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1 Summary 

TRPM3 proteins belong to the large family of Transient receptor potential (TRP) proteins, 

which are involved of a wide variety of physiological functions. TRPM3 as well as other 

members of TRP proteins are thought to assemble into homo- or hetero-tetrameric 

complexes to build ion-conducting channels in the plasma membrane. TRPM3 build 

ionotropic steroid receptors that are activated by the neurosteroid pregnenolone sulfate 

(PregS) and efficiently blocked by flavanones like Hesperetin. TRPM3 channels are 

expressed in pancreatic β-cells and dorsal root ganglion neurons where they are involved in 

insulin secretion and pain perception, respectively. TRPM3 transcripts are also expressed in 

the pituitary gland and a plethora of other cells and tissues. However, their function in these 

tissues is still unknown. 

Cloning of 98 cDNAs from mouse pituitaries identified 12 different variants that differed in 

exon 8, 13, 15, 17 and 20 but not in the pore-coding exon 24. Western blots and RT-PCR 

analysis confirmed expression of TRPM3 transcripts and proteins in the pituitary gland of the 

mouse and indicated TRPM3 expression in both neuro- and adeno-pituitary. Accordingly, 

knock-in mice expressing the green fluorescent protein under the control of the TRPM3 

promoter displayed prominent GFP-expression in the posterior lobe (PL), weaker expression 

in the intermediate lobe (IL) as well as expression in single cells of the anterior lobe (AL). 

Detailed immunohistochemical analysis indicated TRPM3 expression in folliculostellate cells 

(FS) of the AL, pituicytes of the PL and finally in melanocyte-stimulating hormone (α-MSH) 

releasing cells (melanotrophs) of the IL. 

Fura-2 imaging experiments uncovered PregS-induced Ca2+ entry in both AL- and IL/PL cells 

that was blocked in the presence of Hesperetin. Consistently, we detected 

PregS/Hesperetin-sensitive currents in melanotrophs that largely resembled currents through 

recombinant TRPM3 channels and that were not detectable in melanotrophs from TRPM3-

deficient mice. The data demonstrate expression of functional TRPM3 channels in α-MSH 

secreting cells and provide the basis for a deeper understanding of their biological role in the 

pituitary gland. 

Zusammenfassung 

TRPM3 Proteine zählen zur großen Familie der Transient Rezeptor Potential (TRP)-Proteine, 

die eine Vielzahl unterschiedlicher physiologischer Funktionen besitzen. TRPM3-Proteine 

lagern sich vermutlich zu homo-oder hetero-tetrameren Kanalkomplexen zusammen und 
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bilden auf diese Weise ionenleitende Poren in der Plasmamembran. TRPM3 bildet ionotrope 

Steroidrezeptoren, die durch das Neurosteroid Pregnenolonsulfat (PregS) aktiviert und 

umgekehrt effizient durch Flavanone wie Hesperetin blockiert werden. TRPM3-Kanäle 

werden in pankreatischen β-Zellen und Neuronen der Hinterwurzelganglien exprimiert, wo 

sie an der Insulinsekretion bzw- Schmerzwahrnehmung beteiligt sind. TRPM3-Transkripte 

werden auch in der menschlichen Hypophyse und einer Vielzahl von anderen Zellen und 

Geweben exprimiert. Allerdings ist ihre Funktion in diesen Geweben noch unbekannt. 

Die Klonierung von 98 unterschiedlichen cDNA-Transkripten aus der Maushypophyse 

identifizierte 12 unterschiedliche Spleißvarianten die sich in Exon 8, 13, 15, 17 und 20 nicht 

jedoch  im porencodierenden Exon 24 unterschieden. Western Blots und RT-PCR-Analysen 

bestätigten die Expression von TRPM3-Transkripten und Proteinen in der Hypophyse der 

Maus sowohl in der Neuro- als auch in der Adenohypophyse. Im Übereinstimmung mit 

diesen Ergebnissen  zeigten Knock-in Mäuse, die das grün-fluoreszierende Protein (GFP) 

unter der Kontrolle des TRPM3-Promoters exprimierten, starke GFP-Expression im 

Hypophysenhinterlappen (HHL) sowie schwächere Expression im 

Hypophysenzwischenlappen (HZL) und Hypophysenvorderlappen (HVL). Detaillierte 

immunohistochemische Analysen zeigten TRPM3-Expression in follikulostellaren (FS) Zellen 

des HVLs, in Pituizyten des HHLs und in Melanozyten-stimulierendes Hormon (α-MSH)-

sekretierenden Zellen (melanotrope) des HZLs. Ca2+-Imaging Experimente mit Fura-2 

zeigten einen PregS-induzierten Ca2+-Einstrom in Zellpräparten des HVLs- und aus 

HZL/HHLs, der in Gegenwart von Hesperetin gehemmt war. Dem entsprechend zeigten 

Patch-Clamp-Messungen PregS/Hesperetin-sensitive Ströme in melanotropen Zellen. Die 

biophysikalischen Charakteristika dieser Ströme entsprachen dem Strom durch 

rekombinante TRPM3-Kanäle. Solche Ströme waren in melanotropen Zellen aus TRPM3-

defizienten Mäusen nicht nachweisbar.   

Die Ergebnisse demonstrieren die Expression von funktionstüchtigen TRPM3-Kanälen in α-

MSH- sekretierenden Zellen und bilden die Grundlage zur Untersuchung der biologischen 

Rolle von TRPM3-Ionenkanälen in der Hypophyse. 
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2 Introduction 

2.1 The pituitary gland 

The pituitary gland is a central endocrine gland that plays a key role in the maintenance of 

body homeostasis and regulates basic physiological functions including growth and 

reproduction. The functions of the gland itself are regulated by hypothalamic hormones 

synthesized in the cell bodies of the hypothalamic neurons. 

2.1.1 Anatomy and histology of the pituitary gland 

The pituitary gland or hypophysis is a small gland located at the basis of the brain in a tiny 

bony cavity of the sphenoid bone of the skull called sella turcica [1]. The pituitary gland is 

anatomically and functionally connected to the hypothalamus by the median eminence via 

the infundibular stalk (Figure  2-1). Structurally, the pituitary gland comprises two 

morphologically, embryologically and functionally distinct lobes, namely the adenohypophysis 

(or anterior lobe) and the neurohypophysis (or the posterior lobe). The adenohypophysis is 

pinkish in color and built up of soft, friable granular tissue, whereas the neurohypophysis is 

white, firmer and more fibrous. The adenohypophysis is composed of two parts: pars 

tuberalis and pars distalis (Figure  2-1). The pars tuberalis forms a collar of cells surrounding 

the external region of the lower hypophysial stalk. The pars distalis or anterior lobe is the 

largest part and comprises 80 % of the gland [1]. Five types of endocrine cells that can be 

stained by acidic or basic chromophors can be distinguished in the anterior pituitary 

depending on the hormones that they release. Corticotrophs comprise 15-20 % of the 

anterior lobe cells and produce adrenocorticotropic hormone (ACTH) by the cleavage of the 

precursor polypeptide pro-opiomelanocortin (POMC).  Gonadotrophs comprise 10-15 % of all 

anterior pituitary cells and release luteinizing hormone (LH) or follicle stimulating hormone 

(FSH) or both.  Thyrotrophs comprise 10 % of the anterior pituitary all population and release 

thyroid stimulating hormone (TSH). Somatotrophs or growth hormone (GH) releasing cells 

comprise 30-50 % of all anterior pituitary cells and finally, lactotrophs or prolactin (PRL) 

releasing cells comprise 15-20 % of the anterior pituitary cells [2,3].  

In addition to endocrine cells, the anterior pituitary contains chromophobic, non-endocrine 

cells. Folliculostellate cells (FS cells) comprise 5-10 % of anterior pituitary cell population [1]. 

FS cells were first described 60 years ago by Rinehart and Farquhar [4] and were thought to 

be derived from the neuroectoderm [5]. As the name indicates, FS cells have star-shaped 

morphology and express the protein S100B, a glial-specific intracellular calcium binding 
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protein which is primarily expressed in astrocytes [6]. FS-cells were also described to 

express other astrocytic proteins like the glial fibrillary acidic protein (GFAP) [7] and the 

glutamate aspartate transporter (GLAST) [8]. FS cells are organized in a three dimensional 

network capable to perform intercellular communication between endocrine cells via gap 

junction-mediated signals [9]. 

The pars intermedia or the intermediate lobe is located in the marginal area between anterior 

and posterior pituitary and has been considered to be part of the adenohypophysis in 

humans due to its rudimentary structure. In vertebrates other than human, the pars 

intermedia contains a single endocrine cell type, the melanotrophs, which are also POMC-

producing cells that release alpha-melanocyte-stimulating hormone (α-MSH) and β-

endorphin. In addition, two non-endocrine glial cell types, the marginal cells and the 

astrocyte-like cells, are also localized in the pars intermedia [1].  

The neurohypophysis is composed of the median eminence of the hypothalamus, the 

infundibular stem which forms the inner part of the stalk and the infundibular process or the 

posterior lobe. The posterior lobe is composed mainly of the axonal terminals of the 

magnocellular neurosecretory cells (MNCs) originating from the hypothalamic supraoptic 

(SON) and paraventrical (PVN) nuclei. The axons of these neurons project caudally and 

medially to collect in the hypothalamo-neurohypophysial tract passing the median eminence 

to reach the neurohypophysis. The axons ramify into branches and these branches are 

divided to give rise to nerve terminals of 3 µm diameter. In addition to the small nerve 

terminals, neuro-secretory axonal swellings (Herring bodies) of 6-8 µm in diameter are 

formed due to the accumulation of hormones and their carrier molecules in dense vesicles 

[10]. Vasopressin (VP) and its carrier molecule neurophysin II as well as oxytocin (OXT) and 

its carrier molecule neurophysin I are released from the nerve endings to the systemic 

circulation. Pituicytes, a special type of glial cells, are the only resident cell type in the 

posterior lobe and they are normally found around axonal terminals. Like the FS cells, 

pituicytes express S100b, GFAP and GLAST [8,11]. In addition to the neurosecretory nerve 

terminals, a smaller number of non-neurosecretory axons terminate in the posterior lobe.  

Both types of axons were shown to terminate in a synaptoid contact with pituicytes [10]. 
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Figure  2-1: Scheme of a midsagittal section of the human pituitary gland [12]. 
The main parts of the pituitary gland are illustrated as well as the blood supply to the pituitary. 
Hypothalamic neuron indicated by its gray soma represents a magnocellular neuron releasing 
vasopressin which ends in the posterior lobe. Neurons 1 and 2 are secreting releasing factors into 
capillary networks that give rise to the long and short hypophyseal portal vessels, respectively. 
Releasing hormones are shown reaching the hormone-secreting cells of the anterior lobe via the 
portal vessels. 

2.1.2 Regulation and function of hormone-releasing pituitary cells 

Due to its central role in hormone regulation of the body, the primary functions of the pituitary 

cells are defined by the hormones that they secrete. In addition, a number of non-secreting 

cells exist in the pituitary that play important but sometimes neglected and indirect roles in 

hormone secretion. 

2.1.2.1 Somatotrophs  
Somatotrophs release GH which is essential for growth during the first few months after birth 

and for the maintenance of normal growth rate during childhood. GH exerts its function by 

stimulation of Insulin-Like Growth Factor-I (IGF-1) synthesis in the liver and other tissues 

[13]. Following early childhood and prior to adolescence, IGF-1 mediates longitudinal bone 
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growth, skeletal maturation, and acquisition of bone mass, whereas in adults it is important in 

the maintenance of bone mass [14]. In addition, GH plays an important role in fat and 

carbohydrates metabolism [15]. GH release is regulated by two different hypothalamic 

regulators; growth hormone-releasing hormone (GHRH) which increases GH release and 

somatotropin-releasing inhibitory factor (SRIF) or somatostatin which decreases GH release. 

The signaling cascade of GHRH is initiated by binding to the Gs-protein coupled GHRH 

receptor in the plasma membrane of the somatotrophs. The binding activates adenylyl 

cyclase leading to an increase in the cyclic adenosine monophosphate (cAMP) concentration 

[16]. cAMP increases the activity of protein kinase A (PKA) to phosphorylate proteins 

responsible to increase GH secretion and GH gene expression [17,18]. In addition, 

stimulation of GHRH receptors leads to an elevated [Ca2+]i. Somatostatin decreases GH 

release by binding to inhibitory Gi-proteins coupled to adenylyl cyclase and decreases the 

intracellular calcium concentrations [Ca2+]i. Furthermore, GH release is also regulated by 

peripheral regulators including IGF-1 and ghrelin via Ca2+-dependent mechanisms [19-21]. 

2.1.2.2 Lactrotrophs 
Lactotrophs release prolactin (PRL) that regulates the lactation process and milk synthesis in 

all mammals. PRL induces the growth of mammary glands and their differentiation 

(mammogenesis), milk production by alveolar cells (lactogenesis) and the maintenance of 

lactation (galactopoiesis) [22].  PRL release is mainly regulated by hypothalamic dopamine. 

Dopamine binds to D2 receptors in lactotrophs, inhibits cAMP and Ca2+ signaling pathways 

and thereby inhibiting PRL release [2,23]. Other different inhibitory factors including gamma 

amino butyric acid and gonadotropin-associated peptide have been proposed to inhibit PRL 

release [2]. Thyrotropin-releasing hormone (TRH) is also identified as a PRL-releasing factor 

with unclear stimulation mechanism [24].  Many other peptides were suggested to promote 

PRL release such as oxytocin, hypothalamic vasoactive intestinal peptide (VIP) and 

endothelin [25]. 

2.1.2.3 Gonadotrophs 
Gonadotrophs release LH and FSH which are the main regulators of the reproductive system 

including sperm/ova production and sexual hormone release. In males, LH controls the 

synthesis and the release of testosterone via binding to G-protein coupled receptors on 

testicular Leydig cells and activating cAMP signaling pathway [26]. The role of FSH in males 

is not well defined, however it is well documented that FSH binds to its receptors in Sertoli 

cells and increases the production of androgen binding proteins which may support 

spermatogenesis [27]. In females, FSH stimulates the growth of ovarian follicles, whereas LH 

induces ovulation and regulates the secretion of progesterone from the corpus luteum.  Both 
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LH and FSH regulate follicular steroidogenesis and androgen and estradiol secretion [12]. 

The two major regulators of the release of gonadotropins are the hypothalamic gonadotropin-

releasing hormones (GnRH) and the feedback of the gonadal factors. GnRH reaches the 

anterior lobe through the hypophysial portal system and promotes a Ca2+-dependent pulsatile 

secretion of gonadotropines. GnRH binds to its receptors on gonadotrophs and activates a 

cascade of intracellular signaling pathways including activation of phospholipase C that leads 

to Ca2+ release and activation of protein kinase C [28]. 

2.1.2.4 Thyrotrophs 
Thyrotrophs release TSH which mainly regulates the synthesis and the release of 

triiodothyronine (T3) and thyroxine (T4) by the thyroid gland. TSH binds to Gs-coupled 

receptors of the thyrocytes and activates cAMP signaling pathways. This leads to an 

increase in iodine transport and expression of thyroglobulin and thyroperoxidase resulting in 

increased thyroid hormones release [29]. T3 and T4 have an important effect on body 

growth, metabolism and differentiation of the central nervous system (CNS). TSH secretion is 

regulated by the hypothalamic thyrotropin- releasing hormone (TRH). TRH binds to Gq- 

coupled receptors on thyrotrophs and leads to a PLC-dependent increase of the intracellular 

Ca2+ concentration which stimulates TSH secretion. DAG promotes the activity of PKC 

enhancing TSH release  [30]. T3 and T4 exert a negative feedback effect on TSH release on 

both the pituitary and hypothalamic level [12].  

2.1.2.5 Corticotrophs  
The major function of corticotrophs is the synthesis and release of ACTH which is the major 

regulator of glucocorticoids synthesis in the zona fasciculate of the adrenal gland. ACTH 

binds to melanocortin-2 receptors (MC2R) that activate cAMP signaling pathways 

(Figure  2-2). ACTH is produced in the corticotrophs from its precursor POMC (Figure  2-2). 

POMC is cleaved by the activity of prohormone convertase PC1 to give rise to six different 

peptides including a N-terminal peptide, the joining peptide (JP), ACTH, β-lipotropin (β-LPH), 

γ-lipotropin (γ-LPH) and β-endorphin (β-end) [31].  
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Figure  2-2: POMC processing by PC1 and PC2.  
The physiological roles of its derivate peptides are also shown, modified from [31]. 

2.1.2.6 Melanotrophs 
Melanotropic cells (Melanotrophs) of the intermediate lobe produces α-MSH that is also 

produced from POMC (Figure  2-2). In humans, this is done in the so-called POMC neurons 

of the hypothalamus [32]. A well-known physiological function of α-MSH is to stimulate the 

melanogenesis after binding to melanocortin 1 receptors (MC1R) in melanocytes [33,34]. 

This leads to an increase of cAMP which in turn regulates the transcription and the function 

of tyrosinase, tyrosine hydroxylase and phenylalanine hydroxylase [35,36]. α-MSH also acts 

in a receptor-independent manner to directly regulate the tyrosinase activity [35]. 

Furthermore,  α-MSH was shown to play a significant role in controlling inflammation and 

immunomodulation in the skin by inhibiting the production of proinflammatory cytokines such 

as interleukin-1 (IL-1), IL-6 and tumor necrosis factor-α (TNF-α), and by upregulation of 

immunosuppressive cytokines such as IL-10 [37]. α-MSH is suggested to be involved in 

energy homeostasis, appetite regulation and inhibition of food intake by binding to MC3R and 

MC4R in the hypothalamus ([32,38,39], Figure  2-2). Recently, α-MSH was also shown to 

modulate the activity of basophilic granulocytes by binding to MC1R causing significant 

suppression of the secretion of the proallergic cytokines IL-4, IL-6, and IL-13 [40]. The 

secretion of α-MSH from the intermediate lobe is controlled by γ-amino butyric acid (GABA) 

and neuropeptide Y (NPY) as well as dopamine (DA) released by subpopulations of 
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hypothalamic neurons (tubero-hypophyseal neurons) that directly terminate in the 

intermediate lobe [41,42]. Dopamine binds to D2-receptors in the plasma membrane of the 

melanotrophs and reduces their synthesis of POMC and the release of POMC-cleavage 

products [43] via a cAMP-dependent pathway [44].   

2.1.2.7 Oxytocin-releasing hypothalamic nerve terminals 
Nerve terminals of the MNCs of the hypothalamus release OXT that is synthetized as a pro-

hormone in their cell bodies. OXT release is associated with neurophysin I release, a carrier 

protein which is transported in vesicles with OXT to the posterior lobe [12]. OXT is essential 

for parturition and lactation. Suckling stimulates sensory nerves in the nipple of the mamma 

which in turn  stimulates oxytocin-releasing MNCs. Released OXT stimulates the contraction 

of myoepithelial cells which surround the milk-laden alveoli resulting in milk ejection. During 

childbirth pain, afferent nerve impulses stimulate OXT release leading to strong contractions 

of the uterus supporting delivery of the newborn and the placenta [2,11]. 

2.1.2.8 Vasopressin-releasing hypothalamic nerve terminals 
Similar to OXT, vasopressin (VP) or anti-diuretic hormone (ADH) is synthetized as a pro-

hormone in the cell bodies of MNCs and packed in dense-core neurosecretory vesicles. The 

pro-hormones are cleaved by the activity of proteolytic enzymes to produce VP and its 

associated peptide neurophysin II. This cleavage takes place during the passage of vesicles 

from the Golgi apparatus to the terminals and swellings of the MNCs in the posterior lobe 

[12]. VP-release via exocytosis is stimulated in response to action potentials initiated in the 

plasma membrane of the MNCs. VP diffuses to the blood stream through fenestrated 

capillaries of the posterior lobe. Dehydration is the major physiological signal that stimulates 

VP release. VP plays an important role in the maintenance of body fluids and the regulation 

of blood osmolality. VP binds to V2 receptors in the plasma membrane of the epithelium of 

the collecting duct of the kidney and increases water reabsorption by increased integration of 

water channels (aquaporins) into the epithelial membrane [2,11]. In addition, parvocellular 

neurons of the PVN and SON terminate in the median eminence and release VP into the 

hypophyseal portal system. VP then stimulates corticotrophs synergistically with CRH to 

produce ACTH [45]. 

2.1.3 Function and regulation of non-endocrine pituitary cells  

2.1.3.1 Pituicytes 
Notwithstanding that pituicytes, the astroglial cells of the posterior lobe, do not secret any 

hormone they are suggested to play an important role in the regulation of neurohypophysal 



Introduction  
 

 

 10 

hormone output. Pituicytes undergo a remarkable structural reorganization during increased 

demand of hormone release. Under resting conditions, the axonal terminals and swellings 

are laden with dense core neurosecretory vesicles (filled with hormones and their carrier 

proteins) and are completely engulfed by the processes and membranes of pituicytes. 

