Aus dem Bereich Klinik für Innere Medizin III
der Medizinischen Fakultät
der Universität des Saarlandes, Homburg/Saar

Auswirkungen der interventionellen renalen sympathischen
Denervation auf die renale Natriumausscheidung bei Patienten mit
therapieresistenter arterieller Hypertonie

Dissertation zur Erlangung des Grades eines Doktors der Medizin
der Medizinischen Fakultät
der UNIVERSITÄT DES SAARLANDES
2016

vorgelegt von: Sonja Muhler
geb. am: 19.01.1990 in Heilbronn
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>Angiotensin-konvertierendes Enzym</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Varianzanalyse</td>
</tr>
<tr>
<td>ARB</td>
<td>Angiotensin-Rezeptor-Blocker</td>
</tr>
<tr>
<td>ARQ</td>
<td>Aldosteron-Renin-Quotient</td>
</tr>
<tr>
<td>ASS</td>
<td>Acetylsalicylsäure</td>
</tr>
<tr>
<td>BMI</td>
<td>Body-Mass-Index</td>
</tr>
<tr>
<td>bpm</td>
<td>beats per minute</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>d</td>
<td>Tag</td>
</tr>
<tr>
<td>DBP</td>
<td>Diastolischer Blutdruck</td>
</tr>
<tr>
<td>FCM</td>
<td>Food Consumption Method</td>
</tr>
<tr>
<td>FE_{Na}</td>
<td>Fraktionelle Natriumausscheidung</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomeruläre Filtrationsrate</td>
</tr>
<tr>
<td>h</td>
<td>Stunden</td>
</tr>
<tr>
<td>KDOQI</td>
<td>National Kidney Foundation Disease Outcomes Quality Initiative</td>
</tr>
<tr>
<td>m^2</td>
<td>Quadratmeter</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>mmHg</td>
<td>Millimeter Hydrargyrum</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimol</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>MRA</td>
<td>Mineraldrezeptorantagonist</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>OSAS</td>
<td>Obstruktives Schlafapnoe-Syndrom</td>
</tr>
<tr>
<td>pg</td>
<td>Picogramm</td>
</tr>
<tr>
<td>r</td>
<td>Korrelationskoeffizient</td>
</tr>
<tr>
<td>RBF</td>
<td>Renaler Blutfluss</td>
</tr>
<tr>
<td>RDN</td>
<td>Renale Denervation</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolischer Blutdruck</td>
</tr>
<tr>
<td>SEM</td>
<td>Standardfehler des Mittelwerts</td>
</tr>
<tr>
<td>SUM</td>
<td>Spot-Urinmethode</td>
</tr>
<tr>
<td>U<sub>Cr</sub></td>
<td>Kreatininausscheidung im Urin</td>
</tr>
<tr>
<td>vs.</td>
<td>Versus; im Gegensatz zu</td>
</tr>
<tr>
<td>24HU<sub>Na</sub></td>
<td>Natriumausscheidung im 24h-Urin</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>Δ</td>
<td>Delta</td>
</tr>
<tr>
<td>%</td>
<td>Prozent</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

1. Zusammenfassung ... - 5 -
 1.1 Deutsche Zusammenfassung .. - 5 -
 1.2 Abstract .. - 6 -

2. Einleitung ... - 7 -
 2.1 Arterielle Hypertonie .. - 7 -
 2.1.1 Definition und Prävalenz .. - 7 -
 2.1.2 Bluthochdruck als kardiovaskulärer Risikofaktor .. - 7 -
 2.1.3 Therapieresistente arterielle Hypertonie .. - 8 -
 Definition und Prävalenz ... - 8 -
 Ursachen der therapiereisenten arteriellen Hypertonie - 9 -
 Diagnose ... - 10 -
 Ausschluss einer sekundären Hypertonie .. - 10 -
 Behandlung der therapiereisenten arteriellen Hypertonie - 13 -
 2.2. Natrium als kardiovaskulärer Risikofaktor ... - 13 -
 2.3 Sympathisches Nervensystem .. - 15 -
 2.3.1 Anatomie ... - 15 -
 2.3.2 Bedeutung des sympathischen Nervensystems für die Pathophysiologie des
 Blutdrucks .. - 16 -
 2.4 Renale Denervation ... - 17 -
 2.4.1 Einleitung .. - 17 -
 2.4.2 Interventionelle RDN ... - 17 -
 2.4.3 Klinische Studien ... - 17 -
 Symplicity HTN-1 Studie ... - 17 -
 Symplicity HTN-2 Studie ... - 18 -
 Symplicity HTN-3 Studie ... - 19 -
 DENERHTN-Studie .. - 20 -
 Prague-15 Studie ... - 20 -
 The Global Symplicity Register ... - 21 -
 Leipzig RSD-Studie .. - 21 -
 2.4.4 RDN und Salz .. - 21 -
 2.5 Zielsetzung der Arbeit .. - 22 -
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Methodik</td>
<td>23</td>
</tr>
<tr>
<td>3.1 Patienten</td>
<td>23</td>
</tr>
<tr>
<td>3.1.1 Untersuchte Patienten</td>
<td>23</td>
</tr>
<tr>
<td>3.1.2 Allgemeines</td>
<td>23</td>
</tr>
<tr>
<td>3.1.3 Blutdruckmessung</td>
<td>23</td>
</tr>
<tr>
<td>3.1.4 Einschlusskriterien</td>
<td>23</td>
</tr>
<tr>
<td>3.1.5 Ausschlusskriterien</td>
<td>24</td>
</tr>
<tr>
<td>3.2 Methodik der interventionellen RDN</td>
<td>24</td>
</tr>
<tr>
<td>3.2.1 Kathetersysteme</td>
<td>24</td>
</tr>
<tr>
<td>3.2.2 Vorgehensweise der RDN</td>
<td>24</td>
</tr>
<tr>
<td>3.3 Bestimmung der Renin- und der Aldosteronkonzentrationen</td>
<td>26</td>
</tr>
<tr>
<td>3.4 Abschätzung der 24h-Natriumausscheidung</td>
<td>26</td>
</tr>
<tr>
<td>3.4.1 Abschätzung der 24h-Natriumausscheidung über den Urin mit der Kawasaki-Formel</td>
<td>26</td>
</tr>
<tr>
<td>Erklärung und Herleitung der Kawasaki-Formel</td>
<td>26</td>
</tr>
<tr>
<td>Zusammenfassung und Übertragung auf die aktuelle Arbeit</td>
<td>30</td>
</tr>
<tr>
<td>3.4.2 Anwendung der Kawasaki-Formel bei antihypertensiven Patienten</td>
<td>30</td>
</tr>
<tr>
<td>3.4.3 Untersuchung der Nierenfunktion</td>
<td>31</td>
</tr>
<tr>
<td>3.5 Statistische Analysen</td>
<td>31</td>
</tr>
<tr>
<td>4. Ergebnisse</td>
<td>33</td>
</tr>
<tr>
<td>4.1 Natriumausscheidung</td>
<td>34</td>
</tr>
<tr>
<td>4.2 Einfluss antihypertensiver Medikamente</td>
<td>37</td>
</tr>
<tr>
<td>4.3 Renin und Aldosteron</td>
<td>39</td>
</tr>
<tr>
<td>4.4 Natriumausscheidung und Blutdruckreduktion</td>
<td>40</td>
</tr>
<tr>
<td>4.5 Sicherheit des Verfahrens</td>
<td>42</td>
</tr>
<tr>
<td>5. Diskussion</td>
<td>43</td>
</tr>
<tr>
<td>6. Schlussfolgerung</td>
<td>54</td>
</tr>
<tr>
<td>7. Literaturverzeichnis</td>
<td>55</td>
</tr>
<tr>
<td>8. Publikationen</td>
<td>61</td>
</tr>
<tr>
<td>9. Dank</td>
<td>62</td>
</tr>
</tbody>
</table>
1. Zusammenfassung

1.1 Deutsche Zusammenfassung

In der vorliegenden Studie wurde die renale Natriumausscheidung bei Patienten mit therapieresistenter arterieller Hypertonie sechs Monate nach katheter-basierter interventioneller renaler Denervation untersucht.

