; Scalia and Winans, 1975). 

More than 20 years later, the separate projection of VSNs to the accessory olfactory bulb 

could be demonstrated by tracking axons with histological markers (Jia and Halpern, 1996; 

Belluscio et al., 1999; Rodriguez et al., 1999). Vomeronasal sensory neurons project to the 

accessory olfactory bulb (Figure 2). This structure serves as a first processing center for 

vomeronasal information (Munger et al., 2009). On the molecular level the vomeronasal 

sensory epithelium can be subdivided into an apical and a basal layer (Halpern et al., 1995; 

Dulac and Axel, 1995; Berghard and Buck, 1996). VSNs from different VNO layers project to 

different sides of the accessory olfactory bulb. VSNs located in the apical layer project to six 
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to 30 small glomeruli in the rostral half of the accessory olfactory bulb, whereas basal VSNs 

project to a similar amount of small glomeruli in the posterior half of the accessory olfactory 

bulb (Jia and Halpern, 1996; Belluscio et al., 1999; Rodriguez et al., 1999; Del Punta et al., 

2002a). From there, mitral cells interconnect the accessory olfactory bulb with higher brain 

regions, such as the amygdala and hypothalamic nuclei (Halpern, 1987). 

 

1.2.3 Detection Mechanisms in the Vomeronasal Organ 

Two main populations of VSNs are anatomically segregated into an apical and a basal zone 

that together form the vomeronasal sensory epithelium. These main populations differ in their 

expressed receptors (Herrada and Dulac, 1997; Matsunami and Buck, 1997; Ryba and 

Tirindelli, 1997) and down-stream signal transduction molecules (Dulac and Axel, 1995; 

Halpern et al., 1995; Berghard and Buck, 1996).  

The VNO detects many substances from different chemical classes (Zufall and 

Leinders-Zufall, 2007). Its ligand spectrum is complex and reaches from volatile substances 

to non-volatile peptides. Details are still under investigation, but the current view assigns 

detection of different ligand classes to specific zones of the vomeronasal sensory epithelium. 

VSNs of the apical zone expressing vomeronasal type 1 receptors (Vmn1rs) detect volatile 

substances, whereas basal VSNs expressing vomeronasal type 2 receptors (Vmn2rs) are 

responsible for the detection of peptide ligands (Liberles, 2014). 

 

1.2.3.1 Vmn1r Expressing Vomeronasal Sensory Neurons 

VSNs expressing Vmn1rs represent the vast majority of the apical VNO layer (Dulac and 

Axel, 1995; Pantages and Dulac, 2000; Leinders-Zufall, 2000). Vmn1rs are coexpressed with 

the G protein alpha i2 subunit (Gi2) (Berghard and Buck, 1996; Jia and Halpern, 1996) and 

the G protein gamma 2 subunit (G2) (Rünnenburger et al., 2002). In mouse, 191 intact of a 

total of 308 Vmn1r genes are known (Zhang et al., 2007). 

Vmn1r expressing cells can detect small volatile substances (Leinders-Zufall, 2000; Zufall 

and Leinders-Zufall, 2007). Electrovomeronasograms revealed activation of apical VSNs 

through substances, such as 2,5-dimethylpyrazine and 2-heptanone (Leinders-Zufall, 2000; 

Del Punta et al., 2002b). Consistent with the notion that Vmn1rs are activated by volatiles, 

knockout of a ~600 kb genomic region that contains a cluster of 16 intact Vmn1r genes 

resulted in impaired recognition for volatiles, such as n-pentyl acetate and isobutylamine 

(Del Punta et al., 2002b). However, this knockout did not give information about which of the 

deleted receptors were responsible for the perception of these substances. Further studies 
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addressing this question reported three specific receptor-ligand interactions for Vmn1rs 

(Boschat et al., 2002; Haga-Yamanaka et al., 2014; Haga-Yamanaka et al., 2015). One study 

assigned the recognition of 2-heptanone to the receptor V1r2b by functional experiments on 

vomeronasal sensory neurons marked with green fluorescent protein (Boschat et al., 2002). 

More recently, activation of tomato-labeled V1rj2 or V1rj3 expressing vomeronasal cells by 

sulfated steroids has been shown (Haga-Yamanaka et al., 2014; Haga-Yamanaka et al., 2015). 

V1rj2 expressing cells responded to sulfated and glucuronidated estrogens, 

sulfated androgens, sulfated progesterones, and a corticosterone. V1rj3 expressing cells were 

more selective in their responses and reacted only to sulfated estrogens, androgens, and 

progesterone (Haga-Yamanaka et al., 2014; Haga-Yamanaka et al., 2015). 

 

1.2.3.2 Vmn2r Expressing Vomeronasal Sensory Neurons 

VSNs expressing Vmn2rs are resident in the basal VNO zone. These receptors are 

coexpressed with Go (Berghard and Buck, 1996; Jia and Halpern, 1996) and G8 

(Rünnenburger et al., 2002). In mouse, 122 of a total of 282 Vmn2r genes are intact genes 

(Martini et al., 2001; Young and Trask, 2007). Vmn2r expressing VSNs can be further 

subdivided into VSNs coexpressing a Vmn2r with an H2-Mv gene (Vmn2r
+
 H2-M

+
) and 

VSNs expressing a Vmn2r without a H2-Mv gene (Vmn2r
+
 H2-Mv

–
). H2-Mv genes encode 

nine class I major histocompatibility complex (MHC) molecules. The associated 

MHC molecule is assumed to act as a co-factor, a chaperone, or a co-receptor for the given 

Vmn2r (Ishii et al., 2003; Loconto et al., 2003; Ishii and Mombaerts, 2008). A recent study 

deleted a 530 kb cluster of H2-Mv genes and showed lower sensitivity for a subset of VSNs 

lacking this cluster (Leinders-Zufall et al., 2014). 

Vmn2r expressing cells have been shown to detect class I MHC-binding peptides 

(antigens) that alter female reproductive function (Leinders-Zufall et al., 2004; 

Leinders-Zufall et al., 2009; Boehm and Zufall, 2006; Leinders-Zufall et al., 2014). Related to 

this, pregnancy failure in freshly mated female mice (Bruce effect) could be evoked by the 

introduction of class I MHC-binding peptides of non-familiar males into familiar male urine 

that was given as stimulus (Leinders-Zufall et al., 2004). It has been shown that 

Vmn2r26 (V2r1b) expressing VSNs can be activated by antigens, such as SYFPEITHI, 

SEIDLILGY, and AYKDNRETI (Leinders-Zufall et al., 2004). Distinct derivatives of these 

substances also activated the examined cells. Moreover, Vmn2r81 (V2rf2) expressing cells 

reacted to the antigens SEIDLILGY and f-MFFINTLTL (Leinders-Zufall et al., 2014). These 
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findings provide support for an evolutionary link between recognition mechanisms in immune 

cells and subsets of VSNs. 

Vmn2rs of the V2rp subfamily respond to exocrine gland-secreting peptides from tear fluid 

and saliva of mice (Kimoto et al., 2005; Dey and Matsunami, 2011). These peptides form a 

family of 38 related peptides of which 15 have been shown to elicit electrical responses in the 

VNO (Kimoto et al., 2007). Vmn2r116 (V2Rp5) is the best studied receptor detecting this 

substance class. VSNs that express Vmn2r116 are activated by exocrine gland-secreting 

peptide 1 (ESP1), a 7-kDa peptide secreted by the extraorbital lacrymal gland of male mice 

that enhances lordosis behavior in female mice. Knocking out the receptor gene abolishes 

VSN responses to ESP1 (Kimoto et al., 2005; Haga et al., 2010). Moreover, a single report 

described the activation of Vmn2r111 (V2rp2) by ESP5 and Vmn2r112 (V2rp1) by ESP5 and 

ESP6 (Dey and Matsunami, 2011). Recently, ESP22 that is present in tears of prepubertal 

mice was found to inhibit mating behavior of adult males (Ferrero et al., 2013). 

Another potent ligand group assigned to the basal VNO layer is composed of major urinary 

proteins (MUPs) (Sturm et al., 2013). These proteins are proposed to operate as olfactory 

signals for conspecific recognition, due to their high polymorphism rate and the fact that they 

are genetically encoded (Cheetham et al., 2007). MUPs may elicit inbreeding avoidance, 

countermarking behavior, and female sexual attraction (Hurst et al., 2001; Sherborne et al., 

2007; Roberts et al., 2010; Kaur et al., 2014). Additional to this already wide recognition 

capacity, they also play an important role in mediating aggressive behavior, conditioned 

learned spatial preference, and the detection of predators (Chamero et al., 2007, Chamero 

et al., 2011; Papes et al., 2010; Roberts et al., 2012). To date, no specific Vmn2r could be 

assigned to this ligand class thus far. 

 

1.2.3.3 Formyl Peptide Receptor Expressing Vomeronasal Sensory Neurons 

Other important G protein-coupled receptors expressed in VSNs are Fprs. Mice encode 

seven Fpr genes (Gao et al., 1998; Ye et al., 2009). Two independent studies recently 

discovered five murine Fprs in subpopulations of VSNs (Liberles et al., 2009; Rivière et al., 

2009). Four Fprs (Fpr-rs3, Fpr-rs4, Fpr-rs6, and Fpr-rs7) are located in the apical layer, 

where they coexpress with Gi2. Fpr3 (formerly known as Fpr-rs1; see MGI gene ID: 

1194495) is the only Fpr expressed by basal VSNs and coexpresses with Go (Liberles et al., 

2009; Rivière et al., 2009). Vomeronasal Fprs are not coexpressed with other types of 

vomeronasal receptors. Substances that are classified as Fpr agonists, such as the artificial 

W-peptide or the archetypical N-formylated peptide f-MLF, were shown to activate 
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vomeronasal Fprs (Rivière et al., 2009; Bufe et al., 2012; Bufe et al., 2015). However, their 

precise function is unknown, but some evidence suggests members of the Fpr family, 

particularly Fpr3, as current prime candidates for mediating vomeronasal pathogen sensing. 

 

 

Figure 3. Receptors expressed in the vomeronasal organ. Schematic depiction of different receptor types 

expressed in murine VSNs. The number of known mouse genes is indicated below each structure. In the apical 

layer, 191 intact Vmn1r and four Fprs are expressed. In the basal layer, 122 intact Vmn2rs and Fpr3 are 

expressed. The receptors are expressed in non-overlapping subpopulations of VSNs. Figure was adapted and 

modified from Chamero et al., 2012. 

 

 

1.3 Formyl Peptide Receptors 

 

1.3.1 General Function of Formyl Peptide Receptors 

Fprs are chemotactic G protein-coupled receptors (Bufe and Zufall, 2016; Dahlgren et al., 

2016). They comprise a single 350 to 370 amino acid long polypeptide chain that forms seven 

transmembrane domains (Boulay et al., 1990). The transmembrane segments of Fpr genes are 

more conserved than their extracellular domains, which display significant variability 

(Migeotte et al., 2006; Fu et al., 2006). 

Little is known about Fpr function in the olfactory system. However, their function in the 

immune system is intensely studied. There they are involved in chemoattraction of phagocytic 

immune cells and contribute to the recruitment of cells from the bone marrow to the blood 

stream and from the blood stream to inflammatory sites (Ye and Boulay, 1997). They can 

detect a large spectrum of chemical attractants either secreted by invading pathogens or 

released during inflammatory processes (Migeotte et al., 2006, Ye et al., 2009). Upon 

activation, Fprs mediate a variety of host defense mechanisms against invading 

microorganisms (Fu et al., 2006; Migeotte et al., 2006; Ye et al., 2009; Bloes et al., 2015). 

Besides their prominent role in chemotaxis, Fprs are also involved in the mobilization of 
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adhesion molecules from intracellular storage granules, the secretion of proteolytic enzymes 

and in reactive oxygen species production (Holland, 2013; Parker and Winterbourn, 2013). 

To fulfill this plethora of functions Fprs are very broadly tuned and promiscuous receptors 

that are capable of sensing many different ligands of different substance classes. Their 

functional promiscuity becomes clear when looking at the wide range of recognized 

substances. These include inflammatory markers, such as LL-37 (Yang et al., 2000) and 

Annexin A1 (Ernst et al., 2004), viral peptides, such as several viral HIV-1 envelope proteins 

(Su et al., 1999a; Su et al., 1999b; Le et al., 2000), and host-derived peptides including 

mitochondrial peptides, such as different NADH-ubiquinone oxidoreductase chain, internal 

NADH dehydrogenase, and Cytochrome c oxidase subunit peptides (Rabiet et al., 2005; 

Gripentrog and Miettinen, 2008; Bufe et al., 2012). Furthermore, Fprs detect peptides 

associated to Alzheimer’s disease, such as serum amyloid A (Ye et al., 2009), A42 (Le et al., 

2001a; Tiffany et al., 2001), and humanin that protects cells from damage caused by A42 

(Harada et al., 2004), as well as some host-derived non-peptide agonists. Moreover, they can 

detect a variety of synthetic peptides, such as the hexa-peptides W-peptide or M-peptide (Fu 

et al., 2006; Ye et al., 2009; Bae et al., 2012; Bufe et al., 2012; He et al., 2013; Bufe et al., 

2015; Bylund et al., 2014; Bufe and Zufall, 2016). 

Currently best studied are bacterial peptide agonists with N-formylated peptides leading 

the way. Most known formylated peptides are derived from bacteria. f-MLF, derived from 

Escherichia coli, was one of the first characterized chemotactic peptides and has been studied 

extensively since its initial discovery in 1975 (Schiffmann et al., 1975). f-MLF is the smallest 

formyl peptide that displays full agonistic activity for human FPR1 and FPR2. Other bacterial 

peptides, such as peptides derived from Listeria monocytogenes (Rabiet et al., 2005; He et al., 

2013) and phenol-soluble modulin peptide toxins derived from Staphylococcus aureus (Wang 

et al., 2007; Bloes et al., 2015), have been also identified as Fpr agonists. The detection 

mechanism of Fprs relies on specific peptide motifs that are present in sensed peptides (Bufe 

et al., 2012). Intriguingly, the motifs found in many formerly identified bacterial peptides are 

prime components of bacterial signal peptides (Bennet et al., 1980; Bufe and Zufall, 2016). In 

line with these findings, recent systematic structure-function studies of Fprs from six 

mammalian species revealed clear evidence that Fprs primarily focus on the detection of 

formylated signal peptides from bacteria. This is due to specific evolutionarily conserved 

pathogen associated molecular patterns that possibly allow for detection of more than 100,000 

distinct formyl peptides (Bufe et al., 2015). 
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Figure 4. Signal peptide structure. Signal peptides are the first natural agonists identified for murine Fpr3. 

They guide newly synthesized proteins to the membrane transport machinery of a bacterium. Besides their 

differing amino acid sequences they share a conserved secondary structure that is largely -helical (von Heinje, 

1985). They exhibit a typical motif combining a high degree of sequence flexibility and a conserved three-

dimensional topology. Bacterial signal peptides comprise three typical domains: a 3-6 amino acid long 

N-terminal region (blue) starting with a methionine (M), an -helical hydrophobic h-region (green), and a 

C-terminal region (red), that contains a conserved signal peptidase (SPase) recognition motif (von Heinje, 1985; 

Dalbey et al., 2012). Figure was adapted from Bufe et al., 2015. 

 

 

1.3.2 Genetics of Formyl Peptide Receptors 

Fprs can be found in mammals (Liberles et al., 2009) and in other phylogenetic classes, 

such as birds and fish (Panaro et al., 2007; Bufe and Zufall, 2016). The human genome 

encodes three Fpr genes, FPR1, FPR2, and FPR3, in a cluster located on chromosomal region 

19q13.3 (Figure 5B) (Bao et al., 1992; Alvarez et al., 1994). All three human Fpr genes are 

single copy genes with intron-less open reading frames, but they encode introns in their 

untranslated regions (Perez et al., 1992; Ye et al., 1992; Bao et al., 1992; Murphy et al., 

1992). 

 

 

Figure 5. Relationship and genomic organization of human and murine Fpr genes. A, dendrogram depicting 

amino acid sequence similarities between human and murine Fprs. B, organization of the three human Fpr genes 

located on chromosome 19q13.3. White and red boxes indicate non-coding or coding exonic sequence segments, 

respectively. C, organization of the nine functional and non-functional Fpr genes of the mouse located on 

chromosome 17A3.2. Red, purple, yellow, and white arrows represent presumably functional Fpr genes, 

pseudogenes, vomeronasal receptor genes, or other genes, respectively. hFPR = human Fpr; mFpr = murine Fpr. 

Figure was adapted from Migeotte et al., 2006. 

 

 

Looking at the organization of Fpr genes in other species than human, the complex history 

and evolution of the receptor family becomes clear. In rodents, the Fpr gene cluster has 

undergone species-specific expansion (Gao et al., 1998; Wang and Ye, 2002). Thus, the 

mouse genome encodes seven full-length Fpr genes – Fpr1, Fpr2, Fpr3, Fpr-rs3, Fpr-rs4, 

Fpr-rs6, and Fpr-rs7 – and two pseudogenes ψFpr-rs2 (Fpr-rs8) and ψFpr-rs3 (Fpr-rs5) with 
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premature stop codons on chromosome 17A3.2 (Figure 5C) (Gao et al., 1998; Migeotte et al., 

2006). ψFpr-rs2 has an open reading frame and its expression could be induced by LPS 

stimulation in spleen and bone marrow, which are both leukocyte accumulating organs 

(Tiffany et al., 2011). This suggests that the protein product of ψFpr-rs2 may fulfill a 

biological function. 

 

1.3.3 Tissue Distribution of Formyl Peptide Receptors 

Fpr expression is described in a variety of leukocytes. Human FPR1 has been described in 

tissue-residing neutrophil granulocytes, macrophages, microglia, dendritic cells, monocytes, 

and lymphocytes (Durstin et al., 1994; Lacy et al., 1995; Migeotte et al., 2005; Migeotte 

et al., 2006). Expression of human FPR1 was also reported for multiple non-immune organs 

and tissues including epithelial cells in organs with secretory functions, thyroid and cortical 

cells of the adrenal gland, liver, smooth muscle, brain, spinal cord, and both motor and 

sensory neurons (Becker et al., 1998; Ye et al., 2009). Human FPR2 expression has been 

reported for neutrophil granulocytes, monocytes, macrophages, T- and B-lymphocytes, 

microglial cells, platelets, hepatocytes, epithelial cells, microvascular endothelial cells, and 

fibroblasts (Le et al., 2001b; VanCompernolle et al., 2003; Czapiga et al., 2005; Migeotte 

et al., 2006). Expression of human FPR3 is less studied. This receptor has been found in 

fewer cell types than the other human Fprs (Ye et al., 2009). mRNA of the receptor has been 

detected in monocytes and dendritic cells, where it is thought to be the dominant formyl 

peptide receptor (Yang et al., 2001; Yang et al., 2002; Migeotte et al., 2005). RNA of 

human FPR3 has also been detected in a wide variety of tissues including lung, spleen, lymph 

nodes, trachea, placenta, liver, adrenal gland, small intestine, and in some other tissues at 

minor levels, by using quantitative reverse transcription polymerase chain reaction (RT-PCR) 

(Harada et al., 2004; Migeotte et al., 2006). 

Expression of murine Fprs is not studied to the extent of human Fprs. Murine Fpr1 is 

expressed in dendritic cells, neutrophil granulocytes, and bone marrow cells (Gao et al., 1998; 

Lee et al., 2004; Southgate et al., 2008; Chiu et al., 2013). Moreover, transcripts for 

murine Fpr1 have been reported for spleen, lung, kidney, liver, the trigeminal nerve, and bone 

marrow cells (Migeotte et al., 2006; Chiu et al., 2013). Murine Fpr2 has been found in the 

same cells and organs as Fpr1, except for liver (Gao et al., 1998; Lee et al., 2004; Migeotte 

et al., 2006; Southgate et al., 2008; Chiu et al., 2013). 

Investigations on murine Fpr3 expression are more ambiguous. One report described Fpr3 

expression in the leukocyte accumulating organs spleen and lung, as well as in 
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peripheral blood-derived leukocytes by northern blot analyses (Gao et al., 1998). However, 

the performed experiments lacked a cellular resolution and technical issues, such as 

cross-hybridization with other Fprs, could not be completely excluded. Moreover, several 

other studies could not confirm the finding of murine Fpr3 expression in leukocytes (Lee 

et al., 2004; Southgate et al., 2008; Rivière et al., 2009; Chiu et al., 2013). 

The expression of the Fpr-rs genes is even less understood. Besides Fpr3, all of them are 

expressed in the VNO (Liberles et al., 2009; Rivière et al., 2009). Small amounts of 

Fpr-rs3 RNA were also found in skeletal muscle by northern blot analyses (Gao et al., 1998). 

Fpr-rs4 expression outside the olfactory system has not been reported yet. Fpr-rs6 RNA has 

been detected in brain, spleen, testis, and skeletal muscle. Fpr-rs7 expression has been 

described in heart, liver, lung, spleen, smooth muscle, pancreas by RT-PCR (Wang and Ye, 

2002). Moreover, transcripts for Fpr-rs6 and Fpr-rs7 were identified from bone 

marrow-derived dendritic cells (Lee et al., 2004). 

 

1.3.4 Relationship between Murine and Human Formyl Peptide Receptors 

The evolutionary relationship between murine Fprs and their human counterparts are not 

understood in their entirety. In agreement with several publications, the mouse genes Fpr1 

and Fpr2 are orthologs of human FPR1 and FPR2, respectively (Migeotte et al., 2006; 

Önnheim et al., 2008; Dahlgren et al., 2016). Functionally, murine and human Fpr1 and Fpr2 

are very similar. Receptors of both species are very promiscuous (see chapter 1.3.1). Thus, it 

is not surprising that many ligands activating human Fprs also activate their mouse orthologs. 

The relationship between murine Fpr3 and the human Fpr genes is insufficiently 

examined. Its sequence is most similar with that of human FPR2 with a significant overlap to 

human FPR3 (Hartt et al., 1999; Ye et al., 2009). The high sequence similarity of 

murine Fpr3 to these human immune receptors provides evidence for a possible expression of 

murine Fpr3 in the immune system. Furthermore, its orientation and position on the 

chromosome resembles that of human FPR3 (Figure 5B, C). Murine Fpr3 has only recently 

been deorphanized (Bufe et al., 2012; He et al., 2013; Bufe et al., 2015). Functionally, murine 

Fpr3 seems to share a high similarity with human FPR3 since both receptors are less 

promiscuous than Fpr1 and Fpr2 of both species. Calcium imaging experiments showed 

responses for murine and human Fpr1 and Fpr2 to a wide panel of bacterial signal peptides 

whereas Fpr3 of both species was much more narrowly tuned. These data provide first 

evidence for a functional orthology between murine and human Fpr3. However, to 

substantiate the definite relationship of murine Fpr3 to a possible human counterpart, further 
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functional investigations must be done. Fpr-rs3, Fpr-rs4, Fpr-rs6, and Fpr-rs7 seem to have 

no direct counterparts in the human genome (Figure 5A) (Migeotte et al., 2006). 

 

 

1.4 Aims of this Work 

Recently, formyl peptide receptors have been discovered in the mouse vomeronasal organ 

(Liberles et al., 2009; Rivière et al., 2009). However, the biological role of these vomeronasal 

Fprs is poorly understood but they are candidate pathogen sensors based on the function of 

structurally related Fprs in immune cells (Liberles et al., 2009; Rivière et al., 2009). Murine 

Fpr3 was the first vomeronasal Fpr that was recently deorphanized (Bufe et al., 2012). 

Furthermore, several studies have reported functional similarities between murine Fpr3 and 

the immune receptor human FPR3. Both receptors sense peptides of bacterial origin (Harada 

et al., 2004; Ernst et al., 2004; Bufe et al., 2015). However, differences in their expression 

patterns argue against a similar function for the two receptors. Murine Fpr3 is expressed in the 

vomeronasal organ, but reports about its presence in immune cells are controversial (Gao 

et al., 1998; Lee et al., 2004; Southgate et al., 2008; Rivière et al., 2009; Chiu et al., 2013). 

Human FPR3 is found in immune cells but adult humans lack a functional vomeronasal organ 

(Yang et al., 2001; Yang et al., 2002; Migeotte et al., 2005; Liman and Innan, 2003; Zhang 

and Webb, 2003). Thus, it is questionable if both receptors fulfill similar functions. Three 

main questions were proposed to understand the biological relationship between murine and 

human Fpr3: 

 

1. What is the evolutionary relationship between murine and human Fpr3? 

2. What is the functional relationship between murine and human Fpr3? 

3. What is the precise expression pattern of murine Fpr3 in different tissues? 

 

Careful characterization of murine Fpr3 expression with two newly generated antibodies 

showed that the receptor is expressed in the vomeronasal organ and immune system. 

Functional studies using heterologous calcium imaging provided clear evidence for 

similarities in the agonist responses of murine and human Fpr3. 

Additionally, a large panel of natural Fpr3 knockout mouse strains that lack expression 

and function of this receptor are presented. 
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2 EXPERIMENTAL PROCEDURES 

 

2.1 Ligands 

To achieve the main goals of this work, it was relevant to gain insight into the function of 

murine and human Fpr3. Therefore, many different ligands of different origins and with 

different properties were used for functional experiments. 

 

2.1.1 Synthetic Ligands 

A major ligand group used in this study consisted of synthetic peptides, comprising W- and 

M-peptide in D- and L-conformation, and various W-peptide derivatives. Table 1 lists all 

synthetic peptide ligands used in this study with their primary structure, the company they 

were purchased from, their purity, the solvent they were diluted in, and the FL-number (FL#), 

which is the internal laboratory identifier. 

 

Table 1. Synthetic ligands used in this study 

Ligand Primary Structure Company Purity (%) Solvent FL# 

W-Peptide Library 

D-W-Peptide WKYMVm-NH2 Innovagen >95.00 C1 FL21 

L-W-Peptide WKYMVM-NH2 Tocris >99.20 C1 FL22 

D-M-Peptide MMHWAm-NH2 GenScript Corporation >99.60 C1 FL57 

L-M-Peptide MMHWAM-NH2 GenScript Corporation >96.80 C1 FL56 

W-Library Peptide 13b WKYMVC-NH2 GenScript Corporation >97.20 C1 FL46 

W-Library Peptide 14 WKYMVa-NH2 GenScript Corporation >98.50 C1 FL47 

W-Library Peptide 29 WKYMVi-NH2 GenScript Corporation >97.30 C1 FL81 

W-Library Peptide 30 WKYMVo-NH2 GenScript Corporation >99.90 C1 FL82 

W-Library Peptide 28 WKYMVf-NH2 GenScript Corporation >98.60 C1 FL80 

W-Library Peptide 13 WKYMVc-NH2 GenScript Corporation >95.00 C1 FL32 

W-Library Peptide 33 WKYMV[hcy]-NH2 GenScript Corporation >95.20 C1 FL85 

W-Library Peptide 45 WKYMVq-NH2 GenScript Corporation >97.70 C1 FL106 

W-Library Peptide 27 WKYMVk-NH2 GenScript Corporation >99.70 C1 FL79 

W-Library Peptide 46 WKYMVe-NH2 GenScript Corporation >97.50 C1 FL107 

W-Library Peptide 92 WKYMAm-NH2 VCPBIO >95.19 C1 FL177 

W-Library Peptide 93 WKYMIm-NH2 VCPBIO >98.11 C1 FL178 

W-Library Peptide 94 WKYMFm-NH2 VCPBIO >98.52 C1 FL179 

W-Library Peptide 91 WKYAVm-NH2 VCPBIO >97.45 C1 FL176 

W-Library Peptide 87 WKYWVm-NH2 VCPBIO >95.26 C1 FL172 

W-Library Peptide 88 WKYFVm-NH2 VCPBIO >95.31 C1 FL173 

W-Library Peptide 89 WKYKVm-NH2 VCPBIO >95.75 C1 FL174 

W-Library Peptide 90 WKYEVm-NH2 VCPBIO >95.93 C1 FL175 

W-Library Peptide 17 WKAMVm-NH2 GenScript Corporation >99.00 C1 FL50 

W-Library Peptide 16 WKFMVm-NH2 GenScript Corporation >96.70 C1 FL49 

W-Library Peptide 36 WKQMVm-NH2 GenScript Corporation >96.70 C1 FL97 

W-Library Peptide 34 WKKMVm-NH2 GenScript Corporation >96.80 C1 FL95 

W-Library Peptide 35 WKEMVm-NH2 GenScript Corporation >97.20 C1 FL96 
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2.1.2 Natural Ligands 

Besides the synthetic ligands, various natural peptide ligands comprising murine, human, 

and bacterial peptides were used in this study. Table 2 displays all natural peptide ligands 

with their primary structure, their origin, the company they were acquired from, their purity, 

the solvent they were diluted in, and the FL-number (FL#), which is the internal laboratory 

identifier. 