Neurosecretory swellings and terminals appear to form a synaptoid contact with the 

pituicytes in which the intermembrane distances are small (15-20 nm). The basal lamina, the 

barrier which separates neurohypophysial parenchyma from the fenestrated blood 

capillaries, is more than 60 % occupied with pituicytes limiting hormone availability to the 

blood stream [10,46]. Under stress conditions, such as dehydration, lactation and parturition, 

pituicytes tend to retract from the blood vessels resulting in a reduction of the number of 

terminals engulfed by pituicytes and a significant increase in neurovascular contact followed 

by a remarkable decrease of the amount of neurosecretory granules in the nerve terminals 

(Figure  2-3). Thus, pituicyte retraction allows more hormones to be released into the blood 

stream. When the demand of hormone release returns to its basal level, pituicytes recover to 

the resting morphology thereby limiting hormone availability. Released VP can act on the 

V1a receptors in the pituicytes and increase [Ca2+]i via the IP3 pathway [47]. Activation of V1a 

receptors induces taurine release from pituicytes. Taurine can act at the nerve terminal as a 

negative feedback inhibitor that inhibits hormone output [48]. Pituicytes release taurine 

selectively in response to hypoosmotic stimulation [46]. 

 

Figure  2-3: Postulated scheme for the modulation of neurohypophysal hormone secretion by 
V1a receptor activation of pituicytes, modified from [49]. 

2.1.3.2  Folliculostellate cells 
Folliculostellate cells of the adenohypophysis are described to form a three dimensional cell 

network, in the meshes of which the endocrine cells reside [5,9,50]. The cells are connected 

by gap junctions and transfer informations such as Ca2+ signals and small diffusible 
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molecules over a long distance in the anterior pituitary providing an efficient communication 

system [9]. Additionally, folliculostellate cells display phagocytotic activity and function as 

scavenger cells [1,51]. A study of Shirasawa and Yamanouchi suggested that FS cells might 

be involved in controlling glutamate level and scavenging toxic ammonia [52]. FS cells 

modulate the function of endocrine cells by producing compounds such as lipocortin-1, which 

play an inhibitory effect on CRH and corticotropin secretion, and follistatin, which regulates in 

a paracrinic manner the production and secretion of FSH from gonadotrophs [53-55]. FS 

cells produce many other bioactive peptides like basic fibroblast growth factor which 

stimulates the growth of lactotrophs [56], and nitric oxide (NO) which might regulate LH 

secretion [57,58]. Recently, FS cells were shown to have the potency to differentiate into 

skeletal muscle cells [50]  supporting an old hypothesis that these cells are suspected to act 

as stem cells in the pituitary gland [58]. 

2.2 Calcium signaling in pituitary cells and regulation of hormone 
release 

Ca2+ plays a crucial role as a second messenger in a variety of cellular processes such as 

proliferation, migration, apoptosis, neuronal excitability, exocytosis and gene expression. The 

Ca2+ concentration inside the cell is 20000-fold lower than its concentration in the 

extracellular space. Since Ca2+ ions don’t bind water tightly and precipitate phosphates, cells 

exclude Ca2+ ions from the cytoplasm to maintain the concentration at ~ 100 nM. Ca2+ signals 

in response to external stimuli, range from Ca2+ spikes which transfer fast responses to Ca2+ 

transients or Ca2+ waves which control slower responses. In principle Ca2+ signals are 

created by two types of reactions: calcium ‘On’ reactions including Ca2+ influx from the 

extracellular space through plasma membrane ion channels and Ca2+ release from the 

endoplasmic reticulum (ER) via Inositol trisphosphate (IP3) receptors while calcium ‘Off’ 

reactions include Ca2+ removal from the cytosol by different pumps and exchangers such as 

the Na+/Ca2+ exchanger (NCX), the plasma-membrane Ca2+-ATPase (PMCA) which extrudes 

Ca2+ to the outside and the endoplasmic reticulum Ca2+-ATPase (SERCA) which pumps Ca2+ 

back into the ER [59,60]. 

In endocrine pituitary cells, an increase in the intracellular Ca2+ concentration above the 

threshold of stimulus-transcription or stimulus-secretion coupling leads to calcium-dependent 

hormone production and/or release [3,61,62]. As endocrine pituitary cells are similar to 

neuronal cells in the expression of different voltage-gated calcium, sodium, potassium and 

chloride channels, they are spontaneously able to fire action potentials which are normally 

associated with an increase at the intracellular calcium concentrations [3]. The electrical 
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activity can be modulated by the stimulation of G protein-coupled receptors (GPCRs). 

Stimulative G-proteins (Gs) stimulate the production of c-AMP by adenylcyclase which in turn 

increases the electrical activity and facilitates Ca2+ entry through voltage-gated channels 

directly or indirectly by c-AMP-dependent kinase activity. Activation of inhibitory (Gi)-coupled 

receptors in endocrine pituitary cells leads to the inhibition of electrical activity and hormone 

release. Gq-coupled receptors or calcium-mobilizing receptors are also expressed in pituitary 

cells and their activation leads to the production of diacylglycerol (DAG) and 1,4,5-

trisphosphate (IP3) which induces Ca2+ release from the ER and subsequently increases 

hormone release. In addition to the voltage-gated channels mentioned above, transcripts of 

many members of transient receptor potential channels (TRP channels) like TRPM3, TRPC1, 

TRPC3, TRPC5 and TRPC7 were shown to be expressed in the pituitary gland [63,64]. 

Signaling through TRP channels may account for hormones production and/or release in a 

direct or an indirect way. 

2.3 TRP ion channels 

Transient receptor potential (TRP) channels are a superfamily of cation channels which 

display, apart from their sequence homology and basic channel architecture, distinct features 

regarding the activation mechanisms, ion selectivity and physiological functions [65]. A 

number of these channels play important roles in sensory physiology ranging from 

thermosensation to osmosensation, mechanosensation, vision, olfaction and audition [66]. 

The trp gene was first characterized in a Drosophila melanogaster mutant with impaired 

phototransduction. A prolonged light stimulation of Drosophila wildtype photoreceptors 

induced a sustained response characterized by an initial and an adaptive phase of the 

receptor potential, while trp-mutated photoreceptors showed only a transient response with a 

quick decay to a basal line [67]. In 1989, the trp gene was cloned by Montell and Rubin [68]. 

The idea that the encoded TRP proteins may build membrane channels was initiated by 

Minke and Selinger [69] and in parallel, Hardie and Minke were able to show that the light-

induced Ca2+ influx is reduced up to 10 fold in trp-mutant flies supporting the idea that TRP 

proteins function as a calcium permeable ion channel [70].  

Trp genes have been identified in different organisms ranging from worms (C.elegans) to 

men [71]. In mammals, 28 TRP proteins have been identified and were classified based on 

their topological similarities [72]. The mammalian superfamily of TRP channels is divided into 

six subfamilies, the canonical (TRPC), vanilloid (TRPV), melastatin (TRPM), ankyrin (TRPA), 

Mucolipin (TRPML) and polycystin (TRPP) channels (Figure  2-4). The TRPC, TRPV, TRPM, 

TRPA and TRPN subfamilies are classified as Group 1 of TRP channels as they show the 
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highest degree of sequence homology to the founding member Drosophila TRP, while the 

TRPP and TRPML subfamilies are classified as Group 2 of TRP channels as they display a 

large extracellular loop between transmembrane domains 1 and 2 and are weakly related to 

group 1 [66,71]. 

 

Figure  2-4: Phylogenetic tree of TRP proteins. 
The dendrogram of vertebrate TRPs includes mostly human TRPs, except for mouse TRPC2 which is 
a pseudo gene in man and zebrafish TRPN1 which has no orthologue in mammals. White text and 
cartoons highlight the TRP proteins from worms and flies. One C.elegans and one Drosophila member 
of each subfamily are included [71]. 
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The TRPC subfamily is composed of seven members sharing up to 40 % amino acid identity 

with each other and with the Drosophila TRP protein [73]. TRPV channels display only ~25 % 

sequence homology to the members of TRPC subfamily [66]. The name vanilloid was used 

since the first known member TRPV1 was identified as ligand-gated ion channel that is 

activated by vanilloids like capsaicin [74]. The TRPM subfamily, which shares ∼20 % amino 

acid sequence identity to TRPC proteins, consists of eight members. The first member 

TRPM1 was initially named Melastatin because its expression appeared to be inversely 

correlated with the metastatic potential of melanoma cells [75]. TRPA1 is the only member of 

its subfamily and was identified in an oncogenic screen of down-regulated genes from 

fibroblasts [76]. The TRPP and TRPML proteins have very low sequence similarity with other 

TRP members and were discovered as mutant genes in autosomal dominant polycystic 

kidney disease (ADPKD) and mucolipidosis type IV (MLIV), respectively [71,77].  

2.3.1 Structure of TRP channel complexes 

TRP proteins contain six transmembrane spanning domains (S1-S6) and a pore forming 

region that is located between S5 and S6 (Figure  2-5). The amino (N) and carboxy (C)-

termini are located in the cytosol and comprise most of the protein.  

 

Figure  2-5: The predicted protein structure of TRP proteins. 
The predicted membrane topology of monomeric TRP polypeptides (left) and the tetrameric channel 
complex (right) are shown. Transmembrane spanning domains that flank the ion conducting pore (P) 
are numbered. (Modified from [78]).  

Other structural features of TRP proteins are illustrated in Figure  2-6. The N-terminal 

domains of TRPC, TRPV and TRPA contain up to 3, 6 and 15, ankyrin (ANK) repeats 

respectively. An ANK repeat domain is a ~33 residue motif consisting of two α-helices 

separated by loops [79]. ANK repeats have been proposed to bind to regulatory molecules 
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like calmodulin and ATP [80]. TRPM channels lack ANK repeats but instead contain a TRPM 

homology region of unknown function. A well conserved block of ~25 residues C-terminal to 

the sixth transmembrane domain, called the TRP domain or TRP box, is present in TRPC, 

TRPM and TRPV proteins [71,81]. TRP domains were shown to be required for 

phosphatidylinositol 4,5-bisphosphate (PIP2)  binding and the regulation of channel gating of 

TRPM8 and TRPV5 channels [82]. Heptead repeat structures called coiled-coil domains, are 

present in some members of TRP channel family [83]. They belong to the best defined 

protein-protein interaction domains with a conserved alpha-helical structure. A coiled-coil 

domain in TRPP2 was suggested to link the protein to PKD1 [84,85]. Coiled-coil domains 

also seem to play a role in the multimerization of TRPM channels [86-88]. The C-terminal 

domains of some TRPM channels (M2, M6 and M7) possess enzyme activity and thus the 

proteins were termed chanzymes [71]. The kinase activity of TRPM7 was thought to 

modulate the channel sensitivity for intracellular cAMP regulation and Mg2+ inhibition [89,90], 

whereas in TRPM6 the function of the kinase domain is still unknown. TRPM2 channels are 

linked to a nucleoside diphosphate pyrophosphatase (NUDIX) domain that possess 

adenosine diphosphate (ADP)-ribose hydrolase activity [81].  
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Figure  2-6: Structure of TRP channels.  
In TRPC and TRPP, the C-terminus contain the EF hand domain which is found in a large family of 
calcium-binding proteins and PDZ (postsynaptic density 95/disc-large/zona occludens) which is a 
common protein interaction motif that joins proteins in signaling complexes. In TRPML and TRPP, the 
ER retention signal is a small domain that has been proposed to maintain the channel in the 
endoplasmic reticulum. The other domains indicated are described in the text. (Modified from [81]).  

Similar to other six transmembrane domain channels, TRP proteins form a tetrameric 

quaternary structure in which the S5 and the S6 domains from each subunit contribute to a 

shared selectivity filter and ion-conducting pore ([71], Figure  2-5). Recently, detailed 

informations about the TRPV1 channel structure has been achieved by cryo-electron 

microscopy of the protein at a resolution close to 3 Å. These data confirmed the predicted 

information about the tetrameric structure of TRP channels and ion conducting pore [91,92]. 
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TRP proteins form channels that control the flux of cations along their electrochemical 

gradients. Cation entry through the channel is regulated by the upper gate or the selectivity 

filter of the channel and the lower gate which is formed by the cytoplasmic end of the S6 

helix [81,93]. Most TRP channels form non-selective ion pores with similar ion permeability 

for Ca2+ and Na+ (permeability ratio PCa/PNa ≤ 10). However, TRPM4, TRPM5 and the 

TRPM3α1-variant are almost impermeable for divalent cations, whereas  TRPV5 and TRPV6 

are highly selective for Ca2+ (PCa/PNa ≥ 100) [94]  

2.3.2 Activation and functional properties of TRP channels 

TRP channels are widely expressed in large number of tissues and cell types. Since TRP 

channels allow the flux of cations through the plasma membrane, they play important roles in 

regulating the intracellular Na+ and Ca2+ concentrations ([Na+]i, [Ca2+]i) and the membrane 

potentials in both excitable and nonexcitable cells [95]. TRP channels are sensitive to a wide 

range of activators and activation mechanisms including changes in temperature, pH, 

osmolality and intracellular second messenger (Table  2-1).Therefore, TRP channels play 

important roles in a plethora of physiological functions including vision, taste, smell, hearing, 

and touch. Table  2-1 shows modes of activation for each individual TRP channel. TRPC 

channels are modulated via a GPCR-mediated pathway including PIP2 hydrolysis and the 

production of DAG and IP3. IP3 binds the IP3 receptors resulting in Ca2+ release from 

intracellular stores which in turn activates cation entry through TRP channels. Other TRP 

channels can be activated from outside by a plethora of agonists. For example, plant 

secondary compounds like capsaicin and icilin activate TRPV1 and TRPM8, respectively. 

Most of these channels also belong to the group of the so-called thermo-TRPs (TRPV1-4, 

TRPA1, TRPM3 and TRPM8) since they are also sensitive to changes of the ambient 

temperature [65]. Finally, a number of channels already display constitutive activity that is 

modulated by a variety of intracellular second messenger. 

Most of the TRP channels are nonselective for mono and divalent cations. However, TRPV1 

and TRPM8 show increased selectivity for divalent cations with a fractional Ca2+ current 

under physiological conditions of 3-5 % [96], others like TRPA1 and TRPM3 display even 

higher fractional Ca2+ currents of about 25 % and finally TRPV5 and TRPV6 are 

extraordinary Ca2+-selective with fractional Ca2+ current close to 100 % [95,97]. The 

activation of TRP channels may trigger gating of voltage-gated Ca2+ channels and/or induce 

Ca2+-dependent channel inactivation. This indicates that the electrogenic effect of TRP 

channel activation might be as important as its contribution to Ca2+ changes by mediating 

Ca2+ entry. Members of the TRPC subfamily are reported to have a significant importance in 
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the regulation of firing pattern of neurons [98]. In non-excitable cells, TRP channels activation 

regulates the driving forces for Ca2+ entry [95]. Finally, TRP proteins like TRPML are also 

located in the intracellular organelles like the ER, endosomes and lysosomes and serve as 

intracellular Ca2+ release channels [95,99]. 

Table  2-1: Properties of channels formed by mammalian TRP proteins. Modified from [71,100]. 

Subtype 
Selectivity 

P Ca/P Na 
Activation/ modulation of 

activity 
Function/ 

Associated diseases 
Consequences of TRP-deletion in 

mice 

TRPC1 ~1 

PLC activation, store depletion, 

conformational coupling, 

mechanical stretch 

Required for EPSC in 
Purkinje cells 

 
Elevated body weight, impaired salivary 

gland fluid secretion 

TRPC2 ~1-3 
PLC activation, diacylglycerol 

(DAG) 

Acrosome reaction, 

Pheromone perception 
Abnormal sexual and mating behavior 

TRPC3 ~1.5 

PLC activation, store depletion, 

conformational coupling, DAG, 

exocytosis 

Modulating neuritis 

extension 

Defects in motor coordination and walking 

behavior 

TRPC4 ~1-8 
PLC activation, store depletion 

(?), PIP2 breakdown, exocytosis 

Vasorelaxation, 
neurotransmitter 

release 
 

Impaired vascular function, altered 5-HT-

mediated GABA 

release, defects in intestinal motility 

TRPC5 ~2-9 

PLC activation, store depletion 

(?), sphingosine-1-phosphate, 

exocytosis 

Modulating neuritis 

extension 
Decreased anxiety-like behavior 

TRPC6 ~5 
PLC activation, conformational 

coupling , DAG, PIP3 
platelet aggregation 

Grossly normal, increased artery 

contractility, impaired light 

response in intrinsically photosensitive 

retinal ganglion cells 

in TRPC6/TRPC7 compound KO mice 

TRPC7 ~1-5 
PLC activation, store depletion, 

DAG 
? 

impaired light 

response in intrinsically photosensitive 

retinal ganglion cells 

in TRPC6/TRPC7 compound KO mice 

TRPV1 ~4-10 

Heat (43˚C), vanilloids, 

proinflammatory cytokines, 

protons, PIP2 

Hot pain sensor 43°C Reduced inflammatory hyperalgesia, 
impaired bladder function 

TRPV2 ~1-3 
Heat (52˚C), osmotic cell 

swelling, exocytosis 

Very hot pain sensor 

52°C 
Accelerated mortality in bacterial infection 

TRPV3 ~1-10 

Warm (33–39˚C); PUFAs; 

menthol; compounds from 

oregano, cloves, and thymes 

Warm temperature 

sensor (30°-39°C) 

Impaired thermosensation, skin barrier 

effects, curved whiskers, and hair 

TRPV4 ~6 

Warm (27–34˚C), osmotic cell 

swelling, 5’6’-EET, anandamide, 

4αPDD, exocytosis 

Osmosensor, warm 

sensor (27°C) in 

keratinocytes 

Altered body osmolarity; increased bone 

mass; impaired bladder function; reduced 

inflammatory hyperalgesia 

TRPV5 >100 
Constitutively active1, exocytosis 

(?) 

Ca2+ reabsorption in 

kidneys 

Impaired renal Ca2+ reabsorption; 

decreased bone thickness 

TRPV6 >100 
Constitutively active1, store 

depletion (?), exocytosis (?) 

Ca2+ - homeostasis, 

differentiation 

keratinocytes 

Impaired epididymal Ca2+  absorption, male 

hypofertility, impaired Ca2+  absorption 

TRPM1 <1 Translocation (?) Visual perception? impaired ON bipolar cell function and vision 

TRPM2 ~0.3-2 
ADP-ribose, cADP-ribose, 

pyrimidine 
Redox sensor 

Impaired neutrophilin filtration in 

inflammation, increased ROS production in 
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nucleotides, arachidonic acid, 

NAD, H2O2, Ca2+ 

phagocytes, higher basal glucose level and 

impaired glucose tolerance 

TRPM3 ~1-10 (2) 

Constitutively active1, osmotic 

cells welling, store depletion (?), 

pregnenolone sulfate, d-erythro-

sphingosine (?),  heat (33-40°C) 

Insulin secretion 

Pain sensation 
Impaired noxious heat perception 

TRPM4 
Monovalent 

selective 
Ca2+, voltage modulated, PIP2 

Allergy, immune 
response 

 

Increased release of inflammatory 

mediators from mast cell and cutaneous 

anaphylaxis; impaired dendritic cell 

migration; reduced secondary hemorrhage 

and lesions after spinal cord injury, 

hypertension associated with increased 

catecholamine release from chromaffin 

cells 

TRPM5 
Monovalent 

selective 

Taste receptor activation 

(T1R,T2R), Ca2+, Voltage 

modulated, PIP2,  heat (15–35˚C) 

Taste 

Impaired sweet, umami, and bitter taste 

reception; deflects in glucose-induced 

insulin release 

TRPM6 <10(3) Mg2+ inhibited, translocation 
hypomagnesemia, 

hypocalcemia 

Embryonic lethality, neural tube defects in 

development 

TRPM7 ~0.2-2(3) 

Activation mode of native 

channels unclear, Mg2+ inhibited, 

ATP, protons, phosphorylation, 

PIP2 

Cell viability 

Embryonic lethality; conditional TRPM7 

deletion in T cells causes abnormal 

thymocyte development 

TRPM8 ~0.3-4 
Cool (23–28˚C), menthol, icilin, 

pH modulated, PIP2 

Cool temperature 

sensor (23°–28°C) 
Deficiencies in response to cold 

TRPA1 ~0.8-5 

Cold (17˚C) (?), icilin, 

isothiocyanates, allicin (garlic), 

cannabinoids, bradykinin, PLC 

activation, DAG, PUFAs 

Cold pain sensor 

(17°C), hearing 
Reduced response to noxious cold and 

intestine mechanical force 

TRPML1 (4) 

Activation mode of native 

channels unclear, potentiation by 

low pH 

Lysosomal trafficking?, 

mucolipidosis type IV 

Motor deficits, retinal degeneration, 

decreased life span 

TRPML2 (4) 

Activation mode of native 

channels unclear, potentiation by 

low pH 

- - 

TRPML3 (5) 

Activation mode of native 

channels unclear, removal and 

readdition of extracellular Na+ 

Hearing 

Varitint-waddler (Va) mice with a TRPML3 

(A419P) gain of function mutation exhibit 

deafness, circling behavior, and 

pigmentation defects 

TRPP2 
Non-

selective 

Translocation with TRPP1, fluid 

flow, mechanical gating (?) 