Methoden: Bei 137 Patienten mit therapieresistenter Hypertonie, welche sich einer renalen Denervation unterzogen haben, wurde die Natriumausscheidung im 24-Stunden-Urin vor der renalen Sympathikusdenervation sowie sechs Monate danach mithilfe der Kawasaki-Formel abgeschätzt. Die innerhalb von 24 Stunden im Urin ausgeschiedene Natriummenge wurde für die mittels Cystatin C abgeschätzte glomeruläre Filtrationsrate adjustiert und die fraktionelle Natriumausscheidung berechnet.

Ergebnisse: Der durchschnittliche systolische Blutdruck vor der renalen Denervation betrug 171 ± 2 mmHg trotz der Einnahme von 5,2 ± 0,1 blutdrucksenkenden Medikamenten. Sechs Monate nach dem Verfahren reduzierten sich der systolische Blutdruck um 18 ± 2 mmHg (p < 0,0001) und der diastolische Blutdruck um 10 ± 1 mmHg (p < 0,001). Bei 90 Patienten (65,7%) wurden Blutdruckreduktionen von ≥10 mmHg (Responder) erzielt. Nach sechs Monaten stieg die Natriumausscheidung im 24-Stunden-Urin verglichen mit den Werten vor der renalen Denervation um 13% an (236 ± 9 vs. 268 ± 9 mmol/d, p < 0,003). Die erhöhte Natriurese war am ausgeprägtesten bei Patienten, die hinsichtlich der erreichten Blutdrucksenkung weniger auf die renale Denervation ansprachen. Der Anstieg blieb auch nach der Adjustierung für die Cystatin C-basierte glomeruläre Filtrationsrate (3,3 ± 0,33 vs. 4,2 ± 0,32 mmol/d/ml/min, p < 0,0001) signifikant. Diese Ergebnisse gingen mit einer signifikanten Erhöhung der fraktionellen Natriumausscheidung einher (1,19 ± 0,11 vs. 1,64 ± 0,14%, p < 0,0001).

1.2 Abstract

The present study aimed to assess the effects of catheter-based renal denervation on urinary sodium excretion in patients with therapy resistant hypertension six months following the procedure.

Background: Activation of the renal sympathetic nervous system contributes to the maintenance and progression of arterial hypertension. The underlying mechanisms include an increase in sodium and water retention. Renal sympathetic denervation can lower blood pressure by reducing sympathetic activity in patients with resistant hypertension. The effect of renal denervation on sodium balance is unknown.

Methods: 24-hour urinary sodium excretion was estimated at baseline and after 6 months using the Kawasaki formula in 137 patients with resistant hypertension undergoing renal denervation. Sodium excretion was adjusted for cystatin C glomerular filtration rate and fractional sodium excretion was assessed.

Results: Mean office systolic blood pressure at baseline was 171 ± 2 mmHg despite an intake of 5.2 ± 0.1 antihypertensive drugs. Six months after renal denervation, systolic blood pressure was reduced by 18 ± 2 mmHg (p < 0.0001) and diastolic blood pressure by 10 ± 1 mmHg (p < 0.001). 90 patients (65.7%) had systolic blood pressure reductions ≥10 mmHg (responders). After six months, 24-hour urinary sodium excretion increased by 13% compared to baseline (236 ± 9 vs. 268 ± 9 mmol/d, p < 0.003). The effect was most pronounced in patients with lower blood pressure response. The observed increase remained significant after adjustment for cystatin C glomerular filtration rate (3.3 ± 0.33 vs. 4.2 ± 0.32 mmol/d/ml/min, p < 0.0001). These findings were paralleled by a significant increase in fractional sodium excretion (1.19 ± 0.11 vs. 1.64 ± 0.14%, p < 0.0001).

Summary: Renal Denervation can lower blood pressure in patients with resistant hypertension and increases the estimated 24-hour urinary sodium and the fractional sodium excretion. This effect was independent of the kidney function and the antihypertensive drugs prescribed.
2. Einleitung

2.1 Arterielle Hypertonie

2.1.1 Definition und Prävalenz

Eine arterielle Hypertonie ist definiert als eine chronische Erhöhung des systolischen Blutdruckwertes (SBP) auf ≥140 mmHg und/ oder des diastolischen Blutdruckwertes (DBP) auf ≥90 mmHg. Definitionsgemäß stehen systolische Blutdruckwerte von 130 bis 139 mmHg und/ oder diastolische Werte von 85 bis 89 mmHg einen hoch normalen Blutdruck dar (59).

2.1.2 Bluthochdruck als kardiovaskulärer Risikofaktor

wobei die zuletzt genannte Kombination das größte kardiovaskuläre Risiko birgt (32). Treten diese Risikofaktoren zusätzlich zu einer arteriellen Hypertonie auf, so führt dies zu einer weiteren Erhöhung der kardiovaskulären Morbidität und Mortalität (32).

Der Bluthochdruck ist der weltweit am häufigsten zum Tode führende kardiovaskuläre Risikofaktor (21). Zwischen der Höhe des systolischen und diastolischen Blutdrucks und der Mortalität besteht eine enge Beziehung (46). Bei 40- bis 69-Jährigen bewirkt jede im Blutdruckbereich von 115/75 zu 185/115 mmHg stattfindende Steigerung des SBP um 20 mmHg oder des DBP um 10 mmHg eine Verdopplung des kardiovaskulären Risikos (46). Trotz der hohen Prävalenz und des bekannten Zusammenhangs mit der kardiovaskulären Morbidität und Mortalität wird die arterielle Hypertonie nur unzureichend behandelt. In Deutschland sind lediglich etwa 80% der Hypertoniker über ihre Erkrankung informiert (63). Der Anteil der Hypertoniker, denen ihre Erkrankung bekannt ist, wird dabei zu 88% behandelt. Davon wiederum erreichen 70% die Zielblutdruckwerte von unter 140/90 mmHg (63). Bezogen auf alle Erwachsenen mit einer arteriellen Hypertonie erhalten somit in Deutschland über 70% eine antihypertensive Therapie, von denen wiederum etwas über die Hälfte kontrolliert mit Zielblutdruckwerten von unter 140/90 mmHg behandelt wird (63). Nach einer Studie von Kearney et al. wird der Blutdruck auch international nur ungenügend therapiert (38).

2.1.3 Therapieresistente arterielle Hypertonie

Definition und Prävalenz

Definitionsgemäß versteht man unter therapieresistenter Hypertonie die nicht leitliniengerechte Blutdruckeinstellung (≥140/90 mmHg allgemein, ≥130/80 mmHg bei Patienten mit Diabetes mellitus oder mit chronischer Nierenerkrankung) trotz adäquater Lebensstilmaßnahmen und der adhärenten Einnahme von mehr als drei antihypertensiven Medikamenten verschiedener Substanzklassen in maximaler bzw. maximal tolerierter Dosis (11). Unter den antihypertensiven Medikamenten sollte gemäß den Leitlinien ein Diuretikum enthalten sein (58). Die genaue Prävalenz der therapieresistenten arteriellen Hypertonie ist unzureichend bekannt (11). Es wird angenommen, dass ungefähr 5 bis 15% aller Patienten mit Hypertonus an einer therapieresistenten Hypertonie leiden (11). Selbst unter konsequenter antihypertensiver Behandlung wird in Deutschland nur bei etwa 5 bis 17% der Patienten eine langfristige Senkung des Blutdrucks erreicht (49, 87). Das erhöhte Risiko, an kardiovaskulären und renalen Ereignissen zu erkranken, bleibt somit bestehen (11, 13). Die therapieresistente Hypertonie darf nicht mit der unkontrollierten Hypertonie verwechselt werden. Der Begriff der unkontrollierten
Einleitung