 

Table 2. Natural ligands used in this study 

Ligand Primary Structure Origin Company 
Purity 

(%) 
Solvent FL# 

Murine Peptides 

Ac2-26 
Ac-

AMVSEFLKQAWFIENEEQEYVQTVK 
Immune system Tocris >95.00 C1 FL19 

mATP6 f-MNENLF mitochondria VCPBIO >95.44 C1 FL196 

N-terminus of 

mND2 
f-MNPITL mitochondria VCPBIO >95.33 C1 FL188 

N-terminus of 

mND3 
f-MNLYTV mitochondria VCPBIO >95.52 C1 FL133 

N-terminus of 

mND4 
f-MLKIIL mitochondria VCPBIO >95.63 C1 FL189 

N-terminus of 

mND4L 
f-MPSTFF mitochondria VCPBIO >95.21 C1 FL190 

N-terminus of 

mND5 
f-MNIFTT mitochondria VCPBIO >95.42 C1 FL191 

N-terminus of 

mND6 
f-MNNYIF mitochondria VCPBIO >96.54 C1 FL192 

N-terminus of 

mCytb 
f-MTNMRK mitochondria VCPBIO >95.33 C1 FL195 

N-terminus of 

mCOIII 
f-MTHQTH mitochondria VCPBIO >95.74 C1 FL194 

Human Peptides 

N-terminus of 

hND4 
f-MLKLIV mitochondria VCPBIO >96.96 C1 FL142 

N-terminus of 

hND5 
f-MTMHTT mitochondria VCPBIO >98.00 C1 FL113 

N-terminus of 

hND6 
f-MMYALF mitochondria VCPBIO >95.97 C1 FL141 

Bacterial Peptides 

f-MIVILY f-MIVILY 
Listeria 

monocytegenes 
VCPBIO >96.34 C1 FL140 

Bacterial Signal Peptide Fragments (N-termini) 

Streptococcus-

SP1 
f-MGFFIS 

Streptococcus 

suis 
VCPBIO >95.43 C1 FL134 

Psychromonas-

SP6 
f-MLFYFS 

Psychromonas 

ingrahamii 
VCPBIO >95.59 DMSO FL207 

Clostridium-SP13 f-MKKNLV 
Clostridium 

perfringens 

United 

Biosystems 
>95.67 C1 FL239 

Hydrogenobacter-

SP16 
f-MKKFLL 

Hydrogenobacter 

thermophilus 

United 

Biosystems 
>95.78 C1 FL245 

Staphylococcus-

SP22 
f-MKKFNI 

Staphylococcus 

aureus 
VCPBIO >95.30 C1 FL170 

Salmonella-SP24 f-MKKFRW 
Salmonella 

enterica 
VCPBIO >98.34 C1 FL185 

Bacterial Signal Peptides (full length) 

Staphylococcus-

SP22 FuLe 
f-MKKFNILIALLFFTSLVISPLNVKA 

Staphylococcus 

aureus 
VCPBIO >96.83 C1 FL180 
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2.2 Mouse Strains 

In this thesis, experiments with a variety of different mouse strains were performed. For 

strain names, the nomenclature employed by the Mouse Genome Informatics database 

(ftp://ftp.informatics.jax.org/pub/reports/MGI_Strain.rpt) was used. 

 

Table 3. Used mouse strains 

Strain Origin Inbred Type Source 

C57Bl/6N England Classical 
Trese Leinders-Zufall (Saarland University School of Medicine) 

Dieter Bruns (Saarland University School of Medicine) 

NZB/Ola England Classical Reinhart Kluge (German Institute of Human Nutrition) 

129X1/Sv England Classical 
Trese Leinders-Zufall (Saarland University School of Medicine) 

BALB/cJ England Classical 
FVB/NCrl Switzerland Classical Frank Kirchhoff (Saarland University School of Medicine) 

SPRET/EiJ Spain Wild-derived (spretus) 

Diethard Tautz (Max-Planck-Institut für Evolutionsbiologie) 

CAST/EiJ Thailand Wild-derived (castaneus) 
KAZ/DT Kazakhstan Wild-derived (musculus) 
CZE/DT Czech Republic Wild-derived (musculus) 
GER/DT Germany Wild-derived (domesticus) 
FRA/DT France Wild-derived (domesticus) 

 

 

Mouse inbred strains can be classified into two groups: classical and wild-derived. While 

the genome of the classical inbred strains derived of only a few progenitors (Tucker et al., 

1992; Beck et al., 2000) and comprises a mosaic of different mus musculus subspecies 

(Bonhomme et al., 1987), the genome of wild-derived inbred strains consists of wild living 

mice caught at different times and locations (Beck et al., 2000), and thus mostly represent the 

genome of the respective wild caught mus musculus subspecies. 

 

 

2.3 Molecular Biology 

 

2.3.1 Oligonucleotides 

For this study, two types of primers were used – sequencing primers and polymerase chain 

reaction (PCR) primers. Sequencing primers were used in sequencing reactions to verify the 

nucleotide sequences of cloned genes. PCR primers were used for amplification of 

murine and human Fprs for cloning purposes. The housekeeping genes encoding 

glyceraldehyde 3-phosphate dehydrogenase (Gapdh) and -actin were also amplified with 

PCR primers as controls in PCR reactions. All primers were purchased from Sigma-Aldrich. 

 

ftp://ftp.informatics.jax.org/pub/reports/MGI_Strain.rpt
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2.3.1.1 Sequencing Primers 

Internal sequencing primers bind inside of a gene. Additionally, sequencing primers 

targeting the cytomegalovirus (CMV) promoter before the start codon (ATG) and the bovine 

growth hormone (BGH) polyadenylation site behind the stop codon (TGA) were used to 

ensure covering the complete amplified gene in order to obtain comprehensive analyses. 

Sequencing primers with their binding targets, their sequences and their PH-numbers (PH#), 

which are the internal laboratory identifiers are listed in table 4. 

 

Table 4. Sequencing primers 

Binding Target Sequencing Primer Sequences [5’ > 3’] PH# 

Murine Fpr3 

Forward: GCTAGAAATGTGGTTGTTGGGTCC 

Forward: GATCAGATGTGGTGATCTATGATTCTAC 

Forward: CTGAATCTAGCATTGGCTGACTTC 

Forward: CATTGCAGTAGATGTAAACCTATTTGG 

Reverse: AGGAAGTGAAGCCAAATTGGT 

PH473 

PH692 

PH693 

PH694 

PH695 

CMV promoter Forward: CGCAAATGGGCGGTAGGCGTG PH1 

BGH polyadenylation site Reverse: TAGAAGGCACAGTCGAGG PH2 

 

 

2.3.1.2 PCR Primers 

Primers for amplification of complete coding regions were designed to cover the start 

(ATG) and the stop codon (TGA). Forward primers comprised the start codon, whereas 

reverse primers included the stop codon. Primers that were used for gene amplification in 

PCR experiments, their targeted genes, and accession numbers are listed in table 5. 

 

Table 5. PCR primers 

Gene 
Accession 

Numbers* 
Synonyms* Gene-Specific Primer Sequences [5’ > 3’] PH# 

Murine 

Fpr3 
NM_008042.2 

ALX; Fpr-rs1; 

Fpr-s1; Fprl1; 

LXA4-R; Lxa4r 

Forward: ATGGAAACCAACTACTCTATCCCTTTGAAT 

Reverse: TATTGCCTTTATTTCAATGTCTTCAGGA 

RNA Probe Primers for In Situ Hybridization: 

Forward: CACTACAAAGATTCACAAAAAAGCCTTTG 

Reverse: AATATTCTAGGCCCCTTTGACTTTTACTTTTTT 

PH354 

PH355 

 

PH558 

PH559 

Human 

FPR1 
NM_001193306.1 FMLP; FPR 

Forward: ATGGAGACAAATTCCTCTCTCCC 

Reverse: CTTTGCCTGTAACTCCACCTCTGC 

PH462 

PH463 

Human 

FPR2 
NM_001462.3 

ALXR; FMLP-R-

II; FMLPX; 

FPR2A; FPRH1; 

FPRH2; FPRL1; 

HM63; LXA4R 

Forward: ATGGAAACCAACTTCTCCACTCCTC 

Reverse: CATTGCCTGTAACTCAGTCTCTGCA 

PH464 

PH465 

Human 

FPR3 
NM_002030.4 

FML2_HUMAN; 

FMLP-R-II; 

FMLPY; FPRH1; 

FPRH2; FPRL2; 

RMLP-R-I 

Forward: ATGGAAACCAACTTCTCCATTCCT 

Reverse: CATTGCTTGTAACTCCGTCTCCTC 

PH467 

PH468 

-actin NM_007393.5 

Actx; 

beta-actin; 

E430023M04Rik 

Forward: CTGGAACGGTGAAGGTGACA 

Reverse: AAGGGACTTCCTGTAACAATGCA 

PH153 

PH154 

Gapdh NM_001289726.1 Gapd 
Forward: ACCACAGTCCATGCCATCAC 

Reverse: TCCCACCACCCTGTTGCTGTA 

PH11 

PH12 

* = National Center for Biotechnology Information (NCBI) data. 
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For cloning, PCR primers were attached to a sequence with several restriction sites to 

ensure directed insertion into expression vectors. To forward primers a HindIII- (AAGCTT), 

a SbfI-site (CCTGCAGG), and a KOZAK sequence (GCCACC) was added upstream of the 

start codon (ATG) at the 5’ end. 

 

  - forward primers: 5’– AAGCTT CCTGCAGG GCCACC ATG – 3’ 

                = HindIII-site  

            = SbfI-site 

                        = KOZAK sequence 

                   = start codon 

 

To reverse primers a stop codon (TGA), a SacI- (GAGCTC), and a NotI-site (GCGGCCGC) 

was added downstream of the stop codon (ATG) at the 3’ end. 

 

  - reverse primers: 3’– GCGGCCGC GAGCTC TGA – 5’ 

                = NotI-site 

                  = SacI-site  

                        = stop codon 

 

 

2.3.2 Polymerase Chain Reaction 

PCR was performed with Phusion High-Fidelity DNA Polymerase (New England Biolabs 

Inc.) according to the manufacturer’s protocol. For each reaction, 0.5 µl cDNA and 10 pM of 

a forward and reverse primer were added to 10 µl 2× Phusion Master Mix, respectively, and 

filled up to a total volume of 20 µl with de-ionized water. The whole reaction was pipetted 

and mixed on ice. Reaction conditions for all primers were 98°C for 15 s followed by 

35 cycles (denaturation: 98°C for 10 s, annealing: 64°C for 10 s, elongation: 72°C for 40 s), 

and 72°C for 20 s. Subsequently, PCR products were purified. 

 

2.3.3 PCR Templates 

PCR templates for this study were obtained via RNA isolation (see chapter 2.3.4), 

subsequent cDNA synthesis (see chapter 2.3.5), and by direct extraction of genomic DNA 

(see chapter 2.3.6). Templates were collected from different mouse strains and different 
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tissues. Table 6 outlines all used PCR templates, the organs and mouse strains they were 

gathered from, and the providers of the used mice. 

 

Table 6. PCR templates 

Template Organ Mouse Strain Source 

RNA Blood C57 Purchased from Zyagen 

cDNA 

VNO 

C57Bl/6NCrl 
Trese Leinders-Zufall and Dieter Bruns 

(Saarland University School of Medicine) 
Bone Marrow 

Cells 

 VNO NZB/Ola Reinhart Kluge (German Institute of Human Nutrition) 

 VNO 129X1/Sv Trese Leinders-Zufall (Saarland University School of Medicine) 

 VNO BALB/cJ Trese Leinders-Zufall (Saarland University School of Medicine) 

 VNO FVB/NCrl Frank Kirchhoff (Saarland University School of Medicine) 

Genomic DNA Ear 

SPRET/EiJ 

Diethard Tautz (Max-Planck-Institut für Evolutionsbiologie) 

CAST/EiJ 

KAZ/DT 

CZE/DT 

GER/DT 

FRA/DT 

 

 

2.3.4 RNA Isolation 

RNA from VNO and bone marrow of mice was obtained with the innuPREP RNA Mini 

Kit (Analytik Jena AG) according to the manufacturer’s protocol. For lysis, tissue was 

incubated in 400 µl RL buffer for 2 min at room temperature (RT) and subsequently fully 

resuspended. For removal of genomic DNA, the suspension was transferred to a Spin Filter D 

and centrifuged at 10,000× g for 2 min and 400 µl 70% (v/v) ethanol was added to the filtrate. 

Binding of RNA was achieved by transferring the sample to Spin Filter R and subsequent 

centrifugation at 10,000× g for 2 min. For on-column DNase I digestion, 300 µl 

Washing Solution HS were added to the filter and centrifuged at 10,000× g for 1 min. A 

DNase I/Digestion Buffer mix (40 Kunitz Units innuPREP DNase I in 80 µl DNase I 

Digestion Buffer) was applied to the filter and incubated for 15 min at RT. Subsequently, 

300 µl Washing Buffer HS were added and centrifuged at 10,000× g for 1 min. For washing, 

750 µl LS Buffer were added and centrifuged at 10,000× g for 1 min. Ethanol was removed 

by spinning the column again after discarding the flow-through at 10,000× g for 3 min. RNA 

was eluted with RNase-free water after incubation of 1 min at RT and subsequent 

centrifugation at 6,000× g for 1 min. Quality was assessed by gel electrophoresis and 

photometric measurements. After isolation, RNA was used to synthesize cDNA. 
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2.3.5 cDNA Synthesis 

cDNA was synthesized from 0.5 µg total RNA using the Smart cDNA Synthesis protocol 

(Clontech) and Superscript II Reverse Transcriptase (Invitrogen). Therefore, 5 µl reverse 

transcriptase buffer (2µl 5× First Strand Buffer, 4 mM dichlorodiphenyltrichloroethane 

(DDT), 12.5 mM dNTP-Mix (3.125 mM of dATP, dTTP, dGTP, and dCTP), 

40 Units MMLV reverse transcriptase RNase H
-
 (Gibco), 10 Units RiboLock RNase Inhibitor 

(Thermo Scientific), and 1.15 µl water treated with diethyl dicarbonate (DEPC)) were added 

to 0.1 µg to 1 µg RNA including 2 µM CDS Primer and 2 µM Smart II Primer. The whole 

reaction was pipetted and mixed on ice. Synthesis was achieved by increasing heating steps 

starting at 42°C for 30 min, followed by 45° for 10 min, 50°C for 10 min, 55°C for 10 min, 

and 65°C for 5 min. After synthesis, cDNA was diluted in 100 µl de-ionized water and 

subsequently used as template in PCR reactions. 

 

2.3.6 Extraction of Genomic DNA 

Genomic DNA was extracted from the VNO or ear stamps of mice with the Blood DNA 

Mini Kit (PEQLAB) according to the manufacturer’s protocol. For lysis 250 µl PBS, 

25 µl OB-Protease, and 250 µl BL-Buffer were added to the tissue in a 1.5 ml Safe-lock tube 

(Eppendorf) and vortexed for 10 s. Afterwards, it was incubated at 70°C for 10 min. For 

binding of DNA, 260 µl isopropanol was added and mixed. Subsequently, the sample was 

transferred to the filter column and centrifuged at 8,000× g for 1 min. Flow-through was 

discarded. The column was washed twice with 600 µl washing buffer supplemented with 

ethanol. Flow-through was discarded. To remove ethanol, the column was centrifuged at 

8,000× g for 2 min. Genomic DNA was eluted in 200 µl Elution-Buffer after 2 min via 

centrifugation at 5,000× g for 1 min and afterwards used as template in PCR reactions. 

 

2.3.7 Purification of PCR Products 

PCR products were purified with the MinElute PCR Purification Kit (Qiagen) according to 

the manufacturer’s protocol. Briefly, PCR products were diluted 1:5 with binding buffer, 

mixed via pipetting up and down and transferred on centrifugation columns. After 

centrifugation for 1 min at 14,000 rpm and RT the reactions were rinsed with 

750 µl washing buffer. Subsequently, the reactions were centrifuged again, to eliminate 

alcohol remains. Purified DNA was eluted in 15 µl elution buffer via centrifugation for 1 min 

at 14,000 rpm and RT. Afterwards, purified PCR products were analyzed by separation with 

agarose gel electrophoresis. 
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2.3.8 Gel Electrophoresis 

DNA was size separated in 1% (m/v) agarose gels. As electrophoresis buffer 0.5× TBE 

(de-ionized water containing 44.5 mM Tris base, 44.5 mM boric acid, 

1 mM EDTA-Na2 (pH 8)) and ethidium bromide (Carl Roth®) was used. To obtain a gel 

agarose was added to the buffer. 10 µl DNA solution (1 µl in the case of a PCR sample) were 

adjusted to 12 µl with 6X Orange DNA Loading Dye (Thermo Scientific). Reference was 6 µl 

FastRuler™ Middle Range DNA Ladder (Thermo Scientific). The duration of an 

electrophoresis was 30 min under constant voltage of 80 V. 

 

2.3.9 RNA Quantification 

Quantification of RNA probes was performed in gel electrophoresis chambers pretreated 

with 0.3% (v/v) H2O2 for 24 h and RNase-free agarose was used. References, to determine 

RNA probe concentration, were 20 ng, 40 ng, 60 ng, 80 ng, and 100 ng of non-labeled probes 

that were loaded on the gel. Molecular weight standard was the RiboRuler™ High Range 

RNA Ladder (Thermo Scientific). 

 

2.3.10 Enzymatic DNA Digestion 

Subcloning of PCR products into vectors was performed by digesting purified PCR 

products and vectors with different restriction enzymes. PCR products were digested with SbfI 

and NotI. Digestions were performed after the Thermo Scientific™ FastDigest™ 

(Thermo Scientific) protocol. Therefore, 1 µl 10X FastDigest buffer, 0.5 µl of each used 

restriction enzyme, and ~200 ng purified PCR product or 1 µg plasmid vector were adjusted 

to 10 µl with de-ionized water. Additional 0.5 µl thermosensitive alkaline phosphatase 

(TSAP; Promega) were added to vector digestions. The reaction was incubated for 1 h at 37°C 

and could be afterwards used for ligation into expression vectors. 

To identify bacterial clones carrying the desired receptor, restriction analyses were 

performed with the purified plasmids. Restriction analyses were performed with EcoRI and 

SacI. Digestion reactions were analyzed for specific band patterns on agarose gels. Restriction 

sites were predicted with the Vector NTI® software (life technologies). 

 

2.3.11 Expression Vectors 

PCR products containing the complete coding sequence of a gene were ligated into 

mammalian expression vectors in 5’  3’ orientation. For calcium imaging experiments, Fprs 
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were inserted into a slightly modified version of pcDNA™3.1 
(+)

 (Thermo Scientific) that 

contained a SbfI restriction site. 

For immunocytochemical detection, Fprs were inserted into the pcDNA™5/FRT/TO 

vector (Thermo Scientific), a tetracycline inducible plasmid that can be used in mammalian 

cells with the Flp-In T-REx™ system (Thermo Scientific). It was also modified in its 

multiple cloning site (MCS) by adding an extra SbfI restriction site. In addition, the plasmid 

contains the sequence for the first 39 amino acids of bovine rhodopsin (Rho-tag). When the 

inserted gene is expressed, the Rho-tag is fused to the N-terminus of the receptor gene and can 

be detected by an anti-Rho antibody. This allows examination of protein expression for the 

inserted receptor via immunofluorescence analyses. Fpr genes were cloned into SbfI and NotI 

sites within the modified pcDNA™3.1 
(+)

 and pcDNA™5/FRT/TO vectors. Figure 6 shows 

the altered cloning sites of the two vectors. 

 

 
 

Figure 6. Schemata of the expression cassettes of pcDNA™3.1 
(+)

 and pcDNA™5/FRT/TO. Left panel: For 

calcium imaging experiments in transiently transfected HEK293T cells, murine Fpr3 was cloned into a version 

of the vector with an extra SbfI restriction site. Right panel: For expression analysis during 

immunocytochemistry experiments performed in transiently transfected HEK293T cells, Fprs were cloned into 

pcDNA5/FRT/TO carrying an upstream fusion sequence of the first 39 amino acids of bovine rhodopsin 

(Rho-tag). Start (ATG) and Stop (TGA) codons are indicated below. Restriction sites are shown as black bars. 

Corresponding restriction enzymes are shown above the gene cassettes. BGH = Bovine Growth Hormone poly-

adenylation site; CMV = cytomegalovirus promoter sequence; Rho = rhodopsin-derived fusion sequence; 

TO = tetracycline operator. 

 

 

Fpr3424-435 was subcloned from the modified pcDNA™5/FRT/TO vector to an existing 

pCDNA™5/FRT/TO vector containing 11 amino acids derived from herpes simplex virus 

glycoprotein D (HSV-tag) downstream of its multiple cloning site. This subcloning was 

realized with HindIII and NotI and resulted in an Fpr3424-435 receptor with an N-terminal 

Rho-tag and a C-terminal HSV-tag that was expressed as fusion protein. Thereby, the extent 

of the expression of Fpr3424-435 in transiently transfected HEK293T cells could be examined 

in immunocytochemistry experiments targeting the Rho- and HSV-tag. Figure 7 shows the 

altered cloning site of the described expression vector. All plasmids carry an ampicillin 

resistance gene for selective growth in bacteria. 
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Figure 7. Schema of the expression cassette of 

pcDNA™5/FRT/TO for Fpr3424-435. Fpr3424-435 

was subcloned into pcDNA5/FRT/TO carrying an 

upstream Rho-tag and downstream 11 amino acids of 

the herpes simplex virus glycoprotein D (HSV-tag). 

Start (ATG) and Stop (TGA) codons are indicated 

below. Restriction sites are shown as black bars. 

Corresponding restriction enzymes are shown above 

the gene cassettes. BGH = Bovine Growth Hormone 

poly-adenylation site; CMV = cytomegalovirus 

promoter sequence; HSV = herpes simplex virus 

derived fusion sequence; Rho = rhodopsin-derived 

fusion sequence; TO = tetracycline operator. 

 

 

2.3.12 DNA Ligation 

Ligation of digested and purified DNA (plasmids and PCR products) was performed with 

the Fast-Link™ DNA Ligation Kit (LK0750H; Epicentre Biotechnologies) according to the 

manufacturer’s protocol. Therefore, 0.5 µl 10× Fast-Link™ Ligation Buffer, 0.5 µl ATP, 

0.5 µl Fast-Link™ DNA Ligase, 10 ng to 20 ng insert DNA, and 5 ng to 10 ng vector DNA 

were adjusted to 5 µl with de-ionized water. Reactions were incubated overnight at 4°C or 1 h 

at RT. Ligation products may be used for transformation of competent Escherichia coli. 

 

2.3.13 Transformation of Competent Escherichia coli 

Ligation products were transformed via heat-shock into competent Escherichia coli 10- 

bacteria (competence > 10
9
 CFU; New England Biolabs). Stocks of Escherichia coli 10- 

were stored at -80°C and thawed on ice. 1 µl ligation product was added to a 15 µl bacteria 

aliquot and incubated on ice for 10 min. Heat-shock was performed for 30 s at 42°C in the 

water bath. Afterwards, bacteria were held on ice for 1 min. 150 µl SOC-medium 

(2% (m/v) casein hydrolyzate, 5% (m/v) yeast extract, 0.05% (m/v) NaCl, 2.5 mM KCl, 

10 mM MgCl2, and 20 mM D-Glucose, adjusted to pH 7.4) were given to the bacteria for 

regeneration and shaken at 220 rpm and 37°C for 1 h. Subsequently, bacteria were spread on 

agar plates containing 50 µg/ml ampicillin and incubated overnight at 37°C. 

 

2.3.14 Isolation of Plasmid DNA from Bacterial Cultures 

At least three bacteria colonies were picked for each genetic construct for restriction 

analysis. Clones positive for the restriction analysis were inoculated in 5 ml of 

2× YT-medium (1.6% (m/v) casein hydrolyzate, 1% (m/v) yeast extract, 0.5% (m/v) NaCl, 

adjusted to pH 7.4) containing 50 µg/ml ampicillin and kept shaking overnight at 37°C. 

Grown bacteria cultures were harvested by centrifugation for 10 min at 3,200× g and RT. 
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Isolation of plasmid DNA from the bacteria was realized with the 

Wizard® Plus SV Minipreps DNA Purification System (Promega) according to the 

manufacturer’s protocol. 

 

2.3.15 Determining DNA and RNA Concentration 

Concentration and purity of DNA and RNA solutions were determined with the 

Ultrospec 2100 pro photometer (Amersham Biosciences). Therefore, light absorption at 

260 nm (A260) and 280 nm (A280) was measured. Solutions were diluted 1:25 and measured in 

a 10 mm path length quartz cuvette. Values were determined in comparison to blank 

reference. Only DNA solutions with an A260/280 quotient between 1.7 and 1.9, and RNA 

solutions with an A260/280 quotient between 1.8 and 2.0 were used in experiments. 

 

2.3.16 DNA Sequencing 

DNA sequencing of PCR amplificates was performed by the Seqlab Co. (Göttingen, 

Germany) according to their guidelines. Primers used for generation of PCR products were 

also used for sequencing (see chapter 2.3.1.2; Table 5). Newly produced constructs were also 

sequenced with primers against sites resident in the cloning vectors: the human 

cytomegalovirus promoter sequence (CMV) and the bovine growth hormone poly-adenylation 

site (BGH). Sequencing reactions typically spanned ~1,000 bp. To cover the whole length of a 

given sequence, genes >1,000 bp were also sequenced with internal sequencing primers 

(see chapter 2.3.1.1; Table 4). 

 

2.3.17 Generation of Bacterial Glycerol Stocks 

Glycerol stocks of bacteria were acquired from 1 ml of an overnight culture. It was 

centrifuged at 5,000 rpm for 3 min. After discarding the supernatant the bacteria pellet was 

resuspended in 1 ml LB-medium (1% (m/v) casein hydrolyzate, 0.5% (m/v) yeast extract, 

1% (m/v) NaCl, adjusted to pH 7.4) with 15% (v/v) glycerol and stored at -80°C. 

 

2.3.18 Formyl Peptide Receptor Genes 

Murine Fpr1 corresponds to the NCBI Reference Sequence NM_013521.2 with exchanges 

of T879C and G408A. Murine Fpr2 resembles the sequence of NM_008039.2 with a C192T 

exchange. Murine Fpr3 isolated from vomeronasal cDNA corresponds perfectly to 

NM_008042.2. Fpr3424-435 is identical to Fpr3 except for a 12 nucleotide in-frame deletion 

spanning base pairs 424 to 435. Fpr-rs3 and Fpr-rs6 are identical to NM_008040.2 and 
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NM_177316.2, respectively. Fpr-rs4 corresponds to NM_008041.2 but with A69T and 

G577A exchanges. Fpr-rs7 corresponds to AF437513 with T441G and T500C exchanges. 

These deviations were also observed in genomic DNA of C57BL/6J mice. Human FPR1 

resembles to NM_001193306.1 with V111L, R163H, and N192K exchanges. Human FPR2 

and human FPR3 correspond to NM_001462.3 and NM_002030.3, respectively. Sequences 

for the full coding regions of all used receptors have been annotated (Bufe et al., 2015). 

 

 

2.4 HEK293T Cell Culture 

 

2.4.1 HEK293T Cells 

HEK293T PEAKrapid cells (ATCC
®
; CRL-11268

™
) were used to investigate Fprs in a 

heterologous cell system. HEK293T PEAKrapid cells constitutively express the simian 

virus 40 (SV40) large T antigen and thus support the replication of recombinant plasmids with 

the SV40 origin of replication. The plasmid vectors used in this study provide the 

SV40 origin of replication. 

 

2.4.2 Cell Culture Media 

Table 7. Cell culture media 

 HEK293T Culture Medium Cryopreservation Medium 

Basic Medium Dulbecco’s Modified Eagle Medium (DMEM; D6429; Sigma-Aldrich) DMEM 

Penicillin/Streptomycin 

(Sigma-Aldrich) 
1% (v/v) = 10,000 Units/ml Penicillin, 10 mg/ml Streptomycin 

1% (v/v) = 10,000 Units/ml 

Penicillin, 10 mg/ml Streptomycin 

L-Glutamine 

(Sigma-Aldrich) 
2 mM 2 mM* 

FCS (Sigma-Aldrich) 10% (v/v) (heat inactivated for 20 min at 56°C in a water bath) 20% (v/v)* 

DMSO / 10% (v/v) 

Storage 4°C 4°C 

 

 

2.4.3 Cultivating Culture Cells 

Cells were grown in 75 cm² culture flasks in 20 ml of appropriate culture medium 

(see chapter 2.4.2) and kept until 80% to 90% confluency. Propagation was realized by 

rinsing with 10 ml of Dulbecco’s Phosphate Buffered Saline (Sigma-Aldrich). Afterwards, 

cells were incubated in 5 ml Trypsin-EDTA for 3 min at RT until they detached from the flask 

bottom. Digestion was stopped by adding 5 ml appropriate culture medium. Separation of 

cells was performed by pipetting carefully up and down. After centrifugation at 900× g for 

3 min cells were resuspended gently in 10 ml fresh culture medium. 1 ml of the suspension 
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was used to inoculate a new 75 cm² flask. HEK293T PEAKrapid cells were propagated until 

30 passages. Then a new cell stock aliquot was thawed (see chapter 2.4.5). 