Polycystic kidney 

disease 

Lethal E13; embryonic cysts and extrarenal 

abnormalities including left-right asymmetry 

of visceral organs 

TRPP3 ~1-10 Ca2+, voltage modulated - - 

TRPP5 
Non-

selective 
? - - 

(1) Not yet measured in primary cells; (2 )significant differences in individual splice variants; (3 )divalent cation selective (Ca2+ and 

Mg2+); (4) localization primarily intracellularly in endolysosomes, permeability for Na+, K+, Ca2+, Fe2+; (5) localization primarily 

intracellularly in endolysosomes, permeability fo Na+, Ca2+, K+. 
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2.4 Transient receptor potential Melastatin 3 (TRPM3) 

TRPM3 is the last identified member of the TRPM subfamily [101-104]. TRPM3 is most 

closely related to TRPM1, the founding member of the subfamily. It differs from TRPM2, 

TRPM6 and TRPM7 by the lack of enzymatic activity and from TRPM4 and TRPM5 by its 

permeability for Ca2+ ions. Similar to TRPM8, TRPM3 is activated by changes of temperature 

[105]. 

2.4.1 The Trpm3 gene encodes a variety of different TRPM3 proteins 

Trpm3 genes display a highly conserved configuration in mouse, rat and human. In the 

mouse, the gene is located on the chromosome 19b spanning more than 850 kb and 

comprising 28 exons (Figure  2-7). The human and rat genes are located on chromosome 9 

(9q21.11-q21.12) and chromosome 1q5, respectively [106]. Trpm3 genes encode a large 

number of variants due to alternative splicing of their primary transcript (Figure  2-7). 

Furthermore, the variability of TRPM3 transcripts is increased by the presence of at least 

three promoters that give rise to three alternative transcription start sites encoding three 

different amino termini of the protein. The different promoters were supposed to regulate the 

expression of different protein isoforms called TRPM3α (α1 to α5) starting within exon 1 and 

lacking exon 2, TRPM3β (β1 to β17) starting within exon 2 and finally isoforms starting with a 

ATG codon located at the very end of exon 4 ([106], Figure  2-7). 

The splicing events affect exons 8, 13, 15, 17, 20, 24 and 28 and hitherto at least 24 different 

TRPM3 variants have been described from one species (Figure  2-7). However, only by 

splicing at least 27 = 128 isoforms may exist (Figure  2-7). The splicing pattern of these exons 

is highly conserved in human, rat and mouse transcripts indicating important functions of the 

related protein modifications. For example, mTRPM3α2 proteins differ from mTRPM3α1 

proteins by the absence of 12 amino acid residues in the pore forming region of the channel 

and display high permeability for Ca2+ in contrast to mTRPM3α1 [103].  
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Figure  2-7: The Trpm3 gene, its transcripts and the encoded proteins, adapted from [106].  
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A. Genomic organization of the mouse Trpm3 gene on chromosome 19. Predicted transcription start 
sites are indicated by arrows. A microRNA sequence (miR-204) is located in intron 8. Exon 19 which 
was subject of the targeting strategy to obtain a TRPM3-deficient mouse line [105,107] is highlighted 
in red.  B. Structure of Trpm3 transcripts identified in mouse tissues. Their reading frames are flanked 
by stop codons establishing entire protein coding sequences with GenBank accession numbers as 
indicated. The coding parts of the transcripts are shown as grey bar, the noncoding parts as thin line. 
The upper bar indicates the relative size of the protein coding exons 1 - 28 with spliced parts 
highlighted in blue. Start codons (ATG) present in exons 1, 2 and 4 and stop codons (stop) in exon 28 
are indicated.  C. Schematic presentation of TRPM3 protein isoforms (black bars) scaled to their 
relative size with protein identifiers and numbers of amino acid residues (aa) indicated in brackets. 
Internal protein domains removed by alternative splicing are indicated as thin lines. The organization 
of domains of TRPM3 proteins is shown above, with calmodulin/S100 protein interacting regions 
(CamBS/S100), ICF region, transmembrane region including the six transmembrane domains (white 
rectangles), the channel pore (P), the TRP motif (TRP) and a coiled-coil region (cc) as indicated. 

TRPM3 proteins are known to interact with theirselves and with other TRP channels to form 

homo- and hetero-multimeric channels. It has been shown by immunoprecipitation that 

TRPM3α1 variants interact with TRPM3α2 and with TRPM1 [108]. This interaction was also 

confirmed by intermolecular fluorescence resonance energy transfer (iFRET) of TRPM3 

proteins fused to the fluorescent proteins CFP or YFP [109,110]. The introduction of 

TRPM3α1 or TRPM1 into TRPM3α2 overexpressing HEK293 cells revealed a dominant-

negative effect on the TRPM3α2-dependent Ca2+ entry confirming a direct molecular 

interaction of TRPM3 and TRPM1 proteins [108]. Recently, a region that is indispensable for 

TRPM3 channel function (ICF) has been identified [111]. The ICF domain consists of 10 

amino acid residues encoded by the last part of exon 13 and interestingly, is also subject of 

alternative splicing. The ICF region is conserved throughout the TRPM subfamily and was 

suggested to be essential for the function and the formation of operative TRPM channels. 

TRPM3 variants lacking the ICF domain (∆ICF) showed reduced interaction with other 

TRPM3 isoforms and a diminished occurrence in the plasma membrane. Furthermore, 

coexpression of ∆ICF-proteins with functional TRPM3 subunits resulted in impaired TRPM3-

mediated Ca2+ entry and reduced the number of channels indicating that the ICF region is 

necessary for the function and trafficking of TRPM3 proteins [111]. 

TRPM3 channel activity is suggested to be regulated by the calcium binding protein 

calmodulin (CaM) since the comparison of TRPM3 amino acid sequence with calmodulin-

binding proteins indicated the presence of six putative calmodulin binding sites within the N-

terminus of TRPM3 [112]. Recently, the presence of two of these binding sites was 

confirmed experimentally [113]. Interestingly, these two binding site were found to bind both 

calmodulin and another calcium binding protein (S100A) in calcium-dependent manner. 

These two proteins are able to compete for the same binding sites within the TRPM3 N-
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terminus [113]. PIP2 was also found to interact with the CaM/S100A binding sites, implying 

an important role of this region in the regulation of TRPM3 channel activity [114]. 

2.4.2 Expression and function of TRPM3 proteins 

The expression pattern of TRPM3 in different tissues was uncovered by the use of a variety 

of molecular and biochemical techniques like RT-PCR, in-situ hybridization, 

immunohistochemistry as well as Northern- and Western blot analysis (Table  2-2).  RT-qPCR 

analysis of human and mouse tissues revealed strongest expression of TRPM3 in the brain, 

pituitary gland, kidney and adipose tissues. For neuronal TRPM3 channels, their occurrence 

in dorsal root ganglia (DRG) and their function as sensor of noxious heat is well established 

[105]. However, in the central nervous system the Trpm3 gene is expressed not only in 

neurons but also in epithelia and oligodendrocytes, where TRPM3 channels have been 

proposed to participate in differentiation and CNS myelination [110]. In mouse brain, 

transcripts could be detected in several regions (Table  2-2) with most prominent expression 

in epithelial cells of the choroid plexus [103]. However, as shown in Table  2-2, TRPM3 is 

expressed in quite a number of other tissues and cell types with hitherto unknown functions.  

In isolated pancreatic β-cells, PregS induced TRPM3-mediated Ca2+ influx resulting in an 

enhanced insulin secretion of these cells (Table  2-1, [115]). This and other studies [116] 

suggested the importance of TRPM3 signaling in the regulation of insulin synthesis and 

secretion [117]. Furthermore, TRPM3 proteins contribute to pain sensation in dorsal root 

ganglia (DRG). TRPM3-deficient mice showed an impaired perception of noxious heat [105] 

and TRPM3 antagonists like Hesperetin and isosakuranetin reduced the nocifensive 

behavior after PregS injection [118].  TRPM3-dificient mice also showed reduced consensual 

pupillary responses to light suggesting that TRPM3 might play an indirect role in these 

responses [107]. Furthermore, TRPM3 signaling has been suggested to be coupled to aortic 

contraction and suppression of proinflammatory interleukin-6 secretion in vascular smooth 

muscle cells from human and mouse [119]. Since TRPM3 is expressed in the brain with a 

prominent expression in choroid plexus epithelial cells (CPECs), it was hypothesized that 

TRPM3 might be involved in the production of the cerebrospinal fluid and the regulation of its 

ionic composition [103,120]. According to TRPM3 expression in the kidney and its activation 

by hypotonicity, it has been suggested that TRPM3 plays a role in renal osmohomeostasis 

[102,121].   
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Table  2-2: TRPM3 expressing tissues and the methods of their detection (adopted from [106]) 
Method of detection* 

Tissue/cell 
type 

RT-PCR RT-
qPCR 

Micro-
array 

Northern ISH Western IHC/
ICC 

cDNA 
library 

Transgene Function 

Nervous system 
total brain [101,102, 

110,115, 
122-124] 
[122,123] 

[63,102]  [101-
103,125] 

 [110,115]     

cerebrum  [126]     [110]    
brainstem       [110]    

locus 
coeruleus 

 [102]         

spinal cord  [102]         
hippocamp

us 
 [126]     [110]    

forebrain  [126]         
corpus 

callosum 
      [110]    

chor. 
plexus 
epithel  

 [102]  [103] [103, 
127-
129] 

     

tenia tecta     [103]      
ILSN#     [103]      

hypothalam
us 

 [102]         

cerebellum    [102,126]     [110,
130] 

   

purkinje 
cell 

      [130]   [130] 

 
oligodendro

cyte 

[110]      [110]    

Oli-
neu/OLN-

93cell 

     [110]    [110] 

basal 
ganglia/ 

substantia 
nigra 

 [102,126]         

dorsal root 
ganglion 

[124] [105,124,
131,132] 

  [105] [105]    [105,118, 
133] 

trigeminal 
ganglion 

[134] [105,124]   [105] [105]    [105] 

nodose 
ganglion 

 [131]         

SH-SY5           
Sensory system 

eye  (total)   [107] [103] [128]      
retina [125] [135,136]  [125] [125,128,

129] 
  [137] [107]  

iris        [138]   
lens  [139]   [128,129,

140] 
     

retinal pig. 
epithel. 

 [141,142]   [125,128,
140] 

  [137]   

Muller cell [107]        [107]  
ciliary body     [125,128,

140] 
   [107]  

inner ear [143,144]       [144]   
Cardiovascular system 

heart [124] [145]         
pulmonary 

artery  
[122,146] [146,147]         

coronary 
artery 

[123]          

mesenteric 
artery 

[123]          

femoral 
artery 

      [119]    

aorta  [119,123, 
146] 

[146]        [119] 

saphenous [119] [119]     [119]   [119] 
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vein 
Endocrine system 

pituitary 
gland 

 [63]  [108]       

pancreas 
(total) 

[101,115]     [115]    [115] 

pancretic 
islet cell 

[148]         [149] 

INS1 [115,148] [150]  [115]  [115,116,
151] 

   [115,149, 
151] 

Urinary system 
kidney 
(total) 

[101,124] [63,102]  [101,102]  [101]     

collect. tub. 
epithel. 

    [102]      

MDCKII 
cell 

[152]          

ccRCC§  [153]         
Reproductive system 

ovary [101]          
testis [124] [102,124]  [102]       

sperm cell [154]          
prostate [155] [155]         

Other tissues/cells 
MG-63 cell [156]          

SaOS cell [156]          
U2 OS cell [156]          
odontoblast [157]          

adipose 
tissue 

 [63]         

buccal 
mucosa 

 [158]         

synoviocyte [159]      [159]   [159] 
glioma  [160]         

* References demonstrating expression of TRPM3 as indicated by numbers, #intermediate lateral septal nuclei, §clear cell renal cell 
carcinoma 

2.4.3 Pharmacology of TRPM3 channels 

Depending on the isoform, the activation mechanisms of TRPM3, the selectivity and the 

conductance of the channels turned out to be different. For example, the long variant of 

human TRPM3 has been suggested to be activated by store depletion [102], whereas the 

short variant hTRPM31325 mediates Ca2+ entry upon extracellular application of hypotonic 

solutions [101]. Furthermore, mouse TRPM3α1 channels are permeable for monovalent 

cations, whereas mouse TRPM3α2 channels allow the entry of divalent cation such as Ca2+ 

and Mg2+ [103]. Human TRPM31325 was reported to be the first cation channel activated by D-

erythrosphingosine [161] but TRPM3 channels have been also described as steroid-

receptors channels, since pregnenolone sulfate (PregS) is the most potent agonist of TRPM3 

[115]. At body temperature of 37°C, TRPM3 is activated by ~ 100 nM PregS, which is close 

to serum concentrations that have been reported to be 130 and 140 nM in female and male, 

respectively [162,163]. However, at room temperature 100 µM PregS are needed to fully 

activate the channel [115]. TRPM3 channels were also shown to be activated by nifedipine 

which is well-known as a blocker of voltage-gated calcium channel (VGCC, [115]). It has 

been shown that nifedipine and PregS are able to activate TRPM3 synergistically and that 

they act at different binding sites [164]. Recently, an alternative permeation pathway through 
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TRPM3 channels has been described. This pathway is activated by the combined application 

of neurosteroids and clotrimazole or other structurally related drugs and is still active after 

desensitization or blockade of the central pore. Activation of this pathway leads to massive 

Na+ influx, enhanced excitation of sensory neurons and in turn increased TRPM3 dependent 

pain intensity [163]. 

Similar to other TRP channels, TRPM3 channel activity was described to be inhibited by the 

extracellular application of 100 μM 2-aminoethoxydiphenyl borate (2-APB, [165]). 

Furthermore, 100 μM concentration of trivalent ions such as Gd3+ and La3+ also inhibit Ca2+ 

influx through TRPM3 channels [101,102]. The nonsteroidal anti-inflammatory drug 

mefenamic acid [151], antidiabetic PPARγ-agonists such as rosiglitazone, troglitazone, and 

pioglitazone [166] and cholesterol [119] have been shown to decrease TRPM3 channel 

activity. Finally, progesterone was shown to reduce TRPM3 activity in vascular smooth 

muscle cells [167]. However, none of the above mentioned substances are specific for 

TRPM3 as they also block a plethora of other channels. By screening a library of natural 

compounds, novel potent TRPM3 blockers have been discovered recently including 

ononetin, naringenin and Hesperetin [168]. Ononetin is a deoxybenzoin from Ononis spinosa 

while naringenin and Hesperetin belong to citrus fruit flavanones. In a following study, further 

TRPM3 channel blockers like liquiritigenin and isosakuranetin were identified and 

isosakuranetin was defined as the most potent inhibitor of TRPM3 channels with an IC50 of 

50 nM [118].  

2.5 Aim of the work 

The aim of this work was the identification of TRPM3 channels in the pituitary gland and the 

determination of their function(s) in defined cell populations.  

To accomplish this goal: 

1. I constructed and screened a pituitary cDNA library and analyzed the number and 

identity of different TRPM3 isoforms. 

2. I used mono- and polyclonal anti-TRPM3 antibodies as well as a transgenic mouse 

line expressing the GFP-reporter protein under the control of TRPM3 promoter to 

identify TRPM3 expressing cells. 

3. I analyzed the functional properties of TRPM3 channels and their physiological roles 

in the identified cell populations using TRPM3 specific ligands and cells from wild 

type and TRPM3-deficient mice.  
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3 Materials 

3.1 Chemicals 

Unless otherwise indicated, chemicals used for this work were purchased from one of the 

following suppliers: Sigma-Aldrich, Invitrogen, Merck, Applichem, VWR, Biochrome or Roth. 

3.2 Reagent systems (Kits) 

Agilent RNA 6000 Nano Kit® 

Alpha-MSH ELISA Kit (MyBioSource) 

GeneEluteTM HP Plasmid Miniprep Kit (Sigma-Aldrich) 

peqGOLD RNAPure TM (Peqlab Bio technology, Erlangen) 

Phusion® High-Fidelity PCR Kit (New England Biolabs) 

Milliplex MAP® Kit, Rat/Mouse Neuropeptide (Merck Millipore) 

SuperScript®  One-Step RT-PCR with Platinum® Taq DNA Polymerase (Invitrogen) 

SuperScriptTM First-Strand Synthesis System for RT-PCR (Invitrogen) 

Thermo Scientific™ Pierce™ BCA™ Protein Assay  

Western LightningTM Plus ECL (Perkin Elmer) 

3.3 Vectors 

pUC 19 

The cloning vector pUC19 (Figure  3-1) comprises a fragment carrying the sequences for the 

α-peptide of the lacZ gene and the multiple cloning site (MCS), in addition to portions of 

pBR322 and M13mp19 (Figure  3-1). The pBR322 fragment carries the ampicillin resistance 

gene and the origin of replication. The region of M13 mp19 vector is responsible for the 

single strand production. Insertion of cloned fragments into the MCS disrupts the reading 

frame of the α-peptide and gives rise to white-colored colonies on X-Gal / IPTG containing 

solid media.  

pCAGGSM2-IRESGFP 

The expression vector pCAGGSM2 IRESGFP [169] comprises 6153 bp and is based on the 

plasmid pCAGGS (Figure  3-1, [170]). The expression of the target cDNA is under the control 

of a chicken β-actin promoter. An internal ribosome entry site (IRES) located downstream of 

the multiple cloning site allows the simultaneous expression of the target cDNA and the 
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cDNA encoding the green fluorescent protein (GFP). This way the expression of the target 

cDNA can be visualized by the fluorescence of GFP. 

 

Figure  3-1: Circular map of the vectors used. 
Shown are: the origin of replication derived from the ColE1 Plasmid (ColE1 ori) and the simian virus 
SV40 (SV40 Ori); the multiple cloning site (MCS); binding sites of the primers FV79, FV80, 
pCAGGSfor and PH127; the enchancer sequence from the cytomegalovirus (CMV IE); the promotor of 
the β-actin gene from chicken (P β-actin); the polyadenylation sequence of the rabbit β-globin gene 
(rabßglobin pA); the internal ribosome entry site (IRES); coding sequences for β-lactamase (AmpR); 
the sequence encoding the α-peptide of the β-galactosidase (lacZ) and the green fluorescent protein 
(EGFP), recognition sequences of the restriction endonucleases SmaI and EcoRI.  

3.4 Oligonucleotides 

Oligodeoxyribonucleotide primers (Table  3-1) were purchased in lyophilized form from 

Eurofins MWG Operon (Ebersberg) and dissolved in sterile H2O in a concentration of 100 

pmol/µl. Stock solutions were stored at -20 °C. 

Table  3-1: Oligonucleotide primers used for sequencing  
Primer name Primer sequence (5’→3’) Origin of the sequence 
FV 79 CACGACGTTGTAAAACGAC pUC19 
FV 80 CAGGAAACAGCTATGAC pUC19 
PH 389 CCAACTGAGCTTAGCTTTAGCC Mouse TRPM3 cDNA 
PH 401 CTACATTGTTCGCCAGAGCAG Mouse TRPM3 cDNA 
PH 422 CCCTCTAGAGCTGGAGTGAAATGTGCTTTTCC Mouse TRPM3 cDNA 
PH 427 GCCCTTAAGTTGAGGAGAGGACGGAAGACA Mouse TRPM3 cDNA 
PH 520 AGGATCATCCAAGTCGATGTCC Mouse TRPM3 cDNA 

Nucleotides which are non-homologous to the indicated sequence are underlined. 
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Table  3-2: Oligonucleotide primers used for RT-PCR 
Primer name Primer sequence (5’→3’) Origin of the sequence 
PH 382 GAGAGCTGAGCGCAGGCTG Mouse TRPM3 cDNA 
PH 383 GAATGGGCAAGAAGTGGAGGG Mouse TRPM3 cDNA 
PH 384 AATGTGTTCACATCATACCGAGC Mouse TRPM3 cDNA 
PH 385 TCCTGCAACACACGGTAAGCC Mouse TRPM3 cDNA 
PH 386 GGTTGTGGAAGGTGCTAGAGC Mouse TRPM3 cDNA 
PH 423 GCCCTTAGGAGCAAGCTCACCGTTCTCAATAG Mouse TRPM3 cDNA 
PH 429 AAGAAGGTTCAGGGGCTCAGG Mouse TRPM3 cDNA 
PH 520 AGGATCATCCAAGTCGATGTCC Mouse TRPM3 cDNA 
PH 521 CCCAATGAGGAGCCATCTTGG Mouse TRPM3 cDNA 
PH 522 CGGGTCTCATTCTGTCCACAG Mouse TRPM3 cDNA 
PH 561 GGTACCTAACAATGTCAGGGAC Mouse TRPM3 cDNA 
PH 562 AAGTAGGGAGAAGTTGGTCACC Mouse TRPM3 cDNA 
PH 777 TGGTGGTGCTGATGAGCTTTGG Mouse TRPM3 cDNA 
PH 778 TGGATTGTCTTGCCATCCTCTCG Mouse TRPM3 cDNA 
C5-139 CGCACACCGGCCTTATTCC IRES-GFP 

 

Table  3-3: Oligonucleotide primers used for amplification of TRPM fragments from GLAST 
positive and GLAST negative cells from mouse intermediate and posterior pituitary lobe 
Primer name Primer sequence (5’→3’) Origin of the sequence 
PH 773a GCGACGAAGGAGGAGTCATAAACG Mouse TRPM1 cDNA 
PH 774a CATCTTGCTGACCCTCGGAACC Mouse TRPM1 cDNA 
PH 775 GAAAGTGGGGAAGTATGTCCGGG Mouse TRPM2 cDNA 
PH 776 TTGAGCCACCTTGACCAAGCC Mouse TRPM2 cDNA 
PH 779 AGGTCCTCCTGGGACTGTAGAACCC Mouse TRPM4 cDNA 
PH 780 GCAACACGTGGGCAAACAGC Mouse TRPM4 cDNA 
PH 781 TCAAGGCACTTGTGAAAGCCTGC Mouse TRPM5 cDNA 
PH 782 TCACGAGGGCATCTGTCATCACC Mouse TRPM5 cDNA 
PH 783 CAGCCCTACAAATCCAAGGAGAAGC Mouse TRPM6 cDNA 
PH 784 TGCCTCTTCATGAGCACCGC Mouse TRPM6 cDNA 
PH 785 CATTCGGGATGTCAAGCAGGG Mouse TRPM7 cDNA 
PH 786 CGACCTGACCTCCGGTTATTTCC Mouse TRPM7 cDNA 
PH 787 TGCGCTGTACAAAGCCTTCAGC Mouse TRPM8 cDNA 
PH 788 TGGGTCTGTCCTTTATGAGAGCCG Mouse TRPM8 cDNA 
PH 928 TGGTGAGAAAACGGTGCATGCTTA Mouse TRPM3 cDNA 
PH 930 TCTGTCCAGGACTAGGGCATCCAG Mouse TRPM3 cDNA 

 

3.5 Primary and secondary antibodies 

Antibodies used for immunostaining and western blots are listed in the following tables. 