Hypertonie umfasst neben der Therapieresistenz auch die so genannte Pseudoresistenz. Diese beruht sehr häufig darauf, dass die Patienten die ihnen verordneten Medikamente nicht einnehmen. Dieses Phänomen der mangelnden Adhärenz ist weltweit sehr verbreitet und häufig für schlechte Behandlungsergebnisse verantwortlich (58). Auch eine so genannte Weißkittelhypertonie, die durch situativ erhöhte Blutdruckwerte in der Praxismessung (>140/90 mmHg) bei normalen Alltagswerten in der Selbstmessung bzw. Langzeitmessung (≤130/80 mmHg) gekennzeichnet ist, kann der Grund für eine Pseudoresistenz sein (53). Eine Pseudoresistenz kann ferner auf einer inadäquaten antihypertensiven Medikation, einer ungeeigneten Medikamentenkombination oder einer fehlerhaften Blutdruckmessung beruhen (53, 58). Auch die Mönckeberg-Mediasklerose kann die Ursache einer Pseudohypertonie sein. In diesen Fällen werden bei der nicht invasiven Messung aufgrund einer arteriellen Versteifung trotz des Vorliegens eines normalen Blutdrucks erhöhte Blutdruckwerte angezeigt (53).

Ursachen der therapieresistenten arteriellen Hypertonie

Weiterhin finden sich überproportional häufig sekundäre Formen des Bluthochdrucks bei Patienten mit therapieresistenten Hypertonie (56). Zu diesen zählen die renale Hypertonie, die endokrine Hypertonie und das Obstruktive Schlafapnoe-Syndrom (OSAS) (11). Bei der renalen

Des Weiteren ist die Bedeutung des Sympathikus als wichtiger Faktor bei der Entstehung und der Aufrechterhaltung einer therapieresistenten Hypertonie besonders hervorzuheben (76). Einige der chronischen Erkrankungen, die zu einer Resistenz beitragen, darunter eine pathologische Insulinresistenz und das Obstruktive Schlafapnoe-Syndrom, gehen mit einer pathologisch erhöhten Aktivität des Sympathikus einher (80, 89). Dabei ist zu beobachten, dass diese Überaktivität zu einem fehlenden Ansprechen der konventionellen medikamentösen Therapie der Hypertonie beiträgt (80).

Diagnose

Ausschluss einer sekundären Hypertonie

Der primäre Hyperaldosteronismus ist die häufigste Form der sekundären Hypertonie. Hierfür sind vor allem ein frühes Auftreten der arteriellen Hypertonie, zerebrovaskuläre Ereignisse vor dem 40. Lebensjahr und das Vorliegen von Muskelschwäche charakteristisch (58). Der

Das Obstruktive Schlafapnoe-Syndrom ist eine weitere häufige Form der sekundären Hypertonie, welches auch in der Gesamtbevölkerung und dabei vor allem bei Männern häufig auftritt (48, 64). Zudem wurde gezeigt, dass auch bei normotensiven Probanden das Vorliegen eines OSAS eine zukünftige Entwicklung einer arteriellen Hypertonie begünstigen kann (68).

bestätigt (58). Außerdem wird der CRH-Test zur Bestätigung eines Cushing-Syndroms durchgeführt (58).

Behandlung der therapiere sistenten arteriellen Hypertonie

Führen eine Änderung der Lebensstilmaßnahmen und eine pharmakologische Therapie nicht zu einer Blutdruckreduktion und ist ein sekundärer Hypertonus definitiv ausgeschlossen, kann eine renale Denervation (RDN) indiziert sein. Die selektive RDN ist ein nicht-medi kamentöser, neuer Therapieansatz zur Behandlung der therapiere sistenten Hypertonie, der unterstützend zu den zuvor genannten Maßnahmen durchgeführt werden kann. Auf dieses Behandlungsverfahren wird im weiteren Verlauf detailliert eingegangen (Abschnitt 2.4).

2.2. Natrium als kardiovaskulärer Risikofaktor

Natrium spielt im Zusammenhang mit der arteriellen Hypertonie eine wichtige pathophysiologische Rolle, da es den Blutdruck in unterschiedlicher Weise beeinflussen kann. Unter anderem erhöht Natrium das Blutvolumen und setzt die Wirkung vasodilatat orischer Substanzen herab. Bisher sind die Abläufe und Mechanismen, mit denen Natrium auf die
Einleitung

Beobachtungsstudien und klinische Studien deuten darauf hin, dass eine erhöhte Salzaufnahme mit einem erhöhten Blutdruck assoziiert ist. Zum Beispiel zeigte die multinationalen INTERSALT Cooperative Research-Studie, die sowohl Normotoniker als auch Hypertoniker untersuchte, dass bei Hypertonikern die Korrelation zwischen Salzaufnahme und Blutdruck stärker ausgeprägt war als bei normotensiven Menschen (75).

Zwischen der Salzaufnahme im Bereich von 3 bis 12 Gramm pro Tag (g/d) und dem Blutdruck besteht eine stetige Dosis-Wirkungs-Beziehung (25). Eine Reduktion des Salzkonsums um 3 g/d bewirkt eine Reduktion des Blutdrucks von 3,6 bis 5,6 mmHg systolisch und 1,9 bis 3,2 mmHg diastolisch (25). Beim Vorliegen einer therapieresistenten arteriellen Hypertonie sind die erreichten Blutdruckreduktionen noch deutlicher (71). Eine Salzreduktion um 4,6 g/d bewirkt bei Therapieresistenz eine Blutdrucksenkung um 22,7 mmHg systolisch und um 9,1 mmHg diastolisch (71). Allerdings wirkt sich die Verringerung des Salzkonsums je nach Bevölkerungsgruppe unterschiedlich aus. Bei älteren Personen, Afroamerikanern und Übergewichtigen ist der Blutdruck durchschnittlich erhöht und zeigt eine gesteigerte Sensitivität auf Salz (26). Die genannten Personenkollektive reagieren, wie beschrieben, sensibler auf eine verringerte Salzaufnahme als andere Bevölkerungsgruppen und können somit von einer Salzreduktion erheblich profitieren (23).

Durch eine Reduktion des Salzkonsums kann der Beginn einer antihypertensiven Therapie hinausgeschoben oder sogar verhindert werden. Bei hypertensiven Patienten mit medikamentöser Therapie kann sie zur Blutdruckreduktion beitragen. Dadurch ist sie ein einfacher und kostengünstiger Faktor, mit dem die kardiovaskuläre Mortalität und Morbidität gesenkt werden kann (23).

Natrium wirkt nicht nur auf den Blutdruck, sondern schädigt darüber hinaus auch direkt das kardiovaskuläre System. Es steigert das Schlaganfallrisiko, die linksventrikuläre Hypertrophie und die arterielle Gefäßsteifigkeit. Die Beziehung zwischen zerebrovaskulären Erkrankungen und der Natriumausscheidung im Urin wurde in einer Analyse von Perry et al. untersucht. Dabei zeigte sich, dass die Beziehung zwischen der 24h-Natriumausscheidung im Urin und der Schlaganfall-Mortalität noch stärker zu sein scheint, als die Beziehung zwischen der Natriumkonzentration im Urin und dem Blutdruck (69). Die linksventrikuläre Hypertrophie
Einleitung

2.3 Sympathisches Nervensystem

Die renale sympathische Nervenaktivität ist mitverantwortlich für die Entwicklung und das Fortschreiten der arteriellen Hypertonie (16). Die arterielle Hypertonie ist neben anderen chronischen Erkrankungen wie der Herzinsuffizienz, der Insulin- und Diuretikaresistenz und der funktionellen Nierenkrankung durch eine Überaktivität des Sympathikus gekennzeichnet (65, 80). In der Pathophysiologie der therapieresistenten Hypertonie spielt die Überaktivität des vegetativen Nervensystems mit einem Ungleichgewicht zwischen sympathischer und parasympathischer Aktivität eine bedeutende Rolle (80).