For heterologous calcium imaging and immunocytochemistry experiments, 

black 96 well μCLEAR-Plates (Greiner bio-one) were coated by incubation with 50 μl 

10 μg/ml poly-D-lysine dissolved in PBS for 30 min at RT. Afterwards, cells were seeded at 

20% to 30% confluency in each well and incubated for 24 h (37°C, 5% (v/v) CO2). 

 

2.4.4 Transient Transfection of Culture Cells 

When reaching 50% to 70% confluency, cells were transfected with the poly cationic DNA 

transfection reagent JetPEI™ (PEQLAB) according to the manufacturer’s protocol. Per well 

(96-well plate) a total of 0.25 µg DNA were diluted in 10 µl of 150 mM NaCl (4°C). In 

another tube, 0.5 µl JetPEI™ were added to another 10 µl of 150 mM NaCl (4°C). DNA was 

added to JetPEI™, briefly mixed, and incubated for 30 min at RT. Afterwards, the total 20 µl 

were added to a well containing seeded cells in 100 µl HEK293T culture medium 

(see chapter 2.4.2). For immunocytochemical analyses 0.25 µg plasmid DNA encoding a 

receptor were transfected. For calcium imaging experiments 0.125 µg DNA plasmid encoding 

a receptor were cotransfected with equal amounts of a plasmid encoding the 

G protein alpha 16 subunit (G16). The total amount of transfected DNA was kept constant. 

Cells were dye loaded and imaged 48 h after transfection, with cell density of approximately 

50,000 cells/well. 

 

2.4.5 Thawing of Cryopreserved Culture Cells 

For inoculation of new cell passages, stored cells were briefly thawed at 37°C in the water 

bath and quickly transferred to a 10 cm² culture flask (Sarstedt) filled with 37°C warm 

HEK293T culture medium (see chapter 2.4.2). After 4 h, the medium was replaced with fresh 

medium to wash out remaining DMSO and cell debris. When reaching 80% confluency, cells 

were carefully detached from the flask bottom, transferred to a 75 cm² culture flask (Sarstedt) 

and cultivated in appropriate culture medium (see chapter 2.4.2). 

 

2.4.6 Storage of Culture Cells 

HEK293T PEAKrapid cells were stored in cryopreservation medium (see chapter 2.4.2) 

and frozen to -80°C at -1 K/min using a Nalgene
®

 Mr. Frosty cryo container (Sigma-Aldrich). 

Afterwards, they were stored in liquid nitrogen at -196°C. 

 



EXPERIMENTAL PROCEDURES 

28 

2.5 High-Throughput Calcium Imaging 

 

2.5.1 Cell Population Calcium Imaging 

 

2.5.1.1 Dye Loading of HEK293T Cells for Cell Population Calcium Imaging 

For calcium imaging measurements of cell populations, transiently transfected HEK293T 

cells (see chapter 2.4.4) were loaded with the fluorescence dye Fluo-4, AM 

(Molecular Probes). 48 h after transfection culture medium of each well of a given 96-well 

plate was exchanged to loading buffer (50 µl C1 buffer (130 mM NaCl, 5 mM KCl, 

10 mM Na-HEPES, 2 mM CaCl2, and 10 mM D-Glucose, adjusted to pH 7.4 with NaOH) 

containing 0.07% (m/v) Probenecid (Sigma-Aldrich) and 2 µM Fluo-4, AM). Cells were 

incubated for 2 h at RT in the dark. Subsequently, they were washed three times with 

C1 buffer using the ELx50 ELISA cell-washer (BioTek) and measured. 

 

2.5.1.2 Data Acquisition for Cell Population Calcium Imaging with the FLIPR 

For heterologous high-throughput calcium imaging on cell populations the fluorometric 

imaging plate reader (FLIPR; Molecular Devices) was used. This device is equipped with an 

automated overhead pipetting unit that can apply fluids (e.g. ligands) to all wells of a 96-well 

plate simultaneously. It can detect fluorescence signals in all wells and allows the 

examination of up to 96 stimuli for different transfection conditions simultaneously. Because 

of this, the FLIPR is well-suited for ligand screening and the examination of 

concentration-dependent responses of receptors upon different stimuli. Excitation of prepared 

cells is achieved with a water-cooled argon laser at 488 nm. The fluorescence detection 

technology is based on a charge-coupled device (CCD) camera setup whose detection optics 

are optimized for signals from a cell monolayer at the bottom of the well. The overall 

fluorescence adds up to one single signal that constitutes the response of the whole cell 

population in the well. Fluorescence is measured from each well independently and 

converted into a numerical value. 

 

2.5.1.3 Analysis of FLIPR Experiments 

Cell population responses of transfected HEK293T cells (~50,000 cells/well) were 

recorded using the FLIPR system. Response amplitudes (F/F0) were calculated by dividing 

the maximal change in fluorescence after ligand application (F = Fmax – Fmin) by baseline 

fluorescence (F0) (Figure 8A). In all experiments, a buffer control was measured in separate 
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wells to determine the maximal baseline variations without stimulation. The mean amplitude 

of control wells determined in a given experiment was then subtracted from all mean 

amplitudes obtained upon stimuli. This procedure prevented baseline variations in negative 

wells from being interpreted as signal amplitudes. In FLIPR experiments, quantifications and 

resulting bar charts represent signal amplitudes. Concentration-response curves were 

performed applying decreasing concentrations of a ligand to different wells (Figure 8B) and 

calculated with Graph Pad Prism 5.0 (GraphPad Software) (see chapter 2.9.2) (Figure 8C). All 

experiments were performed at least in duplicate wells using at least three independent 

transfections. 

 

Figure 8. Representative responses 

in FLIPR experiments. A, maximal 

change in fluorescence after ligand 

(left panel) or buffer (right panel) 

application. Shown is the 

fluorescence minimum (Fmin) and the 

fluorescence maximum (Fmax) in 

blue, and the baseline fluorescence 

(F0) in red. The maximal change in 

fluorescence is represented by F. 

Response amplitudes were 

calculated with the formula F/F0. 

B, representative individual signals 

of a concentration-response curve 

obtained with decreasing 

ligand-concentrations in individual 

wells. C, Concentration-response 

curve calculated with the values of 

three independent experiments. 

Scale bars, vertical 5,000 RFU; 

horizontal 100 s. 

 

 

 

 

 

 

 

 

2.5.2 Single Cell Calcium Imaging 

 

2.5.2.1 Dye Loading of HEK293T Cells for Single Cell Calcium Imaging 

For single cell calcium imaging measurements, transiently transfected HEK293T cells 

(see chapter 2.4.4) were loaded with the ratiometric calcium sensitive dye Fura-2, AM 

(Molecular Probes). 48 h after transfection culture medium of each well of a given 96-well 

plate was exchanged with Fura-2 loading buffer (100 µl C1 buffer containing 
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5 mM Trypan Red Plus™ (AAT Bioquest) and 2 µM Fura-2, AM). Afterwards, cells were 

incubated for 2 h at RT in the dark and washed three times with C1 buffer using the 

ELx50 ELISA cell-washer (BioTek). 

 

2.5.2.2 Data Acquisition for Single Cell Calcium Imaging with the Bioimager 

Heterologous calcium imaging in single cell resolution was performed with the Bioimager 

BD Pathway 855 (Bioimager; BD Biosciences). This device is a fully automated confocal 

microscope with an automated pipetting unit. It allows high-throughput live cell analyses of 

living cells with optional confocal imaging. Automated sequences of liquid (e.g. ligand) 

applications on 96-well plates with simultaneous single cell resolution live imaging can be 

programmed. Because of its resolution, responses of single cells can be detected in a well. 

Therefore, the Bioimager is well-suited for examination of signals that would be overlooked 

in cell population measurements and for high-throughput immunocytochemistry experiments 

that require single cell resolution. 103 W mercury short arc lamps (Chroma) provide a broad 

excitation spectrum of 330 nm to 900 nm. A set of dichroitic mirrors, excitation and 

absorption filters enable various settings for excitation and absorption. Pictures are taken with 

a high resolution ORCA-ER CCD camera (Hamamatsu). The optical apparatus contains 

several Olympus objectives that deliver magnifications of 4× to 60×. 

 

2.5.2.3 Analysis of Bioimager Experiments 

For automated single cell calcium imaging of transfected HEK293T cells 

(~50,000 cells/well) the BD Pathway 855 Bioimaging system was used. Calcium-dependent 

ratiometric fluorescence signals were recorded at 0.5 Hz. 30 µM ATP were applied after the 

stimulus and served as a positive control to monitor cell viability. Prior to the stimulus, 

C1 buffer was applied to control for mechanical artifacts. Cells that responded to C1 buffer 

(negative control) or lacked response to ATP (positive control) were excluded from the 

analysis. Images were taken with the Bioimaging system and quantified using Attovision 

Software (BD Biosciences) and Excel2010. In quantifications of Bioimager experiments, bar 

heights represent the percentage of responding cells. 
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2.6 Immunocytochemistry 

 

2.6.1 Preparation of Samples for Immunocytochemistry 

 

2.6.1.1 Dissociation of Vomeronasal Tissue 

VNO epithelium of 8-12 week old mice was detached from the cartilage and minced in 

PBS at 4°C (Chamero et al., 2011; Pérez-Gómez et al., 2015). Pooled tissue from three to five 

mice was incubated for 20 min at 37°C in 1 ml PBS supplemented with papain (0.22 U/ml; 

Worthington), 1.1 mM EDTA (Thermo Scientific), and 5.5 mM L-cysteine hydrochloride 

(Sigma-Aldrich). Subsequently, cells were kept on ice for 5 min in 1 ml DNase buffer 

(600 µl PBS with 400 µl 5× Colorless GoTaq® Reaction Buffer (Promega) and 50 U DNase I 

(Thermo Scientific)). Thereafter, the reaction was stopped by adding 10 ml DMEM 

(Invitrogen) supplemented with 10% (v/v) FCS, and centrifuged for 5 min at 1,000× g and 

4°C. After removal of supernatant, cells were resuspended in 200 µl DMEM supplemented 

with 10% (v/v) FCS and gently extruded by pipetting. Supernatant containing dissociated 

cells was seeded on coverslips coated with concanavalin-A (0.5 mg/ml, overnight at 4°C; 

Sigma-Aldrich) and incubated for 1 h at 37°C and 5% (v/v) CO2. 

 

2.6.1.2 Preparation of Blood Cells 

Blood samples were obtained from 8-12 week old mice that were euthanized with CO2. 

Blood (10 µl) was deposited on a microscope slide (Superfrost Plus; Menzel-Gläser) and 

smeared immediately. After drying blood smears were ready for experiments. 

 

2.6.1.3 Preparation of Bone Marrow Cells 

Isolation of bone marrow cells was performed as described (Boxio et al., 2004). 8-12 week 

old mice were euthanized with CO2 and decapitated. Femoral bones were isolated and stored 

in ice-cold calcium/magnesium-free Hank’s balanced salt solution (HBSS) buffer (Gibco) 

containing 10 mM 4-(2-hydroxyethyl)-1-piperazineethane-sulfonic acid (HEPES) for 10 min. 

Epiphysis was removed from both ends of the bone and 1-2 ml HBSS with HEPES were 

forced through the bone shaft with a syringe (needle: 20G) to flush out the bone marrow. 

Bone marrow suspension was counted with a MOXI Z cell counter (Orflo) using Type S Moxi 

Z Cassettes (Orflo) and centrifuged at 300× g (brake on lowest level) for 8 min at 4°C. 

Supernatant was discarded and the cell pellet was resuspended in Roswell Park Memorial 

Institute medium (RPMI-1640, Gibco) containing 100 U/ml penicillin, 
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0.1 mg/ml streptomycin, 5 mM L-glutamine, and 10% (v/v) FCS (at a concentration of 

4× 10
6
 cells/ml. Cells were seeded on petri dishes (~1× 10

7
 cells/dish) and incubated for 2 h at 

37°C and 5% (v/v) CO2. Stimulation of bone marrow cells was achieved by adding 150 µg/ml 

lipopolysaccharide of Salmonella enteriditis (Sigma-Aldrich) into culture medium of seeded 

cells. Stimulated and unstimulated samples were incubated for additional 8 h at 37°C and 

5% (v/v) CO2 before use in experiments. 

 

2.6.2 Immunostaining Protocol 

Cells were fixed for 4 min in 4% (m/v) methanol-free paraformaldehyde (Polyscience), 

rinsed in PBS, and treated with a blocking solution (PBS supplemented with 5% (v/v) FCS) 

and 0.25% (v/v) Triton-X100 for 30 min at RT. Thereafter, cells were incubated overnight at 

4°C with primary antibody in blocking solution. After rinsing with PBS, staining was 

obtained by sample incubation for 60 min at RT with fluorescence-conjugated secondary 

antibody in blocking solution containing Hoechst33342 (1 µg/ml; Hoechst) to counterstain 

cell nuclei. The same immunocytochemistry protocol was used for HEK293T cells, 

dissociated VNO cells, and leukocytes from blood and bone marrow. 

 

2.6.2.1 Image Acquisition and Data Analysis for General Immunostainings 

All representative images from vomeronasal, blood, and bone marrow cells were taken 

with an Olympus BX61 fluorescence microscope with an X-Cite
®
 SERIES 120PC (EXFO) 

light source. Representative pictures of HEK293T cells and montage pictures for 

quantification were taken with the BD Pathway 855 Bioimaging system (BD Biosciences). 

Quantifications were evaluated with BD-image Explorer software (BD Biosciences). 

 

2.6.3 Antibodies 

 

2.6.3.1 Used Antibodies 

Primary antibodies binding at the target proteins varied in their applied concentration. The 

two generated and affinity purified ECL1 and ECL2 had a stock solution of 2 µg/ml. All 

secondary antibodies that were used for fluorescence stainings also had a stock concentration 

of 2 mg/ml and were used at 2 µg/ml. 

Table 8 summarizes the used primary and secondary antibody combinations, antibody 

names, clonality, working concentrations of the primary antibodies, order numbers (Order#), 
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the company they were purchased from, and the fluorescence conjugate for each secondary 

antibody. 

 

Table 8. Antibodies used in this study 

Primary Antibodies Associated Secondary Antibodies 

Name 
Primary 

Antibody 
Clonality 

Working 

Concentration 
Order# Company 

Secondary 

Antibody 
Clonality Conjugate Order# Company 

M-20 Rabbit anti-Fpr3 Polyclonal 0.2 mg/ml sc-18195 Santa Cruz Goat anti-rabbit Polyclonal Alexa Fluor 488 A-11034 Invitrogen 

N-20 Rabbit anti-Fpr3 Polyclonal 0.5 mg/ml orb100776 Biorbyt Goat anti-rabbit Polyclonal Alexa Fluor 488 A-11034 Invitrogen 

ECL1 Rabbit anti-Fpr3 Polyclonal 2.0 µg/ml -/- -/- Goat anti-rabbit Polyclonal Alexa Fluor 488 A-11034 Invitrogen 

ECL2 Mouse anti-Fpr3 Monoclonal 0.2 µg/ml -/- -/- 

Goat anti-mouse1 Polyclonal Alexa Fluor 546 A-11003 Invitrogen 

Goat anti-mouse2 Polyclonal Alexa Fluor 488 A-11029 
Molecular 

Probes 

Donkey anti-mouse2 Polyclonal Alexa Fluor 647 A-31571 Invitrogen 

OMP Goat anti-OMP Polyclonal 2.0 µg/ml 544-10001 Wako Donkey anti-goat Polyclonal Alexa Fluor 555 A-21432 Invitrogen 

Go Rabbit anti-Go Polyclonal 0.2 µg/ml sc-387 Santa Cruz Donkey anti-rabbit Polyclonal Alexa Fluor 555 A-31572 Invitrogen 

PDE4A 
Rabbit anti-

PDE4A 
Polyclonal 0.5 µg/ml PD4-112AP FabGennix Donkey anti-rabbit Polyclonal Alexa Fluor 555 A-31572 Invitrogen 

V2R2 Rabbit anti-V2R2 Polyclonal 1:10,000 -/- 
Gift from R. 

Tirindelli* 
Donkey anti-rabbit Polyclonal Alexa Fluor 555 A-31572 Invitrogen 

CD45R Rat anti-CD45R Polyclonal 0.25 µg/ml 2553087 
BD 

Pharmingen 
Donkey anti-rat Polyclonal Alexa Fluor 488 A-21208 Invitrogen 

Ly6G Rat anti-Ly6G Polyclonal 0.25 µg/ml 127601 BioLegend 
Donkey anti-rat3 Polyclonal CF633 20137 Biotium 

Donkey anti-rat4 Polyclonal Alexa Fluor 488 A-21208 Invitrogen 

Rho 
Mouse anti-

rhodopsin 
Monoclonal 1:500 -/- 

Gift from R. 

Molday** 
Goat anti-mouse Polyclonal Alexa Fluor 546 A-11003 Invitrogen 

HSV Mouse anti-HSV Monoclonal 0.1 µg/ml 69171 Novagen Goat anti-mouse Polyclonal Alexa Fluor 546 A-11003 Invitrogen 

* R. Tirindelli, University of Parma, Parma, Italy; ** Dr. R. Molday, Centre for Macular Research, University of 

British Columbia, Canada; 
1
 used for stainings in HEK293T cells; 

2
 used for stainings on VNO and blood 

samples; 
3
 used for colocalization experiments with ECL1; 

4
 used for colocalization experiments with ECL2 

 

 

2.6.3.2 Generation of Fpr3 Antibodies 

The polyclonal rabbit antibody ECL1 was generated based on the commercially available 

murine Fpr3 antibody M-20 (see chapter 2.6.3.1). Epitope mapping via peptide-spot assay 

analysis (see chapter 2.6.3.3) of M-20 revealed two epitopes. For each epitope, a peptide was 

synthesized and used to immunize a rabbit. Subsequent immunocytochemistry experiments 

with both rabbit sera on HEK293T cells expressing murine Fpr3 revealed best results for the 

serum of the rabbit injected with AMKEKWPFGWFLCKL. After 12 weeks serum was 

obtained and antibody was purified by affinity chromatography with the sulfo-linked 

AMKEKWPFGWFLCKL peptide and adjusted to a stock concentration of 2 mg/ml. 

The monoclonal mouse antibody ECL2 was developed in cooperation with the Abmart Co. 

Epitope scoring of the Fpr3 sequence of the mouse was used to determine four peptide 

sequences (WGNSVEERLNTA, LSEDSGHISDTR, HSLSSRLQRALS, and 

ITTKIHKKAFV) spanning intracellular, extracellular, and C-terminal epitopes on Fpr3. For 

immunogen production these epitopes were over-expressed in Escherichia coli and purified 

by nickel-affinity chromatography. Each immunogen was then injected into three 8-12 week 

old female BALB/C mice. For hybridoma cell generation spleen cells from the best 
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responding mice were fused to SP2/0 myeloma cells and single parent cell colonies were 

obtained and tested by ELISA for their ability to bind the antigen. The nine most productive 

and stable clones were injected into the peritoneal cavity of mice. After 10–14 days ascites 

fluid was obtained and tested. Immunocytochemistry experiments on HEK293T cells 

expressing murine Fpr3 showed the highest sensitivity for the antibodies produced with the 

cell line for WGNSVEERLNTA. Antibodies produced by the corresponding hybridoma cell 

line were used for all ECL2 immunochemistry experiments. 

 

2.6.3.3 Peptide-Spot Array Analysis for Antibody Characterization 

For peptide-spot array analysis, 69 peptides covering the whole sequence of murine Fpr3 

were synthesized. Each peptide consisted of 15 amino acid residues and overlapped by ten 

residues with its predecessor. All peptides were subjected to sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) on acid hardened polyvinylidene difluoride 

(PVDF) cellulose membranes derivatized with a polyethylene glycol spacer. Membranes were 

equilibrated in 150 mM NaCl, 50 mM Tris/HCl (pH 7.5) for 30 min at RT. Each antibody 

(M-20, ECL1, and ECL2; see chapter 2.6.3.1) was solved at a concentration of 4 µg/ml in 

PBS containing 5% (m/v) milk powder. Then they were added to the membrane and incubated 

overnight at 4°C. After washing with PBS, the membrane was incubated with the 

corresponding peroxidase-coupled secondary antibody overnight at 4°C. Thereafter, the 

membrane was washed twice with PBS for 10 min and incubated with enhanced 

chemiluminescence solution until pronounced signal was visible. Analysis was performed 

using the Fusion SL (Peqlab) luminescence imaging system. Captured images were used for 

quantification. Therefore, picture colors were inverted in Photoshop CS5 (Adobe). Each spot 

was analyzed with a marker circle having a diameter of 3.9 cm (1528 pixels). The average 

signal value for each spot was then determined with the histogram option. 

 

2.6.3.4 Blocking Peptides 

Peptides that were used for antibody generation, AMKEKWPFGWFLCKL for ECL1 and 

WGNSVEERLNTA for ECL2, were also used as blocking peptides. 10 µg/ml of the 

respective peptide were pre-incubated with antibody for 1 h at RT and then given to the 

preparation as first antibody application. Thus, the specific binding sites of the antibodies 

were blocked. Subsequently, all steps of the normal immunostaining protocol were performed 

(see chapter 2.6.2). 

 



EXPERIMENTAL PROCEDURES 

35 

2.7 In Situ Hybridization 

 

2.7.1 Coronal Slices of the Vomeronasal Organ for In Situ Hybridization 

Mice were anesthetized with an injection of 2 ml of 6.6% (v/v) Ketamine (Pfizer) and 

2.2% (v/v) Rompun® (Bayer) in PBS into the abdominal cavity. They were perfused with 

ice-cold 4% (m/v) paraformaldehyde (pH 7.4). The VNO was dissected and incubated 

overnight in 4% (m/v) paraformaldehyde at 4°C. Subsequently, it was incubated in increasing 

sucrose gradients of 10% (m/v; 2 h), 20% (m/v; 2 h), and 30% (m/v; overnight) at 4°C. 

Afterwards, the VNO was embedded in Tissue-Tek O.C.T. (Sakura Finetek), frozen in 

2-methylbutan that was cooled by liquid nitrogen, and stored at -80°C. For 

in situ hybridization 12 µm thick slices were cut and collected on microscope slides 

(Superfrost Plus; Menzel-Gläser). 

 

2.7.2 Design and Generation of RNA Probes 

Nucleotide 672 to 1056 from NCBI accession number NM_008042.2 plus 153 bp of the 

3’ UTR was used for murine Fpr3 RNA probe design. Additional 153 bp of the 3’ UTR of 

Fpr3 increased the specificity and minimized overlap with other Fpr genes. Based on these 

specifications, the DNA template for the Fpr3 probes was amplified with the primers 

CACTACAAAGATTCACAAAAAAGCCTTTG and 

AATATTCTAGGCCCCTTTGACTTTTACTTTTTT, and subsequently cloned into a 

pGEM-T Easy Vector (A1360; Promega) via TA-cloning. Antisense and sense probes were 

generated by the use of T7 and Sp6 RNA polymerases, respectively. The antisense and sense 

probes were labeled with Digoxigenin (DIG; Roche) according to the manufacturer’s 

instructions. Therefore, 1 µg template DNA, 4 µl 5× First Strand Buffer (Invitrogen), 

2 µl DTT (0.1 M; Invitrogen), 2 µl 10× DIG-Mix (Roche), 1 µl RiboLock RNase Inhibitor 

(Thermo Scientific), and 7 µl H2O were mixed and incubated for 90 min at 37°C and taken on 

ice. Probes were DNase digested by incubation with 2.5 µl 10× DNase buffer 

(Thermo Scientific) and 1 µl DNase I (50 U/µl; Thermo Scientific) for 15 min at 37°C. 

Addition of 2.5 µl EDTA (0.2 M; Thermo Scientific) stopped the enzyme reaction. DNase 

was inactivated by incubation of 10 min at 65°C. Precipitation of the probes was reached by 

adding 2 µl 4 M LiCl and 60 µl 100% (v/v) ethanol with subsequent overnight incubation 

at -20°C. Probes were centrifuged at 10,000× g for 20 min at 4°C. Supernatant was discarded 

and the pellet was washed three times with 100 µl 80% (v/v) ethanol. The RNA pellet was 

dried and resolved in 25 µl TE buffer (10 mM Tris-Cl pH 7.0, 1 mM EDTA). 
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2.7.3 Hybridization 

Coronal VNO slices were thawed and dried for 15 min at RT. They were fixed for 4 min in 

4% (m/v) paraformaldehyde and washed twice for 3 min with PBS at RT. Slides were treated 

with 0.2 M HCl for 10 min at RT and washed twice for 3 min with PBS. Slices were 

incubated for 10 min with acetylation solution (0.1 M triethanolamine, 

1.75 µl/ml acidic acid (99.9% (v/v)), 2.5 µl/ml acetic anhydride) at RT and washed twice for 

3 min with PBS at RT. Afterwards, slices were incubated with pre-hybridization solution 

(50% (v/v) formamide and 600 mM NaCl) for 2 h at 65°C in a sealed chamber filled with 

formamide. Hybridization solution (50% (v/v) formamide, 10 mM Tris-Cl pH 8.0, 

200 µg/ml yeast tRNA, 1× Denhardt’s, 600 mM NaCl, 0.25% (v/v) SDS, 

1 mM EDTA pH 8.0) was preheated for 10 min at 85°C. 0.2 ng/µl DIG-labeled probes were 

added to the preheated hybridization solution and heated for 3 further min. Hybridization 

solution containing probes was given on the slices and incubated overnight (>12 h) at 65°C in 

a chamber filled with formamide. 

 

2.7.4 Washing 

After hybridization, slices were washed once with 5× SSC at 65°C for 30 min, and once 

with 2× SSC, 0.2 SSC, and 0.1× SSC at RT for 20 min, each. Afterwards, slices were blocked 

with TN-blocking solution (100 mM Tris pH 7.5, 150 mM NaCl, 2% (v/v) FCS) for 30 min. 

Slices were incubated with anti-DIG antibody (Roche, 1:5,000) in TN-blocking solution 

overnight at 4°C. They were washed three times with TN buffer (100 mM Tris pH 7.5, 

150 mM NaCl) for 5 min at RT. Slices were equilibrated in AP buffer (100 mM Tris base 

pH 9.5, 100 mM NaCl, 50 mM MgCl2) for 5 min at RT.  

 

2.7.5 Detection with Alkaline Phosphatase 

For detection of hybridized RNA, slices were incubated with detection buffer 

(175 µg/ml 5-bromo-4-chloro-3-indolyl phosphate (BCIP), 300 µg/ml nitro blue 

tetrazolium (NBT), 1 mM levamisole in AP buffer at RT in a chamber filled with TN buffer 

until the staining was well-developed. The staining reaction was stopped at 4°C and slices 

were mounted with fluorescence mounting medium (DAKO). 
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2.8 Software and Web Tools 

 

2.8.1 Software 

 

2.8.1.1 Adobe Photoshop CS5 

Adobe Photoshop CS5 (Adobe) was used to adjust brightness and contrast of immuno 

images. Every pixel in a picture was adjusted in the same way. Images showing staining and 

respective negative controls were also adjusted in the same way. Pictures were also rotated 

and cropped in Photoshop.  

 

2.8.1.2 Adobe Illustrator CS6 

All figures were created in Adobe Illustrator CS6 (Adobe) to maintain a minimum pixel 

density of 300 ppi (pixels per inch) that is suitable for high resolution printing. 

 

2.8.1.3 Microsoft Office 2010 

This thesis was written and edited in Microsoft Word2010. All quantitative data analyses 

were performed in Excel2010. 

 

2.8.1.4 VectorNTI Suite 9 

VectorNTI Suite 9 (Thermo Scientific) including VectorNTI, ContigExpress, and AlignX 

was used to design all vector constructs and to analyze chromatographs of sequenced genes. 

Diverse genealogies for determining sequence relationship between genes were compiled in 

AlignX. 

 

2.8.1.5 FLIPR system software v2.1.2 

Data acquisition and evaluation for FLIPR experiments was performed with 

FLIPR system software v2.1.2 (Molecular Devices). 

 

2.8.1.6 BD AttoVision™ software v1.6 

Data acquisition and evaluation for Bioimager experiments was performed with 

BD AttoVision™ software v1.6 (BD Biosciences). 

 



EXPERIMENTAL PROCEDURES 

38 

2.8.1.7 Graph Pad Prism 

Graph Pad Prism 5.0 (GraphPad Software) was used to calculate concentration-response 

curves. 

 

2.8.1.8 Cell^P 

Immuno pictures taken with the Olympus BX61 fluorescence microscope were saved with 

the Cell^P software. 

 

2.8.2 Web Tools 

 

2.8.2.1 Gene Information Gathering 

The U.S. government-funded national resource for molecular biology information (NCBI, 

http://www.ncbi.nlm.nih.gov/), was used to gather information about genes and their coding 

regions. Information on the 3’ and 5’ regions was gathered with the Ensembl genome browser 

(http://www.ensembl.org/). Database analyses on which Fpr3 gene variant is expressed by 

which mouse strain was performed via consulting the Mouse Genomes Project 

(http://www.sanger.ac.uk/science/data/mouse-genomes-project). 