Table  3-4: Antibodies used for immunostaining 
Antibody Host and concentrations Dilution used Origin 
Anti-LH Rabbit polyclonal, 0.1 mg/ml 1:5000 NHPP*   
Anti-FSH Rabbit polyclonal, 0.1 mg/ml 1:20000 NHPP* 
Anti-ACTH Rabbit polyclonal, 0.1 mg/ml 1:20000 NHPP* 
Anti-TSH Rabbit polyclonal, 0.1 mg/ml 1:5000 NHPP* 
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Anti-GH Rabbit polyclonal, 1.5 mg/ml 1:20000 NHPP* 
Anti-PRL Rabbit polyclonal, 1 mg/ml 1:20000 NHPP* 
Anti-LH Guinea pig 1:5000 NIDDK** 
Anti-PRL Guinea pig 1:12000 NIDDK** 
Anti-α MSH Rabbit polyclonal, 0.1 mg/ml 1:2000 abcam 
Anti-GFP Rabbit polyclonal, 2 mg/ml 1:5000 Invitrogen 
Anti-GFP Goat monoclonal, 1 mg/ml 1:1000 Rockland 
Anti-GLAST (PE) Mouse monoclonal,100 µg/ml 1:20 Miltenyi Biotec MACS  
Anti-GFAP Rabbit polyclonal, 2.9 mg/ml 1:500 Dako 
Anti-GFAP Alexa Fluor 488 Mouse monoclonal,100 µg/ml 1:50 Cell Signaling 
Anti-Neurophysin I Goat polyclonal, 200 µg/ml 1:1500 Santa Cruz 
Anti-Neurophysin II Goat polyclonal, 200 µg/ml 1:1500 Santa Cruz 
Anti-Synapsin I Goat polyclonal, 200 µg/ml 1:1500 Santa Cruz 
Anti-S100B Rabbit polyclonal, 2 mg/ml 1:500 Abcam 
Anti TRPM3 (AK695) Rabbit polyclonal, 1 mg/ml 1:1000 Lab-made 
Anti TRPM3 (9F6) Rat monoclonal, 1 mg/ml 1:200 Lab-made 
Anti-rabbit Alexa Fluor 488 Donkey, 2 mg/ml 1:1000 Invitrogen 
Anti-goat Alexa Fluor 488 Donkey, 2 mg/ml 1:1000 Invitrogen 
Anti- guinea pig Cy 3 Donkey, 2 mg/ml 1:1000 Jackson Labs 
Anti-rabbit Alexa Fluor 488 Goat, 2 mg/ml 1:1000 Invitrogen 
Anti-rabbit Alexa Fluor 594 Goat, 2 mg/ml 1:1000 Invitrogen 
Anti-rabbit Alexa Fluor 594 Donkey, 2 mg/ml 1:1000 Invitrogen 
Anti-goat Alexa Fluor 546 Donkey, 2 mg/ml 1:1000 Invitrogen 
Anti-goat Alexa Fluor 594 Donkey, 2 mg/ml 1:1000 Invitrogen 
Anti-rat  Alexa Fluor 594 Goat, 2 mg/ml 1:1000 Invitrogen 
Anti-rat  Alexa Fluor 488 Goat, 2 mg/ml 1:1000 Invitrogen 

* NHPP = National Hormone & Peptide Program, Harbor-UCLA Medical Center, 1000 W. Carson St., Torrance, 
California 90509, U.S.A, Dr. A. F. Parlow, Scientific Director. 
** NIDDK = National Institute of Diabetes and Digestive and Kidney Diseases; Maryland, USA. 

Table  3-5: Antibodies used for Western blots 
Antibody Antigen Host Dilution used Origin 
AK695 mTRPM3-

peptidsequence 
QEKEPEEPEKPTKEK 

Rabbit polyclonal 1:200 Lab-made; 
1 mg/ml 

9F6 mTRPM3α, epitope 
ERAESNKIRSRTS 

Rat monoclonal 1:200 Lab-made; 
1 mg/ml 

Anti-GFP GFP Mouse monoclonal 1:500 Roche;  
0,4 mg/ml 

Anti-Na+/K+ 
ATPase 

Na+/K+ ATPase    

Anti-rabbit 
Horseradish 
peroxidase 
(HRP)-linked  

rabbit IgG Donkey polyclonal 1:50000 GE Healthcare 

Anti-Mouse HRP 
-linked 

mouse IgG Goat 1:50000 Dianova;  
0,8 mg/ml 

Anti-Rat HRP -
linked 

rat IgG Rabbit polyclonal 1:40000 Sigma;  
8,3 mg/ml 
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3.6 Bacterial strains 

In this work the E. coli strain XL1-Blue was used for the cloning of plasmid DNA [171]. This 

strain is derived from E. coli K12 and has the following genotype: supE44, hsdR17, recA1, 

endA1, gyrA46thi, relA1, lac-, F'[proAB+lacqZΔM15 Tn10 (tetr)]. 

3.7 Mice 

All animal experiments mentioned in this work were approved in accordance with the 

Saarland University Ethic Regulations and the animal welfare committees of Saarland’s 

State. In this work, a mouse line lacking part of the Trpm3 gene (TRPM3-knockout, KO) was 

used. Additionally, a mouse line carrying the GFP-cDNA in the Trpm3 locus  (TRPM3-GFP-

knock in, short GFP-Ki) was used as reporter strain of TRPM3 expression [108]. The strategy 

used to generate these mouse lines is explained in Figure  3-2. For the all experiments, both 

male and female mice were used at an age of 2-6 months. TRPM3-GFP-Ki mice (short GFP-

Ki) had a mixed 129SvJ/C57Bl6/N genetic background. For this line, mice of the F1 

generation from 129SvJ and C57Bl6/N intercrosses were used as wild type controls. 

TRPM3-deficient mice were back-crossed for at least 10 generations to the C57Bl6/N mouse 

line which also served as wild type controls. All mice were bred and kept in a specific 

pathogen free facility (SPF). They were maintained in a 12 hour light-dark cycle, and water 

and standard food was available ad libitum. At the end of each experiment, a biopsy from the 

tip of the tail was taken to confirm the genotype of each mouse.  
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Figure  3-2: TRPM3 targeting strategy [108].  
The genomic structure of the TRPM3 gene including the pore coding exon 24 (P) is shown and a 
higher magnification of this region is indicated below. The targeting construct included two flanking 
thymidine kinase cassette (TK), the 5`-homology with the floxed exon 24, the 3`-homology, the splice 
acceptor (SA), the IRES-GFP cassette and the polyadenylation site (PA). The location of the loxP 
(orange triangles) and FRT (yellow triangles) sequences is also indicated. A L3F2 allele (carrying 
three loxP and two FRT) was generated by the homologous recombination of the targeting construct 
with the wild-type allele. L1 allele (KO), L2F2 allele (conditional KO) and L2 allele (WT) were 
generated by the activity of Cre-recombinase. The L3F1 allele (GFP-Ki) and the L2F1 allele were 
generated by the activity of Flp-recombinase. 
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4 Methods 

4.1 Molecular biological methods 

4.1.1 Cultivation and transformation of eukaryotic cells 

4.1.1.1 Cultivation of HEK 293 cells 
Human Embryonic Kidney (HEK) 293 cells were cultured at 37°C in a humidified atmosphere 

containing 5 % CO2 either in 75 cm² culture flasks with 10 - 15 ml of medium or cultured in 

culture dishes (∅ 3 cm) with 2 ml of medium, to passage into an appropriate culture vessel, 

the cells were washed once with PBS, trypsinized with 30 – 40 μl trypsin-EDTA/cm² surface 

area, diluted 1:2 up to 1:10 with fresh medium and transferred.  

Culture medium 
Minimum essential medium (# 31095-029, Invitrogen)  
10% Fetal calf serum  (# 104370-028, Invitrogen) 

4.1.1.2 Preparation and cultivation of primary pituitary cells 
A mouse was killed by cervical dislocation and the head was decapitated. The cover of the 

skull was cut using a small bone scissor and the brain was removed using spatula. The 

pituitary gland was directly isolated and placed in cold dispersion medium I and cut into 8-

10 pieces. In some cases the posterior/intermediate lobe were dissected from the anterior 

lobe. The pieces were digested for 30 min at 37°C in sterile filtered, freshly prepared 3 mg 

collagenase (CLS type II, Biochrom)/ ml dispersion medium I. During the incubation time, the 

pieces were triturated several times by pipetting through 1000 and 200 µl pipette tips. 

Thereafter, the cells were collected by centrifugation at 800 rpm (Hettich, Rotana) for 5 min 

and resuspended in 125 µl dispersion medium II. 25 µl of the cell suspension were plated 

onto poly-L-lysine covered coverslips and incubated at 37°C, 5 % CO2 for 1 h before 1.5 ml 

of the culture medium were added. 

Dispersion medium I  

1x  HBSS (Invitrogen, 14025) 
5 mg/ml BSA  
10 mM  HEPES  
10 mM  glucose  
pH was adjusted to 7.3 - 7.4 with 2 mM NaOH 

Dispersion medium II   

1x  DMEM (Invitrogen, 41966 with Nateruimpyruvate) 
5 mg/ml  BSA 
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Culture medium   

1x  DMEM (Invitrogen, 41966 with Nateruimpyruvate) 
10000 u/ml  Penicillin 
10 mg/ml  Streptomycin 
10 %  FCS  

Primary “explant” cultures were prepared as described [172]. In brief, a piece of the posterior 

lobe (separated from the intermediate lobe) was placed onto collagen-covered coverslips, 

covered with culture medium and incubated at 37°C, 5 % CO2. The medium was exchanged 

every two days. 

4.1.1.3 Transformation of eukaryotic cells 
Cells were plated one day prior to transfection at a cell density of 60 – 70 % in culture dishes 

(∅ 3 cm). HEK293 cells were transfected with FuGene6 reagent according to the instructions 

of the manufacturer (Roche, Mannheim). Highest transfection rates were achieved with 6 μl 

transfection reagent and 2 μg DNA or with 3 μl transfection reagent and 1 μg DNA. 

Transfected cells were used for experiment after 24 - 48 h. 

4.1.2 Cultivation and transformation of Escherichia coli 

4.1.2.1 Cultivation of Escherichia coli 
The bacteria were grown in liquid LB medium or on LB Agar plates under aerobic conditions 

at 37°C. For the preparation of LB Agar plates LB medium was supplemented with 15 g/l of 

agar autoclaved and cooled to 50°C and poured into sterile petri dishes (∅ 10 cm). Selective 

medium was prepared by adding 50 g/ml ampicillin at 50°C.  

LB medium (pH 7.5)  
1 % (w/v) Tryptone / Peptone  
0.5 % (w/v) Yeast extract  
1 % (w/v) NaCl 

4.1.2.2 Preparation of electrocompetent E. coli cells 
To prepare electrocompetent E. coli cells, 2 x 500 ml LB medium in 2 l/ Erlenmeyer flasks 

were inoculated with 5 ml of an overnight culture of the E. coli strain XL-1 blue. The cells 

were incubated at 37°C and were shaked at 225 rpm until the optical density of the culture 

reached 0.6 at a wavelength of λ = 578 nm. The cell suspension was transferred into four 

sterile JA-10 centrifuge beakers (Beckman) and incubated on ice for 30 min. The cells were 

harvested by centrifugation at 4420 g at 4°C for 15 min. To remove the rest of the medium 

and salts, the cells were washed two times with ice-cold sterile water and one time with 

sterile and ice-cold 10 % (v/v) glycerol. Finally, the cells were resuspended in a total volume 
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of 1.5 ml 10 % glycerol. Aliquots of 60 µl were frozen immediately in dry ice/ EtOH and stored 

at -80°C. The competence of the cells was tested by transformation of 10 ng of the plasmid 

pUC 18.  

4.1.2.3 Transformation of plasmid DNA into electrocompetent bacterial cells 
An aliquot of electrocompetent cells ( 4.1.2.2) was thawed on ice and 40 µl of cells were 

mixed with the 2 µl of DNA. To remove salts prior to transformation, ligation reactions were 

precipitated with ammonium acetate / ethanol and precipitated the DNA was dissolved in 2 µl 

H2O. The DNA / cells mixture was transferred into a pre-cooled electroporation cuvette with 

1 mm electrode gap (peqlab). The electrical pulse was performed using a Gene-Pulser (Bio-

Rad) at a capacitance of 25 µF, a voltage of 2.5 KV and a resistance of 100 Ω. The time 

constant of the electrical pulse was always close to 2.5. 1 ml of LB medium supplied with 

50 mM magnesium sulfate, 50 mM magnesium chloride and 2 % glucose was added 

immediately after performing the pulse. The cell suspension was shaked at 37°C and 

200 rpm for 1 h, plated onto solid LB medium supplied with ampicillin and incubated 

overnight at 37°C. Cells of the E. coli strain XL1-Blue carry the ΔM15 deletion of the lacZ 

gene and are therefore not capable to form a functional β-galactosidase [171]. The α-peptide 

of the β-galactosidase, encoded by plasmids like pUC18 and pUC19 can complement this 

deficiency after transformation (α-complementation). A functional ß-galactosidase can be 

detected by the formation of a blue indole dye after cleavage of 5-bromo-4-Chloro-3-indolyl-

13ß-galactopyranoside (X-gal). The cells were therefore mixed with 200 μl X-Gal (40 mg/ml 

dissolved in dimethylformamide) and 50 μl of 0.1 M isopropyl-ß-thiogalactosylpyranosid 

(IPTG). IPTG was added to induce the gene expression of the α-peptide. The insertion of a 

DNA fragment into the multiple cloning site of the pUC18 or pUC19 vector led to an 

interruption of the reading frame of the lacZ gene. Therefore, cells carrying recombinant 

plasmids appeared as white colonies whereas those that were blue had been transformed 

with non-recombinant plasmids (blue-white screen). 

4.1.3 Isolation and purification of nucleic acids 

4.1.3.1 Isolation of total RNA  
To inactivate RNases, amine-free solutions were treated for 12 h with 0.01 % (v/v) diethyl 

pyrocarbonate (DEPC) and autoclaved twice. Total RNA was extracted using peqGOLD 

RNAPure TM kit following the manufacturer’s protocol (Peqlab Bio technology, Erlangen). 

Briefly, 107 cells or 100 mg tissue were homogenized by pipetting in 1 ml peqGOLD 

RNAPure TM reagent. The sample was incubated at RT for 5 min followed by the addition of 
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0.2 ml chloroform and vigorous mixing for 15 sec and incubation for 5 min at RT. After 

centrifugation at 12000 g for 15 min at 4°C, the upper aqueous phase was removed carefully. 

An equal volume of isopropanol was added and the sample was incubated for 5 min at 4°C 

followed by centrifugation at 12000 g for 15 min. The supernatant was completely removed 

and the RNA pellet was washed four times with 80 % ethanol. The pellet was air dried and 

dissolved in 500 µl of RNase-free water. To obtain highly pure RNA, an additional ethanol 

precipitation step was performed using potassium acetate ( 4.1.3.4).  

4.1.3.2 Analytical quick preparation of plasmid DNA for sequencing 
For isolation of recombinant DNA from E.coli cells, a GeneEluteTM HP Plasmid Miniprep Kit 

(Sigma-Aldrich) was used. Cells were collected by centrifugation of 1.5 ml overnight culture 

for 5 min at 3000 rpm (Biofuge pico, Heraeus) and resuspended in 200 μl resuspension 

buffer containing 0.1 mg/ml RNaseA. 200 μl of alkaline lysis buffer was used to lyse the cells 

for 5 min before 350 μl neutralization buffer was added. Samples were centrifuged at 

13000 rpm for 10 min to sediment cell debris. A vacuum suction device was used for the 

subsequent steps of binding and washing of plasmid DNA to silica columns. The silica 

columns were attached to the device and equilibrated with 500 μl of preparation solution. The 

clear supernatant was applied to the column and fluid was sucked by vacuum whereas 

plasmid DNA was bound to the column. Then DNA was washed by the addition of 500 μl of 

wash solution 1 followed by 750 μl of wash solution 2. The column was transferred to a 2 ml 

micro-centrifugation tube and centrifuged for 1 min at 13000 rpm, before it was transferred 

into a fresh tube and plasmid DNA was eluted with 100 μl 10 mM Tris-HCl, pH 8.8 by 

centrifugation for 1 min at 13000 rpm. The yield and purity of the eluted DNA was analyzed 

spectrophotometrically ( 4.1.4.1) and by agarose gel electrophoresis ( 4.1.4.2).  

4.1.3.3 Electroelution of DNA fragments from agarose gels 
DNA fragments separated by gel electrophoresis ( 4.1.4.2) were cut from the gel and placed 

in sterile semipermeable dialysis tube (pore size 12 kDa; Sigma) and filled with 300 µl H2O. 

The tubes were tightly closed with clamps and transferred to a chamber filled with 1x TBE 

buffer. 135 mA current was applied for 45 min until the DNA was totally eluted into the buffer. 

DNA solution was then carefully collected and the tube was washed with 100 µl H2O to gain 

the remaining DNA solution. 

4.1.3.4 Ethanol precipitation of nucleic acids 
Ethanol precipitation [173] was used to concentrate and clean nucleic acid solutions. DNA 

was precipitated from the aqueous solution by addition of 250 mM NaCl and two volumes of 
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ethanol (-20°C) followed by centrifugation at 13000 rpm (Biofuge pico, Heraeus) for 20 min. 

The pellet was washed with 70 % ethanol (-20°C), dried in a vacuum evaporation centrifuge 

and finally dissolved in sterile water. To precipitate RNA, 0.3 M potassium acetate and 

2.5 volumes of ethanol was used and the RNA sediment was washed with 80 % ethanol 

diluted in RNase-free water. The isolated RNA was stored at -80°C and the DNA at -20°C. 

4.1.4 Analysis of nucleic acids 

4.1.4.1 Photometry 
A spectrogram of 1 µl nucleic acid solution was determined at a wave length of 200 to 

300 nm using Nanodrop1000 spectrophotometer (peqlab biotechnology, Germany). 

According to Lambert–Beer’s law, the concentration was calculated assuming that at an 

absorbance of 1, the concentration of RNA is 40 µg/ml and of DNA 50 µg/ml. The ratio of the 

absorbance of 260 nm and 280 nm was taken as a measure of the purity and should be 

between 1.7 and 2.0.  

4.1.4.2 Gel electrophoresis of DNA 
Negatively charged DNA molecules migrate in an electrical field towards the positive pole 

and can be separated in an agarose matrix according to their size. DNA molecules were 

visualized by Ethidium bromide (EtBr) which intercalates into the DNA double helix and 

fluoresces after excitation with UV light of 354 nm [174]. DNA samples and a DNA size 

standard, used to determine the molecular mass of the DNA samples, were both mixed with 

loading buffer.  Agarose gels were used in different concentration according to the size of the 

fragment. 0.8 % (w/v) gels were used to analyze DNA fragments ranging in size from 0.5 to 

8 kb, whereas 2 % (w/v) gels were used to analyze small fragments between 0.1 to 1 kb. 