2.3.1 Anatomie

2.3.2 Bedeutung des sympathischen Nervensystems für die Pathophysiologie des Blutdrucks

Eine renale Sympathikusaktivierung führt im Tierversuch zu einem Anstieg der Natrium- und Wasserretention im Urin über die Stimulation von Natrium-/Kalium-Adenosin-Triphosphatase-vermittelten α_{1B}-Adrenorezeptoren. Zudem steigert die Sympathikusaktivierung über die Stimulation von β_{1}-Adrenorezeptoren die Reninfreisetzung und reduziert den durch α_{1}-Adrenorezeptoren vermittelten renalen Blutfluss (16, 80). Diese Effekte beeinflussen die Blutdruckregulation sowohl kurz- als auch langfristig (80).

Die Aktivierung renaler afferenter Nervenfasern steigert die zentrale Sympathikusaktivität. Hierdurch werden vermehrt efferente sympathische Signale an die Nieren gesandt, was zur Reninfreisetzung und über die Aktivierung der Hormone Angiotensin I, II und Aldosteron zu einer Natriumretention führt. Die sympathischen Nerven an der Niere stellen daher einen interessanten therapeutischen Angriffspunkt für Erkrankungen dar, die mit einer übermäßigen Sympathikusaktivierung assoziiert sind (80). Die Wirkungen efferenter und afferenter sympathischer Nervenfasern sind in Abbildung 1 dargestellt.

Abb. 1: Efferente und afferente renale sympathische Nervenfasern. Herzfrequenz (HR); Renaler Blutfluss (RBF); Glomeruläre Filtrationsrate (GFR).
2.4 Renale Denervation

2.4.1 Einleitung

2.4.2 Interventionelle RDN

2.4.3 Klinische Studien

Symplicity HTN-1 Studie

Einleitung

Symplicity HTN-2 Studie

In der randomisierten und kontrollierten Symplicity HTN-2 Studie wurden von Juni 2009 bis Januar 2010 106 Patienten mit therapierefraktärer Hypertonie untersucht (SBP ≥160 mmHg, ≥150 mmHg bei Patienten mit Diabetes Typ 2) (19). Die Studienteilnehmer wurden 1:1 in eine Behandlungs- und in eine Kontrollgruppe randomisiert. Als primärer Endpunkt dieser Studie wurde die Änderung des SBP in der Praxismessung nach sechs Monaten definiert. Trotz der Einnahme von 5,2 antihypertensiven Medikamenten lag der durchschnittliche Praxis-SBP aller Studienteilnehmer zu Untersuchungsbeginn bei 178/96 mmHg (56). Bei der Behandlungsgruppe reduzierte sich der Blutdruck in der Praxismessung sechs Monate nach dem Eingriff um 32/12 mmHg (p < 0,0001). Bei den Patienten der Kontrollgruppe stellte sich
keine Blutdruckänderung ein (19). Auch in der Analyse des häuslich gemessenen Blutdrucks zeigte sich bei der Behandlungsgruppe eine Reduktion um 20/12 mmHg, wohingegen es bei der Kontrollgruppe zu einer nicht signifikanten, diskreten Zunahme der Blutdruckwerte um 2/0 mmHg kam (19). In dieser Studie traten keine schwerwiegenden Komplikationen im Zusammenhang mit dem Kathetersystem oder der Prozedur auf. Ein Unterschied hinsichtlich des Auftretens unerwünschter Wirkungen des Verfahrens konnte zwischen den beiden Gruppen nicht beobachtet werden (19).

Symplicity HTN-3 Studie

Die im April 2014 veröffentlichte prospektive, randomisierte und Plazebo-kontrollierte Symplicity HTN-3 Studie wurde im Gegensatz zu HTN-1 und HTN-2 doppel-blind durchgeführt (6). 535 Patienten mit schwerer therapieresistenter Hypertonie wurden dabei 2:1 in eine Behandlungs-(RDN-Gruppe) und in eine Kontrollgruppe (Scheingruppe) randomisiert. Bei der Behandlungsgruppe wurde die RDN durchgeführt. Bei der verblindeten Kontrollgruppe hingegen wurden die Patienten ebenfalls analgosediert, angiographiert und verblieben im Schnitt für 56 Minuten mit Kopfhörern und Sonnenbrillen im Herzkatheterlabor. Es erfolgte jedoch keine Verödung der sympathischen Nervenfasern. Zur Prüfung der Effizienz des Verfahrens wurde als primärer Endpunkt die Änderung des SBP nach sechs Monaten festgelegt, als sekundärer Endpunkt war die Änderung im mittleren 24h-SBP in der ambulanten Messung definiert. Ziel war es, eine Differenz von 5 mmHg im SBP zwischen der Behandlungs- und der Kontrollgruppe zu erreichen. Der primäre Endpunkt zur Prüfung der Sicherheit des Verfahrens beinhaltete Todesfälle, terminale Niereninsuffizienz, thromboembolische Ereignisse, renovaskuläre Komplikationen, eine oder mehrere hypertensive Krisen einen Monat nach dem Eingriff oder eine neu aufgetretene Nierenarterienstenose >70% sechs Monate nach der RDN. Bei der Behandlungsgruppe kam es zu einer durchschnittlichen Reduktion des SBP um -14,1 ± 23,9 mmHg, in der Scheingruppe um -11,7 ± 26,0 mmHg (p < 0,001 für beide verglichen mit den Werten vor der Prozedur). Die Differenz zwischen Behandlungs- und Kontrollgruppe betrug dabei -2,4 mmHg (95% Konfidenzintervall, -6,9 zu 2,1; p = 0,26 für eine Überlegenheit mit einer Differenz von 5 mmHg) (6). Im Vergleich zwischen der Behandlungs- mit der Scheingruppe konnte bei dieser verblindeten Studie somit keine signifikante Reduktion des Blutdrucks bei therapiieresistenten Patienten gezeigt werden. Zudem wurden keine signifikanten Unterschiede in der Sicherheit des Verfahrens zwischen den beiden Gruppen detektiert. Somit wurden die primären Endpunkte zur Prüfung der Sicherheit des Verfahrens erreicht (6).
Die genannten Ergebnisse der Symplicity HTN-3 Studie gaben Anlass zu einer Vielzahl weiterer Studien, die teilweise bereits veröffentlicht sind oder sich noch in der Planung befinden. Ziel dabei ist die Effektivität des Verfahrens möglichst detailliert zu untersuchen und mögliche Fehlerquellen ausfindig zu machen und damit in Zukunft unterbinden zu können (51).

DENERHTN-Studie

Die DENERHTN-Studie wurde zu Beginn des Jahres 2015 veröffentlicht. Dabei handelt es sich um eine multizentrische, open-label, randomisierte und kontrollierte Studie, die 101 Patienten mit therapierefraktärer Hypertonie untersuchte (3). Die Patienten wurden in diesem Zusammenhang in zwei Gruppen (1:1) unterteilt. Die erste Gruppe (n=48) erhielt zusätzlich zu einer intensivierten medikamentösen Therapie eine RDN (RDN-Gruppe), die zweite Gruppe (n=53) ausschließlich eine medikamentöse Behandlung (Kontrollgruppe). Nach sechs Monaten zeigte sich, dass die RDN-Gruppe eine signifikant höhere Senkung des ambulanten Tages-, Nacht- und 24h-SBP aufweisen konnte, als die Kontrollgruppe. Die Differenz zwischen den beiden Gruppen betrug dabei -5,9 mmHg (p = 0,0329), womit der primäre Effektivitätsendpunkt erreicht wurde (3). Die Anzahl antihypertensiver Medikamente sowie die Therapieadhärenz zwischen den beiden Gruppen waren nach sechs Monaten vergleichbar (3).