 

2.8.2.2 Prediction of Gene Orthology 

Assessment of orthology between murine and human Fpr3 based on sequence comparison 

was performed with DIOPT (DRSC Integrative Ortholog Prediction Tool; (Version 5.3 

May 2016) (http://www.flyrnai.org/cgi-bin/DRSC_orthologs.pl) of the Harvard Medical 

School. This Tool provides an integrative search algorithm combining orthology search 

results from 12 renowned ortholog prediction tools. These include Compara 

(http://www.ensembl.org/info/docs/api/compara), the HUGO Gene Nomenclature Committee 

(HGNC; http://www.genenames.org), HomoloGene (http://www.ncbi.nlm.nih.gov/ 

homologene), InParanoid (http://inparanoid.sbc.su.se/cgi-bin/index.cgi), Isobase 

(Singh et al., 2008; Liao et al., 2009; Park et al., 2011; http://groups.csail.mit.edu/cb/mna/ 

isobase), the OMA Browser (Altenhoff et al., 2014; http://omabrowser.org), OrthoDB 

(http://cegg.unige.ch/orthodb6); OrthoMCL (http://orthomcl.org), Panther (http:// 

pantherdb.org), PhylomeDB (http://phylomedb.org), Roundup (DeLuca et al., 2006; 

DeLuca et al., 2012; http://wall-lab.stanford.edu/projects/roundup/), and TreeFam 

(http://www.treefam.org). 

 

http://www.ncbi.nlm.nih.gov/
http://www.ensembl.org/
http://www.sanger.ac.uk/science/data/mouse-genomes-project
http://www.ncbi.nlm.nih.gov/
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2.8.2.3 Prediction of Transmembrane Domains (TMHMM) 

Prediction of the transmembrane domains for murine Fpr3 was performed with the online 

tool for “Prediction of transmembrane helices in proteins” (TMHMM Server v. 2.0) of the 

Center for Biological sequence Analysis, Technical University of Denmark 

(http://www.cbs.dtu.dk/services/TMHMM). 

 

2.8.2.4 Calculation of Primer Melting Temperatures 

All melting temperatures of primers were calculated with the Sigma-Genosys DNA 

Calculator tool (http://www.sigma-genosys.com/calc/DNACalc.asp). 

 

2.8.2.5 Mouse Haplotype Analyses 

Haplotype analyses were performed with the Mouse Phylogeny Viewer 

(http://msub.csbio.unc.edu/) as presented by Yang and colleagues (Yang et al., 2011). 

According to the Ensembl genome browser, murine Fpr3 is present on chromosome 17 with 

an exon reaching from nucleotide 17,970,458 to 17,971,677. To include strain specific 

variations in the gene position, subspecific origins were examined in the nucleotide range 

from 17,970,000 to 17,972,000. 

 

 

2.9 Statistics and Mathematics 

 

2.9.1 Average and Standard Deviation 

Sample average was calculated with the basic calculation for arithmetic mean for each 

experiment. Subsequently, the mean values of all associated experiments (e.g. independent 

transfection or dissociation) were averaged with the basic calculation for the arithmetic mean. 

Standard deviation (Excel2010; STDEV) was calculated using the formula  , 

with x being the sample’s arithmetic mean and n being the sample size. Resulting error bars 

show the empirical standard deviation of the sample average. Calculations of sample average 

and standard deviation were used for quantification of cells in immunocytochemistry- and 

calcium imaging experiments. Quantification was calculated and evaluated after the same 

criteria. 

 

http://www.cbs.dtu.dk/services/TMHMM/
http://www.sigma-genosys.com/calc/DNACalc.asp
http://msub.csbio.unc.edu/
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2.9.2 Concentration-Response Curves 

Curves were calculated with Graph Pad Prism 5.0 (GraphPad Software) using the equation 

for sigmoidal concentration-response with variable slope, , 

with “Bottom” being the Y value at the bottom plateau, “Top” being the Y value at the top 

plateau, LogEC50 being the X value when the response is halfway between Bottom and Top, 

and the Hill-Slope describing the steepness of the curve. For statistical analysis, only curves 

with calculated R2-values > 0.95 were used. The absolute sum of squares for normalized 

curves was < 900. The highest ligand concentration used to create concentration-response 

curves was 30 µM. Empirical average and standard deviation were calculated from 

independent measurements. 
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3 RESULTS 

 

3.1 Generation and Characterization of Two Novel Fpr3 Antibodies 

An immunofluorescence analysis with different antibodies was performed to gain new 

insight into the murine Fpr3 expression pattern. The goal was to study Fpr3 expression in 

different mouse tissues via immunohisto- and cytochemistry. First, two commercially 

available polyclonal antibodies specifically designed against Fpr3 were tested. It was 

important that they specifically detected Fpr3 and did not cross-react with other proteins, 

particularly with close members of the murine Fpr family. Therefore, I first characterized the 

two antibodies in a heterologous expression system using HEK cells transiently transfected 

with murine Fpr3 as an established standard laboratory procedure (Bufe et al., 2012). 

 

3.1.1 Characterization of Commercially Available Fpr3 Antibodies 

To test if both commercially available Fpr3 antibodies, M-20 (sc-18195; Santa Cruz 

Biotechnology, Inc.; see chapter 2.6.3.1) and N-20 (orb100776; Biorbyt; see chapter 2.6.3.1), 

specifically bind Fpr3, they were applied to HEK cells transiently transfected with the 

receptor at dilutions of 1:50–1:500. 

First, I tested the N-20 antibody for its specific detection of murine Fpr3 (Figure 9). Cells 

were transfected with Fpr3 attached to an N-terminal rhodopsin-epitope (Rho-tag) 

(Figure 9A). The Rho-tag was detected with an antibody directed against this epitope, which 

controlled for expression of the receptor. Representative images of N-20 showed no staining 

at any of the tested dilutions (Figure 9B). Even the highest concentration 10 µg/ml (1:50) 

showed no specific signal. Cells were transfected with the empty vector (mock) as a negative 

control. The positive Rho-tag stained control showed pronounced Fpr3 expression, despite no 

staining with the N-20 antibody. 

 

 

Figure 9. Test of the commercially available Fpr3 antibody N-20. A, model of the murine G protein coupled 

receptor Fpr3 with its seven transmembrane domains, three external and three internal loops, and N- and 

C-terminus. The exact epitope for N-20 on Fpr3 is proprietary to Biorbyt. It is located within the range of the 

residues 61 and 160 and is marked with an orange line. The N-terminally attached Rho-tag is indicated in purple. 

B, immunocytochemistry on HEK293T cells transiently expressing either Fpr3 or an N-terminal Rho-tagged 



RESULTS 

42 

version of the receptor performed with the polyclonal rabbit antibody N-20 and a Rho-tag antibody. Shown are 

representative images of N-20 at 10 µg/ml (1:50) and of the Rho-tag antibody used 1:500. mFpr = murine Fpr. 

Scale bar, 20 µm. 

 

 

This result demonstrates a lack of proper detection of Fpr3 using N-20, although the 

antibody was originally designed to detect this receptor. Therefore, the N-20 antibody was not 

suitable for investigating Fpr3 expression. 

Representative immunostainings using the M-20 antibody showed specific Fpr3 staining 

for M-20 up to 0.4 µg/ml (1:500) (Figure 10). The signal was only visible at high antibody 

concentrations but suffered from a high signal to noise ratio. Staining intensity decreased 

rapidly at lower antibody concentrations (Figure 10A). Quantification revealed a drastic drop 

from 9.3% ± 1.4% to 2.9% ± 1.7% stained cells from the 4 µg/ml (1:50) to 2 µg/ml (1:100) 

dilutions, and almost no specific signal was detected at 0.4 µg/ml (1:500). Moreover, the 

M-20 antibody showed high non-specific staining that increased at higher antibody 

concentrations, and the specific signal was only two-fold higher than that of the non-specific 

background at 4 µg/ml (1:50) (Figure 10B), which would have been the best concentration for 

immunohistochemistry. This was not sensitive enough for use on native cells. 

These results show that M-20 was limited to an analysis of murine Fpr3 in a heterologous 

overexpression system and demonstrate that neither of the commercially available Fpr3 

antibodies was suitable for examining the Fpr3 protein in native cells. 

 

 

Figure 10. Characterization of the commercially available Fpr3 antibody M-20. Immunocytochemistry on 

murine Fpr3 and mock (empty vector) transfected HEK293T cells with the polyclonal rabbit antibody M-20. A, 

representative images of the dilutions 1:50 and 1:200. Scale bar, 20 µm. B, quantification of the average 

background intensity in relative fluorescence units (RFU) for all used concentrations of M-20. 

mFpr = murine Fpr. 

 

 

3.1.2 Generation of Fpr3 Antibodies 

Because neither commercially available Fpr3 antibody produced satisfying results, I 

decided to generate own antibodies for the detection of murine Fpr3. I planned the production 

of two antibodies to increase the chances of successfully establishing one or more reliable 
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Fpr3 antibodies. The first antibody was a polyclonal Fpr3 antibody made in rabbits based on 

the commercial M-20 antibody. However, it should have improved sensitivity and should 

produce less background staining. Because an efficient Fpr3 antibody was very important for 

this work, I generated a monoclonal mouse antibody directed against Fpr3, in parallel. This 

should maximize the chances of producing a functioning antibody that can be used for 

stainings in native tissue. Different species of origin should allow greater versatility in the 

design of later experiments and to bypass species-related background issues. The monoclonal 

antibodies were prepared in cooperation with the Abmart Co. in a mouse hybridoma cell line. 

 

3.1.2.1 Generation of Polyclonal Rabbit Fpr3 Antibodies 

An epitope map of the M-20 antibody was prepared by peptide-spot array analysis 

(see chapter 2.6.3.3) in cooperation with Dr. Martin Jung to identify suitable epitopes on 

murine Fpr3 to produce the immunization peptide. A set of 69 peptides, including all 

351 amino acid residues of murine Fpr3, was prepared and spotted on a membrane. Each 

peptide was 15 amino acids in length and overlapped 10 residues with the preceding peptide. 

The antibody was applied to the synthesized peptides at a 1:50 dilution (Figure 11). 

The peptide-spot assay revealed several epitopes on the N-terminus, C-terminus, 

transmembrane domains, and extracellular loops of murine Fpr3 (Figure 11A). Only the 

epitopes on the extracellular loops were of interest because the Fpr family has the strongest 

sequence diversity in these areas. The main peptide fragments AMKEKWPFGWFLCKL and 

MQFSGSYKIIGRLVN in the Fpr3 extracellular loops were detected by the M-20 antibody 

(Figure 11B, C). Two rabbits were immunized with each peptide, and the sera were applied to 

HEK cells transfected with Fpr3 over 16 weeks. The antibody sera obtained from the animal 

immunized with the AMKEKWPFGWFLCKL peptide showed specific staining that 

increased weekly, whereas the sera obtained with MQFSGSYKIIGRLVN did not produce any 

staining. Thus, the AMKEKWPFGWFLCKL serum was collected. The antibody was purified 

by affinity chromatography (see chapter 2.6.3.2) to increase sensitivity and decrease 

non-specific staining. The resulting polyclonal rabbit antibody directed against murine Fpr3 

was called ECL1 because its peptide for immunization, AMKEKWPFGWFLCKL, is present 

on the first extracellular loop of the receptor (in short ECL1). A subsequent 

immunocytochemical analysis confirmed that ECL1 was more sensitive than M-20. 
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Figure 11. Epitopes of the commercially available Fpr3 antibody M-20. Peptide spot array analyses of M-20.  

A, original array visualized by enhanced chemiluminescence. B, the commercially available Fpr3 antibody M-20 

was tested against peptides comprising the complete sequence of murine Fpr3. Each spot consists of a 

15 amino acid peptide overlapping by ten residues with its predecessor. Therefore, parts of every 15 amino acid 

motif are present in five spot-peptides. Shown are the peptide sequences that comprise both main epitopes on 

Fpr3. C, model of murine Fpr3 with its seven transmembrane domains, three external and three internal loops, 

and N- and C-terminus. The two epitopes identified for M-20 on the first and third extracellular loop are marked 

with green (AMKEKWPFGWFLCKLC) and blue (MQFSGSYKIIGRLVN) lines. Peptide spot arrays were 

performed by Dr. Martin Jung, Department of Medical Biochemistry and Molecular Biology, Saarland 

University. mFpr = murine Fpr. 

 

 

3.1.2.2 Generation of Monoclonal Mouse Fpr3 Antibodies  

Nine mouse antibodies were generated in hybridoma cell lines from BALB/c mice based 

on four peptide fragments from murine Fpr3 whose sequences had low similarities with the 

sequences of the other six members of the murine Fpr family. Epitopes were chosen based on 

peptides with a possible low consensus of Fpr3 with the other six members of the murine 

Fpr family. The four selected Fpr3 epitopes were WGNSVEERLNTA from the second 

extracellular loop, ITTKIHKKAFV from the third intracellular loop, and HSLSSRLQRALS 

and LSEDSGHISDTR from the C-terminus. Three antibodies were generated with the first 

peptide (ECL2-1, ECL2-2, and ECL2-3), one with the second (ICL3), three with the third 

(CT1-1, CT1-2, and CT1-3), and two with the fourth (CT2-1 and CT2-2) peptide (Table 9). 

To figure out which antibody was best suited to examine murine Fpr3 expression, I 

performed immunocytochemistry experiments with all nine antibodies at 1 µg/ml on Fpr3 and 

mock transfected HEK cells (Figure 12). 

ICL3, CT2-1, and CT2-2 showed no staining for Fpr3, whereas ECL2-1, ECL2-2, ECL2-3, 

CT1-1, CT1-2, and CT1-3 clearly detected the receptor (Figure 12A). Quantification revealed 

that ECL2-1 and ECL2-2 were the most sensitive of the nine antibodies (Figure 12B). They 

detected 11.7% ± 0.6% and 11.6% ± 2.1% of the cells, respectively. ECL2-3, CT1-1, CT1-2, 

and CT1-3 only detected 5.1% ± 0.6% to 7.1% ± 2.3% of the Fpr3-expressing cells. Because 
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ECL2-1 combined the best staining intensity with the lowest background in the mock, it was 

used for further experiments and called ECL2. 

 

 

Figure 12. Characterization of monoclonal mouse Fpr3 antibodies. Immunocytochemistry on HEK293T cells 

transfected with murine Fpr3 with the nine monoclonal mouse antibodies (1:2,000). A, representative images of 

all nine monoclonal mouse antibodies. Scale bar, 20 µm. B, Quantification of the average stained cells for each 

antibody. Numbers in parentheses denote positive versus total cells. Error bars, S.D. 

 

 

In summary, these data demonstrate that the ECL1 polyclonal rabbit and ECL2 

monoclonal mouse antibodies stained in a heterologous overexpressing system. However, it 

was unclear whether these antibodies would work in complex immunohistochemistry 

reactions in the VNO or on immune cells, as many other receptors and possible targets for 

non-specific antibody binding are present in native tissues. To further consolidate the 

functionality and specificity of the Fpr3 antibodies, they were characterized in HEK cells on 

Fpr3 and all other members of the murine Fpr family. 
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Table 9. Peptide fragments for the generation of monoclonal Fpr3 antibodies 

Epitope Position Amino Acids Location Antibodies 

WGNSVEERLNTA 

 

 
 

183-194 2
nd

 extracellular loop 

ECL2-1 

ECL2-2 

ECL2-3 

ITTKIHKKAFV 

 

 
 

224-235 3
rd

 intracellular loop ICL3 

HSLSSRLQRALS 

 

 
 

315-326 C-terminal 

CT1-1 

CT1-2 

CT1-3 

LSEDSGHISDTR 

 

 
 

325-336 C-terminal 
CT2-1 

CT2-2 

 

 

3.1.3 Characterization of Two Novel Fpr3 Antibodies 

ECL1 and ECL2 were generated with peptides representing non-overlapping sites of 

murine Fpr3. Their epitopes were on two different extracellular loops of the receptor, which 

possess the highest sequence divergence among the members of the murine Fpr family. 

Antibodies can occasionally recognize more than one domain within a protein. Multiple 

recognition sites and unfavorable epitopes can increase the chance for non-specific binding or 

cross-reactivity. The binding sites on murine Fpr3 were characterized to ensure that ECL1 and 

ECL2 only recognized the epitopes used for their generation (Figures 13, 14). 

First, a peptide-spot array analysis was performed to precisely determine the recognition 

sites of both antibodies (Figure 13). ECL1 and ECL2 were tested at 4 µg/ml (1:500) on 69 

peptides covering the entire murine Fpr3 sequence spotted on a membrane, as described 

previously (see chapter 3.1.2). 

Both antibodies showed strong immunoreactivity to the sequences used for their generation 

(AMKEKWPFGWFLCKL and WGNSVEERLNTA) and only weakly interacted with other 

receptor domains. The secondary antibody controls did not react with any of the domains. 

Parts of the peptide sequences were present in five of the 69 spotted peptides due to a 

five amino acid shift from the peptide to its predecessor (Figure 13). However, the antibodies 

did not react with all five peptides. Each antibody bound strongly to only one spot. 

Surprisingly, the particular spot did not comprise the full-length peptide used for 
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immunization. Instead, only a small portion of the respective original peptide was bound by 

the antibodies and led to strong staining in the peptide-spot assay. The peptide-spot containing 

the AMKEK C-terminal showed the highest staining intensity for ECL1, whereas the peptide 

containing the LNTA N-terminal showed the strongest reaction for ECL2. A comparison 

between signal intensities and the peptide sequences revealed that the key ECL1 and ECL2 

binding residues were AMKEK and LNTA, respectively (Figure 13A, B). Surprisingly, both 

motifs were also contained in neighboring peptide spots to which the antibodies showed no 

strong immunoreactivity, indicating recognition of only a very specific conformation of the 

respective peptide epitopes for both antibodies. A database analysis of approximately 

20,000 mouse genes (Church et al., 2009) revealed the presence of the AMKEK and LNTA 

motifs in only 0.08% (17) and 0.6% (119) of all mouse genes, respectively (Tables 11 and 12; 

Appendix). Thus, both motifs are reasonably specific for murine Fpr3. Moreover, they were 

absent in most Fprs of the mouse, except Fpr2, which has 88.5% sequence identity with Fpr3. 

 

 

Figure 13. Epitopes of the two novel specific Fpr3 antibodies ECL1 and ECL2. Peptide spot array analyses 

of the polyclonal rabbit antibody ECL1 (A, green) and the monoclonal mouse antibody ECL2 (B, red). Models 

indicate the positions and sequences of the immunization peptides used for antibody generation. Both antibodies 

were tested against peptides comprising the complete sequence of murine Fpr3. Each spot consists of a 

15 amino acid peptide overlapping by ten residues with its predecessor. Insets show original arrays visualized by 

enhanced chemiluminescence. The charts show the quantification of staining intensities; bars containing the 

AMKEK or LNTA motif are colored. Numbers denote the peptide positions in the receptor protein; the part of 

the immunization peptide sequences that are recognized by the antibodies are colored. 

 

 

The antibodies were applied to HEK cells transiently transfected with either Fpr3 or 

another member of the murine Fpr family to test whether the antibodies cross-reacted with 

Fpr2 or any other murine Fpr (Figure 14). 

Both antibodies recognized Fpr3-expressing cells in a nearly identical manner and stained 

exclusively for this receptor. No cross-reactivity to any other member of the murine 

Fpr family, such as Fpr1, Fpr2, Fpr-rs3, Fpr-rs4, Fpr-rs6, or Fpr-rs7, was detected. Moreover, 



RESULTS 

48 

no non-specific staining was observed on any of the HEK cells transfected with these 

receptors. Quantification revealed a nearly identical percentage of cells stained with ECL1 

and ECL2 (Figure 14B). ECL1 stained 11.6% ± 2.7% and ECL2 stained 11.2% ± 1.7% of the 

Fpr3 transfected cells. Although all receptors were well-expressed in HEK cells, I did not 

observe any specific reactivity to Fpr2 or any other murine Fpr. 

 

 
Figure 14. ECL1 and ECL2 detect Fpr3 and do not recognize other murine Fpr family members. A, 

immunostaining of HEK293T cells to test the cross-reactivity of ECL1 (upper panel) and ECL2 (lower panel) for 

the indicated receptors. Insets show stainings with an anti-rhodopsin-epitope (Rho) as a positive control for 

expression of the given receptors. Scale bars, 20 µm. B, averaged percentage of stained cells from three 

independent experiments. Numbers in parentheses denote positive versus total cells. mFpr = murine Fpr. 

Error bars, S.D. 

 

 

Both newly generated antibodies were specific for murine Fpr3. Next, I was interested in 

determining whether one antibody was more sensitive than the other. Therefore, the 

sensitivities of both antibodies were tested by serial dilutions from 20 µg/ml (1:100) to 

0.002 µg/ml (1:1,000,000) on HEK cells expressing Fpr3 (Figure 15). 

Reactivity of the polyclonal ECL1 was optimal up to 2 µg/ml (1:1,000), but decreased with 

further dilution (Figure 15A). ECL1 stained 61% and 44% of the cells at 0.67 µg/ml (1:3,000) 

and 0.2 µg/ml (1:10,000), respectively. Further dilution showed very little to no staining. The 

antibody had no reactivity over background at ≤0.02 µg/ml (1:100,000). The monoclonal 

ECL2 antibody was even more sensitive and showed full activity up to 0.2 µg/ml (1:10,000) 

(Figure 15B). Further dilution revealed little staining. ECL2 had reactivity of 63% at 

0.067 µg/ml (1:30,000), which decreased to background at ≤0.02 µg/ml (1:100,000). 
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Taken together, these results demonstrate the specificity and sensitivity of the newly 

developed Fpr3 antibodies, indicating their suitability for immunohisto- and cytochemical 

experiments with native tissues. 

 

 

Figure 15. ECL1 and ECL2 show high sensitivity for Fpr3. Antibody dilution experiment examining the 

sensitivity of ECL1 (A) and ECL2 (B) in HEK293T cells tested in decreasing concentrations from 1:100 to 

1:1,000,000. Signals were normalized to 1:100 dilution. Immunoreactivity was compared to mock transfected 

cells (gray). mFpr = murine Fpr. 

 

 

3.2 Fpr3 Expression in the Murine Vomeronasal and Immune Systems 

The expression pattern of murine Fpr3 throughout the body is only partially understood. 

Expression of this receptor is best understood in the vomeronasal system, whereas in other 

tissues Fpr3 expression is currently subject of controversy (see chapter 1.3.3). Two 

independent studies (Liberles et al., 2009, Rivière et al., 2009) provided clear evidence for 

Fpr3 expression in a small subpopulation (< 1%) of vomeronasal sensory neurons by 

quantitative RT-PCR and in situ hybridization. However, direct detection of Fpr3 protein is 

still missing. With the new Fpr3 antibodies ECL1 and ECL2, I planned to examine Fpr3 

expression in the VNO and immune system of the mouse. 

 

3.2.1 Fpr3 Protein is Expressed in Vomeronasal Sensory Neurons and in Immune Cells 

For the detection of murine Fpr3 protein in native cells I initially wanted to focus on a 

well-studied tissue. I decided that the VNO should be excellently suited to first examine Fpr3 

expression with the novel antibodies based on the consistent reports on Fpr3 expression and 

the challenging amount of target cells. To be absolutely sure about the presence of Fpr3 in the 

VNO, I used in situ hybridization and RT-PCR to independently prove expression of Fpr3 

mRNA (Figure 16). 

With RT-PCR experiments a band of the correct size for murine Fpr3 from VNO cDNA 

was reproducibly (n = 5) detected (Figure 16A). The control reaction lacking reverse 
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transcriptase showed no band at all. Sequencing indeed revealed Fpr3 as the amplification 

product. Next, in situ hybridization was performed to achieve cellular resolution (Figure 16B). 

In line with previous reports (Liberles et al., 2009, Rivière et al., 2009) Fpr3 mRNA in a 

small subset of VSNs from C57Bl/6NCrl mice was observed in the antisense reaction. The 

sense reaction showed no specific signal. 

 

 

Figure 16. Fpr3 mRNA is expressed in the vomeronasal organ. A, RT-PCR analysis of murine Fpr3 

expression in the vomeronasal organ (VNO). A band of the correct size and sequence was observed in VNO 

cDNA (+RT) but not in the negative control lacking reverse transcriptase (-RT). Similar results were obtained in 

five independent experiments. (L) FastRuler Middle Range DNA Ladder. B, in situ hybridization with sense and 

antisense probes for Fpr3 on coronal slices of the vomeronasal organ. Black triangles mark Fpr3-positive cells. 

mFpr = murine Fpr. Scale bar, 100 µm.  

 

 

After having confirmed the presence of Fpr3 mRNA in the VNO, expression of Fpr3 

protein in dissociated VNO cells was examined (Figure 17). For these experiments, the 

monoclonal mouse antibody ECL2 was used because of its superior sensitivity  over the 

polyclonal ECL1 antibody (Figure 15). 

 

 

Figure 17. Fpr3 protein is expressed by a small subset of vomeronasal cells. A, representative 

immunostaining with ECL2 on dissociated vomeronasal cells of C57Bl/6NCrl mice. The white triangle marks an 

Fpr3-positive cell (red). B, quantification of murine Fpr3 immunoreactivity. Average frequency of Fpr3 

expression was analyzed in a total of 60,426 cells from six independent experiments. Antibody specificity was 

demonstrated by blocking the specific binding site through preincubation with 10 µg/ml of the peptide used for 

antibody generation. Error bars, S.D. 
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Staining reactions with ECL2 produced a clear and convincing signal in a subset of VNO 

cells (Figure 17A). Only very little non-specific staining was visible. Quantitative analysis of 

60,426 cells from seven independent experiments revealed Fpr3 expression in 188 cells, 

which corresponds to an average expression rate of 0.3% (Figure 17B). Specificity of the 

staining was controlled by the blocking peptide. 

mRNA of murine Fpr3 has been found in sensory neurons of the basal VNO layer that also 

express Go (Liberles et al., 2009) but are negative for the basal Vmn2rs and the apical 

marker Gi2 (Liberles et al., 2009). With regard to these findings, I performed colocalization 

immunocytochemistry experiments with the ECL2 antibody and antibodies for the cellular 

marker Go, Vmn2r1 (V2R2), a marker for Vmn2r-positive VSNs (Martini et al., 2001), and 

phosphodiesterase 4A (PDE4A), a molecular marker of apical VSNs (Lau and Cherry, 2000) 

(Figure 18). 

According to the previous report (Liberles et al., 2009), I expected coexpression with Go 

and none with PDE4A or V2R2. First, colocalization of Fpr3 with PDE4A and Vmn2rs was 

examined. The expression pattern for Fpr3 protein in my experiments was consistent with my 

expectation as there was virtually no colocalization between Fpr3 and PDE4A or V2R2. As 

expected, a pronounced overlap for Fpr3 and Go protein was detected. Quantification 

revealed colabeling in 56% (61/108) of the cells. Because of the assumption that the 

Go-positive cells were mature VSNs that also expressed olfactory marker protein (OMP), 

which is present in all mature VSNs (Margolis, 1982), the experiment was repeated with this 

particular protein. Staining for OMP confirmed the result obtained for Go, as pronounced 

coexpression for Fpr3 and OMP was visible. 54% (93/171) of the Fpr3-positive cells 

coexpressed with the marker for mature VSNs. Interestingly, only about half of the 

Fpr3-positive cells coexpressed with the markers that labeled them as VSNs. Hence, nearly 

half of the cells positive for Fpr3 in this preparation did not express specific markers of 

mature VSNs (Go and OMP), indicating that they could comprise non-olfactory cell types. 
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Figure 18. Characterization of Fpr3-positive vomeronasal cells. Colocalization of murine Fpr3 (red) with 

different cellular markers (green) on dissociated vomeronasal cells from C57Bl/6NCrl mice. Fpr3 staining 

colocalized with phosphodiesterase 4A (PDE4A), as a marker for the apical zone of the VNO, vomeronasal type 

2 receptor 1 (V2R2), as a marker for V2R2 expressing cells, the G protein alpha o subunit (Go), as a marker for 

the basal zone, and the olfactory marker protein (OMP), as a marker for mature vomeronasal sensory neurons. 

The colocalizing cells are marked with a white triangle, non-colocalizing with a white arrow. All cells were 

counterstained with the nuclear dye Hoechst33342 (blue). Insets show Fpr3-positive cells in a 3× magnification. 

Scale bars, 20 µm. The bar chart below each picture denotes the quantification from four to five experiments, 

analyzing the colocalizations in a total of 25,000 to 57,000 cells. Precise numbers are given in the graphs. 

Fpr3-positive cells that coexpress the marker are labeled by (+), while cells not coexpressing the marker are 

labeled with (-). Values in parentheses denote positive versus total cells. Error bars, S.D. 