Standard agarose (Roth) were used to prepare analytical gels whereas GTQ-agarose (Roth) 

was used for preparative gels. The gels were prepared by mixing the desired amount of 

agarose with 1x TBE buffer. The mixture was heated in a microwave oven to melt the 

agarose and then cooled down to 50°C by stirring. EtBr was added of a final concentration 

of 0.1 μg/ml before pouring the gel in a horizontal gel tray. The gel solidified at room 

temperature and was immersed in 1x TBE buffer in the electrophoresis chamber before use. 

10x TBE buffer (pH= 8.0)   
108 g/l  Tris-HCL 
55 g/l  Boric acid 
9.3 g/l  EDTA    
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6x loading buffer    
15 % (w/v) Glycerol or ficoll 
0.25 % (w/v) Bromophenol blue 
0.25 % (w/v) Xylene cyanol 

4.1.4.3 Gel electrophoretic analysis of RNA  
To assess the integrity and the quantity of RNA solutions, an Agilent 2100 bioanalyzer, the 

Agilent RNA 6000 Nano Kit® and a RNA 6000 Nanochip were used (Agilent technologies). 

The chip accommodates sample wells and a well for an external standard (ladder). On the 

chip, micro-channels are fabricated from glass that creates an interconnected network 

among the wells. When filled with a sieving polymer and fluorescence dye, the channels built 

an integrated electrical circuit that allows the separation of RNA as well as DNA and proteins. 

The RNA 6000 Nano gel matrix was centrifuged through a spin filter at 1500 g for 10 min at 

RT and could be stored at -80°C. Before starting a single assay, 1 µl of the RNA 6000 dye 

concentrate was added to 65 µl of the Nano gel matrix and the mixture was vortexed and 

centrifuged at 13000 g for 10 min at RT. The gel-dye mixture, the marker, the ladder and 

RNA samples (25-500 ng/µl) were loaded into the chip according to the manufacturer’s 

protocol. RNA samples were separated by their electrophoretic mobility and subsequently 

detected via laser induced fluorescence. From the electropherogram, the RNA integrity could 

be estimated and was indicated by the RNA integrity number (RIN, [175]). 

4.1.4.4  DNA sequencing 
Sequencing of plasmid DNA was performed by the StarSEQ® Sequencing Service (Mainz). 

400-700 ng of plasmid DNA was mixed with 1 µl sequence specific oligonucleotide primer 

(10 pmol/μl) in a total volume of 7 µl per sequencing reaction. Sequence informations were 

analyzed using the Accelrys Gene software. 

4.1.5 Amplification of nucleic acids using polymerase chain reaction (PCR) 

4.1.5.1 Reverse transcription of the total RNA 
Synthesis of cDNA was carried out using the SuperScript TM First-Strand Synthesis System 

(Invitrogen) following the manufacturer’s instructions. Briefly, in a total volume of 10 µl, 5 µg 

of total RNA, 1 µl oligo dT12-18 or 1 µl gene specific primer (10 µM each) and 1 mM dNTP mix 

were added, heated at 65°C for 5 min and then cooled on ice for 1 min. Thereafter, 2x 

reaction mix containing 2 µl of 10x reverse transcriptase buffer (200 mM Tris-HCl, 500 mM 

KCl, pH 8.4), 4 µl of 25 mM MgCl2, 1 µl of RNAse inhibitor (RNAse Out, 40 units / µl) and 2 μl 

0.1 M DTT was added to the mixture and incubated for 2 min at 42°C before 1 µl of 
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Superscript II reverse transcriptase (50 U/µl) was added and the reaction was incubated at 

42°C for 50 min. The reaction was stopped by incubation at 70°C for 15 min. In order to 

obtain RNA-free cDNA templates, the remaining RNA was digested by addition of 1 µl 

RNase H (2 U/µl) and incubated at 37°C for 20 min. cDNA samples were stored at -20°C. 

4.1.5.2 PCR for subcloning of DNA fragments 
DNA fragment were amplified in vitro by the activity of a thermostable DNA polymerase 

directed by a pair of sequence-specific oligonucleotide primers in the presence of dNTPs. 

The polymerase chain reaction (PCR) was initiated by a denaturation step in which the 

double-stranded DNA was denatured into two single DNA strands followed by annealing of 

the primers to their specific recognition sequence and their elongation by the polymerase 

corresponding to the template sequence. This cycle of denaturation, annealing and 

elongation was repeated up to 45 times leading to an exponential amplification of the 

template DNA. For amplification of fragments that were subcloned into plasmid DNA, 

Phusion polymerase (NEB) was used. Oligonucleotides primers used for PCR were designed 

to have an average melting temperature (Tm) of 64°C to 68°C.  

The following reaction was prepared: 

2 µl  Template cDNA 
10 µl  5x Phusion High Fidelity Buffer 
1 µl dNTPs (10 mM of dATP, dCTP, dGTP, dTTP) 
2.5 µl Oligonucleotide primer 1 (10 pmol/µl) 
2.5 µl Oligonucleotide primer 2 (10 pmol/µl)  
31.5 µl DEPC-treated H2O 
0.5 µl Phusion DNA Polymerase (2 U/µl) 

The following reaction cycle was performed: 

98°C 1min 
98°C 5 sec    
64°C 10 sec  45 cycles 
72°C 3min   
72°C 5 min 
4°C ∞ 

4.1.5.3 One-step RT-PCR 
The amplification of TRPM transcripts expressed in mouse intermediate and posterior 

pituitary cells was performed using the One-Step reverse transcription-PCR system 

(Invitrogen, Karlsruhe, Germany).  It allows the reverse transcription of RNA into cDNA and 

followed by its amplification in one single reaction tube (one-step). Therefore, RT/ Platinum® 

Taq Mix contains a mixture of two different enzymes: the SuperScript® II Reverse 
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Transcriptase (RT) which exhibits reduced RNase H activity and increased thermal stability 

compared to Moloney Murine Leukemia Virus  reverse transcriptase RT (M-MLV RT) and 

Platinum® Taq DNA polymerase which is inhibited at ambient temperatures by the binding of 

a specific antibody. As soon as the denaturation step at 94°C begins, the polymerase activity 

is restored by the denaturation of the antibody.  

By adding the specific compounds (prepared as a supermix) directly to the tube containing 

the frozen sorted cells, the following reaction mixture was prepared: 

50  sorted pituitary cells ( 4.4) 
12.5 µl  2x reaction mix 
0.5 µl  RT/ Platinum® Taq Mix 
0.75 µl  Oligonucleotide primer 1 (10 pmol/µl) 
0.75 µl  Oligonucleotide primer 2 (10 pmol/µl)  
10 µl  autoclaved H2O 

The following reaction cycle was performed: 

Reverse transcription: 50°C  30 min 
PCR:    94°C 2 min  
    94°C 15 sec  
    62°C 40 sec  15 cycles 
    70°C 30 sec  
    94°C 15 sec    
    62°C 30 sec    30 cycles  
    70°C 40 sec + 2 sec/cycle   
    72°C 5 min 
    4°C ∞ 
Amplification products were analyzed by agarose gel electrophoresis ( 4.1.4.2)  

4.1.6 Enzymatic modification of nucleic acids 

4.1.6.1 Restriction mapping 
Restriction endonucleases and buffers from (NEB, Biolab) were used to cleave purified 

plasmid DNA. Plasmid DNA in a final concentration of 50-500 ng was digested using 1-10 U 

of restriction enzymes in the presence of the appropriate buffer provided by the manufacture 

(NEB) at recommended temperatures for 1-3 h followed by electrophoretic analysis of the 

digestion products ( 4.1.4.2). 

4.1.6.2 DNA phosphorylation  
PCR products that were amplified with oligonucleotide primers missing the 5'-phosphate-

residue were phosphorylated prior to ligation. For this purpose, the T4 polynucleotide kinase 

was used in the presence of ATP. 25 µl DNA solution was mixed with 3 µl 10x T4 DNA ligase 
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buffer containing 10 mM ATP (NEB) and 2 µl T4 polynucleotide kinase (10 U/µl, NEB). The 

reaction mixture was incubated at 37°C for 40 min and then the enzyme was inactivated at 

75°C for 10 min. 

4.1.6.3 Ligation of DNA fragments 
DNA fragments were inserted into linearized plasmid DNA by T4 DNA ligase. DNA fragments 

and plasmid vector were mixed in a molar ratio of 3:1 in a total volume of 15 µl containing 

1.5 µl 10x ligase buffer (NEB) and 1 µl T4 DNA ligase (NEB). The reaction was incubated 

overnight at 16°C or alternatively 3-4 h at room temperature. 

4.2 Protein biochemical technologies 

4.2.1 Protein extraction from mice organs 

Proteins from mouse tissues like pituitary gland and choroid plexus of the brain or cultured 

cells were extracted in RIPA buffer containing freshly added protease inhibitors. Tissues/cells 

were homogenized by pipetting under permanent cooling (4°C) and then sheared through 

0.9, 0.7 and 0.4 mm cannulas to solubilize the cellular proteins. Protein lysates were 

centrifuged at 12000 g at 4°C for 30 min and the supernatant was saved. Protein 

concentrations were estimated using the BCA protein assay kit (Pierce,  4.2.2). Afterwards, 

proteins lysates were mixed with the same volume of 2x Laemmli buffer and denatured for 

5 min at 95°C or 30 min at 37°C. 

RIPA-buffer (pH= 8.0) 
150 mM CaCl2 
50 mM Tris-HCl 
1 % (v/v) Nonidet P40 
0.5 %  Sodium deoxycholate 
0.1 % (w/v) SDS 

Protease inhibitors 
1 µg/ml   Leupeptin 
1 µg/ml   Antipain 
0.1 mM  PMSF  
1 µM   Benzamidin 
1 µM   Pepstatin A  
0.3 mM   Jodoacetamid  
0.3 µM  Aprotinin 
1 mM   Phenanthrolin C 
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2 x Laemmli buffer 
120 mM  Tris-HCl, pH 6.8 
8 % (w/v) SDS 
20 % (v/v) Glycerin 
0.01 % (w/v) Bromphenol blue 
10 % (v/v)  ß-mercaptoethanol (14.3 M freshly added before use) 

4.2.2 Determination of protein concentration 

Protein concentrations  were determined using the BCA method [176] and the BCA protein 

assay kit from Pierce® (Rockford, USA). The method is based on the fact that Cu2+ is 

reduced to Cu+ in an alkaline solution by the oxidation of peptide groups. The resulting Cu+ 

ions chelate with BCA forming purple-colored products which absorb light at 562 nm. The 

amount of this product is proportional to the amount of the proteins present in the solution. 

1:50, 1:100 and 1:250 dilutions of the protein lysate were prepared and three times 25 µl of 

each were pipetted into 3 wells of a 96-well plate. In parallel, 0.02, 0.04, 0.06, 0.08, 0.1, 0.15 

and 0.2 µg/µl BSA solutions were used to generate a calibration curve.  200 µl of a mixture of 

BCA reagent A and BCA reagent B (50:1) was added to each sample. The reaction was 

incubated at 37°C for 1 h and the absorbance was measured at a wave length of λ= 540 nm 

in a plate spectrophotometer (Tecan Sunrise, Switzerland).  The concentration of the tested 

protein was calculated using the standard calibration curve. 

4.2.3 Discontinuous sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) 

In an electric field, proteins were separated according to their molecular mass in the  

presence of sodium dodecyl sulfate (SDS) and polyacrylamide gel (PAGE, [177]). Proteins 

were denatured and molecules became negatively charged by their interactions with SDS. 

For the reduction of disulfide bonds, ß- mercaptoethanol was added to Laemmli buffer 

directly before use. Proteins samples, as well as a molecular mass standard (Precision Plus 

Protein™ Dual Color Standards, 10-250 kD; BioRad, München), were loaded into the 

pockets of the polyacrylamide gel.  Electrophoresis was carried out in 1x SDS buffer at 

75 volts until the migration front reached the resolving gel. Then 120 volts were applied. The 

content of polyacrylamide used to prepare the stacking and the resolving gels was adapted 

according to the size of proteins to be separated. To separate proteins with a molecular 

mass > 100 kD, 4 % and 6.5 % polyacrylamide were used in the stacking gel and the 

resolving gel, respectively. For the separation of proteins with a molecular mass of 20 – 

100 kD, 5 % and 10 % polyacrylamide were used. 
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Stacking gel 4 % or 5 % 

125   mM  Tris-HCl, pH 6.8 
0.1 %  (w/v)   SDS 
4 % or 5 % (v/v)   Acrylamid: Bisacrylamid (29:1) 
0.075 % (w/v)  APS 
0.15 %  (v/v)  TEMED 

Resolving gel 6.5 % or 10 % 

375  mM  Tris-HCl, pH 6.8 
0.1 %  (w/v)  SDS 
6.5 % or 10 % (v/v)  Acrylamid: Bisacrylamid (29:1) 
0.075 % (w/v)  APS 
0.15 %  (v/v)  TEMED 

10x SDS electrophoresis buffer 

250  mM  Tris-HCl, pH 8.3 
1.92  M  Glycin 
1 %  (w/v)  SDS 

4.2.4 Western blot analysis 

The aim of this technique is to transfer proteins separated by SDS-PAGE onto a membrane 

where they can be detected with antibodies. To assemble the so called blotting sandwich, a 

PAGE gel with separated proteins was covered with a nitrocellulose membrane (Hybond C 

extra; Amersham Biosciences; Piscataway/New Jersey). The gel and the membrane were 

placed between two pairs of Whatman 3 M filter paper and a pair of pads which were rinsed 

with blotting buffer. The blotting sandwich was then placed in a blotting chamber (Peqlab 

Biotechnologie, Erlangen) filled with blotting buffer. A current of 350 mA was applied for 

90 min at 4°C to transfer the negatively charged proteins from the gel to the positively 

charged membrane where the proteins became tightly attached by the hydrophobic 

interaction with the membrane. 

 Blotting buffer (pH= 8.3) 

20 %  Methanol 
10 %  10x SDS electrophoresis buffer 

To check the transfer efficiency, the membrane was transiently submersed in a solution of 

2 % of the dye Ponceau-S in 3 % trichloroacetic acid. The membrane used for blotting had 

high affinity for proteins and therefore, the unoccupied areas were blocked by shaking the 

blot in 5 % non-fat dry milk dissolved in TBST for at least 1 h at RT. The membrane was 

submersed overnight at 4°C with gentle shaking in a solution containing primary antibodies 

dissolved in 1 % BSA / TBS / 0.05 % NaN3 (Table  3-5). 
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10x TBS 

500 mM Tris-HCl pH 7.5 
1.5 M  NaCl 

TBST 
1x  TBS 
1 %  Tween 20 

4.2.5 Enhanced chemiluminescence development (ECL-Reaction) 

The primary antibody ( 4.2.4) was discarded and the nitrocellulose membrane was washed 

three times for 10 min at RT with TBST and then incubated with secondary antibodies 

coupled to horseradish peroxidase in 5 % solution of non-fat dry milk for 1 h at RT. Next, the 

membrane was washed two times 10 min with TBST and finally for 10 min with TBS. The 

ECL reagents A and B containing the substrate of horseradish peroxidase (Perkin Elmer, 

Waltham/Massachusetts) were mixed in 1:1 ratio and added to the blot. The 

chemiluminescent reaction product was visualized and subsequently quantified for 15 sec, 

1 min, 5 min and 60 min using a charge-coupled device (CCD) camera (LAS-3000; Fujifilm, 

Düsseldorf) 

To remove antibodies bound to the blot (stripping), the membrane was washed four times for 

5 min with TBST, incubated with 20 ml of stripping buffer at 55°C with shaking, washed six 

times for 5 min with 20-30 ml TBST and finally blocked in 20 ml 5 % non-fat dry milk in TBST 

before it was incubated with the another antibody. 

Stripping buffer 

62.5 mM Tris-HCl pH 6.8 
2%  SDS 
100 mM ß-mercaptoethanol 

4.3 Immunostaining 

4.3.1 Fixation of proteins by whole body perfusion of mice 

The goal of the perfusion fixation of the whole body with a fixative is to preserve the tissue 

morphology and retain the antigenicity of the target molecules for following immunostaining 

experiments. The vascular system of an anesthetized mouse was used to deliver the fixative 

in vivo to the organs to fix proteins before autolysis of cells begins. The method described 

below is used to fix the organs which are supplied by the left ventricle. The perfusion was 

performed inside a fume hood. Before starting the procedure, the whole tubing of the 

perfusion system were filled with PBS (37°C) and all air bubbles were removed. Mice were 
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anesthetized with a mixture of ketamine (Serumwerk, Bernburg) and xylazine (Rompun, 

Bayer, Leverkusen) in concentration of 140 µg/g body weight and 10 µg/g body weight, 

respectively. As a measure of persisting nociception and the deepness of anesthesia, the 

withdrawal reflex upon strong pinching of the hind paw was tested repetitively. Thereafter, 

the mouse was taped on a tray with the chest upward and the abdominal site was cleaned 

with 70 % ethanol. A midline skin incision from the thoracic inlet to the pelvis was made with 

a scissor and then the abdomen was opened carefully to expose the liver and intestines. To 

expose the heart, the thoracic cavity was opened by an incision down the midline of the 

sternum, removing the diaphragm and by cutting the ribs along the lateral surface on the 

right and left side. Then the pulsative heart was gently grasped using a forceps and a blunt 

butterfly injection needle connected to a tube filled with PBS was inserted directly into the 

apex of the left ventricle. The right atrium was incised to allow the perfused solutions to exit 

the circulation. 20-40 ml PBS was perfused slowly and constantly into the heart to flush the 

blood from the circulatory system. Blanching of the liver and the mesenteric arteries from 

blood were good indicators to start the perfusion with the fixative. 60-80 ml of 4 % 

paraformaldehyde (PFA)/PBS was perfused for a mouse with body weight of 20-30 g. 

Skeletal muscle contractions indicated successful and complete perfusion of the body. 

Finally, the pituitary gland was dissected and post-fixed for additional 15-30 min in ice cold 

4 % PFA/PBS.  

Phosphate buffered saline (PBS) (pH= 7.4)  
137 mM NaCl  
2.7 mM KCl  
10 mM Na2HPO4  
1.47 mM KH2PO4 

4.3.2 Preparation of pituitary microsections for immunostaining  

Following the fixation process, the fixed pituitaries were washed with PBS three times for 

2 min and transferred into 30 % sucrose overnight to remove PFA and to cryo-protect the 

tissues. Pituitaries were placed in disposable plastic molds (Peel-A-Way ®, Thermo Fisher) 

filled with Jung tissue freezing medium (Leica Microsystems GmbH). A snap freezing 

chamber was made of a coplin jar filled with isopentane up to a height of 1 cm which was 

placed in an ice box filled with dry ice and 100 % ethanol up to a height of 3-4 cm. The molds 

were placed in the isopentane until the tissue freezing medium was totally frozen. Frozen 

organs were wrapped with parafilm and stored at -80°C at least overnight before they were 

cut into micro-sections. Using a CM3050 S microtome (Leica), 14 µm-slices were placed 
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onto SuperFrost® plus glass slides (R. Langenbrinck) and stored in slide saver boxes at -

80°C. 

4.3.3 Immunohistochemistry 

The immunostaining procedure was started by washing the slices ( 4.3.2) with PBS three 

times for 10 min at RT to remove Jung tissue freezing medium. Next, the slices were next 

permeabilized and blocked by incubation of the slides in coplin jars containing 20-50 ml of 

blocking solution. Depending on the amount of antibodies available, the staining procedure 

was performed either by incubation of the slides in coplin jars containing 20-50 ml of primary 

antibody solution (Table  3-4) dissolved in PBS or alternatively by the application of at least 

50 µl of antibody solution on the top of each slice followed by incubation of the slides in a 

humidified chamber overnight at 4°C. Control slices excluding the primary antibodies were 

always included (only shown in Figure  5-18) and never showed signals different from the 

background. Excess antibody was washed three times for 20 min with PBST in a coplin jar. 

The secondary antibody (Table  3-4) was diluted in PBS and applied for 2 h at RT in the dark. 

Excess secondary antibody was washed three times for 10 min with PBST. For staining of 

the cell nucleus, Hoechst 33258 (Sigma) was prepared in a concentration of 5 µg/µl in PBS, 

applied for 10 min at RT and then washed two times for 2 min with PBST. To reduce the 

decrease of fluorescence, stained slices were covered with a drop of anti-fading agent Roti®-

Mount FluorCare (Roth) and then with glass coverslips. Glass slides were sealed with nail 

polish to avoid desiccation. 