Prague-15 Studie

Die prospektive, randomisierte, open-label, multizentrische Prague-15 Studie wurde im November 2014 veröffentlicht (74). Sie untersuchte die Effektivität einer katheter-basierten RDN bei Patienten mit therapieresistenter Hypertonie im Vergleich zu einer intensivierten Pharmakotherapie, die eine Behandlung mit Spironolacton beinhaltete (74). Die 106 untersuchten Patienten wurden dabei in zwei Gruppen randomisiert. Die erste Gruppe erhielt zusätzlich zu einer medikamentösen Therapie eine RDN (n=52), die zweite ausschließlich eine intensivierte medikamentöse Behandlung (n=54). Der 24h-SBP reduzierte sich in der RDN-Gruppe um 8,6 mmHg (p < 0,001) und in der Kontrollgruppe um 8,1 mmHg (p = 0,001) (74). Der Praxis-SBP reduzierte sich um 12,4 mmHg (p < 0,001) in der RDN-Gruppe und um 14,3 mmHg (p < 0,001) in der Gruppe mit ausschließlich medikamentöser Therapie. Die in diesem Zusammenhang erzielten Ergebnisse konnten keine signifikanten Unterschiede der Blutdrucksenkung zwischen den beiden Gruppen aufzeigen. Allerdings zeigte sich, dass nach sechs Monaten ein signifikant erhöhter Bedarf an antihypertensiven Medikamenten bei der Kontrollgruppe gegenüber der RDN-Gruppe zu beobachten war (+0,3 Medikamente; p < 0,001). Zusätzlich wurde bei der Kontrollgruppe ein signifikanter Anstieg des Serum-
Kreatins und eine gleichzeitige Reduktion der Kreatinin-Clearance beobachtet. Diese Veränderungen konnten in der RDN-Gruppe in dieser Form nicht nachgewiesen werden (74).

The Global Symplicity Register

Bei dem Global Symplicity Register handelt es sich um ein prospektives, open-label, multizentrisches Register (9). Die ersten Ergebnisse davon wurden Anfang des Jahres 2015 veröffentlicht. Die Studie zielt darauf ab, die Sicherheit und Effektivität einer Behandlung mittels interventioneller RDN bei Patienten mit Hypertonie zu untersuchen. Dabei wurden jeweils der Praxis-SBP und 24h-SBP vor, und sechs Monate nach einer RDN gemessen. Die Ergebnisse nach sechs Monaten liegen für 998 Patienten, darunter 323 mit einer schweren Form der arteriellen Hypertonie (≥160 mmHg) vor. Die Sicherheit des Verfahrens konnte in diesem Zusammenhang bestätigt werden. Außerdem zeigte sich eine signifikante Senkung des Praxis-SBP nach sechs Monaten um 11,6 ± 25,3 mmHg (p < 0,001) und des 24h-SBP um 6,6 ± 18,0 mmHg (p < 0,001) (9). Zusätzlich konnte beobachtet werden, dass Patienten mit einer schweren Hypertonie (≥160 mmHg) am meisten von einer RDN profitieren konnten (9). Bei diesen Patienten konnte sogar eine Blutdrucksenkung von 20,3 ± 22,8 mmHg (p < 0,001) des Praxis-SBP und 8,9 ± 16,9 mmHg (p < 0,001) des 24h-SBP nachgewiesen werden (9).

Leipzig RSD-Studie

Eine im Juni 2015 publizierte randomisierte, schein-kontrollierte Studie befasste sich mit der Effektivität der RDN bei Patienten mit einer milder Form der therapierefraktären Hypertonie (Tages-SBP: 135-149 mmHg, Tages-DBP: 90-94 mmHg in der 24h-Messung). Dabei wurden die Patienten 1:1 auf eine RDN-Gruppe und eine invasive Schein-Prozedur-Gruppe randomisiert. Als primärer Endpunkt wurde die Änderung im 24h-SBP nach sechs Monaten zwischen den beiden Gruppen in der Intension-to-treat Analyse festgelegt. Dieser Endpunkt konnte abschließend nicht erreicht werden. Es zeigte sich kein signifikanter Unterschied in der Reduktion im 24h-SBP zwischen den beiden analysierten Gruppen (RDN-Gruppe: -7 mmHg, Schein-Gruppe: -3,5 mmHg; p = 0,15) (15). Wurde eine Per-Protokoll-Analyse durchgeführt und Patienten mit suboptimaler Prozedur ausgeschlossen, zeigte sich eine Überlegenheit der RDN verglichen zur Scheinbehandlung (15).

2.4.4 RDN und Salz

Die Symplicity Studien HTN-1 und HTN-2 konnten zeigen, dass eine RDN bei ausgewählten Patienten mit therapierefraktärer Hypertonie den Blutdruck und die sympathische...

2.5 Zielsetzung der Arbeit

Die hier durchgeführte prospektive Studie beschäftigt sich mit den Auswirkungen der RDN auf die Natriumausscheidung im Urin. Es wurde untersucht, ob ein Zusammenhang zwischen erhöhter Natriumausscheidung und post-prozeduraler Blutdruckreduktion besteht. Die Studie umfasst 137 Patienten mit therapieresistenter arterieller Hypertonie, die einer RDN unterzogen worden sind.
3. Methodik

3.1 Patienten

3.1.1 Untersuchte Patienten

Die Studie schloss 137 Patienten ein, die in drei unterschiedlichen Hochdruckzentren (Universitätsklinikum des Saarlandes, Homburg/Saar (n=75); Universitätsklinikum Erlangen (n=35); Universitätsklinikum Düsseldorf (n=27)) einer RDN unterzogen wurden.

3.1.2 Allgemeines

3.1.3 Blutdruckmessung

3.1.4 Einschlusskriterien

Die Patienten waren im Alter von ≥18 Jahren mit einem SBP über dem in den Leitlinien festgelegten Zielbereich (≥140 mmHg) trotz bestehender Einnahme von mindestens drei

3.1.5 Ausschlusskriterien

3.2 Methodik der interventionellen RDN

3.2.1 Kathetersysteme

3.2.2 Vorgehensweise der RDN

Die in unserer Studie angewandte katheter-basierte sympathische RDN mit dem Symplicity Flex-System zielte durch Applikation von Hochfrequenzenergie über die Katheterspitze auf eine Verödung sympathischer Fasern in der Adventitia der Nierenarterien ab. Zu Beginn dieses Verfahrens wurde die Arteria femoralis in der Leiste punktiert. Über diesen Zugang fand zunächst eine Angiographie der Nierenarterien statt, um die Gefäßmorphologie zu untersuchen und eine bedeutsame Nierenarterienstenose auszuschließen (54). Die Nierenarterie sollte eine Länge von >20 mm und einen Durchmesser >4 mm aufweisen (54). Diese Größenordnungen
Alle RDN Eingriffe und die anschließenden Nachsorgeuntersuchungen wurden im Zeitraum von Februar 2011 bis Oktober 2012 durchgeführt. Basierend auf den Ergebnissen der Gelegenheits-Blutdruckmessungen in den Folgeuntersuchungen nach sechs Monaten wurden die Patienten in eine „Responder-Gruppe“ (SBP Reduktion \geq 10 mmHg) und eine „Non-Responder-Gruppe“ (SBP Reduktion < 10 mmHg) unterteilt.

3.3 Bestimmung der Renin- und der Aldosteronkonzentrationen

Die Reninkonzentrationen im Plasma wurden mittels Chemilumineszenz-Immunoassay (Diasorin LIAISON®) bestimmt. Die Aldosteronkonzentrationen wurden durch ELISA gemessen (IBL).