 

 

Consistent with these findings, there are hints in the literature for murine Fpr3 expression 

in immune cells. Thus, I assumed that the OMP- and Go-negative cells may have been 

leukocytes. As my cell preparation was likely to contain trace contaminations from white 

blood cells, I hypothesized that the Fpr3 antibody detected some leukocytes in addition to 

VSNs. To evaluate this, coexpression of two immune cell markers with Fpr3 was tested 

(Figure 19). An antibody directed against the lineage-specific R-isoform of the cluster of 

differentiation molecule 45 (CD45R), a plasma membrane phosphatase and one of the most 

commonly used pan-B cell markers, which is expressed in most leukocytes, was used. 

However, this molecule is not expressed by neutrophil granulocytes. Thus, for detection of 

this cell type, an antibody detecting the lymphocyte antigen 6G (Ly6G), a marker exclusively 

expressed by neutrophil granulocytes, was used (Ballas and Rasmussen, 1993; Rolink et al., 

1996; Lai et al., 1998). 

Both immune cell marker antibodies produced clear and robust stainings. Expression of 

Ly6G was examined first because it is only expressed by one cell type and would therefore 

deliver more specific results. For this molecule, marked overlap of Fpr3 and Ly6G protein 

was observed in 28 of 64 (44%) of the analyzed cells. Subsequently, CD45R expression was 
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examined to evaluate if any other immune cell type also expressed murine Fpr3. Virtually no 

coexpression with Fpr3 was detected for CD45R. These results provide first evidence for a 

dual expression of Fpr3 protein in specific subsets of neurons in the VNO and in immune 

cells and prove expression of Fpr3 mRNA and protein in murine vomeronasal sensory 

neurons that also express Go and OMP. 

 

Figure 19. Molecular characteristics of the 

non-olfactory Fpr3-positive cells. Colocalization of 

murine Fpr3 (red) with immune cell markers (green) 

on dissociated VNO cells. Fpr3 staining colocalized 

with Ly6G (lymphocyte antigen 6G), a neutrophil 

granulocyte marker. No colocalization was seen for 

CD45R (cluster of differentiation molecule 45R), that 

is expressed by most immune cells but absent in 

neutrophil granulocytes. The colocalizing cells are 

marked with a white triangle, non-colocalizing with a 

white arrow. All cells were counterstained with the 

nuclear dye Hoechst33342 (blue). Insets show 

Fpr3-positive cells in a 3× magnification. Scale bars, 

20 µm. The bar chart below each picture denotes the 

quantification from two to five experiments, analyzing 

the colocalizations in a total of 7,000 to 17,000 cells. 

Precise numbers are given in the graphs. Values in 

parentheses denote positive versus total cells. Error 

bars, S.D. 

 

 

3.2.2 Fpr3 Expression in Neutrophil Granulocytes is Enhanced by LPS Stimulation 

Mouse blood cells were analyzed by immunocytochemical and RT-PCR to characterize 

Fpr3-positive immune cells in greater detail. First, the newly generated antibodies were used 

to directly test leukocytes from murine blood smears for Fpr3 expression (Figure 20). 

ECL2 and ECL1 produced clear stainings on nucleated blood cells with little to no 

non-specific staining (Figure 20A, B; left panel). Staining was observed in 182/1377 

leukocytes for ECL2 and in 907/7844 leukocytes for ECL1, resulting in mean percentages of 

13.4% ± 0.6% and 13.2% ± 2.6%, respectively (Figure 20C). Furthermore, the signals of both 

antibodies colocalized to 89.0% ± 4.8% (Figure 21C). The stainings of both antibodies could 

be abolished by blocking of the epitope specific antibody binding sites with the peptides that 

were used for their generation. The number of Fpr3-expressing leukocytes corresponded well 

to the typically range of neutrophil granulocytes in mouse blood, which is between 

9% to 18% (Gowen and Calhoun, 1943). Moreover, Fpr3-positive leukocytes showed a 

multi-lobed nucleus that is typical for mature neutrophil granulocytes (Figure 20A, B; right 

panel). This result suggests that the Fpr3-expressing leukocytes are neutrophil granulocytes. 
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Figure 20. Fpr3 is expressed in mouse leukocytes. Representative immunostainings of blood cells from 

C57Bl/6NCrl mice with the monoclonal mouse antibody ECL2 (A) or the polyclonal rabbit antibody ECL1 (B). 

For nuclear staining Hoechst33342 was used (right). Scale bars, 10 µm. C, quantification and specificity of 

ECL2 and ECL1 immunoreactivity in leukocytes. Antibody specificity was demonstrated by blocking the 

specific binding site through preincubation with 10 µg/ml of the peptide used for antibody generation. 

 

 

To prove this, I performed colocalization experiments between murine Fpr3 and the 

neutrophil granulocyte marker Ly6G (Figure 21). They should have given definite 

information about whether these Fpr3-expressing cells are neutrophil granulocytes. 

Staining with the Ly6G antibody colocalized with Fpr3 protein expression determined with 

ECL2 and ECL1 (Figure 21A, B). Quantification revealed colabeling between Ly6G and 

ECL1 or ECL2 of 83.1% ± 9.3% and 86.7% ± 3.1%, respectively (Figure 21C). Hence, these 

results unambiguously demonstrate the presence of Fpr3 protein in mouse neutrophil 

granulocytes. 

 

 

Figure 21. Fpr3 protein is expressed in mouse neutrophil granulocytes. Colocalization between the 

monoclonal mouse antibody ECL2 (A) and the polyclonal rabbit antibody ECL1 (B) with the neutrophil 

granulocyte marker Ly6G. Cell nuclei are shown in blue. Scale bar, 5 µm. C, colocalization between Fpr3 and 

Ly6G immunoreactivity in leukocytes. Bars show average percentage of colocalizing cells from at least three 

independent experiments. Numbers in parentheses denote positive versus total cells. Error bars, S.D. 
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In line with the presence of Fpr3 protein in mouse blood cells, Fpr3 mRNA should have 

also been detectable in those cells. First, PCR experiments were performed to investigate 

Fpr3 mRNA expression in blood cells (Figure 22). 

Surprisingly, no band proving Fpr3 mRNA in mouse blood was visible. To exclude 

technical problems, a number of positive controls were performed. Glyceraldehyde 

3-phosphate dehydrogenase (Gapdh), an essential enzyme in glycolysis that is present in all 

cells and control for cDNA quality, was readily amplified from blood and vomeronasal 

cDNA. Furthermore, a band for Fpr3 from vomeronasal cDNA was easily detected. In 

general, mRNA from blood cells was detectable without a problem and therefore I could 

largely exclude any technical problems as the reason for this unexpected result. A possible 

explanation for this rather surprising result was the relatively low RNA amount in mature 

neutrophil granulocytes circulating in the blood. Indeed, these cells possess 10-fold to 20-fold 

less RNA per cell than monocytes or lymphocytes (Cassatella, 1999). Thus, I concluded that 

the detection limit of the RT-PCR was too low to amplify Fpr3 from neutrophil granulocyte 

RNA. 

 

Figure 22. Fpr3 mRNA is absent in blood leukocytes. 

A, RT-PCR analysis of murine Fpr3 expression in 

mouse blood. Receptor expression was only detected in 

the positive control reaction from vomeronasal cDNA. 

Glyceraldehyde 3-phosphate dehydrogenase (Gapdh, 

reverse transcription control) was amplified from 

vomeronasal and blood cDNA. Similar results were 

obtained in three independent experiments. Size 

marker (L) FastRuler Middle Range DNA Ladder. 

mFpr = murine Fpr. 

 

 

 

 

 

 

 

 

 

In blood only mature neutrophil granulocytes are present. Their maturation and 

proliferation takes place in the bone marrow. Hence, it was possible that the mRNA levels for 

Fpr3 were much higher in maturing neutrophil granulocytes. Moreover, it is well-known that 

mRNA levels of specific genes in leukocytes, such as Fpr1 (Mandal et al., 2005) and Fpr2 

(Cui et al., 2002; Iribarren et al., 2003), increase after stimulation with bacterial stimuli. Thus, 

I assumed that this could also be true for Fpr3. To test this, bone marrow cells were 
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stimulated with lipopolysaccharide (LPS) from Salmonella enteriditis prior to mRNA 

isolation and both preparations were examined for Fpr3 expression (Figure 23). 

LPS stimulation of bone marrow cells in RT-PCR experiments fulfilled my assumptions. 

When stimulating cells with 150 µg/ml LPS from Salmonella enteriditis, Fpr3 mRNA 

expression was detected in all LPS-stimulated samples (Figure 23; left panel). A strong band 

for murine Fpr3 was amplified. Controls with -actin, a cytoskeletal protein present in each 

cell, and without reverse transcriptase showed the expected results. In line with my 

hypothesis, a band for Fpr3 from mRNA of unstimulated bone marrow cells was not observed 

(Figure 23; right panel), although the controls showed the desired results. Hence, Fpr3 

mRNA levels in unstimulated cells were relatively low and LPS stimulation induced an 

increase in Fpr3 expression, which explained why most previous RT-PCR studies failed to 

detect it. These results show that murine Fpr3 is upregulated upon LPS stimulation. 

 

 

Figure 23. Fpr3 mRNA expression is induced by LPS stimulation. RT-PCR analysis of murine Fpr3 

expression in bone marrow. Receptor expression was observed upon stimulation with 

150 µg/ml lipopolysaccharide (LPS) from S. enteriditis (left). Fpr3 was not detected from unstimulated mouse 

bone marrow cDNA (right). -actin was amplified from all cDNAs. Similar results were obtained in two 

independent experiments. Size marker (L) FastRuler Middle Range DNA Ladder. mFpr = murine Fpr. 

 

 

Assuming a similar biological role for murine and human FPR3, I was interested in 

determining whether both receptors are present in the same cell type. Because of the 

successful detection of murine Fpr3 in neutrophil granulocytes, I next investigated human 

FPR3 expression in this cell type (Figure 24). RT-PCR experiments with human 

neutrophil granulocytes that were stimulated with 150 µg/ml LPS from Salmonella enteriditis 

showed human FPR3 mRNA expression. A marked band for human FPR3 was amplified. 

Positive controls with Gapdh, human FPR1, and human FPR2 that have been reported to be 
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expressed in neutrophil granulocytes (see chapter 1.3.3) all showed distinct bands. Negative 

controls without reverse transcriptase showed no bands. These results demonstrate 

human FPR3 expression in neutrophil granulocytes. 

 

Figure 24. Human neutrophil granulocytes express 

three Fprs. RT-PCR analysis of FPR1, FPR2, and 

FPR3 expression in human neutrophil granulocytes. 

Bands of the correct sizes and sequences for all three 

receptors were observed in human neutrophil 

granulocyte cDNA (+RT) but not in the negative 

control without reverse transcriptase (-RT). 

Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) 

was used as reverse transcription control. Similar 

results were obtained in three independent 

experiments. Size marker (L) FastRuler Middle Range 

DNA Ladder. hFPR = human Fpr. 

 

 

I reasoned that the increase in RNA through LPS stimulation indicates increased levels of 

receptor protein, which should have been detectable in corresponding immunocytochemistry 

experiments. Thus, unstimulated and LPS-stimulation mouse bone marrow cells were 

examined using ECL2 to detect murine Fpr3 protein (Figure 25). 

ECL2 produced reliable stainings on bone marrow cells, as before on blood cells 

(Figure 25A). Staining was visible in unstimulated and LPS-stimulated cells. Representative 

images depicted increased cell amounts positive for Fpr3 after LPS stimulation. 

Quantification revealed that the number of Fpr3-positive cells indeed almost doubled from 

5.1% ± 0.7% to 9.5% ± 0.3% (Figure 25B). Thus, expression of Fpr3 protein in mouse 

neutrophil granulocytes can be induced by LPS. 

 

 

Figure 25. Fpr3 protein levels rise with increasing mRNA levels upon LPS stimulation. A, representative 

immunostainings for Fpr3 in unstimulated (left) and LPS stimulated (right) bone marrow cells from 

C57Bl/6NCrl mice. B, quantification for stainings on both conditions. Scale bar, 20 µm. Bar chart shows mean 

increase of Fpr3-expressing cells upon LPS stimulation from two independent experiments carried out as 

triplicates. Numbers in parentheses denote positive versus total cells. Error bars, S.D. 
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Taken together, these results prove mRNA expression for murine and human Fpr3 in 

neutrophil granulocytes and the presence of murine Fpr3 protein in this cell type. They also 

demonstrate upregulation of murine Fpr3 mRNA expression upon LPS-stimulation. 

 

 

3.3 Strain-Specific Variants of Murine Fpr3  

Two previous studies (Gao et al., 1998; Wang and Ye, 2002) reported divergent sequences 

for murine Fpr3 between BALB/c and 129/S6 mice, with a main difference of 

four amino acids missing in the fourth transmembrane region. Data from these reports suggest 

strain-specific variants of the receptor that could result in altering expression patterns. The 

experiments described thus far were performed in C57Bl/6NCrl mice. To investigate potential 

altering expression patterns of Fpr3, some of the previously described experiments were also 

performed in other mouse strains. In line with published data, I received varying staining 

patterns for Fpr3 in different mouse strains, indicating diverging expression patterns for the 

receptor in different mouse strains. However, initial examinations on this issue lacked a 

systematic approach. 

 

3.3.1 Fpr3 Protein Expression Occurs in a Strain-Specific Manner 

To test the hypothesis of murine Fpr3 variations present in different mouse strains which 

possibly lead to strain-specific variations in the Fpr3 expression pattern, I performed a 

systematic expression and genotype analysis of Fpr3 in five mouse strains and combined 

these results with sequence data from 32 laboratory and nine wild-derived strains. First, 

129X1/Sv mice were analyzed via immunohistochemistry using ECL2 and ECL1 (Figure 26). 

Remarkably, 129X1/Sv mice showed no Fpr3 expression in leukocytes, whereas 

C57/Bl6NCrl mice showed Fpr3 expression as before (Figure 26A). Fpr3 expression was also 

examined in vomeronasal cells of the two mouse strains to prove the result obtained in 

leukocytes. In vomeronasal cells from 129X1/Sv mice, Fpr3 was not detected, whereas 

examinations in C57/Bl6NCrl mice resembled the already shown results. In these 

experiments, ECL2 and ECL1 were used (Figure 26B), and the obtained result was highly 

reproducible in multiple animals (n = 9). 
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Figure 26. Strain-specific loss of Fpr3 expression in mice. A, representative immunostainings of Fpr3 

expression in leukocytes and vomeronasal cells of C57Bl/6NCrl mice (left) versus 129X1/Sv mice (right). Fpr3 

is only detectable in cells from C57Bl/6NCrl mice. Scale bars, 10 µm. B, quantification of Fpr3 expression in 

leukocytes (upper panel) and vomeronasal cells (lower panel). Bar charts show average percentage of stained 

cells from at least three independent experiments. Numbers in parentheses denote positive versus total cells. 

Error bars, S.D. 

 

 

To investigate this in more detail, additional immunostainings in leukocytes from 

C57Bl/6NCrl, 129X1/Sv, BALB/cJ, FVB/N, and NZB/Ola mice were performed. Fpr3 

protein expression was observed in NZB/Ola and C57Bl/6NCrl mice. By contrast, BALB/cJ, 

FVB/N, and 129X1/Sv mice showed no Fpr3 expression. However, Fpr3 mRNA expression 

from the VNO by the production and detection of cDNA in all negatively tested strains was 

still detectable. Possibly, variations in the Fpr3 gene alter the Fpr3 protein structure and thus 

prevent its detection by the antibodies. Therefore, I amplified and sequenced Fpr3 from 

genomic DNA of C57Bl/6NCrl and 129X1/Sv mice and compared the results (Figure 27). 

This analysis indeed revealed two distinct Fpr3 variants: the Fpr3 sequence from 

C57Bl/6NCrl mice perfectly matched the annotated NCBI reference sequence NM_008042.2, 

whereas the Fpr3 sequence from 129X1/Sv mice showed a 12 nucleotide in-frame deletion 

(Figure 27A). This deletion comprised the nucleotides 424 to 435 of the coding region and 

resulted in the loss of alanine142, arginine143, asparagine144, and valine145 but left the open 

reading frame intact. For a clear discrimination, the version carrying the 12 nucleotide 

deletion was called Fpr3424-435 and the full-length version was called Fpr3wt. 

Next, examinations on Fpr3 in BALB/cJ, FVB/N, and NZB/Ola mice revealed a clear 

correlation between specific gene variants and the presence or absence of Fpr3 antibody 

staining (Figure 27B). Fpr3424-435 was present in the genome of 129X1/Sv, BALB/cJ, and 
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FVB/N mice that had no detectable Fpr3 protein whereas C57Bl/6NCrl and NZB/Ola, in 

which Fpr3 protein was readily detectable, carried the Fpr3wt gene. To obtain a more 

comprehensive view of the distribution of both Fpr3 variants in different inbred strains, the 

Mouse Genomes Project Database was consulted. The analyses revealed the occurrence of 

Fpr3wt in C57, C58, I, KK NOD, NZB, NZW, and ST mice, whereas 129S, 129P, AKR, A, 

BALB, BUB, C3H, CBA, DBA, FVB, LP, NZO, RF, and SEA all carried the Fpr3424-435 

variant. 

 

 

Figure 27. Sequence and distribution of the 12 nucleotide in-frame deletion in Fpr3424-435. A, genotyping of 

Fpr3 in 129X1/Sv and C57Bl/6NCrl mice revealed two receptor variants Fpr3wt and Fpr3424-435. A 12 nucleotide 

in-frame deletion from base pair 424 to 435 was observed in 129X1/Sv mice resulting in a loss of an Alanine, 

Arginine, Asparagine, and Valine at the end of the second intracellular loop. Identical results were obtained from 

three individuals of each strain. B, distribution of both Fpr3 gene variants in different laboratory mouse strains. 

Gray shading denotes the genomically encoded variants. Bold letters annotate in house sequenced strains. All 

other data were obtained from the Mouse Genome Project (https://www.sanger.ac.uk; release REL-1505). C, 

distribution of both Fpr3 gene variants in wild-derived mouse strains from different subspecies and geographical 

origins. Mus musculus castaneus was from Thailand (CAST/EiJ). M. m. domesticus were from Germany 

(GER/DT), France (FRA/DT), the United States of America (LEWES/EiJ, WSB/EiJ), and Switzerland 

(ZALENDE/EiJ). M. m. musculus were from Kazakhstan (KAZ/DT) and Czech Republic (CZE/DT, PWK/PhJ), 

M. m. spretus was from Spain (SPRET/EiJ). 
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Because of this high frequency of both variants in laboratory mice, I asked about the 

possible origin of the two Fpr3 variants. The development of a receptor variant could have 

emerged under natural conditions or may have been a consequence of breeding conditions. 

Therefore, I was interested in determining whether both variants could be found in wild 

mouse strains and thus looked at the frequency of both Fpr3 variants in wild-derived animals. 

Most laboratory mouse strains are crossbreedings from three Mus musculus subspecies: M. m. 

castaneus, M. m. domesticus, and M. m. musculus. Hence, their genomes depict mosaics of 

the genomes of these three ancestor strains. To elucidate which of these ancestors carried the 

Fpr3424-435 variant, the Fpr3 sequence of wild-derived Mus musculus strains was investigated 

(Figure 27C). The genomes of wild-derived mouse strains, unlike that of laboratory inbred 

strains, mainly mimic the genome of only one ancestor strain. 

My panel of six genomic DNAs covered samples of M. m. castaneus, M. m. domesticus, 

M. m. musculus, and an additional M. m. spretus sample. The samples were collected from 

different locations on the three continents North America, Europe, and Asia. CAST/EiJ was 

the only representative of M. m. castaneus originated in Thailand. GER/DT and FRA/DT 

representing M. m. domesticus were from Germany and France, respectively. The 

wild-derived strains representing M. m. musculus, KAZ/DT and CZE/DT, were from 

Kazakhstan and the Czech Republic. SPRET/EiJ, representing M. m. spretus, originated in 

Spain. The analysis of these DNA samples by direct sequencing of PCR products showed that 

they all carried Fpr3wt. Additional data mining in the Mouse Genomes Project Database 

indicated three M. m. domesticus lines, LEWES/EiJ, WSB/EiJ, and ZALENDE/EiJ from the 

United States of America and Switzerland, respectively, that carried the Fpr3424-435 variant. 

Thus, Fpr3424-435 was most likely introduced into inbred mouse lines through breeding with 

M. m. domesticus mice that accidentally carried Fpr3424-435. 

 

3.3.2 Loss of Fpr3424-435 Function Due to Diminished Receptor Expression 

The deletion in Fpr3424-435 leads to a loss of only four amino acids in the second 

intracellular loop but leaves the open reading frame intact (see chapter 3.3.1). The presence of 

Fpr3 mRNA in the absence of a detectable protein strongly argues for structural alterations in 

Fpr3424-435. I thus hypothesized that these alterations may affect the receptor function. To test 

this, I used an established in vitro calcium imaging assay (Bufe et al., 2012) (Figure 28). 

First calcium imaging in HEK cells transiently transfected with either Fpr3424-435 or 

Fpr3wt were performed and calcium responses to 30 µM W-peptide were recorded. This 

substance was chosen for initial comparative functional experiments on Fpr3 because it is a 
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well-characterized Fpr agonist (Bufe et al., 2012; Bufe et al., 2015). 37% (177/475) of Fpr3wt 

transfected cells were robustly activated by W-peptide. However, none of the analyzed 686 

cells transfected with Fpr3424-435 responded to this stimulus (Figure 28). This dramatic result 

was unexpected as the deletion left the open reading frame intact. 

 

Figure 28. Fpr3424-435 does not 

respond to the synthetic Fpr3 

agonist W-peptide. Single cell 

calcium imaging of HEK293T cells 

transfected with Fpr3424-435 or 

Fpr3wt upon W-peptide stimulation. 

Each trace represents an individual 

cell. Left: Fpr3424-435 transfected 

cells. None of 686 cells responded 

to 30 µM W-peptide. Right: Fpr3wt 

transfected cells. 177 of 475 cells 

(red) responded to 30 µM W-

peptide. Buffer was used to exclude 

mechanical activation; 30 µM ATP 

that activates endogenous receptors 

was used as positive control for cell 

viability. Scale bars, vertical 0.5 

340 nm/380 nm, horizontal 10 s. 

 

 

 

 

 

 

 

I wondered whether this lack of function for Fpr3424-435 was specific for W-peptide, or if 

it also occurred with other ligands that activated Fpr3. To answer this question, I tested three 

bacterial signal peptide fragments – Salmonella-SP24, Psychromonas-SP6, and 

Hydrogenobacter-SP16 – that were recently identified as naturally occurring Fpr3 activators 

(Bufe et al., 2015) and the synthetic M-peptide, which exhibits high sequence divergence to 

W-peptide (Figure 29). Fpr3424-435 transfected cells were neither activated by M-peptide nor 

any of the three sequence divergent bacterial signal peptides. By contrast, 26.0% ± 4.3% 

Fpr3wt transfected cells were activated by M-peptide and 30.0% ± 1.5%, 27.6% ± 3.8%, and 

9.8% ± 2.4% of the cells were activated by the bacterial signal peptides, respectively. Thus, I 

concluded that the lack of Fpr3424-435 function was not dependent on the substance, but rather 

constitutes a general effect. 
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Figure 29. Fpr3424-435 does not 

respond to natural Fpr3 

activators. Mean calcium 

responses of HEK293T cells 

transfected with Fpr3wt or 

Fpr3424-435 to various agonists. 

Buffer was used as negative 

control. Bars denote average 

percentage of responding cells 

from five independent 

experiments, measured in 

duplicates. Error bars, S.D. 

 

 

 

 

3.3.3 Lack of Fpr3424-435 Expression in HEK Cells 

The absence of specific Fpr3 staining in VNO cells and leukocytes from mice carrying the 

Fpr3424-435 gene may have been caused by diminished or no expression of the Fpr3 protein. 

Therefore, the degree of protein expression by both Fpr3 variants was assessed by ECL1 and 

ECL2 immunostaining on HEK cells. Representative immunohistochemistry images showed 

clear staining for Fpr3wt with both antibodies (Figure 30). Supporting the results obtained in 

vomeronasal and immune cells, Fpr3424–435 was not detected with either antibody. ECL2 

stained 11.2% ± 1.7% of the Fpr3wt and 0.3% ± 0.2% of the Fpr3424-435 transfected cells, 

whereas ECL1 stained 11.6% ± 2.7% and 0.4% ± 0.5%, respectively. 

 

 

Figure 30. Expression of Fpr3424-435 and Fpr3wt in HEK293T cells. Immunostainings of HEK293T cells 

expressing Fpr3wt (left) or Fpr3424-435 (middle) and their quantification (right). Only Fpr3wt was detectable. The 

bar chart shows the average percentage of stained cells from three independent experiments. Numbers in 

parentheses denote positive versus total cells. Error bars, S.D. Scale bar, 20 µm. 

 

 

The lack of specific Fpr3424-435 staining observed in the overexpressing system closely 

resembled the lack of Fpr3424-435 protein in VSNs and leukocytes (see chapter 3.3.1). The 

lack of staining by two independent antibodies that recognize different parts of the receptor 
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strongly suggests degradation of the Fpr3424-435 variant in HEK cells. However, technical 

issues could also produce such results. To distinguish between these possibilities, I subcloned 

Fpr3 into a novel vector to create an Fpr3424-435 fusion protein exhibiting specific N- and 

C-terminal epitopes. This strategy permitted independent detection of the receptor sites using 

two different antibodies specific for these epitopes. N-terminal rhodopsin-epitope (Rho) and 

C-terminal herpes simplex virus-epitope (HSV) tags were attached to Fpr3424-435 and named 

the Rho-Fpr3424-435-HSV fusion protein. Three independent copies were produced, 

sequenced, and tested to exclude any possible corruption in the vector (Figure 31). 

The N-terminal Rho-tag showed pronounced staining of the transiently transfected cells.  

Rho-Fpr3wt stained 33.71% ± 5.79% of the cells, and Rho-Fpr3424–435-HSV stained 

9.65% ± 2.54% of the cells, representing a three-fold reduction of expression. The extent of 

receptor expression was examined with the C-terminal HSV-tag. The positive control was 

T2R16-HSV transfected cells, in which 30.23% ± 2.67% of the cells were stained. 

Rho-Fpr3424-435-HSV showed complete loss of staining with the HSV antibody for all three 

of its copies. 

 

 

Figure 31. Fpr3424-435 exhibits truncated expression in HEK293T cells. Immunostainings of HEK293T cells 

transfected with an independent plasmid copy of Rho-Fpr3424-435-HSV that is a fusion protein of Fpr3424-435 

with an N-terminal Rhodopsin-epitope (Rho) and a C-terminal herpes simplex virus-epitope (HSV). left: 

quantification of stainings with an anti Rho antibody. Right: quantification of stainings with an anti HSV 

antibody. Bars show average percentage of stained cells from three independent experiments. As controls 
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Rho-Fpr3wt, a fusion protein of Fpr3wt with an N-terminal Rho-epitope, and T2R16-HSV, a fusion protein of 

T2R16 with a C-terminal HSV-epitope, were used. Error bars, S.D. 

 

 

Taken together, these experiments strongly argue that structural alterations in Fpr3424–435 

resulted in production of an unstable protein in HEK cells, which was C-terminally truncated 

and subsequently degraded. This mechanism is likely to be responsible for degradation of 

Fpr3424-435 in mouse VSNs and leukocytes. 

 

3.3.4 Fpr3424-435 is Non-Functional in the Vomeronasal Organ 

My previous findings showed strain-specific Fpr3 expression in two variants. The variant 

functional in HEK cells was called Fpr3wt, and the non-functional variant was called 

Fpr3424-435. I was interested in determining whether these findings also affected the 

responses of VNO cells to Fpr3 agonists. 

If Fpr3424-435 was non-functional in vivo, it should have affected the animal response and 

would therefore have influenced their infection susceptibility and all other potential functions 

and behaviors related to Fpr3. To test the functionality of both Fpr3 variants in vivo, 

calcium imaging experiments on whole-mount preparations of the sensory side of the VNOs 

from C57Bl/6NCrl and 129X1/Sv mice were performed with the potent Fpr3 activator 

Salmonella-SP24 in cooperation with Dr. Andreas Schmid (Figure 32). Dendritic endings on 

the sensory side contact the outside world and express different receptors, including Fprs 

(Dietschi et al., 2013). Based on my previous results I hypothesized that signals would only 

be detectable in C57Bl/6NCrl mice expressing Fpr3wt, whereas no signals would be detected 

in 129X1/Sv mice encoding Fpr3424-435. 

First, the VNOs of C57Bl/6NCrl mice were tested with three consecutive applications of 

1 µM Salmonella-SP24. Several dendritic endings were robustly activated with each of the 

three signal peptide fragment applications (Figure 32A). In total, an area of ~300,000 µm² was 

analyzed in seven independent experiments. Of approximately 34,000 dendritic endings found 

in this area, 41 responded to repeated applications of the ligand (Figure 32B). A total of 

0.12% ± 0.04% cells responded, which corresponded well with the immunostaining results 

(see chapter 3.2.1). 