Blocking solutions 

5 % normal goat serum in 0.2 % Triton-X 100/ 0.02 % NaN3/ PBS 
5 % normal donkey serum in 0.2 % Triton-X 100/ 0.02 % NaN3/ PBS 

PBST 
1x PBS 
1% Tween 20 

Stained slices were analyzed using an Observer. Z1 fluorescence microscope (Carl Zeiss 

AG, Göttingen) coupled to a CCD camera and photos were acquired and archived by 

Axiovision Rel.4.6 image processing software (Carl Zeiss AG, Göttingen). To compare 

fluorescence emission intensities observed in different samples, slices were illuminated with 

identical light intensities and for identical time intervals. 
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4.4 Fluorescence-activated cell sorting (FACS)  

For fluorescence-activated cell sorting (FACS), pituitary cells were prepared as described 

under ( 4.1.1.2). Following centrifugation, the cells were kept on ice until being sorted. In 

some cases the cells were stained with anti-GLAST antibodies (1:11) in 0.5 % BSA/PBS for 

10 min at 4°C and the excess antibody was washed with 0.5 % BSA/PBS. Cell sorting was 

performed by Dr. Stephan Philipp on a MoFlo-XDP cell sorter (Beckman Coulter, Germany) 

using a 488 nm laser excitation. 

4.5 Fluorescence-based Ca2+ imaging 

For Ca2+ imaging experiments, pituitary cells were prepared as described under ( 4.1.1.2). For 

functional analysis of TRPM3 channel, changes of the intracellular Ca2+ concentration [Ca2+]i 

were recorded using Fura-2. Fura-2 is a ratiometric fluorescent dye excited by light of 340 

nm and 380 nm wavelengths [178]. Upon binding of Ca2+, Fura-2 changes its excitation 

maximum which shifts from 380 nm towards 340 nm whereas the emission maximum at 510 

nm is an affected. As a consequence, the ratio of the fluorescence intensities successively 

measured after excitation with 340 nm and 380 nm (F340/F380) is a good measure of [Ca2+]i. 

This ratio is independent of dye concentration, cell thickness, excitation intensity, dye 

leakage, photo-bleaching as well as the camera sensitivity because these factors all affect 

the measurements at both excitation wavelengths to the same extent. Fura-2 is used as an 

acetoxymethyl ester (Fura-2 AM), a nonpolar substance which can pass the plasma 

membrane of the cell. Fura-2 AM is cleaved in the cytoplasm of the cell by endogenous 

esterases to the polar molecule Fura-2 which is no longer able to pass the cell membrane 

again.  

Measurements were performed on an inverted microscope (Carl Zeiss AG; Göttingen) 

equipped with a 20x Flour objective and a polychrom II illumination system that can switch its 

output wavelength within 3 ms (TILLVision-Systems, TILL Photonics; Gräfelfing). 1 mM Fura-

2 AM stock solution were prepared in dimethyl sulfoxide (DMSO).  Primary pituitary cells 

plated onto poly-L-lysine covered coverslips were loaded at 37°C for 30 min in the dark with 

5 µM Fura-2 AM (Biotium, Austria) in the medium. Cells were washed twice with Ringer’s 

solution before the coverslip was inserted into a perfusion chamber. The cells were perfused 

with a perfusion rate of 1 ml/min. 100 µM pregnenolone sulfate (PregS) dissolved in Ringer’s 

solution was used to activate TRPM3, whereas 10 µM Hesperetin was used to block the 

channel activity. Both PregS and Hesperetin were prepared as a stock solution of 100 mM in 

DMSO. F340/F380 ratios were obtained every 3 sec and the fluorescence emissions at λ > 440 
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nm were captured, digitized, and analyzed for individual cells after background subtraction 

using TILLVision software. Results were given as mean ± S.E.M. 

Ringer’s solution 

135 mM NaCl 
5.4 mM KCl 
2 mM MgCl2 
1 mM CaCl2 
20 mM glucose 
10 mM HEPES 
pH = 7.25 adjusted with NaOH, 315 mosmol/kg 

4.6 Electrophysiological recordings (Dr. Andreas Beck) 

For patch-clamp experiments, cells from the posterior and intermediate lobe were prepared 

as described under ( 4.1.1.2). High resolution current recordings were performed at room 

temperature in the tight-seal whole-cell configuration using an EPC-9 patch-clamp amplifier 

(HEKA Electronics, Lambrecht, Germany). Patch pipettes were pulled from glass capillaries 

GB150T-8P (Science Products, Hofheim, Germany) at a vertical Puller (PC-10; Narishige, 

Tokyo, Japan) and had resistances between 2 and 4 MΩ. All bath and pipette solutions had 

an osmolarity of 285 to 305 mosM. For the recording of voltage-activated sodium current 

(NaV) and TRPM3 currents, voltage ramps spanning from -100 mV to +100 mV within 50 ms 

from a holding potential (Vh) of -80 mV (NaV) or within 400 ms from a Vh of 0 mV (TRPM3) 

were applied every 2 s using the patchMaster software (HEKA).  All voltages were corrected 

for a 10 mV liquid junction potential. Currents were filtered at 2.9 kHz and digitized at 100 µs 

intervals. Capacitive currents and series resistances were determined and corrected before 

each voltage ramp using the automatic capacitance compensation of the EPC-9. Inward and 

outward currents were extracted from each individual ramp current recording by measuring 

the current amplitudes at -80 and +80 mV, respectively, and plotted versus time. 

Representative current-voltage relationships (IVs) were extracted at the indicated time 

points. To display the IVs of the net PregS-induced current, basic currents before application 

of PregS were subtracted. All currents were normalized to the cell size 

(picoamperes/picofarads). 

Bath solution 

140 mM  NaCl 
2.8 mM  KCl 
2 mM  MgCl2 
1 mM  CaCl2 
10 mM  HEPES 
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10 mM  glucose 

Pipette solution 1 

140 mM  Cs- Glutamate 
8 mM  NaCl 
1 mM  MgCl2 
10 mM  HEPES 
10 mM  Cs-BAPTA + 3.1 mM CaCl2 => 100 nM free Ca2+ (calculated with webMaxC, 
http://web.stanford.edu/~cpatton/webmaxcS.htm) 
This solution was used for (Figure  5-40, Figure  5-42). 

Pipette solution 2 

140 mM  Cs- Methanosulfonate 
8 mM  NaCl 
1 mM  MgCl2 
10 mM  HEPES 
10 mM  Cs-BAPTA + 3.1 mM CaCl2 => 100 nM free Ca2+ (calculated with webMaxC, 
see above) 
This solution was used for all other electrophysiological experiments. 

Application solution 

100 µM PregS in bath solution 
10 µM Hesperetin in bath solution 

Monovalent-free (MVF) solution  

140 mM NMDG-Cl 
2 mM  MgCl2 
1 mM  CaCl2 
10 mM  HEPES 
10 mM  glucose  
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5 Results 

5.1 Identification of TRPM3 transcripts in mouse pituitary gland 

5.1.1 Detection of TRPM3 transcripts in whole pituitary  

Northern blot analysis revealed TRPM3 expression in the pituitary gland and other tissues of 

the mouse with transcripts of different sizes [108]. The Trpm3 gene encodes a large number 

of variants due to alternative splicing of their primary transcript (Figure  2-7). Furthermore, the 

variability of TRPM3 transcripts is increased by the presence of at least three promoters that 

give rise to three alternative transcription start sites and lead to alternative amino-termini of 

the encoded proteins.TRPM3α variants start with exon 1 and lack exon 2 but TRPM3β 

variants start with exon 2. Thus, the presence of exon1 and exon2 in the transcripts is 

mutually exclusive. Furthermore, isoforms have been described starting with an ATG-codon 

located at the very end of exon 4, which is the start codon for transcripts lacking both exon 1 

and 2 ([106], Figure  2-7).  

To analyze the identity of TRPM3 transcripts present in the mouse pituitary, I isolated total 

RNA which was reversed transcribed using oligo (dT) primers and amplified by PCR. Using 

forward primers PH383 located in exon1 in combination with different reverse primers 

PH385, PH386, PH561 and PH562 located in exon 28 (Figure  5-1), I found PCR products 

matching in size to a complete reading frame of TRPM3 α-variants. No amplification products 

of corresponding size were obtained using forward primer PH429 in combination with the 

same set of reverse primers indicating no or low expression of TRPM3 β-variants. Strong 

bands were obtained using primer PH384 which hybridize to the common exon 3 indicating 

prominent expression of TRPM3 proteins whose translation start codon is located at the very 

end of exon 4. Such TRPM3 proteins have already been described in human [102] and the 

result is in good agreement with recent findings of Alexander Becker who demonstrated that 

nearly 70 % of the TRPM3 transcripts present in the pituitary encode proteins with truncated 

amino termini [179]. 
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Figure  5-1: Amplification of TRPM3 cDNA from mouse pituitary gland.  
(A) Schematic representation of the coding exons of TRPM3. Start codons (ATG) present in exon 1, 2 
and 4 and a stop codon (stop) in exon 28 are indicated in green and red, respectively. Forward and 
reverse primers used to amplify TRPM3 cDNA are presented by arrows. (B) Gel electrophoretic 
separation of RT-PCR products obtained from mouse pituitary gland or a no template control using 
different primer combinations as indicated. Products matching to the appropriate size of the expected 
products are labeled with arrows. Additional bands of low size might be related to mispriming during 
PCR.   

5.1.2 Analysis of splice events in TRPM3 transcripts of the pituitary  

RT-PCR experiments using primers located upstream of the translations start codons in exon 

1, 2 or 3 combined with a downstream primer PH385 located downstream of the stop codon 

confirmed my previous findings (Figure  5-1): primers PH429 and PH385 again failed to 
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amplify TRPM3 transcripts, indicating the absence of ß-variants in the mouse pituitary which 

is in contrast to what has been described for the mouse choroid plexus [111]. However, when 

I combined the downstream primers PH385 with primers PH383 located upstream of a start 

codon in the predicted exon 1, I obtained amplification products of ~ 5.2 kb similar to what I 

found before (compare to Figure  5-1).  

 

Figure  5-2: Amplification of TRPM3 cDNA from mouse pituitary gland.  
(A) Strategy for the amplification of TRPM3 cDNA from mouse pituitary gland. Arrows indicate the 
position of the primers. (B) PCR products obtained after separation by gel electrophoresis. Fragments 
used to analyze the TRPM3 transcriptome of the pituitary are highlighted which were common to all 
TRPM3 isoforms. 

I analyzed the splicing frequency between exon 3 and exon 28. For that purpose, I subcloned 

the amplification products obtained with primers PH384 and PH385. Sequencing of 98 

independent clones identified 12 different combinations of alternative splice events that 

happened in five different exons 8, 13, 15, 17 and 20 (Figure  5-3). Four of them displayed 

splicing within the reading frame, whereas splicing in exon 20 led to a truncation of the 

protein upstream of the transmembrane region due to splicing outside of the reading frame. 

Exons 8, 15 and 17 were removed by exon skipping whereas in exons 13 and 20, a part of 

the exons were removed using an alternative 5´splice site.  

Confirming the results obtained by one-step RT-PCR (Figure  5-4), I did not find any clone 

containing the long pore encoding sequence of exon 24 (Table  5-1). Thus, all TRPM3 

channels expressed in the pituitary are expected to be permeable for Ca2+. The second most 
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frequent splice event happened in exon 8 (76.5 %, Table  5-1) and correspondingly, variant 1 

was most abundant with a rate of close to 40 % of all variants found. Splicing within exon 13 

was rare. Only ~ 3 % of the clones lacked the ICF-encoding region. Thus, most of the 

TRPM3 proteins may encode functionally active subunits of TRPM3 cation channels.  

Table  5-1: Frequency of splice events in TRPM3 mRNA of the pituitary gland. 
Spliced exon No. 8 13 15 17 20 24 

[%] 76.5 3.06 42.8 8.16 3.06 100 

  

 

Figure  5-3: Cloning of TRPM3 splice variants in mouse pituitary gland. 
The organization of TRPM3 cDNA is shown in yellow with each box representing an individual exon. 
Exons which are alternatively spliced are highlighted in orange and defined by their numbers. 
Sequences encoding transmembrane regions are highlighted in gray and the alternative aminotermini 
are shown in green. The locations of primers used to amplify the cDNA are indicated. Identified 
TRPM3 variants are shown as black boxes and their frequency is indicated. Areas missing by 
alternative splicing are presented as dotted line. 

5.1.3 Identification of TRPM3 transcripts in different regions of the pituitary 

I analyzed the presence of TRPM3 transcripts in different pituitary lobes by RT-PCR. The 

anterior lobe was dissected from the intermediate/posterior lobe from three different mice 

and total mRNA was prepared. One-step PCR ( 4.1.5.3) was performed using two primer 

combinations PH928/PH930 and PH777/PH778 which hybridize to exons 12/13 and to exons 
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24/25, respectively. The latter primer combination allowed the identification of alternative 

splicing within the pore coding exon 24, which was indicated by a shortened amplification 

product of 187 bp. As shown in Figure  5-4, amplification products of the expected size (109, 

187 bp) indicated expression of TRPM3 transcripts in both pituitary regions of all three 

samples. Interestingly, only products of 187 bp were obtained using primers PH777/PH778 

indicating the absence of transcripts encoding Ca2+-impermeable long pore variants. 

 

Figure  5-4: Expression of TRPM3 transcripts in the anterior and in the intermediate/posterior 
lobe of the pituitary gland.  
(A) Schematic representation of the coding exons of TRPM3. Oligonucleotide primers (arrows) 
flanking the region between exon 12 and exon 13 and the pore coding exon 24 and 25 were used to 
amplify TRPM3 cDNA. (B) Gel electrophoretic separation of PCR products obtained from anterior lobe 
(AL) and intermediate/posterior lobe (IL/PL) of the pituitary using primers shown in (A) in three 
individual RNA preparations. NTC = no template control. 

5.1.4 Distribution of TRPM transcripts in FACS-sorted cells of the posterior 
lobe/intermediate lobe 

In contrast to the adenohypophysis which contains at least five types of neuroendocrine cells 

and in addition folliculostellate cells, the posterior lobe (PL) mainly consist of axon terminals 

of hypothalamic neurons and one single glial cell type called pituicytes. These cells are 

reported to express glutamate aspartate transporter proteins (GLAST) which can be taken as 

a cellular marker of these cells. Similarly, the intermediate lobe (IL) also contains mainly one 
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single cell type: α-MSH releasing melanotrophs which may not express the glial cell surface 

marker GLAST. To dissect the origin of TRPM3 transcripts obtained from RNA of the 

intermediate lobe/posterior lobe ( 5.1.3), cells from PL/IL of wild type pituitaries were prepared 

and the living cells were stained with anti-GLAST antibodies in a dilution of 1:11 in 0.5 % 

BSA/PBS for 10 min on ice. After sorting of 50 GLAST-positive and GLAST-negative cells 

each in single tubes by fluorescence-activated cell sorting (FACS, see also  5.4.2.4), one-step 

RT-PCR was performed to analyze the expression of TRPM3 transcripts (Figure  5-5). 

Again different primer combinations to identify splice events within exon 13 (PH885/ PH907) 

and exon 24 (PH521/PH522) were included, as well as primer pairs (PH400/PH395, 

PH374/PH405) common to all splice variants.  Using primers PH521/PH522 specific to exon 

24 and exon 25 in both GLAST-positive and GLAST-negative cells, 119 bp fragments were 

amplified. These fragments derived from transcripts which were spliced within exon 24 and 

suggested the presence of Ca2+-permeable channel in these cells.  

 

Figure  5-5: Analysis of TRPM3 transcripts expressed in GLAST-positive and GLAST-negative 
cells from intermediate/posterior lobe of the pituitary gland. 
(A) Schematic representation of the coding exons of TRPM3. Oligonucleotide primers (arrows) 
flanking the region between exons 4 and 5, exon 12 and 13, the pore coding exon 24 and 25 and 
exon 27 and 28 were used to amplify TRPM3 cDNA. (B) Gel electrophoretic separation of PCR 
products obtained from brain RNA (as positive control) and from cells that were stained with anti-
GLAST antibodies (GLAST pos.) or not (GLAST neg.) using primers shown in (A). NTC = no template 
control. The expected sizes of the amplification products are indicated. 
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The aim of using primers PH885 and PH907 was to explore the splice events within exon 13, 

which may lead to the removal of a protein domain indispensable for channel function (ICF, 

[111]). The expected lengths of the amplified fragments were 204 or 150 bp, respectively. 

Only fragments originating from an unspliced exon 13 were amplified from both cell 

populations (Figure  5-5) indicating the absence of the non-functional variants in pituicytes as 

well as in melanotrophs.  

In addition to TRPM3 isoforms, I also analyzed the expression of other members of TRPM 

subfamily (Figure  5-6) using gene-specific primer pairs. TRPM3, TRPM4 and TRPM7 

transcripts were amplified in GLAST-positive cells (pituicytes) whereas in GLAST-negative 

cells (melanotrophs), TRPM2, TRPM3, TRPM4, TRPM6 and TRPM7 transcripts were 

amplified.  

 

Figure  5-6: Expression of TRPM transcripts in GLAST-positive and GLAST-negative cells from 
the intermediate/posterior lobe of the pituitary gland. 
Gel electrophoretic separation of PCR products obtained from brain RNA (as positive control) and 
from cells that were stained with anti-GLAST antibodies (GLAST pos.) or not (GLAST neg.) using 
primers specific for TRPM1-TRPM8 transcripts. NTC = no template control. The expected sizes of the 
amplification products are indicated. Yellow arrows label unspecific PCR products (primer dimers).  
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5.2 Identification of TRPM3 proteins in mouse pituitary gland using anti-
TRPM3 antibodies 

5.2.1 Detection of TRPM3 proteins by western blot 

I analyzed the expression of TRPM3 proteins in the pituitary gland by western blot using 

affinity purified monoclonal anti-TRPM3 antibodies (9F6) which recognize an epitope within 

the C-terminus of the protein (Figure  5-7, A). In pituitary glands and choroid plexus of the 

brain from wild type (WT) mice, I found proteins that matched to recombinant TRPM3α2 

proteins expressed in HEK293 cells (HEK-TRPM3α2, Figure  5-7 B) and to the expected 

molecular mass of 194.794 kDa calculated from the primary TRPM3α2 sequence. Similar 

bands were missing in protein extracts from the pituitary gland and choroid plexus obtained 

from TRPM3-deficient mice (KO, Figure  5-7 B), demonstrating that the antibody detected the 

right protein. However, other proteins of lower mass that might be unrelated to TRPM3 were 

also detected by the antibody. The data provides strong evidence that TRPM3 proteins are 

expressed in the pituitary. Interestingly, TRPM3 proteins found in the choroid plexus were 

slightly smaller and may represent different TRPM3 isoforms.  

A polyclonal anti-TRPM3 antibody AK695 raised against the sequence 

QEKEPEEPEKPTKEK within the N-terminus of mouse and rat TRPM3 proteins (Figure  5-7, 

A), also detected protein of similar molecular mass as the recombinant protein in protein 

extract from WT pituitaries that were not detected in TRPM3-deficient mice (KO, arrow in 

Figure  5-7 C). Again TRPM3 proteins of lower molecular mass were identified in the choroid 

plexus of the brain. However, these antibodies also detected unrelated proteins of similar 

size that were still present in tissues from the KO. Taken together, the data confirmed my 

finding obtained with RT-PCR and demonstrate TRPM3 expression in the pituitary and the 

choroid plexus. 
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Figure  5-7: Expression of TRPM3 proteins in mouse tissues.  
(A) Schematic presentation of the TRPM3 protein with six transmembrane domains. The epitopes of 
anti-TRPM3 antibody 9F6 at the C-terminus and AK695 at the N-terminus are indicated. (B) Western 
blot using 9F6 antibodies to detect TRPM3 proteins in pituitary gland and choroid plexus from WT and 
KO mice. HEK293 cells stably expressing TRPM3α2 (HEK-TRPM3α2) served as positive control. Anti-
Na+/K+ ATPase antibodies were used as loading controls. (C) Western blot using antibody AK695 to 
detect TRPM3 proteins in pituitary gland and choroid plexus from WT and KO mice. 
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5.2.2 Immunohistochemical detection of TRPM3 proteins 

I used the antibodies tested in western blot ( 5.2.1) to analyze TRPM3 expression in the 

pituitary by immunohistochemical staining. For this purpose, age and sex-matched WT and 

KO mice were perfused transcardially with 4 % PFA ( 4.3.1) and 14 µm pituitary slices were 

prepared from both genotypes ( 4.3.2). Using monoclonal 9F6 antibodies in different dilutions, 

TRPM3 proteins were not detectable probably due to low affinity of the antibodies or masking 

of the epitope in fixed tissues (not shown). Using polyclonal AK 695 antibodies in a 1:1000 

dilution, I found strong signals in the intermediate lobe of the pituitary (Figure  5-8). These 

signals were largely reduced in the anterior lobe which was co-stained with anti-LH 

antibodies as a marker of gonadotropic cells. However, these signals were also present in 

the pituitary from TRPM3-deficient animals (Figure  5-8) even with increased intensity, 

indicating false positive signals of the antibodies as it was the case in western blot ( 5.2.1). 

On the other hand, AK695 antibodies may recognize truncated TRPM3-proteins present in 

KO-animals, since the recognized epitope is located N-terminally of the targeted pore region. 