3.4 Abschätzung der 24h-Natriumausscheidung

3.4.1 Abschätzung der 24h-Natriumausscheidung über den Urin mit der Kawasaki-Formel

Erklärung und Herleitung der Kawasaki-Formel

Der Entwicklung der Kawasaki-Formel lagen folgende Hypothesen zugrunde:

1) *Die Kreatininausscheidung im 24h-Urin kann anhand des Alters, des Körpergewichts, der Körpergröße sowie des Geschlechts der Patienten zuverlässig vorhergesagt werden.*

Mit Hilfe einer Regressionsanalyse entwickelten sie folgende Regressionsgleichung:

<table>
<thead>
<tr>
<th>Männer:</th>
<th>P_{Cr} [mg/d] = 15,12 x Gewicht + 7,39 x Körpergröße − 12,63 x Alter − 79,90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frauen:</td>
<td>P_{Cr} [mg/d] = 8,58 x Gewicht + 5,09 x Körpergröße − 4,72 x Alter − 74,95</td>
</tr>
</tbody>
</table>

Der mit dieser Gleichung vorhergesagte Wert (= P_{Cr}) zeigte eine gute Korrelation zu der gemessenen 24h-Kreatininauscheidung (= 24H_{U_{Cr}}) im Urin dieser Patienten (Korrelationskoeffizienten 0,87 für Männer und 0,73 für Frauen). Hieraus resultiert die Gleichung (1):

\[24H_{U_{Cr}} \cong P_{Cr} \]

2) Der Quotient von Natrium zu Kreatinin im 24h-Urin \((24H_{U_{Na}}/24H_{U_{Cr}})\) ist direkt proportional zum Quotienten der Konzentrationen von Natrium zu Kreatinin in der Spot-Urinprobe \((SMU_{Na}/SMU_{Cr})\). Gleichung (2):

\[24H_{U_{Na}} / 24H_{U_{Cr}} \propto SMU_{Na} / SMU_{Cr} \]
Dies zeigte Kawasaki in einem Kollektiv von 159 klinisch gesunden Individuen, **Abbildung 2.**

Abbildung 2: Der Quotient von Natrium zu Kreatinin im 24h-Urin (24HU_{Na}/24HU_{Cr}) ist direkt proportional zum Quotienten der Konzentrationen von Natrium zu Kreatinin in der Spot-Urinprobe (SMU_{Na}/SMU_{Cr}).

3) Gleichung (3) ist die von Kawasaki aus Gleichung (1) und (2) abgeleitete Schlussfolgerung. Sie ergibt sich nach Auflösen der Gleichung (2) nach der zu berechnenden Variable, der 24h-Natriumausscheidung (24HU_{Na}):

\[
24H_{U,Na} = \frac{SMU_{Na}}{SMU_{Cr}} \times 24H_{U,Cr}
\]
Ersetzt man nun $24HUCr$ durch die nach Gleichung (1) berechnete PR_{Cr}, so ergibt sich die Gleichung (3):

\[
24HU_{Na} = \frac{SMU_{Na}}{SMUCr} \times PR_{Cr}
\]

Sie beschreibt somit die direkte Proportionalität zwischen der 24h-Natriumausscheidung im Urin ($24HU_{Na}$) zu dem Verhältnis von Natrium zu Kreatinin in der Spot-Urinprobe ($SMU_{Na} / SMUCr$) multipliziert mit dem Vorhersagewert der 24h-Kreatininausscheidung im Urin (= PR_{Cr}).

Letztlich zeigten die Autoren, dass die mit Hilfe der Gleichung (3) berechnete Natriumausscheidung mit der gemessenen 24h-Natriumausscheidung im Urin bei den 159 untersuchten Patienten signifikant korreliert, Abbildung 3.

\textit{Kawasaki T et al., Clin Exp Pharmacol Physiol (1993) 20:7-14}

\textbf{Abb. 3} \textit{Die mit der Gleichung (3) berechnete 24h-Natriumausscheidung korreliert signifikant mit der gemessenen 24h-Natriumausscheidung im Urin bei den 159 untersuchten Patienten.}
Nach logarithmischer Transformation und erneuter Regressionsanalyse ergibt sich die endgültige Kawasaki-Formel:

\[
24\text{HU}_\text{Na} (\text{mmol/d}) = 16,3 \times \left(\frac{\text{SMU}_\text{Na}}{\text{SMU}_\text{Cr}} \times \text{PR}_\text{Cr} \right)^{0,5}
\]

Zusammenfassung und Übertragung auf die aktuelle Arbeit

3.4.2 Anwendung der Kawasaki-Formel bei antihypertensiven Patienten

Zusammenfassend konnte anhand der von Kawamura et al. veröffentlichten Studie somit nachgewiesen werden, dass die Kawasaki-Formel auch bei Patienten unter antihypertensiver Therapie eine zuverlässige Abschätzung der 24h-Natriumausscheidung gewährleistet (33).

3.4.3 Untersuchung der Nierenfunktion

3.5 Statistische Analysen

4. Ergebnisse

137 Patienten mit therapieresistenter arterieller Hypertonie (Durchschnittsalter von 63 ± 1 Jahren) waren in die Studie eingeschlossen. Die Charakteristika der Patienten bei Studienbeginn sind in Tabelle 1 abgebildet.

Tabelle 1. Die Charakteristika der Patienten bei Studienbeginn.

<table>
<thead>
<tr>
<th>Charakteristik</th>
<th>Alle Patienten (n=137)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter (Jahre)</td>
<td>63 ± 1</td>
</tr>
<tr>
<td>Männlich</td>
<td>86 (63%)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>30,4 ± 0,4</td>
</tr>
<tr>
<td>Praxis-SBP (mmHg)</td>
<td>171 ± 2</td>
</tr>
<tr>
<td>Praxis-DBP (mmHg)</td>
<td>93 ± 1</td>
</tr>
<tr>
<td>Praxis-Herzfrequenz (bpm)</td>
<td>70 ± 1</td>
</tr>
<tr>
<td>Koronare Herzkrankheit</td>
<td>30 (22%)</td>
</tr>
<tr>
<td>Hypercholesterinämie</td>
<td>60 (44%)</td>
</tr>
<tr>
<td>Diabetes mellitus Typ 2</td>
<td>53 (39%)</td>
</tr>
<tr>
<td>Anzahl antihypertensiver Medikamente</td>
<td>5,2 ± 0,1</td>
</tr>
<tr>
<td>ACE-Hemmer/ARB</td>
<td>125 (91%)</td>
</tr>
<tr>
<td>Betablocker</td>
<td>109 (80%)</td>
</tr>
<tr>
<td>Kalziumantagonisten</td>
<td>105 (77%)</td>
</tr>
<tr>
<td>Diuretika</td>
<td>115 (84%)</td>
</tr>
<tr>
<td>Aldosteronrezeptorantagonisten</td>
<td>23 (17%)</td>
</tr>
<tr>
<td>Sympatholytika</td>
<td>72 (53%)</td>
</tr>
</tbody>
</table>
Trotz der Einnahme von durchschnittlich 5,2 ± 0,1 antihypertensiven Medikamenten betrug der durchschnittliche Praxis-SBP 171 ± 2 mmHg und der Praxis-DBP 93 ± 1 mmHg bei einer Praxis-Herzfrequenz von 70 ± 1 bpm. Bei allen Patienten verlief die Sympathikusdenervation an der Niere ohne Komplikationen. Sechs Monate nach der Intervention reduzierte sich bei den Studienteilnehmern der Praxis-SBP um 18 ± 2 mmHg (p < 0,001) und der Praxis-DBP um 10 ± 1 mmHg (p < 0,001). Die Praxis-Herzfrequenz verringerte sich um 3 ± 1 bpm (p = 0,008). Dabei wurden keine signifikanten Veränderungen der Nierenfunktion beobachtet, welche mittels Cystatin C GFR gemessen wurde (Tabelle 2).