Subsequently, VNOs of 129X1/Sv mice expressing Fpr3424-435 were tested. A total area 

of ~100,000 µm² was examined in four independent experiments (Figure 32B). None of the 

approximately 12,000 dendritic endings in 129X1/Sv mice responded to any of the repeated 

applications of 1 µM Salmonella-SP24. These data show that VSNs in C57Bl/6NCrl mice, 
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expressing the functional Fpr3wt, can be activated by an Fpr3 activator, whereas cells in 

129X1/Sv mice cannot. Taken together, these results demonstrate the novel discovery of two 

strain-specific Fpr3 variants that are functionally distinct. 

 

 
Figure 32. Fpr3 agonists activate dendritic endings of VSNs. Calcium imaging on individual dendritic knobs 

of a whole mount preparation of VNOs of C57Bl/6NCrl and 129X1/Sv mice upon stimulation with 

1 µM Salmonella-SP24. A, representative calcium traces of responding dendritic knobs. Each trace represents an 

individual knob of a C57Bl/6NCrl mouse that responds to each of three stimulations with the ligand, indicated 

by the arrows. Similar results were achieved over seven experiments. B, quantification of all measured dendritic 

knobs of both mouse strains. Bars represent the percentage of responding knobs upon stimulation. C, view on a 

section of the sensory side of the VNO. Dendritic knobs are depicted in green. Scale bar, 20 µm. The results 

were kindly provided by Dr. Andreas Schmid, Department of Physiology, Saarland University. Subfigure C was 

adapted and modified from Oboti et al., 2015. 

 

 

3.4 Comparative Characterization of Murine and Human Fpr3 Function 

In this study, Fpr3 was expressed in the VNO and the immune system of mice 

(see chapters 3.2.1 and 3.2.2). This expression pattern suggests an immune cell function for 

murine Fpr3 and argues for a close relationship with immune Fprs. Mouse Fpr1 has been 

suggested to be a human FPR1 orthologue, whereas murine Fpr2 has been suggested to be a 

human FPR2 orthologue (Migeotte et al., 2006; Önnheim et al., 2008; Dahlgren et al., 2016). 

Hence, I hypothesized that Fpr3 of both species could occupy the same functional niche. 

However, the evolutionary relationship between murine and human Fpr3 has not been 

clarified. 
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3.4.1 Orthology between Murine and Human Fpr3 is not Assessable by Sequence 

Comparison 

The amino acid sequence of murine Fpr3 was compared to those of all human FPRs to 

investigate the evolutionary relationship between murine and human Fpr3 (Figure 33A). A 

sequence alignment analysis revealed only modest similarity between Fpr3 of both species. 

Murine Fpr3 was 82% similar with human FPR2, followed by 74% with human FPR3, and 

72% with human FPR1. This result resembled the receptor similarities of all murine and 

human immune receptors in the dendrogram (Figure 33B). Murine Fpr3 was on the same 

branch with murine Fpr2 and separated from murine Fpr1 and human FPR1, which aligned 

on the second branch slightly nearer to human FPR2 than to human FPR3. Meta-analyses 

comprised of 12 orthology prediction tools (see chapter 2.8.2.2) revealed that the relationship 

between mouse and human Fpr3 was listed by only three of the tools, such as Compara, 

HGNC, and Panther, whereas Fpr1 and Fpr2 were annotated as human counterparts of FPR1 

and FPR2 by 11 and nine consulted tools, respectively (Figure 33C). The other nine tools, 

such as HomoloGene, InParanoid, Isobase, OMA Browser, OrthoDB, OrthoMCL, 

PhylomeDB, Roundup, and TreeFam, did not list mouse and human Fpr3 as orthologues. 

These results suggest that the orthology between murine and human Fpr3 cannot be 

determined only by a sequence comparison. Thus, I next compared the functional properties 

of the two receptors. 

 

 

Figure 33. Sequence relationship between murine Fpr3 and human Fprs. A, Comparison of amino acid 

sequence similarities between mouse Fpr3 and all three human Fprs. B, Phylogenetic relationship between all 

mouse and human Fprs. C, integrative meta-analyses of the orthology of murine and human Fprs using the 

integrative search algorithm of DIOPT that combines orthology search results from 12 renowned ortholog 

prediction tools. The Meta-Score represents the number of individual tools listing murine and human Fprs as 

orthologs. Orthology between Fpr3 of mouse and human is only listed by Compara, HGNC, and Panther. 

hFPR = human Fpr; mFpr = murine Fpr. 

 

 

3.4.2 Murine and Human Fpr3 Show Similar Functional Properties 

To compare the function of murine and human Fpr3 to each other and in the context of the 

Fpr families, I first studied the concentration dependent responses of human FPR1, FPR2, and 
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FPR3 with those of murine Fpr1, Fpr2, and Fpr3 to the synthetic compounds W-peptide 

(WKYMVm-NH2) and L-M-peptide (MMHWAM-NH2), and the bacterially derived signal 

peptide Psychromonas-SP6 (f-MLFYFS) (Figure 34). These peptides show a considerable 

structural variability because their amino acid composition differed in all positions. The 

closest resemblance in their structure is that they all contain a methionine with a chemical 

modification. But even these methionines are chemically divergent: W-peptide ends with an 

amidated methionine in D-conformation (m-NH2), whereas the amidated methionine at the 

end of L-M-peptide has an L-conformation (M-NH2), and the signal peptide 

Psychromonas-SP6 starts with a formylated L-methionine (f-M).  

Concentrations-response curves revealed clear similarities in the responses of specific 

mouse and human FPR receptor pairs to the selected test substances (Figure 34). Murine and 

human Fpr1 showed identical agonist preferences. Both receptors preferred the bacterial 

signal peptide Psychromonas-SP6, over W-peptide and L-M-peptide. Their half maximal 

activation values (EC50) for the different stimuli were also closely related. For 

Psychromonas-SP6 the EC50 were 0.15 nM and 0.048 nM respectively, for W-peptide 2.2 nM 

and 0.99 nM and for L-M-peptide 360 nM and 89.6 nM. The high similarity in the responses 

of murine and human Fpr1 to all three stimuli fits well to the concept of an identical function 

for both receptors in both species. Murine and human Fpr2 also displayed clear similarities. 

Both receptors showed similar EC50 values for W-peptide and L-M-peptide and preferred 

W-peptide over the two other agonists (Figure 34). Only their EC50 for L-M-peptide differed 

by approximately 50-fold. Interestingly, the responses of murine and human Fpr3 also 

correlated (Figure 34). First, I observed that both receptors were drastically less sensitive than 

Fpr1 and Fpr2 and usually responded in the high nanomolar to micromolar range. The 

W-peptide responses are a prime example for this behavior. The EC50 of murine Fpr1, Fpr2 

and human FPR1, FPR2 were 0.99 ± 0.23 nM, 0.36 ± 0.24 nM, 2.20 ± 2.12 nM, and 

0.26 ± 0.19 nM, respectively, whereas the corresponding values of murine Fpr3 and 

human FPR3 were 676 ± 174 nM and 6117 ± 618 nM, respectively. A general lower 

sensitivity of murine and human Fpr3 was also visible for L-M-peptide and 

Psychromonas-SP6. Moreover, the maximal signal amplitudes of Fpr3 of both species to all 

tested stimuli were clearly reduced in comparison to the responses of Fpr1 and Fpr2 

(Figure 34). These observations argue for functional similarities between murine Fpr3 and 

human FPR3. 
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Figure 34. Murine and human Fpr3 show related agonist responses. Concentration-responses of HEK293T 

cells expressing mouse (lower panel) and human (upper panel) Fpr1, Fpr2, and Fpr3 upon stimulation with four 

sequence divergent Fpr activators. EC50 values from all six receptors for the tested peptides are listed under the 

concentration-response curves. The number of experiments (n) is indicated above the curves. 

hFPR = human Fpr; mFpr = murine Fpr. Error bars, S.D. 

 

 

3.4.3 Murine and Human Fpr3 are More Selective than Fpr1 and Fpr2 

To further determine the degree of similarity between the agonist spectra of mouse and 

human Fpr3, I next compared their responses to a larger set of stimuli (Figure 35A). It is 

well-established that Fprs can respond to formylated bacterial and mitochondrial peptides 

with extraordinary sensitivity, which suggests these compounds being the prime activators of 

Fprs (Schiffmann et al., 1975; Le et al., 2001a; Tiffany et al., 2001; Harada et al., 2004; 

Rabiet et al., 2005; He et al., 2013). Therefore, I focused on these agonist families. A panel of 

23 compounds that varied significantly in structure, sequence and length was tested 

(Figure 35B). It contained 12 different formylated mitochondrial peptides (three of human and 

nine of murine origin), seven formylated bacterial peptides, and four other typical peptide 

activators of FPRs. All compounds were first tested at 10 µM to 30 µM on the six receptors 

murine Fpr1, Fpr2, Fpr3 and human FPR1, FPR2, FPR3. The results show that Fpr1 and Fpr2 

of mouse and human are capable of detecting a broad variety of structurally divergent 

peptides of mitochondrial or bacterial origin, while murine and human Fpr3 are far more 

selective. 

Clear parallels between responses of distinct mouse and human receptor pairs were 

revealed (Figure 35A). Murine and human Fpr1 showed the most homogeneous activation 

pattern. Both receptors were strongly activated by all 23 test compounds and their response 
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amplitudes were always similar to those of W-peptide. Murine and human Fpr2 also displayed 

related responses. Both receptors were activated by 22 of the 23 substances. In contrast to the 

homogeneous signal amplitudes of Fpr1 the responses of Fpr2 to a few compounds were 

clearly diminished. This effect was most pronounced for mATP6 and mND4L. For 

human FPR2 the signals to mATP6 and mND4L were reduced by 79% and 81%, respectively. 

Murine Fpr2 showed a similar reduction to mND4L and no signal to mATP6. In addition, 

mouse Fpr2 also showed responses that were more than 60% reduced to mCytb, mND6, 

mND5, mND3, mND2, and hND4 which were not visible for human FPR2. 

Interestingly, clear similarities between murine and human Fpr3 were also observable. 

Both receptors showed a specific response pattern that was clearly distinguishable from that 

of Fpr1 and Fpr2 of both species. Both receptors responded to a far smaller set of compounds 

than their family members. Human FPR3 was only activated by 14 of the 23 tested substances 

– Staphylococcus-SP22, Staphylococcus-SP22-FuLe, Salmonella-SP24, Psychromonas-SP6, 

Hydrogenobacter-SP16, hND6, D-M-peptide, W-peptide, f-MIVILY, mND2, mND4, 

mND4L, mCOIII, and Ac2-26. Murine Fpr3 was even only activated by nine substances –

 Staphylococcus-SP22, Staphylococcus-SP22-FuLe, Salmonella-SP24, Psychromonas-SP6, 

Hydrogenobacter-SP16, hND6, M-peptide, W-peptide and f-MIVILY. The observation that 

human FPR3 was only activated by 14 compounds and murine Fpr3 even responded to only 

nine test substances argues for a higher selectivity of both receptors than that of Fpr1 and 

Fpr2. It is to mention that all activators of murine Fpr3 were also activators of human FPR3 

what results in an overlap of the receptors’ ligand spectra by at least 64%. The fact that all 

mouse Fpr3 agonists overlapped to 100% with those of human FPR3 strongly support the 

hypothesis that murine and human Fpr3 fulfill similar roles in the immune systems of mouse 

and human. However, the fact that human FPR3 is activated by five additional test 

compounds (Ac2-26, mND2, mND4, mND4L, and mCOIII) illustrates species-specific 

adaptations in the sensitivity and selectivity of both receptors. 
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Figure 35. Mouse and human Fpr3 display similar agonist selectivity. A, Comparison of the calcium 

responses of HEK293T cells transfected with either Fpr1, Fpr2, or Fpr3 of mouse or human to high agonist 

concentrations. All compounds were applied at 10 µM to 30 µM. Buffer application was used as negative control 

to render mechanical stimulation visible. To account for receptor specific variations in the maximal obtainable 

signal amplitude each response was normalized to the response to 30 µM W-peptide, a pan agonist for murine 

and human Fpr1, Fpr2 and Fpr3. Bars denote mean signals from three to eight independent experiments, carried 

out as duplicates. Error bars, S.D. B, the stimulus selection comprises six bacterial signal peptides, three human 

(h) and ten mouse (m) mitochondrial peptides, and four other typical FPR activators that strongly differ in their 

structure, sequence, and length. hFPR = human Fpr; mFpr = murine Fpr. 

 

 

3.4.4 Specification of Fpr3 Function in Mouse and Human 

To assess the amount of species-specific alterations in more detail, I next compared the 

concentration responses of both receptors to four common activators: the human 

mitochondrial peptide hND6, the bacterial signal peptide Psychromonas-SP6 and to the 

D- and L-stereoisomers of the synthetic M-peptide (Figure 36). The responses of murine and 

human Fpr3 to hND6 and L-M-peptide were quite similar, whereas the receptors displayed 

clear differences in the responses to D-M-peptide and Psychromonas-SP6. The EC50 of Fpr3 

for D-M-peptide and Psychromonas-SP6 were 933 ± 432 nM and 347 ± 49 nM, respectively. 

Human FPR3 showed an EC50 value of more than 10,000 nM for both substances. Thus, 
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murine Fpr3 is at least 10-fold more sensitive for D-M-peptide and even 28-fold more 

sensitive for Psychromonas-SP6. I also noticed that the maximal signal amplitude of 

murine Fpr3 to L-M-peptide and hND6 were approximately 50% smaller than those to 

D-M-peptide and Psychromonas-SP6, although the receptor signals clearly reached saturation 

for all four compounds. This provided the possibility for partial activation of murine Fpr3 

through both compounds. 

 

Figure 36. Mouse and human Fpr3 differ in their 

agonist sensitivity. Concentration-responses of 

murine and human Fpr3 upon activation by four 

structurally divergent peptides reveal a differential 

sensitivity. Number of experiments (n) is indicated in 

parentheses. hFPR = human Fpr; mFpr = murine Fpr. 

Error bars, S.D. 

 

 

 

 

 

 

 

 

 

 

To examine whether this was true or if the differences in the signal amplitude were caused 

by non-saturated responses, I next compared the signal amplitudes to selected agonists at 

30 µM and 60 µM concentrations (Figure 37). If the responses were not in saturation one 

would expect an increase of the signal amplitude at the higher concentration. In case that the 

compounds were partial agonists, higher concentrations should not have altered the signal 

size. For these tests four common activators of Fpr3 of both species (hND6, 

Staphylococcus-SP22, Psychromonas-SP6, and Hydrogenobacter-SP16), two peptides that 

were selective activators of human FPR3 (mND2 and mND4L), and two controls that did not 

activate murine or human Fpr3 (mATP6 and Clostridium-SP13) were chosen based on the 

results obtained in previous experiments (Figure 34). No significant differences in the signal 

amplitudes of murine and human Fpr3 to 30 µM and 60 µM stimulus concentrations were 

observed. hND6, Staphylococcus-SP22, Psychromonas-SP6, and Hydrogenobacter-SP16 

activated murine Fpr3 at both concentrations but showed no increase in signal size 

(Figure 37). Responses of human FPR3 to hND6, mND2, mND4L, Psychromonas-SP6, 

Hydrogenobacter-SP16, and Staphylococcus-SP22 also induced no significant alterations. 

Additionally, all tested compounds that did not activate one of the receptors at 30 µM also 
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evoked no responses at 60 µM. This demonstrates that the receptor responses were in 

saturation at 30 µM. 

Next, I obtained clear evidence for partial agonists of murine Fpr3. Although the results 

indicate sufficient concentrations to monitor the maximal signal amplitude, some of the 

signals were much smaller than those obtained for W-peptide. For murine Fpr3 only the signal 

size of Psychromonas-SP6 was comparable to that of W-peptide. The signal amplitudes of 

hND6, Hydrogenobacter-SP16, and Staphylococcus-SP22 were reduced by 74%, 65%, and 

61% respectively, providing clear evidence that these three stimuli are indeed partial agonists 

of murine Fpr3. By contrast, nearly all of the identified agonists for human FPR3 were full 

activators. The signals of this receptor to hND6, mND2, mND4L, Hydrogenobacter-SP16, 

and Staphylococcus-SP22 were similar to those obtained with W-peptide (Figure 37). Only 

the response to Psychromonas-SP6 was reduced by 79%. Thus, it seemed that Fpr3 was more 

selective in terms of signal amplitude.  

 

Figure 37. Calcium responses of murine and human 

Fpr3 saturate at 30 µM ligand concentration. Calcium 

responses of cells transfected with murine (light blue, 

upper panel) or human (dark blue, lower panel) Fpr3 upon 

stimulation with 30 µM (filled bars) and 60 µM 

(shaded bars) of the indicated Fpr3 agonist. All eight 

activators showed no significant differences between both 

concentrations, demonstrating that signal saturation was 

reached at 30 µM. Bars denote mean signal amplitudes 

from three independent experiments, carried out as 

duplicates. Number of experiments (n) is indicated in 

parentheses. hFPR = human Fpr; mFpr = murine Fpr. 

Error bars, S.D. 

 

 

 

 

3.4.5 Ligand Preferences of Murine and Human Fpr3 Differ Partially 

To assess to what extent variations in the ligand structure affect the responses of murine 

and human Fpr3, I next tested both receptors with a number of closely related chemical 

derivatives of the same agonist. Bernd Bufe and colleagues recently reported varying 

importance of individual amino acid residues of W-peptide for the interaction with murine 

Fpr3 (Bufe et al., 2012) and human FPR3 (Bufe et al., 2015). W-peptide is a common 

activator of mouse and human Fpr3 that robustly activates both receptors (Figure 34). Thus, I 

reasoned that structural derivatives of W-peptide may be well-suited to reveal differences in 

the agonist preferences. 



RESULTS 

74 

Previous studies already demonstrated the exclusive importance of the amidated 

methionine at the C-terminus of W-peptide and the three following residues for the interaction 

between W-peptide and the receptor (Bufe et al., 2012, Bufe et al., 2015). Therefore, I 

focused on systematic tests of these four residues with a panel of 24 test compounds 

(Figure 38). In each peptide an individual amino acid of W-peptide was replaced by a 

non-polar, polar, aromatic or charged substitution. My results showed that alterations of the 

C-terminal D-methionine (m) affected the responses of murine and human Fpr3 in a similar 

manner (Figure 38). At this position, charged or polar residues, such as glutamate (e), 

lysine (k) or glutamine (q) totally abolished the responses of both receptors. Replacement by 

hydrophobic residues, such as alanine (a), cysteine (c), isoleucine (i), and ornithine (o) or 

amino acids in L-conformation led to drastically reduced signals. Only the substitution of 

D-methionine by homocysteine (hcy) or isoleucine (i) were relatively well-tolerated. Thus, the 

methionine was of equal importance for the ligand recognition of both receptors. Alterations 

at the second last residue showed little effects on the receptor responses (Figure 38), 

suggesting low importance for the interaction between W-peptide and the receptors at this 

position. Replacement of the third last residue by other amino acids was well-tolerated by 

murine Fpr3, whereas all responses of human FPR3 were diminished. The substitution of the 

hydrophobic methionine (M) by charged glutamate (E) led to the strongest difference. It 

totally abolished the response of human FPR3, whereas the response of murine Fpr3 was only 

diminished by 43% (Figure 38). The most pronounced differences between murine Fpr3 and 

human FPR3 were seen for substitutions at the fourth last position (Figure 38). Interestingly 

most replacements of this residue by another amino acid were well-tolerated by murine Fpr3. 

In sharp contrast, nearly all substitutions totally abolished the response of human FPR3. This 

receptor tolerated only the relatively conserved exchange of tryptophan (W) by 

phenylalanine (F), both of which are aromatic amino acids. However, even in this case a 

marked reduction in the signal amplitude was recognized. This indicates differences in the 

response of murine and human Fpr3 to agonists are primarily that are caused by variable 

preference of both receptors of the fourth residue after the chemical modification. 

Furthermore, both receptors show comparable signal amplitudes to the majority of the 

W-peptide derivatives. In summary, the test with W-peptide derivatives revealed definite 

similarities in the structural preferences of murine and human Fpr3. 
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Figure 38. The ligand recognition of murine and human Fpr3 partially differs. Calcium responses of 

HEK293T cells transiently transfected with either Fpr3 of mouse (light blue, upper panel) or human (dark blue, 

lower panel) to W-peptide derivatives (10 µM) with systematically exchanged amino acid residues at position 1, 

2, 3, and 4 (counted from the amidated C-terminus). Buffer application (black bar and dotted line) was used as 

negative control. To account for receptor specific variations in the maximal obtainable signal amplitude the 

responses were normalized to 30 µM W-peptide (gray bar and dotted line). Bars denote signal amplitudes of 

responding cells from four independent experiments. The lead structure of W-peptide is shown in black letters. 

Modifications in the peptide structure are labeled in red. Peptide sequences are shown in one-letter amino acid 

code. L-isomers are given in capital letters, whereas D-isomers are displayed in lowercase 

letters. -NH2 = amidated C-terminus. hFPR = human Fpr; mFpr = murine Fpr. Error bars, S.D. 
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4 DISCUSSION 

This thesis provides new insight into the expression and function of murine Fpr3 in the 

vomeronasal and immune systems and reports the existence of natural knockout strains for 

this receptor. 

Two murine Fpr3 variants, Fpr3wt and Fpr3424-435, which differed by 12 nucleotides were 

discovered during this study. Fpr3wt constituted the annotated receptor, whereas Fpr3424–435 

encoded an in-frame deletion from nucleotides 424–435. Immunocytochemistry revealed that 

the deletion left the open reading frame intact, but the mouse strains encoding Fpr3424–435 

did not express the Fpr3 protein. In vitro calcium imaging and immunofluorescence analyses 

demonstrated that the lack of four amino acids lead to an unstable, truncated, and 

non-functional receptor protein. Moreover, comprehensive genotyping analyses and a 

database search revealed at least 13 mouse strains expressing Fpr3wt and at least 19 other 

strains encoding Fpr3424-435; thus establishing various natural Fpr3 knockout mouse strains. 

Sequencing and genomic haplotype analyses attributed the origin of Fpr3424-435 to the 

subspecies Mus musculus domesticus. The discovery of a multitude of natural Fpr3 knockout 

mouse strains will be valuable to study murine Fpr3 function in the context of various genetic 

backgrounds. 

Murine Fpr3 showed significant sequence overlap with human FPR3. Both receptors have 

been reported to detect bacterial peptides. Thus, they are assumed to fulfill related biological 

roles. However, the two receptors differed in their expression patterns, which challenge the 

concept of congruent function. The function and receptor expression of murine and human 

Fpr3 were examined in the vomeronasal organ and immune system to better understand their 

roles. In vitro calcium imaging experiments showed that the functional properties of the 

receptors were similar. Ligand screening revealed overlapping agonist response patterns in 

which the agonists were mainly of bacterial origin. Two anti-Fpr3 antibodies were generated 

and validated to analyze the occurrence of the murine Fpr3 protein and examine receptor 

expression. Immunocytochemistry combined with RT-PCR and in situ hybridization revealed 

murine Fpr3 expression in a subset of vomeronasal sensory neurons, mature neutrophil 

granulocytes, and bone marrow cells, whereas RT-PCR demonstrated the presence of 

human FPR3 RNA in neutrophil granulocytes. Moreover, expression of the murine Fpr3 

protein was upregulated in immune cells upon stimulation with a bacterial endotoxin 

(lipopolysaccharide). Taken together, my results provide clear evidence for a common 

biological function of murine and human Fpr3 and support their role as bacterial sensors in 

immune defense. 
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4.1 Fpr3 of Mouse and Human are Functional Orthologs 

Identification of human orthologs in model organisms, such as the house mouse 

mus musculus, is of paramount importance for insight into human biology (Dolan et al., 

2015). Orthologs are genes in different species that evolved from a common ancestral gene by 

speciation (Fitch, 1970; Fitch, 2000; Fang et al., 2010). Such genes can be identified by two 

criteria – a high sequence homology and the same biological function (Tatusov et al., 1997; 

Fang et al., 2010). I compared the sequence and function of murine and human Fpr3, to 

investigate to what degree both receptors fit these criteria. 

 

4.1.1 Genetic Evidence for the Orthology between Fpr3 of Mouse and Human 

Isabelle Migeotte and colleagues recently reported a shared gene locus with conserved 

synteny in the genomic arrangement for Fpr3 of both species, as described earlier 

(see chapter 1.3.4) (Migeotte et al., 2006). They illustrated that murine and human Fpr3 are 

located on chromosomal regions 17A3.2 and 19q13.3, respectively, where they are both the 

third protein coding gene within the Fpr gene cluster. However, due to the Fpr gene cluster 

expansion in rodents (Figure 5C), flanking regions of murine Fpr3 that comprise the 

pseudogenes ψFpr-rs2 (Fpr-rs8) and ψFpr-rs3 (Fpr-rs5) challenge the syntenic arrangement 

of murine and human Fpr3 (Gao et al., 1998; Wang and Ye, 2002). It is conceivable that all 

three of these genes evolved parallel to the human FPR3 gene. However, the nucleotide 

sequences of ψFpr-rs2 and ψFpr-rs3 are both more homologous to Fpr2 than to Fpr3 (Gao et 

al., 1998; Tiffany et al., 2011) which suggests evolution alongside this receptor. Furthermore, 

the two pseudogenes include premature stop codons (Migeotte et al., 2006) and thus do not 

have open reading frames. Hence, the Fpr3 gene encodes the only intact GPCR of these three 

genes. These observations consider Fpr3 to be the only mouse receptor qualified as ortholog 

of human FPR3. 

To examine this hypothesis, I compared the amino acid sequences of murine and human 

Fpr3, and aligned them with those of Fpr1 and Fpr2 of both species (Figure 33A, B). 

Surprisingly, by sharing 82% similarity, mouse Fpr3 rather resembled human FPR2 than 

human FPR3 that was 74% similar with murine Fpr3. This finding is consistent with other 

studies (Takano et al., 1997; Gao et al., 1998; Rabiet et al., 2011) and challenges orthology 

between murine and human Fpr3. 

In line with these observations, meta-analyses comprised of 12 orthology prediction tools 

listed orthology for murine and human Fpr3 in only three of these tools (Figure 33C), 

underpinning the notion that their orthology is unclear. However, a recent study that examined 
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the adaptive evolution of Fprs in mammals reported that Fpr3 evolved under completely 

different conditions than Fpr1 and Fpr2 (Muto et al., 2015). With examinations of site- and 

lineage-specific selection patterns, combined with 3D homology modeling analyses, the 

authors indicated strong positive selection for the Fpr1 and Fpr2 genes during evolution. By 

contrast, selective pressure in the Fpr3 lineage was more relaxed (Muto et al., 2015). This 

argues for common evolution of murine and human Fpr3 and provides a possible explanation 

for their orthology despite not sharing the highest sequence similarity amongst Fprs. 

 

4.1.2 Fpr3 of Mouse and Human Share Functional Similarities 

The same biological role is a criterion for orthology (Remm et al., 2001; Fang et al., 2010), 

as mentioned before (see chapter 0). Thus, I compared the function of murine and human 

Fpr3. Examining the biological role of Fpr3 has been difficult in the past due to the lack of 

identified activators. Recent studies identified several synthetic, bacterial, and endogenous 

host peptides as activators of mouse and human Fpr3 (Harada et al., 2004; Ernst et al., 2004; 

Migeotte et al., 2005; Bufe et al., 2012, Bufe et al., 2015). This enabled me to assess 

functional orthology between murine and human Fpr3. 

In heterologous calcium imaging experiments both receptors responded to overlapping 

subsets of Fpr agonists from different origins. Murine and human Fpr3 responded to nine 

common ligands, thus overlapping by at least 64% (Figure 35). This is consistent with a study 

that compared the receptors’ responses to 21 bacterial signal peptide fragments (Bufe et al., 

2015) and provides first evidence for a similar function of both receptors. 

Five of the nine shared ligands for murine and human Fpr3 were bacterial signal peptides. 

By contrast, endogenous host stimuli, such as mitochondrial peptides, were no prominent 

agonists of murine and human Fpr3. Both receptors responded to only one of three human 

mitochondrial peptides. Murine Fpr3 even lacked activation through any tested mitochondrial 

peptide of the mouse. This finding is consistent with reports that described detection of 

bacterial peptides by murine and human Fpr3 (Betten et al., 2001; de Paulis et al., 2004; Bufe 

et al., 2015). These data suggest prime roles for murine and human Fpr3 in bacterial 

detection, while they are less important in endogenous host stimuli detection. 