 

Figure  5-8: Distribution of immunoreactivity to anti-TRPM3 antibodies (AK695) in the anterior 
(AL), intermediate (IL) and posterior lobe (PL) of the pituitary gland.  
Fluorescence images of 14 µm pituitary sections prepared from WT and KO mice and stained with AK 
695 (green), anti-LH (red) and Hoechst 33258 for nucleus staining (blue). Overlays of AK695 and LH 
staining are shown on the right. Scale bar = 50 µm. 

Therefore, tissues from TRPM3-KO mice might be an inappropriate control for 

immunohistochemical experiments using these antibodies and, the experiment was repeated 

with pituitary sections from WT animals (Figure  5-9). As controls, the antibodies were 

incubated with a 10000-fold molar excess of peptide P873. This peptide has the amino-acid 
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sequence of QEKEPEEPEKPTKEK and was used for immunization to obtain the antibody. 

As a negative control, I used an unrelated control peptide P281. Similar to the last 

experiment, I found strong signals in the intermediate lobe which was largely reduced in the 

neighboring areas. In the presence of P873 but not P281, the signals disappeared indicating 

that at least the antibodies recognized (a) protein(s) containing an epitope similar to the 

sequence of P873. Taken together these data provide first and preliminary evidence that 

TRPM3 channels are expressed in the intermediate lobe of the pituitary. On the other hand, it 

is pretty clear from these data that neither 9F6 nor AK695 antibodies are reliable and specific 

tools to identify TRPM3 expressing cells in the pituitary. 

 

Figure  5-9: Distribution of immunoreactivity to anti-TRPM3 antibody (AK 695) in the pituitary 
gland.  
Fluorescence images of 14 µm pituitary sections prepared from WT mice and stained with AK695 
(green) alone or after preincubation with a 10000-fold molar excess of peptide P873 or P281, anti-LH 
(red) or Hoechst 33258 for nucleus staining (blue). Overlays of AK 695 and LH staining are shown on 
the right.  Scale bar = 50 µm. 

5.3 Analysis of TRPM3 expression using GFP-Ki mice  

As shown in the previous chapter ( 5.2), anti-TRPM3 antibodies provided strong evidence that 

TRPM3 is expressed in the pituitary. However, my data also demonstrated that these 
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antibodies were rather unsuitable to identify TRPM3 expressing cells within this tissue. 

Therefore, I chose an alternative approach and made use of TRPM3-GFP-Knock in (GFP-Ki) 

mice which carry an IRES-GFP-cassette within the TRPM3 gene locus (Figure  3-2). These 

mice should express the enhanced green fluorescent protein (EGFP) under the control of the 

TRPM3 promoter(s). 

5.3.1 GFP-Ki mice as a model to analyze TRPM3 expression 

Since this mouse line has not been characterized before, I checked whether it is an 

appropriate model to analyze TRPM3 expression in the pituitary gland.   

5.3.1.1 Detection of the green fluorescence of GFP in GFP-Ki mice by FACS 
First, I analyzed the green fluorescence of GFP in vital cells from tissues, where TRPM3 

expression has already been described, and compared it to pituitary cells. For that purpose, 

single cells were prepared from both pituitary gland and choroid plexus of the brain and were 

tested by FACS (Figure  5-10). Cells isolated from WT mice served as negative controls. 

 

Figure  5-10: FACS analysis of tissues from GFP-Ki mice.  
GFP-fluorescence histograms (log scale) comparing cells from choroid plexus and pituitary gland of 
wild type (WT) and TRPM3-GFP-Ki (GFP-Ki) mice. 
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As shown in Figure  5-10, FACS analysis of choroid plexus cells from GFP-Ki mice showed a 

strong rightward shift of the fluorescence peak compared to control cells indicating that more 

than 70 % of the cells were green fluorescent. This is in good agreement with the finding that 

TRPM3 is expressed in the epithelial cells of the choroid plexus [103] which provide the main 

fraction of cells within this tissue. It demonstrates that green fluorescent proteins are 

expressed in TRPM3 expressing tissues of GFP-Ki mice. In cell preparations of the pituitary 

gland, I also noticed green fluorescent cells. However, their proportion was only 3 % 

indicating that only few cells express TRPM3 within this multifunctional tissue.  

5.3.1.2 Detection of TRPM3 proteins in tissues of GFP-Ki mice 
The targeting strategy of the TRPM3 gene locus included the insertion of a splice acceptor 

site (SA) into the L3F1 allele (GFP-Ki), with the intention that the IRES-GFP sequence 

should be fused to exon 24 and the TRPM3 reading frame should be interrupted by stop 

codons present in the sequence of the IRES-GFP cassette (Figure  3-2). Therefore, only 

truncated non-functional TRPM3 proteins should be formed in TRPM3 GFP-Ki/GFP-Ki mice which 

are homozygous for the GFP-Ki allele. 

In western blots, I tested, whether full length TRPM3 proteins are generated in the pituitary 

gland and choroid plexus in different mouse lines containing targeted TRPM3-alleles. For 

that purpose, I used monoclonal 9F6 antibodies which recognize an epitope C-terminally 

located from the targeted pore region (Figure  5-7, A). To my surprise, I found that entire 

TRPM3 proteins were present each in the pituitary glands pooled from five mice that were 

homo- or heterozygous for the GFP-Ki (L3F1) allele (Figure  5-11). In contrast, I found a 

gene-dose-dependent reduction of TRPM3 proteins in the choroid plexus from the very same 

mice leading to complete absence of TRPM3 in homozygous GFP-Ki mice.  The data 

suggest that TRPM3 channels are unaffected in the pituitary gland but functionally inactive in 

the choroid plexus of TRPM3 GFP-Ki/GFP-Ki. 

Using anti-GFP antibodies I also tested the presence of GFP proteins in GFP-Ki mice. In the 

choroid plexus I found a gene-dose-dependent presence of GFP proteins. However, in the 

pituitary gland no GFP proteins were detectable probably due to the lower number of cells 

expressing TRPM3 in this tissue (compare Figure  5-10) 
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Figure  5-11: Expression of TRPM3 proteins in different mouse lines.  
Western blot using 9F6 antibodies to analyze TRPM3 proteins in pituitary gland and choroid plexus of 
mice heterozygous (M3WT/GFP-Ki) or homozygous (M3GFP-Ki/GFP-Ki) for the L3F1 allele shown in 
comparison to tissues from wild type (WT) and TRPM3-deficient mice (KO, L1 allele). The blot was cut 
into three pieces, which were tested with anti-TRPM3 antibodies (9F6), anti-GFP antibodies and anti-
Na+/K+-ATPase antibodies as a control of comparable amounts of proteins loaded to each lane.  

5.3.1.3 Analysis of TRPM3 transcripts in GFP-Ki mice 
Western blot analysis suggested the presence of entire and functional TRPM3 proteins in 

pituitaries of GFP-Ki mice but their absence in the choroid plexus. Most likely, this could be 

explained by alternative splicing of TRPM3 transcripts in these tissues. Therefore, I analyzed 

TRPM3 transcripts in total RNA from these tissues of five homozygous GFP-Ki mice by RT-

PCR (Figure  5-12). I used primer combinations that allowed the detection of three different 

splicing scenarios as shown in Figure  5-12, A.  

PCR confirmed different processing of TRPM3 transcripts in pituitary and choroid plexus 

from the very same mice (Figure  5-12, B). From pituitary RNA but not from choroid plexus 

RNA, I obtained fragments matching in size to transcripts with fused exon 24 to exon 25 

using primer combination PH521/PH522 and PH777/PH778. This indicates the preservation 

of the TRPM3 reading frame leading to functional TRPM3 proteins. This finding is in line with 

the detection of TRPM3 proteins of similar size in GFP-Ki pituitaries (Figure  5-11) and I could 
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confirm the presence of TRPM3-mediated Ca2+ entry pathways in Ca2+ imaging experiments 

using the fluorescent Ca2+ indicator dye Fura-2 (see  5.4.3). In this scenario the IRES-GFP 

cassette would be spliced out and would serve as an independent molecule for translation of 

GFP.  

The opposite was true for primer combination PH521/C5-139 and PH777/ C5-139. No 

amplification products were obtained with RNA from pituitary gland but from choroid plexus, 

indicating the fusion of exon 24 to the splice acceptor site upstream to the IRES-GFP 

sequence. This conclusion was confirmed by sequencing of the PCR fragments after they 

were cut out of the agarose gel. As shown in Figure  5-12, C, the fusion of exon 24 to the 

IRES-GFP sequence led to an introduction of a stop codon shortly after exon 24 and thereby 

to a truncation of the TRPM3 protein. 

Using primer combinations SM61/C5-139, PH521/SM24 and PH777/ SM24, I also obtained 

PCR products of 307, 403 and 450, respectively. Although, I can’t rule out that these 

amplification products derived from contaminating genomic DNA present in the RNA 

preparations, these data indicate that also unspliced TRPM3 transcripts exist in GFP-Ki 

mice. These transcripts would also lead to non-functional TRPM3 channel proteins, since 

again stop codons present in intron 24 would shorten the reading frame. 
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Figure  5-12: TRPM3 transcripts are differentially spliced in pituitary gland and choroid plexus 
of GFP-Ki mice.  
(A) Structure of the TRPM3-GFP-Ki allele including the 5`-homology, the floxed exon 24, the 3`-
homology, the splice acceptor (SA), the IRES-GFP cassette and the polyadenylation signal (pA). The 
location of the loxP sequences (orange triangles) and FRT sequences (yellow triangles) are also 
indicated. The scenarios of three splicing events are explained and the primers used to identify each 
splice event are indicated by arrows and names. The table shows the expected length of the 
fragments obtained with the indicated primer combinations. (B) Gel electrophoretic separation of the 
PCR products obtained from mouse pituitary gland and choroid plexus of GFP-Ki mice using primers 
indicated in A. Amplification products labelled with rectangles were purified and sequenced. (C) 
Sequence of the amplification products obtained with primer combination PH777/PH778 from pituitary 
and PH777/C5-139 from choroid plexus with primer sequences and TRPM3 reading frame indicated. 
Sequence sections belonging to exon 24, exon 25, the splice acceptor sequence left after fusion to 
exon 24 and the IRES-GFP cassette are highlighted in colors. Note the stop codon in the TRPM3 
reading frame when the IRES-GFP cassette is fused to exon 24. 



Results  
 

 

 
67 

5.3.1.4 Microscopic detection of GFP fluorescence in native tissues of GFP-Ki 
mice 

I analyzed the presence of fluorescent GFP proteins in native tissues of GFP-Ki mice. 

Pituitary glands and choroid plexus of the brain were dissected and placed immediately in 

ice-cold PBS. The pituitary gland was opened up between anterior lobe (AL) and 

intermediate lobe/posterior lobe (IL/PL). Tissues prepared from WT mice served as negative 

controls. Microscopic analysis of the epifluorescence revealed expression of GFP in the 

choroid plexus and IL/PL of the pituitary gland of GFP-Ki mice which was absent in tissues of 

WT mice (Figure  5-13). This result confirmed that GFP is expressed in choroid plexus and 

pituitary gland of GFP-Ki mice and indicate the presence of native GFP proteins in vital cells 

of whole mount tissue preparations. 

 

Figure  5-13: Expression of GFP in the pituitary gland and choroid plexus of GFP-Ki mice.  
Bright field (upper panel), fluorescence (middle panel) and merged (lower panel) photographs of whole 
mount pituitary gland (left) and choroid plexus (right) isolated from GFP-Ki and WT mice (scale bar = 
100 µm). 

5.3.1.5 Loss of GFP fluorescence after fixation of tissues 
To define the identity of GFP expressing cells in tissues, I had to use cell type-specific 

antibodies for immunostaining. To prevent the degradation of their target epitopes and to 

allow their access into the cells, fixation and permeabilization of the tissues were necessary. 



Results  
 

 

 
68 

However, this procedure has been described to affect the fluorescence intensity emitted by 

GFP [180]. Therefore, I analyzed the GFP fluorescence after removal of fresh tissues 

prepared from GFP-Ki mice and overnight post-fixation in 4 % PFA/PBS. As shown in 

Figure  5-14, GFP fluorescence was still detectable in the choroid plexus of the brain but was 

largely reduced in slices prepared from the pituitary, indicating that the fluorescence intensity 

of GFP expressed in GFP-Ki mice is not sufficient to determine the identity of TRPM3 cells in 

the pituitary gland.  

 

Figure  5-14: Reduction of GFP fluorescence in post-fixed slices of the brain and pituitary gland.  
GFP fluorescence, nucleus staining with Hoechst3342 (Hoechst) and merge image of slices obtained 
from brain and pituitary. Anterior lobe (AL), intermediate lobe (IL) and posterior lobe (PL) regions are 
indicated (scale bar =100 µm).   

I analyzed this effect in more detail using HEK293 cells transiently expressing recombinant 

GFP. 48 h after transfection of the GFP encoding plasmid pCAGGSM2-IRESGFP, cells were 

fixed with different concentrations of PFA and the GFP fluorescence was compared to 

unfixed cells (Figure  5-15). Using imageJ software, the fluorescence intensities of 7-10 cells 

from five different figures were quantified. In line with my observation, that pituitaries showed 

only week GFP fluorescence after fixation with PFA (Figure  5-13), I noticed a concentration-

dependent decrease of fluorescence intensity. Fixation with 4 % PFA reduced the GFP 

fluorescence by 62.7 %.   
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Figure  5-15: Reduction of GFP fluorescence in transfected HEK293 cells after fixation with 
different PFA concentrations. 
Signal intensities of GFP in unfixed HEK cells and after fixation with different concentrations of PFA 
are indicated in each image. Scale bar =100 µm 

In order to visualize green fluorescent proteins as a molecular marker of TRPM3 expression 

and to increase fluorescence associated with GFP, I introduced in the following experiments 

Alexa Flour 488- or Alexa Flour 594 labelled anti-GFP antibodies. Control slices excluding 

anti-GFP antibodies were always included and are shown exemplarily in Figure  5-18. In 

these controls, I never observed signals different from the background. 

5.3.2 Identification of TRPM3 expressing cells of GFP-Ki mice using anti-GFP 
antibodies 

In the previous chapter  5.3.1, I could demonstrate that GFP-Ki mice provide a suitable model 

with GFP as a reporter protein to analyze the expression pattern of TRPM3. 

5.3.2.1 Overview of GFP expression in the whole pituitary  
In an initial series of experiments, pituitary glands were dissected from PFA-perfused GFP-Ki 

and WT mice and 14 µm sections were prepared from. Rabbit polyclonal anti-GFP antibodies 

(anti-GFP) were used in a dilution of 1:5000 to detect GFP proteins in pituitary glands of 

GFP-Ki mice. Anti-LH antibodies (anti-LH) were used to stain gonadotropic cells of the 

anterior pituitary. Staining with anti-GFP antibodies revealed prominent GFP expression in 

the posterior lobe (PL), weaker expression in the intermediate lobe (IL) as well as expression 

in single cells of the anterior lobe (AL, Figure  5-16). The signal obtained with anti-GFP 
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antibodies did not match to the signal of anti-LH antibodies indicating that TRPM3 is not 

expressed in gonadotrophs. 

This experiment revealed the expression of GFP in all three lobes of the pituitary gland of 

GFP-Ki mice and therefore, this expression was analyzed in more details in the following 

experiments. 

 

Figure  5-16: Distribution of immunoreactivity to GFP as an indicatior of TRPM3 expression in 
the anterior (AL), intermediate (IL) and posterior lobe (PL) of pituitary glands from GFP-Ki mice.  
Fluorescence image of 14 µm pituitary sections prepared from GFP-Ki mice stained with anti-GFP 
antibodies (green), anti-LH antibodies (red) (left figure) and Hoechst 33258 for nucleus staining (blue,  
right figure). The insets show fluorescence images of pituitary sections prepared from WT mice which 
served as controls. Scale bar = 200 µm. 

5.3.2.2 Analysis of TRPM3 expression in the posterior lobe 

5.3.2.2.1 TRPM3 proteins are absent in vasopressin or oxytocin-releasing nerve 
terminals. 

The posterior lobe of the pituitary consists in principle of four different elements including VP-

releasing nerve terminals, OXT-releasing nerve terminals, non-secretory nerve terminals and 

specialized glial cells called pituicytes. As the staining using anti-GFP antibodies displayed 

prominent GFP expression in this region, different co-staining experiments were performed 

to identify TRPM3 expressing cells. Oxytocin and vasopressin and their carrier molecules 

neurophysin I and neurophysin II, respectively are all synthesized in the cell bodies of the 

magnocellular neurons (MCNs) of the hypothalamus and released in the posterior pituitary 

from nerve terminals. To investigate the expression of TRPM3 in these nerve terminals, 

14 µm pituitary slices were stained with both anti-GFP antibodies and mixture of anti-

neurophysin I and anti-neurophysin II antibodies (anti-neurophysins). The staining showed 

no co-localization of the fluorescence of anti-GFP antibodies and anti-neurophysins 
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antibodies indicating the absence of TRPM3 protein in the VP- or OXT-releasing nerve 

terminals (Figure  5-17). 

 

Figure  5-17: Distribution of immunoreactivity to GFP and neurophysins I and II in the posterior 
lobe of GFP-Ki and WT pituitaries.  
Fluorescence images of 14 µm pituitary sections prepared from GFP-Ki and WT mice and stained with 
anti-GFP (red), anti-neurophysins (green) and Hoechst 33258 (blue) for nucleus staining. Overlay of 
GFP and neurophysins staining is shown in the right merged image. Scale bar = 20 µm. 

Next, I analyzed whether TRPM3 proteins are expressed in hypothalamic-non-

neurosecretory axons that are also known to terminate in the posterior lobe (Figure  5-18).  

 

Figure  5-18: Distribution of immunoreactivity to GFP and synapsin in the posterior lobe of GFP-
Ki and WT pituitaries.  
Fluorescence images of 14 µm pituitary sections prepared from GFP-Ki and WT mice and stained with 
anti-GFP (green), anti- synapsin (red) and Hoechst 33258 (blue) for nucleus staining. Overlay of GFP 
and synapsin staining is shown in the right merged image. Photographs of control slices excluding the 
primary anti-GFP antibodies (no anti-GFP) were taken using the same exposure time and the same 
filter set as used for the detection of Alexa 488-coupled anti-GFP antibodies. Scale bar = 20 µm.  
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The staining was performed using both anti-GFP antibodies and antibodies directed against 

the synaptic vesicle associated protein synapsin I (anti-synapsin) which is expressed in the 

synaptoid contact with pituicytes [181]. Again, the staining showed no co-localization of 

signals obtained with anti-GFP antibodies and anti-synapsin I antibodies indicating the 

absence of TRPM3 proteins expression in non-neurosecretory nerve terminals of the 

posterior lobe (Figure  5-18).  

5.3.2.2.2 TRPM3 proteins are expressed in pituicytes of the posterior lobe   
Pituitary glial cells or pituicytes are known to express different astroglial markers like GLAST, 

GFAP and S100B. To investigate TRPM3 expression in the pituicytes, GFP-Ki and WT 

pituitary slices were stained using both anti-GFP antibodies in a dilution of 1:5000 and 

phycoerythrin-conjugated anti-GLAST antibodies in a dilution of 1:20 (Figure  5-19). The 

staining showed clear co-localization of signals derived from anti-GLAST antibodies and anti-

GFP antibodies indicating that TRPM3 proteins are expressed in pituicytes. However, in the 

merged image obtained with anti-GFP and anti-GLAST antibodies, I found no complete 

overlap of signals and a spectrum of coloration, probably due to differences of the intensities 

of each immune reaction.  

 

Figure  5-19: Expression of GFP and GLAST-positive cells of the posterior lobe.  
Fluorescence images of 14 µm pituitary sections prepared from GFP-Ki and WT mice and stained with 
anti-GFP (green), anti-GLAST (red) and Hoechst 33258 (blue). Overlay of GFP and GLAST staining is 
shown in the merged image. Scale bar = 20 µm. The very right panels show single pituicytes in higher 
magnification (scale bar = 4 µm) highlighted by rectangles in the merged image.   

Therefore, additional experiments were performed using anti-GFP and anti-GFAP antibodies 

(anti-GFAP). As shown in Figure  5-20, the staining revealed co-localization of signals derived 

from both antibodies confirming TRPM3 expression in pituicytes (Figure  5-20). However, not 

all GFP positive cells were stained with anti-GFAP antibodies, which may rely on the 

presence of different subtypes of pituicytes expressing GFAP [182]. S100B is an acidic, glial-
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specific, calcium binding protein known to be expressed in all pituicytes of the 

neurohypophysis. Anti-S100B antibodies (anti-S100B) were used to label pituicytes in GFP-

Ki and WT pituitary slices. All cells which showed GFP-positive signals were also positive to 

S100B (Figure  5-21) confirming the expression of TRPM3 proteins in pituicytes. In summary, 

using three different pituicytes marker proteins all showed co-localization with GFP, 

demonstrating that TRPM3 is expressed in pituicytes.  