Tabelle 2. Veränderungen zwischen Studieneinschluss und sechs Monate nach RDN.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Studienbeginn</th>
<th>6 Monate nach RDN</th>
<th>Δ</th>
<th>n</th>
<th>P-Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praxis-SBP (mmHg)</td>
<td>171 ± 2</td>
<td>153 ± 2</td>
<td>-18</td>
<td>137</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Praxis-DBP (mmHg)</td>
<td>93 ± 1</td>
<td>83 ± 2</td>
<td>-10</td>
<td>137</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Praxis-Herzfrequenz (bpm)</td>
<td>70 ± 1</td>
<td>67 ± 1</td>
<td>-3</td>
<td>137</td>
<td>0,008</td>
</tr>
<tr>
<td>Anzahl antihypertensiver Medikamente</td>
<td>5,2 ± 0,1</td>
<td>5,2 ± 0,1</td>
<td>0</td>
<td>137</td>
<td>0,947</td>
</tr>
<tr>
<td>Reduktion antihypertensiver Medikamente (Anzahl der Patienten)</td>
<td>10</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anstieg antihypertensiver Medikamente (Anzahl der Patienten)</td>
<td>11</td>
<td>137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma-Aldosteron-Konzentration (pg/ml)</td>
<td>138 ± 8</td>
<td>150 ± 8</td>
<td>+12</td>
<td>67</td>
<td>0,06</td>
</tr>
<tr>
<td>Plasma-Renin-Konzentration (pg/ml)</td>
<td>95 ± 33</td>
<td>92 ± 32</td>
<td>-3</td>
<td>67</td>
<td>0,669</td>
</tr>
<tr>
<td>Cystatin C GFR (ml/min/1,73m²)</td>
<td>72 ± 3</td>
<td>69 ± 3</td>
<td>-3</td>
<td>78</td>
<td>0,062</td>
</tr>
<tr>
<td>KDOQI 1 (GFR ≥ 90 ml/min/1,73m²)</td>
<td>21</td>
<td>20</td>
<td>-1</td>
<td>78</td>
<td>0,567</td>
</tr>
<tr>
<td>KDOQI 4-5 (GFR ≥ 90 ml/min/1,73m²)</td>
<td>27</td>
<td>24</td>
<td>-3</td>
<td>56</td>
<td>0,567</td>
</tr>
<tr>
<td>Urin-Kreatinin-Konzentration (mg/dl)</td>
<td>97 ± 5</td>
<td>85 ± 5</td>
<td>-12</td>
<td>137</td>
<td>0,037</td>
</tr>
</tbody>
</table>

Änderung wichtiger Parameter zwischen Studieneinschluss und sechs Monate nach RDN. Es wurden keine signifikanten Veränderungen der Nierenfunktion beobachtet, welche mittels Cystatin C GFR gemessen wurde.

4.1 Natriumausscheidung

Die mittels der Kawasaki-Formel abgeschätzte, durchschnittliche Natriumausscheidung im 24h-Urin zum Studienbeginn betrug 236 ± 9 mmol/d. Nach sechs Monaten steigerte sich die Natriumausscheidung um 13% auf 268 ± 9 mmol/d (p = 0,003) (Abbildung 4A). Dieser Anstieg der Natriumausscheidung im Urin blieb auch nach Adjustierung für die Cystatin C GFR
Ergebnisse

signifikant ($3,3 \pm 0,33$ vor der RDN vs. $4,2 \pm 0,32$ mmol/d/ml/min nach sechs Monaten, $p < 0,001$) (Abbildung 4B). Diese Resultate gingen mit einer signifikanten Steigerung der fraktionellen Natriumausscheidung einher ($1,19 \pm 0,11$ vor der RDN vs. $1,64 \pm 0,14\%$ nach sechs Monaten, $p < 0,001$) (Abbildung 4C).

Abgeschätzte Natriumausscheidung (mit Hilfe der Kawasaki-Formel)

![Abbildung 4A](image)

Abb. 4A Natriumausscheidung im Urin vor und sechs Monate nach RDN.
Abgeschätzte Natriumausscheidung (nach Adjustierung für die Cystatin C GFR)

p < 0,001

Abb. 4B Der beobachtete Anstieg der Natriumausscheidung im Urin blieb auch nach Adjustierung für die Cystatin C GFR signifikant.

Abgeschätzte Natriumausscheidung (Fraktionelle Natriumausscheidung)

p < 0,001

Abb. 4C Diese Resultate gingen mit einer signifikanten Steigerung der fraktionellen Natriumausscheidung einher.
4.2 Einfluss antihypertensiver Medikamente

Abgeschätzte Natriumausscheidung
(mit Hilfe der Kawasaki-Formel)

Abb. 5A

Abgeschätzte Natriumausscheidung
(mit Hilfe der Kawasaki-Formel)

4.3 Renin und Aldosteron

[Diagramm: Bar-Chart der Reninkonzentration im Plasma vor und nach RDN mit p = 0,669]

4.4 Natriumausscheidung und Blutdruckreduktion

Es ergab sich keine Korrelation zwischen Natriumausscheidung und Blutdrucksenkung nach der RDN (r = 0,101, p = 0,246). Um die Beziehung zwischen Natriumausscheidung und Blutdruckreduktion genauer zu untersuchen, stratifizierten wir die Patienten in Tertile entsprechend der nach sechs Monaten erreichten Senkung des SBP. Interessanterweise war der stärkste Anstieg der Natriumausscheidung bei den Patienten in der niedrigsten Tertile der SBP Reduktion zu beobachten (Abbildung 7A). Die Subgruppe der Non-Responder (SBP Reduktion <10 mmHg) zeichnete sich durch einen größeren Anstieg der Natriumausscheidung verglichen mit den Respondern aus (Abbildung 7B). Auffallend war, dass ein solcher Zusammenhang zwischen der Herzfrequenz und der Natriumausscheidung nicht beobachtet werden konnte.
Ergebnisse

Anstieg der Natriumausscheidung stratifiziert nach der SBP Reduktion
(mit Hilfe der Kawasaki-Formel)

Abb. 7A
Natriumausscheidung stratifiziert nach dem Responderstatus der Patienten bezüglich der SBP Reduktion. **Abb. 7A:** Der stärkste Anstieg der Natriumausscheidung war bei den Patienten in der niedrigsten Tertile der SBP Reduktion zu beobachten.

Abb. 7B
Die Non-Responder (SBP Reduktion <10 mmHg) zeichneten sich durch einen größeren Anstieg der Natriumausscheidung verglichen mit den Respondern aus.
4.5 Sicherheit des Verfahrens

5. Diskussion

Die RDN kann bei einigen Patienten mit therapieresistenter Hypertonie wirksam den Praxisblutdruck (6, 9, 19, 42, 88), den 24h-Blutdruck (3, 9, 55) und die sympathische Nervenaktivierung senken (27). Darüber hinaus wurde gezeigt, dass die experimentelle, operative und chemische RDN die Natriumausscheidung steigern kann (16).

Diskussion

Interessanterweise korreliert das Ausmaß der mittels dieser Methode abgeschätzten Natriumausscheidung nicht mit der beobachteten Blutdrucksenkung in Folge der RDN. Non-Responder, also Patienten, die sechs Monate nach RDN eine geringere Reduktion des Praxis-SBP als 10 mmHg hatten, wiesen nach sechs Monaten einen größeren Anstieg in der Natriumausscheidung auf als Responder (Abfall des SBP ≥10 mmHg). Diese Resultate sind möglicherweise darauf zurückzuführen, dass Non-Responder auf die RDN mit einer überkompensatorischen Steigerung der Natriumzufuhr reagieren. Dies ist möglicherweise einer der Hauptfaktoren, die das geringere Ansprechen dieser Patientengruppe erklären könnten. Dadurch wird wiederum die Frage aufgeworfen, ob eine ernährungsbedingte Natriumrestriktion oder eine verstärkte diuretische Therapie den blutdrucksenkenden Effekt der RDN verstärken könnte. Insbesondere bei Non-Respondern könnte folglich eine kontrollierte salzarme Diät mit einer genauen Dokumentation der Natriumaufnahme und -ausscheidung einen sinnvollen Therapieansatz darstellen. Um diese Fragestellung besser beantworten zu können, sind weiterführende Studien notwendig.