Response characteristics of Fpr3 differed drastically from those of Fpr1 and Fpr2 which 

are promiscuous receptors (Migeotte et al., 2006; Fu et al., 2006). In my screening, these 

receptors responded to nearly all of the 23 tested ligands (Figure 35). By contrast, Fpr3 of 

both species detected only a small sub-fraction of the tested ligands. Thus, Fpr3 was much 

more narrowly tuned than the other Fpr family members. Concentration-response curves 
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revealed also differing sensitivity and maximal signal amplitudes for Fpr3 towards Fpr1 and 

Fpr2 (Figure 34). To all tested substances – W-peptide, M-peptide, the bacterial signal peptide 

Psychromonas-SP6, and the mitochondrial peptide hND6 – Fpr3 exhibited ~3-fold to 

~30-fold lower sensitivity than Fpr1 and Fpr2 of both species. Additionally, signal amplitudes 

of Fpr3 reached only ~20% to ~50% of those of Fpr1 and Fpr2. Drastically lower sensitivity 

of Fpr3 to bacterial signal peptides has been described before (Bufe et al., 2015). While Fpr1 

and Fpr2 were activated by many substances in the nanomolar range, Fpr3 was activated only 

in the micromolar range. A more specialized ligand spectrum argues for a specific niche of 

Fpr3 within the murine and human Fpr families. This could characterize Fpr3 as a receptor 

providing information about high concentrations of external stimuli. 

A speculated function of Fpr3 in the literature is that of a decoy receptor. These receptors 

bind ligands to inhibit binding to their destined receptor. Thereby, they exhibit minimal 

plasma membrane expression but undergo rapid constitutive recycling to bind extracellular 

ligands and internalize them for degradation. In this process they do not transduce signals 

(Rabiet et al., 2011). Several recent studies support the idea of Fpr3 being a decoy receptor, 

based on a relative insensitivity to common Fpr2 ligands and high basal levels of receptor 

phosphorylation and internalization (Migeotte et al., 2005; Rabiet et al., 2011; He et al., 2013; 

Dorward et al., 2015). These reports suggest regulation of the function of other formylated 

peptide receptors through Fpr3. However, Fpr3 showed sensitivity in the micromolar range to 

most tested ligands that is at least 1,000-fold lower than sensitivities of Fpr1 and Fpr2 in the 

nanomolar range (Figure 34). With such inferior sensitivity, Fpr3 could not hinder ligands 

from binding to Fpr1 or Fpr2. Thus, my data argue against decoy activity mediated by Fpr3. 

 

4.1.3 Adaptations of Murine Fpr3 for a Function in Olfaction 

Murine Fpr3 was initially discovered in the VNO (Liberles et al., 2009; Rivière et al., 

2009), whereas no evidence exists for human FPR3 expression in the olfactory system (Liman 

and Innan, 2003; Zhang and Webb, 2003). Thus, it is likely that, despite functional orthology 

between murine and human Fpr3, murine Fpr3 developed specific adaptations to requirements 

in olfaction. To examine this, I compared the function of murine and human Fpr3 in more 

detail. Indeed, concentration-response curves supported the hypothesis of functional 

adaptations by revealing sensitivity differences between murine and human Fpr3 to two of 

four tested ligands (Figure 36). Thus, although both receptors detected the same ligands, they 

showed partial differing ligand tunings. 
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Investigations on responses of both receptors to single amino acid variations in W-peptide 

– a potent common ligand – were made to assess the degree of these subtle functional 

differences. Screening of 24 W-peptide derivatives (see chapter 2.1.1) revealed differing 

response patterns for murine and human Fpr3 (see chapter 3.4.5). Residue exchanges at the 

fourth last position of W-peptide showed the most distinct difference in the responses of the 

two receptors. The other three exchanged amino acid positions showed no or only minor 

differences between receptor responses (Figure 38). This finding indicates a possible 

adaptation of murine Fpr3 to a function in the VNO. However, it also shows that the 

functional differences between murine and human Fpr3 are very subtle. It is conceivable that 

these slight tuning differences indicate a trend in the evolution of both receptors that will 

become more pronounced in the future. Thus, murine Fpr3 function might adapt to 

requirements in olfaction, whereas human FPR3 might become more specialized for its 

function in the immune system. 

 

 

4.2 Murine Fpr3 is Expressed in Multiple Tissues 

Controversial reports about the expression pattern of murine Fpr3 exist, as described 

earlier (see chapter 1.3.3) (Gao et al., 1998; Lee et al., 2004; Southgate et al., 2008; Rivière et 

al., 2009; Chiu et al., 2013). To clarify if murine Fpr3 is expressed in immune cells, I 

examined the occurrence of receptor protein in different organs with immunocytochemistry 

techniques. To this end I generated and characterized two Fpr3-specifc antibodies, ECL1 and 

ECL2 (see chapter 3.1). 

 

4.2.1 Fpr3 Protein is Expressed in the Vomeronasal Organ 

Specificity of an antibody is a general issue in immunocytochemistry. Thus, a number of 

methods were used to assure the quality of the newly generated antibodies. Epitope mapping 

(Figure 13) and heterologous immunocytochemistry experiments, in which murine Fpr3 was 

stained exclusively (Figure 14), provided substantial in vitro evidence for the specificity of 

both antibodies. Subsequent comparative tests identified ECL2 as the more sensitive antibody 

that also produced slightly less background (Figure 15). Thus, this antibody was primarily 

used for further experiments in native cells. The VNO provided perfect testing conditions to 

assess the quality of the antibody, because of consistent reports on Fpr3 expression in the 

literature (Liberles et al., 2009; Rivière et al., 2009) and a challenging amount of target cells 

(0.3% to 0.7%) (Rivière et al., 2009; Stempel et al., 2016). In agreement with previous reports 
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(Liberles et al., 2009; Rivière et al., 2009), Fpr3 was detected in a small subpopulation of 

~0.3% VSNs with immunocytochemistry, RT-PCR, and in situ hybridization techniques 

(Figures 16, 17). This amount of cells is consistent with a study that recognized Fpr3 mRNA 

in 0.7% of the cells in VNO slices (Rivière et al., 2009). Verification of staining specificity 

was realized by successfully blocking the epitope specific binding site with the peptide that 

was used for antibody generation (Figure 17). These results confirmed the high quality of my 

used antibody for immunocytochemistry experiments in native cells. 

Next, the molecular characteristics of the cells expressing Fpr3 protein in the VNO were 

examined (Figure 18). The studies that discovered Fpr3 in the VNO reported coexpression of 

the receptor in VSNs with Gαo and a lack of coexpression with Gαi2 (Liberles et al., 2009; 

Rivière et al., 2009), markers for VSNs of the basal and the apical expression zone, 

respectively (Halpern et al., 1995; Berghard and Buck, 1996; Herrada and Dulac, 1997; 

Matsunami and Buck, 1997). Furthermore, tests using a pan V2ra in situ probe detecting 17 of 

the altogether 122 type 2 vomeronasal receptors indicated a lack of Vmn2r expression in 

Fpr3-positive VSNs (Liberles et al., 2009). My findings, using colabeling 

immunocytochemistry techniques were fully consistent with these reports (Liberles et al., 

2009; Rivière et al., 2009). The majority of Fpr3-positive cells colocalized with Gαo. 

Furthermore, neither significant coexpression of Fpr3 with Phosphodiesterase 4A (PDE4A), 

which labels Gαi2-positive VSNs (Lau and Cherry, 2000; Leinders-Zufall et al., 2004), nor 

with type 2 vomeronasal receptors, were detected. These results confirmed the previous 

findings which showed that Fpr3 in the VNO is exclusively expressed in VSNs of the basal 

expression zone and does not coexpress with type 2 vomeronasal receptors on the protein 

level (Liberles et al., 2009; Rivière et al., 2009). Fpr3 was also colabeled with OMP, which is 

expressed in all mature VSNs, to examine if the dissociated cells expressing Fpr3 were VSNs 

(Margolis, 1982). Indeed, ~60% of the Fpr3-expressing cells in the dissociated cell 

preparation coexpressed Fpr3 with OMP (Figure 18) and thus were identified as VSNs. 

Surprisingly, another ~40% of the Fpr3-positive cells lacked colocalization with any 

VSN-specific marker and thus provide clear evidence for the existence of a second 

Fpr3-expressing cell type in my dissociated cell preparation. 

Colocalization immunocytochemistry experiments with different immune cell markers 

were performed to examine the second cell type in my preparation (Figure 19). The 

lymphocyte antigen 6G (Ly6G) is only present in neutrophil granulocytes (Fleming et al., 

1993; Lai et al., 1998), whereas the cluster of differentiation molecule (CD45R) can be found 

in all other immune cells (Ballas and Rasmussen, 1993; Rolink et al., 1996; Lai et al., 1998). 
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Colabeling ECL2 with Ly6G identified these cells as neutrophil granulocytes. Consistent with 

this finding, colabeling with CD45R was negative (Figure 19). Ly6G expression and the lack 

of CD45R expression argue that these cells were neutrophil granulocytes. Neutrophils are 

leukocytes that are released from the bone marrow into the peripheral blood after maturation 

(Bekkering and Torensma, 2013). Thus, they were likely introduced into my preparation 

through blood contamination. 

 

4.2.2 Fpr3 Protein is Expressed in Immune Cells 

Careful examination of Fpr3 expression in cells that were directly isolated from blood was 

performed to confirm the receptor’s occurrence in murine leukocytes. With both newly 

generated Fpr3 antibodies, ECL1 and ECL2, Fpr3 expression in a subpopulation of ~13% of 

the nucleated cells was detected (Figure 20). This amount of cells correlates well with the 

reported strain-dependent neutrophil granulocyte count of ~9% to ~18% in mouse blood 

(Gowen and Calhoun, 1943). Additional investigation on nucleus morphology of stained cells 

substantiated the evidence for Fpr3 expression in neutrophil granulocytes. Nuclei of 

Fpr3-expressing cells all had a structure including nuclear lobes and connecting segments, the 

typical shape of nuclei of mature neutrophil granulocytes (Campbell et al., 1995; Sanchez and 

Wangh, 1999; Carvalho et al., 2015); whereas all non-stained cells had other nucleus shapes 

(Figure 39). Fpr3 protein expression in neutrophil granulocytes was confirmed by subsequent 

colabeling of the receptor with the neutrophil marker Ly6G. Fpr3 expression in leukocytes 

was also proven on the RNA level with RT-PCR experiments (Figure 23). Interestingly, 

Fpr3 protein production increased after LPS exposure (Figure 25). Taken together, these 

results clearly demonstrate the presence of murine Fpr3 in neutrophil granulocytes. 

 

Figure 39. Fpr3-positive leukocytes contain polymorphonuclear nuclei. 

Comparison of nuclear morphologies for Fpr3 positive and negative 

leukocytes. Fpr3 was stained with the antibody ECL1 (green), for  nuclear 

staining Hoechst33342 (blue) was used. Fpr3-positive cell (upper left) showing 

a clearly multi-lobed nucleus, typical for neutrophil granulocytes (lower left). 

Fpr3-negative cell (upper right) showing a horseshoe-shaped nucleus, typical 

for monocytes (lower right). mFpr = murine Fpr. Scale bar, 5 µm. 

 

 

 

 

 

Fpr3 expression in leukocytes has been discussed controversially in the past. One early 

report detected low amounts of Fpr3 RNA in murine leukocytes (Gao et al., 1998). However, 

several subsequent studies failed to confirm this result despite the use of sensitive techniques, 
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such as RT-PCR (Lee et al., 2004; Southgate et al., 2008; Rivière et al., 2009; Chiu et al., 

2013). Detection of RNA from neutrophil granulocytes is much more difficult than from other 

leukocytes because RNA amounts in neutrophil granulocytes are 10-fold to 20-fold lower 

than in other leukocytes, such as monocytes (Cassatella, 1999). Consistent with the majority 

of reports, my attempts failed to detect Fpr3 from neutrophil granulocyte RNA without LPS 

stimulation (Figure 22). In immune cells expression of selected genes is elevated after contact 

with a pathogen (Guha and Mackman, 2001; Heumann and Roger, 2002). One important 

pathogen factor for this is LPS (Cui et al., 2002; Iribarren et al., 2003). In neutrophil 

granulocytes, LPS-induced expression for Fpr1 has been observed earlier (Mandal et al., 

2005). Thus, it is conceivable that Fpr3 is also upregulated after LPS stimulation in this cell 

type. Utilizing this RNA elevation mechanism, I could now establish Fpr3 joining the ranks 

of upregulated genes upon LPS exposure in neutrophils (Figure 23). This finding resolves the 

controversy about Fpr3 expression in mouse leukocytes and strongly supports the 

involvement of Fpr3 in immune defense. 

Of note, occurrence of murine and human Fpr3 in the same type of immune cells would 

provide further evidence for a similar biological function of both receptors in the immune 

systems of mouse and human. However, current literature gives no evidence for a common 

expression of murine and human Fpr3 in neutrophil granulocytes. RNA of human FPR3 has 

been detected in monocytes using northern blot analysis (Durstin et al., 1994) and in 

immature and mature dendritic cells via RT-PCR, immunocytochemistry, and internalization 

experiments (Yang et al., 2002; Migeotte et al., 2005). However, expression of human FPR3 

in neutrophil granulocytes is poorly examined. To clarify FPR3 expression in human 

neutrophil granulocytes, I isolated neutrophils from peripheral blood, stimulated the cells with 

LPS, and extracted their total RNA. RT-PCR showed a band for human FPR3 with specific 

primers besides the already well-examined FPR1 and FPR2 (Figure 24). Consecutive 

sequencing confirmed the amplification products as human FPR1, FPR2, and FPR3. This 

pilot study shows that human FPR3 is likely expressed in human neutrophils. 

 

 

4.3 Strain-Specific Fpr3 Variants 

During the course of my studies, I made a puzzling observation: Fpr3 protein was not 

detectable by immunocytochemistry in dissociated VNO cells or immune cells of 129X1/Sv, 

BALB/cJ, and FVB/N mice but in C57Bl/6NCrl and NZB/Ola mice (Figure 26). However, 

the presence of Fpr3 mRNA in those cell types of all tested mouse strains was clearly proven 
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(see chapter 3.3.1). Subsequent genotyping of the Fpr3 gene from Fpr3-positive and -negative 

strains revealed a clear correlation between antibody staining patterns and the presence or 

absence of a 12 nucleotide in-frame deletion in Fpr3 (Figure 27).  

 

4.3.1 Two Functionally Distinct Fpr3 Variants Exist in Mice 

The deletion results in a loss of four amino acids in the second intracellular loop. The Fpr3 

variant comprising the deletion was called Fpr3424-435, the variant without the deletion, 

Fpr3wt. Fpr3wt and Fpr3424-435 were compared with calcium imaging to evaluate if the 

structural alteration in the Fpr3 variants would affect the receptor function (see chapter 3.3.2). 

The relatively small change of four amino acids at an intracellular site argues for modest 

effects on the receptor function. However, initial heterologous experiments in HEK cells 

revealed drastic functional differences between the two Fpr3 variants. Fpr3424-435 transfected 

HEK cells responded to none of the applied potent Fpr3 activators, while those transfected 

with Fpr3wt clearly responded to all of them (Figures 28, 29). These results provide clear 

evidence for a complete loss of receptor function for the Fpr3424-435 variant. A lack of 

receptor function should have been also observable in mice, whereby mice carrying 

Fpr3424-435 should have displayed a lack of function and mice expressing Fpr3wt should have 

shown intact receptor function. To examine this hypothesis, the response of vomeronasal 

sensory neurons of C57Bl6/NCrl and 129X1/Sv mice was tested (Figure 32). When applying 

the bacterial signal peptide fragment Salmonella-SP24, a specific subset of sensory knobs 

from C57Bl6/NCrl mice that express Fpr3wt were activated, while knobs from 129X1/Sv mice 

that carry Fpr3424-435 showed no responses. These results are consistent with a lack of 

receptor function in animals expressing Fpr3424-435 caused by lack of four amino acids. Thus 

I conclude that Fpr3424-435 is a non-functional Fpr3 variant, whereas Fpr3wt is a fully 

functional receptor variant. I further conclude that mice carrying Fpr3424-435 lack Fpr3 

function in general and thus provide functional knockout animals for Fpr3. Due to the lack of 

Fpr3 function, these mice likely suffer from impaired functions in the organs that express the 

receptor – the VNO and the immune system. However, the precise role of Fpr3 is not yet 

unraveled what makes it difficult to assess the kind of effect caused by the deletion. 

Moreover, my results demonstrate the detection of a pathogen-associated ligand by the VNO 

through Fpr3 arguing for an involvement of the intact receptor in vomeronasal 

pathogen-detection (see chapter 1.1). 
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4.3.2 Truncation of Fpr3424-435 Protein Causes a Lack of Receptor Function 

Because of the relatively small change of four amino acids, I initially expected both Fpr3 

variants, Fpr3wt and Fpr3424-435, to be functional. However, although the open reading frame 

remained intact, Fpr3424-435 lacked complete receptor function. Surprisingly, mRNA 

expression for both receptor variants was clearly demonstrated (see chapter 3.3.1) but receptor 

protein was only detectable for Fpr3wt (Figure 30). Thorough examination of Fpr3424-435 

expression was performed to investigate the lack of receptor protein (see chapter 3.3.3). 

Fpr3424-435 was not detectable in immunocytochemistry experiments using the newly 

generated antibodies, ECL1 and ECL2, in both HEK and dissociated VNO cells 

(Figures 26, 30). This argues that the 12 nucleotide in-frame deletion in Fpr3424-435 causes 

no or extremely diminished protein expression. An alternative explanation would be an 

altered protein structure that masks all antibody binding sites. 

I generated a fusion-protein with an N-terminal Rho-tag and a C-terminal HSV-tag to 

evaluate if receptor protein was expressed at least partially (see chapter 2.3.11). Experiments 

with the resulting Rho-Fpr3424-435-HSV construct revealed a clear but diminished staining for 

the Rho-tag antibody that bound N-terminally (Figure 31). Together with a lack of staining 

using the C-terminally binding HSV-tag antibody, the results indicate a truncated expression 

of Fpr3424-435 protein. The expressed protein included an N-terminus and discontinued 

somewhere before the C-terminus. I did not determine the exact extent to which the receptor 

was truncated but the lack of cellular staining with ECL1, which recognizes an epitope 

localized in front of the in-frame deletion (Figure 13), argues for a very short protein or severe 

misfolding of the resulting protein. The strongly reduced staining using the Rho-tag antibody 

argues for inefficient receptor synthesis or transport. Misfolded, damaged, and truncated 

proteins are prone to degradation via the ubiquitin-proteasome system (Goldberg, 2003; 

Bhattacharyya et al., 2014). This quality control system rapidly eliminates those proteins, as 

demonstrated early by the degradation of abnormally folded globin (Goldberg and Dice, 1974; 

Etlinger and Goldberg, 1976; Klemes et al., 1981; Sherman and Goldberg, 2001). Thus, 

reduced staining with the Rho-tag antibody is likely due to degradation of the truncated or 

misfolded receptor protein. However, the exact reason for the truncation and diminished 

protein amount has to be addressed in future experiments. 

 

4.3.3 Distribution of the Fpr3 Variants Amongst Laboratory Mice 

Genotyping combined with database analyses of the Fpr3 nucleotide sequence in different 

mouse strains revealed an astonishing number of mouse lines carrying the non-functional 
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Fpr3424-435 variant. Thus far, I identified 19 different strains encoding the Fpr3424-435 

variant. The functional Fpr3wt variant was present in 13 examined mouse strains. 

Surprisingly, the heredity transmission patterns of both receptor variants were inconsistent 

(Figure 40). The patterns show that Fpr3wt and Fpr3424-435 were present in numerous 

laboratory mouse lines that originated either in Europe, North America, or Asia. Data from 

genetic analyses (Figures 27, 40) implied multiple places of origin for the Fpr3424-435 variant. 

This finding argues for an independent emergence of Fpr3424-435 in several founder mice. 

 

 

Figure 40. Distribution of the Fpr3 variants in the laboratory mouse genealogy using the example of 

Castle’s mice. Distribution of strains expressing Fpr3wt (green) and Fpr3424-435 (red) is inconsistent with any 

heredity transmission pattern. Strains of the same origin cluster, such as 129-related strains, seem to express the 

same variant. This argues for individual emergence of the Fpr3424-435 variant and subsequent heredity. Strains 

not examined for their expressed variant are written in black letters. Figure after Beck et al., 2000. 
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One possible explanation for the inconsistent appearance of Fpr3424-435 is occasional 

breeding with mice carrying this receptor variant. Gene refreshing by crosses with maximum 

genetic diversity to the foundation stocks is often performed between laboratory and wild 

living mice of common genetic background to prevent genetic drift in mouse breeding (Beck 

et al., 2000; Lambert, 2009). However, more laboratory strains expressing the non-functional 

Fpr3424-435 variant rather than the functional Fpr3wt variant were identified (Figure 27). 

Although the distribution of Fpr3424-435 in the laboratory mouse genealogy is wide and 

scattered (Figure 40), cluster-like heredity was partly observed. For instance, all examined 

129-related mice expressed Fpr3424-435. This argues for individual emergence of the 

Fpr3424-435 variant and subsequent heredity. In this scenario the non-functional variant may 

have provided evolutionary benefits under breeding conditions. The loss of Fpr3 receptor 

function could have led to a positive selection of mice encoding Fpr3424-435 during the 

breeding process by a phenotype that was favorable under laboratory conditions. 

Mice can distinguish between healthy and infected individuals and avoid company of 

infected conspecifics dependent on a functioning VNO (Boillat et al., 2015). Laboratory mice 

may even stop breeding when in an unhealthy state (Lambert, 2009). My data from expression 

and functional experiments (see chapters 3.2 and 3.4) argue for the involvement of Fpr3 

function in vomeronasal pathogen-detection. Thus, loss of Fpr3 function could have resulted 

in greater acceptance of non-suitable mating partners, food, bedding, and other breeding 

performance factors (see chapter 1.1). In line with this, several mouse strains, such as NFR/N 

mice, have become resistant to different types of stress, making them “high breeders” in most 

types of environmental conditions (Liljander et al., 2006). For these strains it is not examined 

which variant of Fpr3 they encode. However, mouse strains expressing the functional Fpr3wt, 

such as C57Bl-related mice, normally produce lower numbers of litters and are often denoted 

as “moderate breeders” (Liljander et al., 2006). Mice experiencing less stress, e. g. through 

the lack of contact with sick conspecifics, produce more offspring. Thus, mice with an 

inhibited detection ability of stress factors through the lack of Fpr3 function could feature a 

better breeding phenotype in the laboratory breeding process. This argues for Fpr3 being a 

gene critical for reproduction in mice alongside already identified genes, such as Fecq1, 

Fecq2, and Ori (Kirkpatrick et al., 1998; Spearow and Barkley, 1999; Peripato et al., 2002; 

Peripato et al., 2004; Rocha et al., 2004; Everett et al., 2004). 
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4.3.4 Fpr3 Variants Originated in Wild Living Mice 

One possible reason for the high frequency of the non-functional Fpr3424-435 variant in 

laboratory mice was a frequent occurrence of Fpr3424-435 in many wild-type mice. Mice of 

the species Mus musculus are believed to have originated in the north of the Indian 

subcontinent. From there they spread throughout the world probably 0.5 million years ago 

(Yonekawa et al., 1981; Boursot et al., 1993). Different colonization paths led to different 

local subspecies, such as Mus musculus castaneus in Southeast Asia, M. m. domesticus in 

Western Europe and the Mediterranean basin, and M. m. musculus in Central Europe and 

North China (Boursot et al., 1993). The genomes of most laboratory mouse strains comprise a 

mixed genetic background derived from these three subspecies (Beck et al., 2000). 

Hence, I examined several wild-derived mouse strains that represent one of the individual 

subspecies M. m. castaneus, M. m. domesticus, and M. m. musculus, respectively. Nearly all 

examined wild-derived mouse strains carried the Fpr3wt gene (Figure 27). However, 

Fpr3424-435 was present in three substrains of M. m. domesticus – LEWES/EiJ, WSB/EiJ, 

ZALENDE/EiJ – whereas two other substrains of M. m. domesticus – GER/DT, FRA/DT –

carried the Fpr3wt variant. This result provides first evidence that strains from the subspecies 

M. m. domesticus are the original source of Fpr3424-435 in laboratory mouse strains. 

The genomes of many laboratory strains derived of only a few ancestral wild living strains 

with limited haplotype diversity (Tucker et al., 1992; Beck et al., 2000; Yang et al., 2011). In 

line with this, their genomes comprise mosaic patterns of different mus musculus subspecies 

(Bonhomme et al., 1987). Thus it is still possible that the Fpr3424-435 gene emerged in 

different subspecies. A haplotype analysis of the Fpr3 gene in mouse strains carrying one of 

the two variants with the Mouse Phylogeny Viewer were performed to clarify the origin of 

Fpr3424-435 (see chapter 2.8.2.5; Table 13; Appendix). This analysis gives information about 

from which founder mouse a defined gene locus in different laboratory mouse strains emerged 

(Yang et al., 2011). Most strains of either variant received their Fpr3 gene from 

M. m. domesticus. Only three other tested strains carrying Fpr3wt – C57BR/cdJ, C57L/J, 

C58/J – showed a M. m. musculus heredity. Intriguingly, all tested strains in which the 

non-functional Fpr3424-435 variant was found, obtained their Fpr3 gene from a 

M. m. domesticus ancestor. This finding shows that the Fpr3424-435 variant undoubtedly 

originated from the subspecies M. m. domesticus. 

Different strains representing M. m. domesticus from different geographic regions were 

investigated for their encoded Fpr3 variant to determine which M. m. domesticus strain 

introduced Fpr3424-435 into laboratory mice. Distribution of Fpr3424-435 in wild-type 
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M. m. domesticus was highly unusual because it could not be retraced to a clear geographic 

origin. One strain from Switzerland and two others from North America carried Fpr3424-435 

whereas two other lines from Germany and France carried Fpr3wt (Figure 27). I expected that 

the non-functional Fpr3424-435 was a rare incidence. However, the occurrence of Fpr3424-435 

in at least three wild living strains from geographically separated regions argues for multiple 

independent origins of Fpr3424-435 under natural conditions. 

Surprisingly, database analyses revealed that a wild-derived strain representing 

M. m. molossinus, which is believed to have solely originated from M. m. castaneus and 

M. m. musculus in Japan (Boursot et al., 1993; Beck et al., 2000; Yang et al., 2011) also 

expresses Fpr3424-435 despite a geographic barrier that should prevent a cross-breeding with 

M. m. domesticus mice from North America or Europe. 

 

 

4.4 Outlook 

The functional orthology of murine Fpr3 to human FPR3 and upregulation of the receptor 

protein after stimulation with lipopolysaccharide in immune cells suggest a role for murine 

Fpr3 in the immune system and thus in pathogen detection. Furthermore, as bacterial signal 

peptides were detected by Fpr3-expressing vomeronasal sensory neurons, the receptor may be 

involved in pathogen detection by the vomeronasal organ. These findings pave the way for 

further investigations into the biological role of murine Fpr3. 

The discovery of a multitude of natural Fpr3 knockout mouse strains provides a valuable 

tool to study murine Fpr3 function in the context of various genetic backgrounds. Thereby, 

comparative analyses of functional Fpr3wt and non-functional Fpr3424–435 in native tissues 

will provide crucial information about the biological role of murine Fpr3. 

To gain a deeper understanding of the biological role of Fpr3 in the immune system, 

calcium imaging experiments and assays including chemotaxis or release of reactive oxygen 

species could be performed with neutrophil granulocytes. However, no exclusive ligand for 

murine Fpr3 has been identified. Thus, identifying an exclusive Fpr3 ligand is an important 

step to shed light on the biological role of the receptor in the immune system. Moreover, 

neutrophil granulocytes express functionally promiscuous Fpr1 and Fpr2, which detect all 

known Fpr3 ligands with higher sensitivity than Fpr3. Thus, and because of the lack of 

reliable blockers for murine Fpr1 and Fpr2, definite answers about Fpr3 function in neutrophil 

granulocytes await the availability of such tools. 
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Fpr3 was not coexpressed with any other Fpr or other type of vomeronasal receptor in the 

vomeronasal organ (Liberles et al., 2009; Rivière et al., 2009). Thus, a detailed examination 

on the role of murine Fpr3 in the vomeronasal organ is possible. The main issue when 

investigating Fpr3 function in the vomeronasal organ is the small proportion of cells (0.3%) 

that express the receptor. This study introduced tools to unambiguously identify 

Fpr3-expressing cells. In cooperation with Dr. Andreas Schmid, I determined that mouse 

strains carrying Fpr3424-435 had a functional Fpr3 knockout phenotype in the vomeronasal 

organ.  Thus, Fpr3 function could be investigated by comparatively examining vomeronasal 

cells in strains expressing either Fpr3wt or Fpr3424-435 with calcium imaging. To verify the 

functional data, Fpr3 expression in responding cells could be demonstrated by 

immunocytochemistry post-hoc using the newly generated ECL1 and ECL2 antibodies. In this 

context, the most interesting question is whether Fpr3 is actually involved in pathogen 

detection by the olfactory system. To this end, calcium imaging of vomeronasal cells and 

pathogen-related compounds in combination with a behavioral aversion assay (Boillat et al., 

2015) could be performed. Thereafter, olfactory-based compounds would be of interest to 

evaluate adaptations of the receptor to the olfactory system. 