Basierend auf oben beschriebener Pathophysiologie wäre anzunehmen, dass die RDN durch eine Verringerung der β1-Rezeptor-Aktivierung die Renin- und Aldosteronkonzentration beeinflussen könnte. In unserer Studie wurden sechs Monate nach durchgeführter RDN jedoch keine Unterschiede in den Renin- oder Aldosteronkonzentrationen festgestellt, obgleich ein Trend zu einem Anstieg des Aldosterons beobachtet werden konnte. Der Vergleich zwischen der höchsten mit der niedrigsten Tertile der Natriumausscheidung schloss eine gegenregulatorische Erhöhung des Aldosterons aus. Bei der Interpretation dieser Ergebnisse ist allerdings zu berücksichtigen, dass die gleichzeitige Einnahme antihypertensiver Medikamente (insbesondere MRA, ACE-Hemmer/ARB, Betablocker, Renininhbitoren) bekanntermaßen die

Wie bereits in früheren Studien veröffentlicht veränderte sich die mittels Cystatin C GFR gemessene Nierenfunktion nach RDN nicht signifikant (52). Allerdings konnte in unserer Studie ein geringer, nicht signifikanter Trend in Richtung Reduktion der Cystatin C GFR um 3 ml/min (von 72 ± 3 ml/min vor der RDN zu 69 ± 3 ml/min nach der RDN; p = 0,062) beobachtet werden. Ergänzend sei erwähnt, dass ein hoher SBP in linearem Zusammenhang mit einer progressiven Verschlechterung der Nierenfunktion steht (5). Vor interventioneller RDN betrug der durchschnittliche Praxis-SBP in unserer Studie 171/93 mmHg. Dies entspricht etwa einem mittleren arteriellen Blutdruck (MAP) von 119 mmHg. Gemäß einer Analyse von Bakris et al. wäre langfristig bei solch erhöhten Blutdruckwerten eine Abnahme der GFR um etwa 12 ml/min/Jahr zu erwarten (5). Da die Natriumausscheidung von der Nierenfunktion beeinflusst wird, wurden die Ergebnisse für die Cystatin C GFR adjustiert (81). Auch nach dieser Adjustierung blieb die Natriumexkretion sechs Monate nach der RDN signifikant erhöht. Des Weiteren wurde die fraktionierte Natriumausscheidung berechnet. Diese nahm nach der RDN signifikant um 72% zu, blieb dabei jedoch in einem physiologischen Bereich (entsprechend der derzeitigen Definitionen). Dies spricht gegen einen relevanten RDN-induzierten tubulären Schaden. Die beschriebenen Ergebnisse weisen darauf hin, dass die beobachtete erhöhte Natriumausscheidung im Urin nicht mit einer renal dysfunktion in Zusammenhang steht bzw. durch diese erklärt werden kann. Diese Erkenntnis entspricht den Befunden früherer experimenteller Studien, die gezeigt haben, dass die Regulierung der sympathischen Nerven an der Niere die Natriumausscheidung beeinflusst, ohne die GFR zu beeinträchtigen (16).

Um die hier besprochene Studie in den Gesamtkontext der weiterhin häufig auftretenden Problematik der therapiereisentnten arteriellen Hypertonie mit dem Therapieansatz der RDN zu stellen, ist es notwendig, Vor- und Nachteile des Therapieverfahrens zum aktuellen Zeitpunkt zu diskutieren.

Die Wirksamkeit der RDN wurde in der Pilotstudie Symplicity HTN-1 und in der randomisierten, kontrollierten HTN-2 Studie nachgewiesen. Bei der HTN-1 Studie, in der sich 45 Patienten einer RDN unterzogen, stellte sich nach einem Jahr eine Reduktion des SBP und des DBP um 27 bzw. 17 mmHg ein (42). In der randomisierten, kontrollierten Symplicity HTN-2 Studie war sechs Monate nach dem Eingriff in der Behandlungsgruppe eine Reduktion des SBP und des DBP in der Praxismessung um 32 bzw. 12 mmHg zu beobachten. In der
Kontrollgruppe stellte sich keine Blutdruckreduktion ein (19). Auch in der hier besprochenen Studie, die 137 Patienten einschließt, reduzierte sich sechs Monate nach der Intervention der Praxis-SBP um 18 ± 2 mmHg und der Praxis-DBP um 10 ± 1 mmHg. Nachfolgend wurde die Blutdruckreduktion in einer Reihe von nicht-Plazebo-kontrollierten Studien und großen Registerstudien mittels monopolaren (Symplicity Flex-Katheter), Multi-Elektroden- (St. Jude EnlighHTN-Kathetern, Symplicity Spyral Katheter) oder ultraschallbasierten (Recor’s Paradise Katheter) RDN-Systemen bestätigt (8). Des Weiteren wurden die Ergebnisse der bislang größten Real-Life-Datenbank, dem Global Symplicity Register, publiziert (9). Bei 998 Patienten zeigte sich sechs Monate nach durchgeführter RDN eine durchschnittliche Reduktion des Praxis-SBP um 11,6 mmHg (9). Hierbei war ein hoher SBP zum Untersuchungszeitpunkt ein unabhängiger Prädiktor für eine deutliche Blutdruckreduktion. Bei Patienten mit einem Praxis-SBP ≥160 mmHg konnte sogar eine Abnahme des Praxis-SBP von 20,3 mmHg dokumentiert werden (p < 0,001) (9).

Die Symplicity HTN-3 Studie hat zu einer detaillierten Überprüfung der Studie und des gesamten Verfahrens an sich geführt. Im Anschluss an die Veröffentlichung der Symplicity HTN-3 Studie wurden weitere Studien publiziert, die die Effektivität der RDN weiterführend untersuchten. In diesem Zusammenhang ist das Global Symplicity Register zu nennen, welches eine signifikante Blutdrucksenkung sechs Monate nach Durchführung des Verfahrens aufzeigen konnte (9). Interessant in diesem Zusammenhang ist die dort nachgewiesene besonders ausgeprägte Wirkung der RDN bei schweren Hypertonieformen ≥160 mmHg (9). Auch die zu Beginn des Jahres 2015 veröffentlichte multizentrische, open-label, randomisierte

Als weiterer Kritikpunkt ist zu nennen, dass Langzeitbeobachtungen >36 Monate bisher fehlen (41). Tierexperimente konnten aufzeigen, dass sympathische Nervenfasern in der Niere die Fähigkeit besitzen sich nach einiger Zeit teilweise zu regenerieren (10, 24, 40, 61). Im Kontrast dazu wurde in einer anderen Studie nachgewiesen, dass ein Nachwachsen der sympathischen Nervenfasern in der Niere unwahrscheinlich ist (41). Deshalb bleibt die Verlaufsbeobachtung nach einer RDN eine wichtige Komponente, um in dieser Fragestellung weitere Erkenntnisse

6. Schlussfolgerung

7. Literaturverzeichnis

8. Publikationen

Originalarbeit

Abstracts

Dank

9. Dank

Mein besonderer Dank gilt meiner Betreuerin Frau Dr. med. Janine Pöss, die jederzeit ein offenes Ohr für mich hatte und die mich in allen Phasen meiner Arbeit freundlich und hilfsbereit unterstützt hat.

Ich danke auch meinem Doktorvater PD Dr. med. Felix Mahfoud für die Überlassung des interessanten Themas und die engagierte Unterstützung bei der Bearbeitung.

Herrn Prof. Dr. med. Michael Böhm danke ich für die Möglichkeit, die Dissertation in der Klinik für Innere Medizin III der Universität des Saarlandes erstellen zu dürfen.

Ein weiterer Dank gilt Dr. med. Sebastian Ewen für seine wertvollen Hinweise.

Weiterhin danke ich allen Doktoranden und wissenschaftlichen Mitarbeitern des Studienregisters zur Renalen Denervation, die mich stets freundlich unterstützt haben.