A comparison of the behavior of mice carrying either Fpr3wt or Fpr3424-435 would provide 

insight into the involvement of Fpr3 in general social behaviors mediated by the vomeronasal 

organ, such as aggressive or sexual behavior. However, based on the different genetic 

backgrounds of the mice, the results must be checked with Fpr3 knockout mice from the same 

genetic background. 

This thesis reports the functional orthology of murine Fpr3 to human FPR3. Further 

studies should examine genes orthologous with murine Fpr3 in other species. Interesting 

questions include which functions of orthologous Fpr3 genes are conserved and if specific 

roles are associated with an olfactory phenotype. Fpr3 genes have been predicted in numerous 

apes and monkeys and the rat (NCBI data), but definite confirmation of receptor proteins 

remains to be shown. Thus, the first step to further evaluate Fpr3 orthology between species is 

to identify Fpr3 genes in more species. I speculate that Fpr3 genes will be identified in 

various rodents in the future. It would be interesting to compare Fpr3 function in animals with 

an intact vomeronasal organ to those without. To this end, functional measurements in vitro 

and in native tissues could be used as presented in this study. 
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Table 10. Peptide spot array epitopes 

Peptide# Amino Acid# Peptide Sequence 

1 1 to 15 M-E-T-N-Y-S-I-P-L-N-G-S-D-V-V 

2 6 to 20 S-I-P-L-N-G-S-D-V-V-I-Y-D-S-T 

3 11 to 25 G-S-D-V-V-I-Y-D-S-T-I-S-R-V-L 

4 16 to 30 I-Y-D-S-T-I-S-R-V-L-W-I-L-S-M 

5 21 to 35 I-S-R-V-L-W-I-L-S-M-V-V-V-S-I 

6 26 to 40 W-I-L-S-M-V-V-V-S-I-T-F-F-L-G 

7 31 to 45 V-V-V-S-I-T-F-F-L-G-V-L-G-N-G 

8 36 to 50 T-F-F-L-G-V-L-G-N-G-L-V-I-W-V 

9 41 to 55 V-L-G-N-G-L-V-I-W-V-A-G-F-R-M 

10 46 to 60 L-V-I-W-V-A-G-F-R-M-P-H-T-V-T 

11 51 to 65 A-G-F-R-M-P-H-T-V-T-T-I-W-Y-L 

12 56 to 70 P-H-T-V-T-T-I-W-Y-L-N-L-A-L-A 

13 61 to 75 T-I-W-Y-L-N-L-A-L-A-D-F-S-F-T 

14 66 to 80 N-L-A-L-A-D-F-S-F-T-A-T-L-P-F 

15 71 to 85 D-F-S-F-T-A-T-L-P-F-L-L-V-E-M 

16 76 to 90 A-T-L-P-F-L-L-E-V-M-A-M-K-E-K 

17 81 to 95 L-L-V-E-M-A-M-K-E-K-W-P-F-G-W 

18 86 to 100 A-M-K-E-K-W-P-F-G-W-F-L-C-K-L 

19 91 to 105 W-P-F-G-W-F-L-C-K-L-V-H-I-A-V 

20 96 to 110 F-L-C-K-L-V-H-I-A-V-D-V-N-L-F 

21 101 to 115 V-H-I-A-V-D-V-N-L-F-G-S-V-F-L 

22 106 to 120 D-V-N-L-F-G-S-V-F-L-I-A-V-I-A 

23 111 to 125 G-S-V-F-L-I-A-V-I-A-L-D-R-C-I 

24 116 to 130 I-A-V-I-A-L-D-R-C-I-C-V-L-H-P 

25 121 to 135 L-D-R-C-I-C-V-L-H-P-V-W-A-Q-N 

26 126 to 140 C-V-L-H-P-V-W-A-Q-N-H-R-T-V-S 

27 131 to 145 V-W-A-Q-N-H-R-T-V-S-L-A-R-N-V 

28 136 to 150 H-R-T-V-S-L-A-R-N-V-V-V-G-S-W 

29 141 to 155 L-A-R-N-V-V-V-G-S-W-I-F-A-L-I 

30 146 to 160 V-V-G-S-W-I-F-A-L-I-L-T-L-P-L 

31 151 to 165 I-F-A-L-I-L-T-L-P-L-F-L-F-L-T 

32 156 to 170 L-T-L-P-L-F-L-F-L-T-T-V-R-D-A 

33 161 to 175 F-L-F-L-T-T-V-R-D-A-R-G-D-V-H 

34 166 to 180 T-V-R-D-A-R-G-D-V-H-C-R-L-S-F 

35 171 to 185 R-G-D-V-H-C-R-L-S-F-V-S-W-G-N 

36 176 to 190 C-R-L-S-F-V-S-W-G-N-S-V-E-E-R 

37 181 to 195 V-S-W-G-N-S-V-E-E-R-L-N-T-A-I 

38 186 to 200 S-V-E-E-R-L-N-T-A-I-T-F-V-T-T 

39 191 to 205 L-N-T-A-I-T-F-V-T-T-R-G-I-I-R 

40 196 to 210 T-F-V-T-T-R-G-I-I-R-F-I-V-S-F 

41 201 to 215 R-G-I-I-R-F-I-V-S-F-S-L-P-M-S 

42 206 to 220 F-I-V-S-F-S-L-P-M-S-F-V-A-I-C 

43 211 to 225 S-L-P-M-S-F-V-A-I-C-Y-G-L-I-T 

44 216 to 230 F-V-A-I-C-Y-G-L-I-T-T-K-I-H-K 

45 221 to 235 Y-G-L-I-T-T-K-I-H-K-K-A-F-V-N 

46 226 o 240 T-K-I-H-K-K-A-F-V-N-S-S-R-P-F 

47 231 to 245 K-A-F-V-N-S-S-R-P-F-R-V-L-T-G 

48 236 to 250 S-S-R-P-F-R-V-L-T-G-V-V-A-S-F 

49 241 to 255 R-V-L-T-G-V-V-A-S-F-F-I-C-W-F 

50 246 to 260 V-V-A-S-F-F-I-C-W-F-P-F-Q-L-V 

51 251 to 265 F-I-C-W-F-P-F-Q-L-V-A-L-L-G-T 

52 256 to 270 P-F-Q-L-V-A-L-L-G-T-V-W-L-K-E 

53 261 to 275 A-L-L-G-T-V-W-L-K-E-M-Q-F-S-G 

54 266 to 280 V-W-L-K-E-M-Q-F-S-G-S-Y-K-I-I 

55 271 to 285 M-Q-F-S-G-S-Y-K-I-I-G-R-L-V-N 

56 276 to 290 S-Y-K-I-I-G-R-L-V-N-P-T-S-S-L 

57 281 to 295 G-R-L-V-N-P-T-S-S-L-A-F-F-N-S 

58 286 to 300 P-T-S-S-L-A-F-F-N-S-C-L-N-P-I 

59 291 to 305 A-F-F-N-S-C-L-N-P-I-L-Y-V-F-M 

60 296 to 310 C-L-N-P-I-L-Y-V-F-M-G-Q-D-F-Q 

61 301 to 315 L-Y-V-F-M-G-Q-D-F-Q-E-R-L-I-H 

62 306 to 320 G-Q-D-F-Q-E-R-L-I-H-S-L-S-S-R 

63 311 to 325 E-R-L-I-H-S-L-S-S-R-L-Q-R-A-L 

64 316 to 330 S-L-S-S-R-L-Q-R-A-L-S-E-D-S-G 

65 321 to 335 L-Q-R-A-L-S-E-D-S-G-H-I-S-D-T 

66 326 to 340 S-E-D-S-G-H-I-S-D-T-R-T-N-L-A 

67 331 to 345 H-I-S-D-T-R-T-N-L-A-S-L-P-E-D 

68 336 to 350 R-T-N-L-A-S-L-P-E-D-I-E-I-K-A 

69 337 to 351 T-N-L-A-S-L-P-E-D-I-E-I-K-A-I 

 

 

 



Appendix 

105 

Table 11. Mouse genes containing the AMKEK motif 
Gene# Gene Name Gene Synonyms Locus Amino Acids UniProtKB Accession Number 

1 Ccdc83 -/- CCD83_MOUSE 305 aa  Q9D4V3.1  

2 Fpr2 Fpr-rs2 FPR2_MOUSE 351 aa O88536.1  

3 Fpr3 Fpr-rs1; Lxa4r FPRS1_MOUSE 351 aa O08790.2  

4 Map9 Asap; Mtap9 MAP9_MOUSE 646 aa Q3TRR0.2  

5 Skil Skir; Sno SKIL_MOUSE 675 aa Q60665.2 

6 Tsga10 -/- TSG10_MOUSE 697 aa Q6NY15.1  

7 Lppr3 Kiaa4076, Prg2 LPPR3_MOUSE  716 aa Q7TPB0.1  

8 Elmo2 Kiaa1834 ELMO2_MOUSE 732 aa Q8BHL5.1 

9 Nup98 -/- NUP98_MOUSE 1816 aa Q6PFD9.2 

10 Unc13c -/- UN13C_MOUSE 2210 aa Q8K0T7.3  

11 Tpr -/- TPR_MOUSE 2431 aa F6ZDS4.1  

12 Pcnt Pcnt2 PCNT_MOUSE  2898 aa P48725.2  

13 Akap9 Kiaa0803 AKAP9_MOUSE 3797 aa Q70FJ1.2 

14 Dnah8 Dnahc8 DYH8_MOUSE 4731 aa Q91XQ0.2 

15 Fsip2 -/- FSIP2_MOUSE 6995 aa A2ARZ3.3  

16 Dst Bpag1; Macf2 DYST_MOUSE 7393 aa Q91ZU6.2 

17 Syne1 -/- SYNE1_MOUSE 8799 aa Q6ZWR6.2 

 

Table 12. Mouse genes containing the LNTA motif 

Gene# Gene Name Gene Synonyms Locus Amino Acids UniProtKB Accession Number 

1 Atoh7 Ath5 ATOH7_MOUSE 149 aa Q9Z2E5.1  

2 Ormdl1 -/- ORML1_MOUSE 153 aa Q921I0.1  

3 Ucn3 -/- UCN3_MOUSE 164 aa Q924A4.1  

4 Ptn -/- PTN_MOUSE 168 aa P63089.1  

5 Fam159a -/- F159A_MOUSE 189 aa A2A9G7.1  

6 Isoc2a Isoc2 ISC2A_MOUSE 206 aa P85094.1  

7 Ropn1l Asp ROP1L_MOUSE 230 aa Q9EQ00.1  

8 Tmem65 -/- TMM65_MOUSE 234 aa Q4VAE3.1  

9 Bpifa2 Psp BPIA2_MOUSE 235 aa P07743.1  

10 Pex11g Pex11c PX11C_MOUSE 241 aa Q6P6M5.2  

11 Drgx Drg11; Prrxl1 DRGX_MOUSE 263 aa Q8BYH0.2  

12 Mad2l1bp Mad2lbp MD2BP_MOUSE 276 aa Q9DCX1.2  

13 Elovl7 -/- ELOV7_MOUSE 281 aa Q9D2Y9.1  

14 Mbd3 -/- MBD3_MOUSE 285 aa Q9Z2D8.1  

15 Ralyl -/- RALYL_MOUSE 293 aa Q8BTF8.1  

16 Raly Merc RALY_MOUSE 312 aa Q64012.3  

17 Ccdc160 -/- CC160_MOUSE 323 aa Q3UYG1.1  

18 Cdk6 Cdkn6; Crk2 CDK6_MOUSE 326 aa Q64261.2  

19 Utf1 -/- UTF1_MOUSE 339 aa Q6J1H4.2  

20 Gpr139 Gm495; Gprg1; Pgr3 GP139_MOUSE 345 aa Q80UC8.2  

21 Fkbpl Ng7 FKBPL_MOUSE 347 aa O35450.1  

22 Fpr2 Fpr-rs2 FPR2_MOUSE 351 aa O88536.1  

23 Fpr3 Fpr-rs1; Lxa4r FPRS1_MOUSE 351 aa O08790.2  

24 Tefm -/- TEFM_MOUSE 364 aa Q5SSK3.1  

25 Tm6sf1 -/- TM6S1_MOUSE 370 aa P58749.2  

26 Sox18 Sox-18 SOX18_MOUSE 377 aa P43680.3  

27 Stoml1 -/- STML1_MOUSE 399 aa Q8CI66.1  

28 Ager Rage RAGE_MOUSE 403 aa Q62151.1  

29 Slc22a18 Impt1; Itm; Orctl2; Tssc5 S22AI_MOUSE 406 aa Q78KK3.2  

30 Tmlhe Tmlh TMLH_MOUSE 421 aa Q91ZE0.2  

31 Pm20d2 Acy1l2; Gm424 P20D2_MOUSE 431 aa A3KG59.1  

32 Gcdh -/- GCDH_MOUSE 438 aa Q60759.2  

33 Midn -/- MIDN_MOUSE 465 aa Q3TPJ7.1  

34 Pnliprp2 Plrp2 LIPR2_MOUSE 468 aa P17892.1  

35 Gtf2a1l Alf; Gtf2a1lf TF2AY_MOUSE 468 aa Q8R4I4.2  

36 Amigo1 Ali2; Amigo; Kiaa1163 AMGO1_MOUSE 492 aa Q80ZD8.1  

37 Phf10 Baf45a PHF10_MOUSE 497 aa Q9D8M7.4  

http://www.ncbi.nlm.nih.gov/protein/81905199?report=genbank&log$=prottop&blast_rank=1&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/81861497?report=genbank&log$=prottop&blast_rank=2&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/257051023?report=genbank&log$=prottop&blast_rank=3&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/110810418?report=genbank&log$=prottop&blast_rank=4&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/68067873?report=genbank&log$=prottop&blast_rank=48&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/81885028?report=genbank&log$=prottop&blast_rank=5&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/81894536?report=genbank&log$=prottop&blast_rank=6&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/30913072?report=genbank&log$=prottop&blast_rank=52&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/476007230?report=genbank&log$=prottop&blast_rank=188&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/152031726?report=genbank&log$=prottop&blast_rank=195&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/487523227?report=genbank&log$=prottop&blast_rank=196&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/294862457?report=genbank&log$=prottop&blast_rank=7&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/300681022?report=genbank&log$=prottop&blast_rank=102&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/341940471?report=genbank&log$=prottop&blast_rank=8&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/300669692?report=genbank&log$=prottop&blast_rank=105&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/677286726?report=genbank&log$=prottop&blast_rank=106&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/292630942?report=genbank&log$=prottop&blast_rank=344&RID=3PK5NNC8015
http://www.ncbi.nlm.nih.gov/protein/81907784?report=genbank&log$=prottop&blast_rank=1&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/81174966?report=genbank&log$=prottop&blast_rank=2&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/20532286?report=genbank&log$=prottop&blast_rank=3&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/52001087?report=genbank&log$=prottop&blast_rank=4&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/166991234?report=genbank&log$=prottop&blast_rank=5&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/143341965?report=genbank&log$=prottop&blast_rank=6&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/81868172?report=genbank&log$=prottop&blast_rank=7&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/81908034?report=genbank&log$=prottop&blast_rank=8&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/131434?report=genbank&log$=prottop&blast_rank=9&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/62901086?report=genbank&log$=prottop&blast_rank=10&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/317373355?report=genbank&log$=prottop&blast_rank=11&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/46577120?report=genbank&log$=prottop&blast_rank=12&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/81916977?report=genbank&log$=prottop&blast_rank=13&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/50401209?report=genbank&log$=prottop&blast_rank=14&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/81913601?report=genbank&log$=prottop&blast_rank=15&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/341942168?report=genbank&log$=prottop&blast_rank=16&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/123785428?report=genbank&log$=prottop&blast_rank=17&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/30316380?report=genbank&log$=prottop&blast_rank=18&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/125991222?report=genbank&log$=prottop&blast_rank=19&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/85540978?report=genbank&log$=prottop&blast_rank=20&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/81908350?report=genbank&log$=prottop&blast_rank=21&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/81861497?report=genbank&log$=prottop&blast_rank=22&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/257051023?report=genbank&log$=prottop&blast_rank=23&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/81910106?report=genbank&log$=prottop&blast_rank=24&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/342187052?report=genbank&log$=prottop&blast_rank=25&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/23831447?report=genbank&log$=prottop&blast_rank=26&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/60415938?report=genbank&log$=prottop&blast_rank=27&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/2497318?report=genbank&log$=prottop&blast_rank=28&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/83288334?report=genbank&log$=prottop&blast_rank=29&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/21542284?report=genbank&log$=prottop&blast_rank=30&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/146286023?report=genbank&log$=prottop&blast_rank=31&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/341940732?report=genbank&log$=prottop&blast_rank=32&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/123790216?report=genbank&log$=prottop&blast_rank=33&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/126319?report=genbank&log$=prottop&blast_rank=34&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/34098596?report=genbank&log$=prottop&blast_rank=35&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/68052335?report=genbank&log$=prottop&blast_rank=36&RID=3PJC6NBX015
http://www.ncbi.nlm.nih.gov/protein/341942257?report=genbank&log$=prottop&blast_rank=37&RID=3PJC6NBX015
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38 Celf2 Cugbp2; Napor CELF2_MOUSE 508 aa Q9Z0H4.1  

39 Apex2 Ape2 APEX2_MOUSE 516 aa Q68G58.1  

40 Snx1 -/- SNX1_MOUSE 522 aa Q9WV80.1  

41 Ppp3cb Calnb PP2BB_MOUSE 525 aa P48453.2  

42 Fgfrl1 Fgfr5 FGRL1_MOUSE 529 aa Q91V87.1  

43 Ccdc176 Bbof1 BBOF1_MOUSE 533 aa Q3V079.2  

44 Nrbp1 Madm; Nrbp NRBP_MOUSE 535 aa Q99J45.1  

45 Slc2a10 Glut10 GTR10_MOUSE 536 aa Q8VHD6.1  

46 Stam Stam1 STAM1_MOUSE 548 aa P70297.3  

47 Tbx4 -/- TBX4_MOUSE 552 aa P70325.3  

48 Msto1 -/- MSTO1_MOUSE 556 aa Q2YDW2.1  

49 Flvcr1 Mfsd7b FLVC1_MOUSE 560 aa B2RXV4.1  

50 Cdc6 -/- CDC6_MOUSE 562 aa O89033.2  

51 Deaf1 -/- DEAF1_MOUSE 566 aa Q9Z1T5.1  

52 Znf704 Gig1; Zfp704 ZN704_MOUSE 566 aa Q9ERQ3.1  

53 Cecr6 -/- CECR6_MOUSE 572 aa Q99MX7.1  

54 Taf5l Paf65b TAF5L_MOUSE 589 aa Q91WQ5.1  

55 Rangap1 Fug1 RAGP1_MOUSE 589 aa P46061.2  

56 Klhl10 -/- KLH10_MOUSE 608 aa Q9D5V2.1  

57 Hap1 -/- HAP1_MOUSE 628 aa O35668.1  

58 Vps9d1 -/- VP9D1_MOUSE 649 aa Q8C190.1  

59 Znf746 Zfp746 ZN746_MOUSE 652 aa Q3U133.3  

60 Mepce Bcdin3; Bipl1; D5Wsu46e MEPCE_MOUSE 666 aa Q8K3A9.2  

61 Eri2 Exod1; Kiaa1504 ERI2_MOUSE 688 aa Q5BKS4.1  

62 Polh Rad30a; Xpv POLH_MOUSE 694 aa Q9JJN0.1  

63 Ddx4 Vasa DDX4_MOUSE 702 aa Q61496.2  

64 Nln -/- NEUL_MOUSE 704 aa Q91YP2.1  

65 Gga3 Kiaa0154 GGA3_MOUSE 718 aa Q8BMI3.2  

66 Mtif2 -/- IF2M_MOUSE 727 aa Q91YJ5.2  

67 Prox1 -/- PROX1_MOUSE 737 aa P48437.2  

68 Cnot10 -/- CNO10_MOUSE 744 aa Q8BH15.1  

69 Hectd2 -/- HECD2_MOUSE 774 aa Q8CDU6.2  

70 Zw10 -/- ZW10_MOUSE 779 aa O54692.3  

71 Sp4 -/- SP4_MOUSE 782 aa Q62445.2  

72 Vps35 Mem3 VPS35_MOUSE 796 aa Q9EQH3.1  

73 Rapgef5 Gfr; Kiaa0277; Mrgef RPGF5_MOUSE 814 aa Q8C0Q9.2  

74 Bicd1 -/- BICD1_MOUSE 835 aa Q8BR07.2  

75 Kdm1a Aof2; Kiaa0601; Lsd1 KDM1A_MOUSE 853 aa Q6ZQ88.2  

76 Ppp1r10 Cat53; Pnuts PP1RA_MOUSE 888 aa Q80W00.1  

77 Actn1 -/- ACTN1_MOUSE 892 aa Q7TPR4.1  

78 Ctnna3 Catna3 CTNA3_MOUSE 895 aa Q65CL1.2  

79 Actn3 -/- ACTN3_MOUSE 900 aa O88990.1  

80 unknown -/- CA112_MOUSE 903 aa Q3TQQ9.2  

81 Mcm2 Bm28; Cdcl1; Kiaa0030; Mcmd2 MCM2_MOUSE 904 aa P97310.3  

82 Magee1 -/- MAGE1_MOUSE 918 aa Q6PCZ4.1  

83 Paxbp1 Gcfc; Gcfc1 PAXB1_MOUSE 919 aa P58501.3  

84 Tex11 -/- TEX11_MOUSE 947 aa Q14AT2.1  

85 Piwil2 Mili PIWL2_MOUSE 971 aa Q8CDG1.2  

86 Nfkb1 -/- NFKB1_MOUSE 971 aa P25799.2  

87 Inpp5b -/- I5P2_MOUSE 993 aa Q8K337.1  

88 Dennd1a -/- DEN1A_MOUSE 1016 aa Q8K382.2  

89 Paxip1 Ptip PAXI1_MOUSE 1056 aa Q6NZQ4.1  

90 Hip1r -/- HIP1R_MOUSE 1068 aa Q9JKY5.2  

91 Rimbp2 Kiaa0318; Rbp2 RIMB2_MOUSE 1072 aa Q80U40.3  

92 Tmem132d Molt T132D_MOUSE 1097 aa Q76HP3.1  

93 Tmem132c -/- T132C_MOUSE 1099 aa Q8CEF9.3  

94 Pkp4 Armrp PKP4_MOUSE 1190 aa Q68FH0.1  

95 Kcnh7 Erg3 KCNH7_MOUSE 1195 aa Q9ER47.2  

96 Egfr -/- EGFR_MOUSE 1210 aa Q01279.1  

97 Tdrd12 Ecat8; Repro23 TDR12_MOUSE 1215 aa Q9CWU0.2  

98 Evc2 Lbn LBN_MOUSE 1220 aa Q8K1G2.1  

99 Gigyf2 Kiaa0642; Perq2; Tnrc15 PERQ2_MOUSE 1291 aa Q6Y7W8.2  

100 Disp2 Kiaa1742 DISP2_MOUSE 1345 aa Q8CIP5.1  
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101 Adcy9 -/- ADCY9_MOUSE 1353 aa P51830.1  

102 Cntnap1 Nrxn4 CNTP1_MOUSE 1385 aa O54991.2  

103 Atp10d -/- AT10D_MOUSE 1416 aa Q8K2X1.2  

104 Plb1 Plb PLB1_MOUSE 1478 aa Q3TTY0.2  

105 Vprbp Dcaf1; Kiaa0800 VPRBP_MOUSE 1506 aa Q80TR8.4  

106 Baz1a Cbp146 BAZ1A_MOUSE 1555 aa O88379.3  

107 Adcy10 Sac; Sacy ADCYA_MOUSE 1614 aa Q8C0T9.2  

108 C3 -/- CO3_MOUSE 1663 aa P01027.3  

109 Helz Kiaa0054 HELZ_MOUSE 1964 aa Q6DFV5.2  

110 Arfgef3 Big3; D10Bwg1379e; Kiaa1244 BIG3_MOUSE 2170 aa Q3UGY8.1  

111 Cacna1d Cach3; Cacn4; Cacnl1a2; Cchl1a2 CAC1D_MOUSE 2179 aa Q99246.3  

112 Cacna1e Cach6; Cacnl1a6; Cchra1 CAC1E_MOUSE 2272 aa Q61290.1  

113 Crebbp Cbp CBP_MOUSE 2441 aa P45481.3  

114 Atrx Hp1bp2; Xnp ATRX_MOUSE 2476 aa Q61687.3  

115 Helz2 -/- HELZ2_MOUSE 2947 aa E9QAM5.1  

116 Lama1 Lama; Lama-1 LAMA1_MOUSE 3084 aa P19137.1  

117 Aspm Calmbp1; Sha1 ASPM_MOUSE 3122 aa Q8CJ27.2  

118 Alms1 Kiaa0328 ALMS1_MOUSE 3251 aa Q8K4E0.2  

119 Vps13b Coh1; Kiaa0532 VP13B_MOUSE 4013 aa Q80TY5.2 

 

Table 13. Haplotype analysis of the Fpr3 gene in different mouse strains 

Strains Fpr3 Variant Subspecific Origin of Fpr3 Origin Inbred Strain Category 

Laboratory Mouse Strains 

C57Bl/6NCrl Fpr3wt M. m. domesticus England Castle's mice 

C57Bl/6NJ Fpr3wt M. m. domesticus England Castle's mice 

C57Bl/10J Fpr3wt M. m. domesticus England Castle's mice 

C57BR/cdJ Fpr3wt M. m. musculus England Castle's mice 

C57L/J Fpr3wt M. m. musculus England Castle's mice 

C58/J Fpr3wt M. m. musculus England Castle's mice 

I/LnJ Fpr3wt M. m. domesticus England Castle's mice 

NZB/B1NJ Fpr3wt M. m. domesticus England Castle's mice 

NZB/Ola Fpr3wt n. e. England Castle's mice 

NZW/LacJ Fpr3wt M. m. domesticus England Castle's mice 

KK/HiJ* Fpr3wt M. m. domesticus Japan Colonies from China and Japan 

NOD/ShiLtJ Fpr3wt M. m. domesticus Switzerland Swiss mice 

ST/bJ Fpr3wt M. m. domesticus unknown Other inbred strains 

129X1/Sv Fpr3424-435 M. m. domesticus England Castle's mice 

129P2/OlaHsd Fpr3424-435 M. m. domesticus England Castle's mice 

129S1/SvImJ Fpr3424-435 M. m. domesticus England Castle's mice 

129S5SvEvBrd Fpr3424-435 M. m. domesticus England Castle's mice 

AKR/J Fpr3424-435 M. m. domesticus England Castle's mice 

A/J Fpr3424-435 M. m. domesticus England Castle's mice 

BALB/cJ Fpr3424-435 M. m. domesticus England Castle's mice 

C3H/HeH Fpr3424-435 M. m. domesticus England Castle's mice 

C3H/HeJ Fpr3424-435 M. m. domesticus England Castle's mice 

CBA/J Fpr3424-435 M. m. domesticus England Castle's mice 

DBA/1J Fpr3424-435 M. m. domesticus England Castle's mice 

DBA/2J Fpr3424-435 M. m. domesticus England Castle's mice 

LP/J Fpr3424-435 M. m. domesticus England Castle's mice 

NZO/HILtJ Fpr3424-435 M. m. domesticus England Castle's mice 

RF/J Fpr3424-435 M. m. domesticus England Castle's mice 

SEA/GnJ Fpr3424-435 M. m. domesticus England Castle's mice 

FVB/NCrl Fpr3424-435 n. e. Switzerland Swiss mice 

FVB/NJ Fpr3424-435 M. m. domesticus Switzerland Swiss mice 

BUB/BnJ Fpr3424-435 M. m. domesticus unknown Other inbred strains 

Wild-Derived Mouse Strains 

SPRET/EiJ Fpr3wt M. m. spretus Spain Strains derived from wild mice 

CZE/DT Fpr3wt M. m. musculus Czech Republic Strains derived from wild mice 

PWK/PhJ Fpr3wt M. m. musculus Czech Republic Strains derived from wild mice 

GER/DT Fpr3wt M. m. domesticus Germany Strains derived from wild mice 

FRA/DT Fpr3wt M. m. domesticus France Strains derived from wild mice 

CAST/EiJ Fpr3wt M. m. castaneus Thailand Strains derived from wild mice 

KAZ/DT Fpr3wt M. m. musculus Kazakhstan Strains derived from wild mice 

ZALENDE/EiJ Fpr3424-435 M. m. domesticus Switzerland Strains derived from wild mice 

LEWES/EiJ Fpr3424-435 M. m. domesticus United States of America Strains derived from wild mice 

WSB/EiJ Fpr3424-435 M. m. domesticus United States of America Strains derived from wild mice 

Subspecific origins were examined on chromosome 17 in the nucleotide range from 17,970,000 to 17,972,000. 

n. e. = not examined. 
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