 

Figure  5-20: Co-staining of GFP and GFAP in pituicytes of the posterior lobe.  
Fluorescence images of 14 µm pituitary sections prepared from GFP-Ki mice and WT and stained with 
anti-GFP (red), anti- GFAP (green) and Hoechst 33258 (blue). Overlay of GFP and GFAP staining is 
shown in the right merged image. Scale bar = 100 µm. 

 

Figure  5-21: Co-staining of GFP and S100B in pituicytes of the posterior lobe.  
Fluorescence images of 14 µm pituitary sections prepared from GFP-Ki and WT mice stained with 
anti-GFP (green), anti-S100B (red) and Hoechst 33258 (blue). Overlay of GFP and S100b staining is 
shown in the right merged image. Scale bar = 100 µm. 

The presence of TRPM3 proteins in the pituicytes was further supported by co-staining of 

slices from WT pituitary with anti-TRPM3 antibodies AK695 and phycoerythrin-conjugated 

anti-GLAST conjugated antibodies. The signals of both antibodies again co-localized in all 
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pituicytes but not in the presence of the antigenic peptide P873, confirming the expression of 

TRPM3 proteins in these cells (Figure  5-22). 

 

Figure  5-22: Immunoreactivity to anti-TRPM3 AK 695 and anti-GLAST antibodies in the 
posterior pituitary gland.  
Fluorescence images of 14 µm pituitary sections prepared from WT mice and stained with AK695 
(alone or after preincubation with a 10000-fold molar excess of peptide P873, green), anti-GLAST 
(red) and Hoechst 33258 (blue). Overlay of AK 695 and GLAST staining is shown in the right merged 
image. Scale bar = 50 µm. 

5.3.2.3 Analysis of TRPM3 expression in the anterior lobe 
The anterior lobe of the pituitary gland consists of five different endocrine cells including 

gonadotrophs, somatotrophs, thyrotrophs, corticotrophs and lactotrophs [1]. In addition to the 

endocrine cells, agranular star-shaped cells called folliculostellate (FS) cells were shown to 

be present in the anterior lobe [1]. As shown above ( 5.3.2.1), GFP expression in the pituitary 

of TRPM3 GFP-Ki mice revealed the presence of TRPM3 proteins in single cells of the 

anterior lobe. The following chapter describes a series of experiments to identify TRPM3 

expressing cells in the adenohypophysis.  

5.3.2.3.1 TRPM3 proteins are absent in endocrine cells of the adenohypophysis 
To analyze the expression of TRPM3 proteins in gonadotrophs, 14 µm pituitary sections from 

WT and GFP-Ki mice were co-stained with antibodies directed against GFP and both 

gonadotropins LH and FSH and GFP proteins. Microscopic analysis of the slices confirmed 

the expression of GFP in the pituitaries of GFP-Ki mice but not of WT mice. Anti-LH and anti-

FSH antibodies (anti-LH/anti-FSH) stained gonadotropic cells in pituitaries of both genotypes. 

In line with the result shown in Figure  5-16, I found no co-staining of GFP and gonadotropins 

indicating the absence of TRPM3 proteins in gonadotrophs (Figure  5-23).  
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Figure  5-23: Distribution of immunoreactivity to GFP and FSH/LH in the anterior lobe of GFP-Ki 
and WT pituitaries.  
Fluorescence images of 14 µm pituitary sections prepared from GFP-Ki and WT mice and stained with 
anti-GFP (green), anti-FSH/LH (red) and Hoechst 33258 (blue). Overlay of GFP and FSH/LH staining 
is shown in the right merged image. Scale bar = 20 µm. 

To investigate the expression of TRPM3 proteins in GH-releasing somatotrophs, pituitary 

slices were co-stained with anti-GFP and anti-GH antibodies (anti-GH). As shown in 

Figure  5-24, the staining showed no co-localization of signals derived from anti-GFP and 

anti-GH antibodies indicating the absence of TRPM3 proteins in the somatotrophs.  

 

Figure  5-24: Distribution of immunoreactivity to GFP and GH in the anterior lobe of GFP-Ki and 
WT pituitaries.  
Fluorescence images of 14 µm pituitary sections prepared from GFP-Ki and WT mice and stained with 
anti-GFP (green), anti-GH (red) and Hoechst 33258 (blue). Overlay of GFP and GH staining is shown 
in the right merged image. Scale bar = 20 µm. 

Similarly, staining of GFP-Ki pituitary slices with anti-GFP antibodies and antibodies directed 

against TSH (anti-TSH, Figure  5-25), ACTH (anti-ACTH, Figure  5-26) or PRL (anti-PRL, 

Figure  5-27) revealed the absence of TRPM3 proteins in the thyrotrophs , corticotrophs or 

lactotrophs, respectively. 
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Figure  5-25: Distribution of immunoreactivity to GFP and TSH in the anterior lobe of GFP-Ki 
and WT pituitaries.  
Fluorescence images of 14 µm pituitary sections prepared from GFP-Ki and WT mice and stained with 
anti-GFP (green), anti-TSH (red) and Hoechst 33258 (blue) for nucleus staining. Overlay of GFP and 
TSH staining is shown in the right merged image. Scale bar = 20 µm. 

 

Figure  5-26: Distribution of immunoreactivity to GFP and ACTH in the anterior lobe of GFP-Ki 
and WT pituitaries.  
Fluorescence images of 14 µm pituitary sections prepared from GFP-Ki and WT mice and stained with 
anti-GFP (green), anti-ACTH (red) and Hoechst 33258 (blue) for nucleus staining. Overlay of GFP and 
ACTH staining is shown in the right image. Scale bar = 20 µm. 
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Figure  5-27: Distribution of immunoreactivity to GFP and PRL in the anterior lobe of GFP-Ki 
and WT pituitaries.  
Fluorescence images of 14 µm pituitary sections prepared from GFP-Ki and WT mice and stained with 
anti-GFP (green), anti-PRL (red) and Hoechst 33258 (blue). Overlay of GFP and PRL staining is 
shown in the right merged image. Scale bar = 20 µm. 

5.3.2.3.2 TRPM3 proteins are expressed in folliculostellate cells of the 
adenohypophysis 

The result that TRPM3 proteins were not detected in any type of endocrine cells ( 5.3.2.3.1) 

and the fact that folliculostellate cells are the only remaining cell type present in the anterior 

lobe raised the idea that TRPM3 proteins might be expressed in these cells. To prove this 

idea, 14 µm pituitary sections from WT and GFP-Ki mice were stained with antibodies 

directed against glutamate aspartate transporter (GLAST) and anti-GFP antibodies 

(Figure  5-28). Staining with anti-GLAST antibodies labelled the soma and the processes of 

star-shaped cells. Staining with anti-GFP antibodies showed the labelling of the very same 

cells indicating that TRPM3 proteins are expressed in folliculostellate cells. 

 

Figure  5-28: Expression of GFP in GLAST positive cells of the anterior pituitary.  
Fluorescence images of 14 µm pituitary sections prepared from GFP-Ki and WT mice and stained with 
anti-GFP (green), anti-GLAST (red) and Hoechst 33258 (blue). Overlay of GFP and GLAST staining is 
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shown in the merged image. Scale bar = 20 µm. The very right panel show magnifications (scale bar = 
4 µm) of single cells highlighted by rectangles in the merged image.  

5.3.2.4 Analysis of TRPM3 expression in α-MSH-producing cells of the 
intermediate lobe 

In addition to very rare non-endocrine marginal cells and astrocytes-like cells, the 

intermediate lobe of the pituitary gland consists mainly of one single endocrine cell type: the 

melanotrophs. Staining of pituitary slices from wild type mice using anti-TRPM3 antibodies 

( 5.2.2) as well as analysis of GFP expression in pituitary slices from GFP-Ki mice already 

revealed the presence TRPM3 in the main fraction of intermediate lobe cells, suggesting the 

presence of TRPM3 in melanotrophs. Melanotrophs release mainly α-melanocyte stimulating 

hormones (α-MSH) which stimulate the melanocytes to produce melanin. To analyse the 

expression of TRPM3 proteins in melanotrophs of the intermediate lobe, 14 µm pituitary 

sections from WT and GFP-Ki mice were stained with antibodies directed against α-MSH 

(anti- α-MSH) and GFP. Anti-α-MSH antibodies stained most cells of the intermediate lobe of 

both WT and GFP-Ki pituitaries. The slices also showed faint signals of GFP staining in 

melanotrophs from GFP-Ki mice that were absent in slices obtained from WT mice indicating 

the expression of TRPM3 proteins in melanotrophs. However, the GFP signals were weak in 

comparison to signals obtained from PL (pituicytes,  5.3.2.2.2), which may be related to lower 

stability of GFP proteins or lower activity of the TRPM3 promoter(s) in these cells.  

 

Figure  5-29: Expression of GFP in α-MSH expressing cells of the intermediate lobe.  
Fluorescence images of 14 µm pituitary sections prepared from GFP-Ki and WT mice and stained with 
anti-GFP (green), anti-α-MSH (red) and Hoechst 33258 (blue). Overlay of GFP and α-MSH staining is 
shown in the right merged image. Scale bar = 100 µm 
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Co-staining of slices from wild type mice using anti-TRPM3 and anti- α-MSH antibodies was 

prevented by the fact that both antibodies were raised in rabbits. However, parallel staining 

of slices obtained from the very same mouse (Figure  5-9) showed strong staining of the 

intermediate lobe again supporting the finding that TRPM3 is expressed in melanotrophs. 

 

Figure  5-30: Distribution of immunoreactivity to α-MSH, LH and TRPM3 in the pituitary gland of 
a wild type mouse.  
The upper panel show fluorescence images of 14 µm pituitary sections from WT stained with anti-α-
MSH (green), anti-LH (red) and Hoechst 33258 (blue). An overlay of α-MSH and α-LH stainings is 
shown in the right merged image. The middle and the lower panels show fluorescence images of 14 
µm sections of the same pituitary stained in parallel with AK695 in the absence or presence of peptide 
P873 (green), anti- LH (red) and Hoechst 33258 (blue). Overlays of AK695 and α-LH staining are 
shown on the right. Scale bars = 100 µm.  

5.4 Analysis of Pregnenolone Sulfate (PregS)-induced Ca2+ signals in 
pituitary cells 

In the latter section ( 5.3), immunohistochemical experiments indicated the expression of 

TRPM3 proteins in folliculostellate cells of the anterior lobe, pituicytes from the posterior lobe 

and finally melanotrophs of the intermediate lobe. In the following section, I investigated the 

functional role of TRPM3 channels in pituitary cells. TRPM3 proteins form Ca2+-permeable 

cation channels in the plasma membrane that are activated by the neurosteroid 

pregnenolone sulfate (PregS, [115]) and efficiently blocked by flavonones like Hesperetin 

[168]. I analyzed the function of TRPM3 channels in pituitary cells in Ca2+ imaging 
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experiments using the fluorescent Ca2+ dye Fura-2. I recorded the changes of the 

intracellular Ca2+ concentration [Ca2+]i upon application of specific ligands of TRPM3: the 

agonist PregS and the antagonist Hesperetin. Reactivity of cells to a combination of both 

ligands was defined as the pharmacological fingerprint of TRPM3 and served as an indicator 

for the presence of functional TRPM3 ion channels in primary cells.  

5.4.1 PregS-induced Ca2+ signals in cells of the anterior lobe  

The anterior lobe consist of at least six different cell populations and the folliculostellate cells 

account for ~ 10 % of the anterior lobe cells [1]. I analyzed TRPM3 channel activity in 

anterior lobe cells of wild type mice (WT) which were compared to control cells from TRPM3-

deficient mice (KO). The anterior lobe was dissected from the intermediate/posterior lobe and 

the cells were prepared as described ( 4.1.1.2). The cells were loaded with 5 µM Fura-2 AM 

at 5 % CO2, 37°C in the dark for 30 min. The measurements were started by perfusion of 

Ringer solution for 75 s followed by perfusion of a saturating concentration of 100 µM PregS 

[115] for 300 s. Finally, a concentration high enough to completely block TRPM3 channels of 

10 µM Hesperetin was added (Figure  5-31). The application of PregS evoked an increase of 

[Ca2+]i in 292 cells from WT mice (Figure  5-31, A and B) whereas the rest of the cells ( 1101) 

did not respond. However, in the responding cell population, I observed three different types 

of responders. 221 cells (15.9 %) also responded to Hesperetin with a clear decrease of the 

[Ca2+]i. These cells displayed the pharmacological fingerprint of recombinant TRPM3 

channels and are therefore defined as TRPM3 expressing cells. In addition to the 

PregS/Hesperetin-sensitive population, 33 cells were insensitive to the application of 

Hesperetin and are therefore not considered to express TRPM3 channels. Finally, another 

minor population of 38 cells showed only a transient response to PregS (Figure  5-31) which 

declined to steady-state levels before Hesperetin has been applied. These cells may still 

express TRPM3 channels but may also respond to PregS because of other PregS-sensitive 

channels like TRPA1 [183]. In contrast to WT cells isolated from the anterior lobe of TRPM3-

KO mice were lacking the population sensitive to both PregS and Hesperetin, whereas 

transient responders and Hesperetin insensitive cells were still detectable (Figure  5-31). 

These findings confirm the presence of functionally active TRPM3 ion channels in ~ 15 % of 

the anterior lobe cells. 
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Figure  5-31: Ca2+ imaging of anterior lobe cells.  
(A) Exemplary measurements of anterior lobe cells prepared from wild type (WT, upper panel) or 
TRPM3-deficient mice (KO, lower panel) in the presence of Ringer solution, during application of 
100 µM pregnenolone sulfate (PregS) and 10 µM Hesperetin. Single traces each belonging to one 
type of responding cell is highlighted in red, dark gray, light gray and blue. (B) Mean values (± S.E.M) 
of experiments as shown in (A). The numbers of cells of each cell population/the total number of cells, 
as well as the number (n) of measurements/experiments are indicated. Note that cells responding to 
both PregS and Hesperetin are missing in cells prepared from TRPM3-deficient mice.  

The presences of PregS-sensitive Ca2+ entry pathways in anterior lobe cells unrelated to 

TRPM3 channels were further analyzed. Cells were pre-incubated with TRPM3 blocker 

Hesperetin before PregS was applied (Figure  5-32). This treatment was expected to block 

PregS-induced TRPM3-mediated Ca2+ influx while TRPM3-unrelated Ca2+ entry pathways 

remain unaffected. Figure  5-32 shows that PregS induced a comparable increase of [Ca2+]i in 

a similar number of both WT and KO anterior lobe cells confirming the presence of additional 

PregS-sensitive Ca2+ entry mechanisms in anterior lobe cells.  
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Figure  5-32: Presence of PregS-induced Ca2+ entry unrelated to TRPM3 in anterior lobe cells.  
Response to Pregnenolone sulfate (PregS) in anterior pituitary cells from wild type (black) and 
TRPM3-deficient (red) mice after pre-incubation with the TRPM3 blocker Hesperetin. Mean values of 
37 and 44 responding cells ± SEM detected in a total number of 344 and 365 WT and KO cells are 
indicated. The number of measurements (n) is indicated. 

5.4.2 PregS-induced Ca2+ signals in cells of the intermediate/posterior lobe  

Due to the fact that a microscopic separation of the posterior lobe and the intermediate lobe 

was impossible, the cells from these two lobes were prepared and analyzed together in the 

following Ca2+ imaging experiments and patch-clamp recordings. 

5.4.2.1 Immunohistochemical characterization of primary pituitary cells 
obtained from the intermediate and posterior lobe 

First, cells that were prepared as described in ( 4.1.1.2), were characterized 

immunohistochemically. Cells were co-stained with anti-α-MSH antibodies, anti-GFAP 

antibodies and Hoechst 33258 for staining of the nucleus. As shown in Figure  5-33, I found 

two main populations of cells: 1. α-MSH-positive and GFAP-negative round-shaped cells 

which were thought to represent melanotrophs derived from the intermediate lobe and 2. α-

MSH-negative and GFAP-positive cells with irregular shape thought to represent pituicytes 

derived from the posterior lobe. 
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Figure  5-33: Characterization of primary cells obtained from the intermediate/posterior lobe.  
Single primary cells from the IL/PL in a bright field microscopic image (upper left) and fluorescence 
images of the same cells after staining with anti-α-MSH (red), anti-GFAP staining (green) antibodies 
and Hoechst 33258 (blue) are shown. Merged images of fluorescence stainings (lower middle) and of 
all images (lower right) are also presented. Round cells are highlighted by white arrows, flat cells by 
black arrows. Additional nuclei which may belong to dead cells (see merged image) were also 
detectable. Scale bar = 100 µm. 

5.4.2.2 Identification of PregS-sensitive Ca2+ entry pathways in cells of the 
intermediate/posterior lobe 

Next, I analyzed in Ca2+ imaging experiments whether Ca2+ entry pathways which can be 

activated by PregS exist in cells of the intermediate/posterior lobe (IL/PL). Using the same 

protocol as described in the previous section ( 5.4.1), I found within a total number of 179 

cells, 61 cells that responded to the application of PregS (Figure  5-34). Within this population 

of responders, I identified again three subpopulations. The PregS induced increase of [Ca2+]i 

in 44 cells was sensitive and effectively blocked by Hesperetin. These cells are therefore 

defined as TRPM3 expressing cells, which represent 24.5 % of the total number of cells. 

Cells sensitive to both PregS and Hesperetin were missing in cell population from TRPM3-

deficient (KO) mice (Figure  5-34) confirming this definition. Similar to anterior lobe cell 

preparations, I also found in WT cell preparations, few cells (6/179) which were insensitive to 

the application of Hesperetin or which responded only transiently to PregS (11/179). These 

cells were not expected to express TRPM3 but may contain other PregS-sensitive Ca2+ entry 

pathways. Consistent with this idea, these cells were also detectable in cell preparations of 

TRPM3-deficient mice (Figure  5-34, lower panel and Figure  5-35). 
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In summary, these experiments demonstrated that in addition to other Ca2+ entry pathways, 

TRPM3 ion channels allow the influx of Ca2+ into pituitary cells derived from the 

intermediate/posterior lobe. 

 

Figure  5-34: Ca2+ imaging of intermediate/ posterior (IL/PL) lobe cells.  
(A) Exemplary measurements of intermediate/ posterior lobe cells prepared from wild type (WT, upper 
panel) or TRPM3-deficient mice (KO, lower panel) in the presence of Ringer solution, during 
application of 100 µM pregnenolone sulfate (PregS) and 10 µM Hesperetin. Single traces each 
belonging to one type of responding cell is highlighted in red, dark gray, light gray and blue. (B) Mean 
values (± S.E.M) of experiments as shown in (A). The number of cells of each cell population/the total 
number of cells, as well as the number (n) of measurements/experiments is indicated. Note that cells 
responding to both PregS and Hesperetin are missing in cells prepared from TRPM3-deficient mice. 
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Figure  5-35: Presence of PregS-induced Ca2+ entry unrelated to TRPM3 in intermediate 
/posterior lobe cells.  
Response to Pregnenolone sulfate (PregS) in PL/IL cells from wild type (black) and TRPM3-deficient 
(KO) mice after pre-incubation with the TRPM3 blocker Hesperetin. Mean values of 12 and 6 
responding cells ± SEM detected in a total number of 110 and 80 WT and KO cells are shown, 
respectively. The number of measurements (n) is indicated. 

5.4.2.3 Identification of TRPM3-mediated Ca2+ entry pathways in melanotrophs 
of the intermediate lobe 

In order to determine the identity of PregS/Hesperetin-sensitive cells in the mixed cell 

preparation ( 5.4.2.2), cells derived from IL/PL were plated onto grid coverslips (BELLCO 

Biotechnology, USA) and analyzed in Ca2+-imaging experiments (Figure  5-36). Subsequent 

to the measurement, cells were fixed, permeabilized, and stained with anti α-MSH 

antibodies. The grid on the coverslips allowed the identification of those cells which 

responded to PregS and Hesperetin. I found that 95.8 % of the responders (46/48) were 

stained with anti-α-MSH antibodies, whereas no other cells were stained. This experiment 

provided strong evidence that melanotrophs of the intermediate lobe express active TRPM3 

ion channels.  
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Figure  5-36: α-MSH expressing cells display TRPM3-mediated Ca2+ signals.  
(A) Cells prepared from the IL/PL were analyzed in Ringer solution, during application of 100 µM 
pregnenolone sulfate (PregS) and 10 µM Hesperetin. Ca2+ signals of 48 cells responding to 
PregS/Hesperetin (red traces) and their mean ± SEM (black trace) are shown. Non responding cells 
(69) are not displayed. (B) Merge of a bright field image to visualize the grid on the coverslip, a 
fluorescence image demonstrating immunoreactivity to α-MSH antibodies (red) and Hoechst 33258 
(blue) staining of the cell nuclei. 

5.4.2.4 Isolated melanotrophs but not pituicytes display PregS-inducible Ca2+ 
signals  

In the preceding section, I could show that α-MSH expressing cells display Ca2+ signals that 

are sensitive to PregS and Hesperetin and are therefore likely to contain active TRPM3 

channels. However, only α-MSH-positive cells but not other cells were stained. This raised 

the question, whether pituicytes which also express TRPM3 transcripts (Figure  5-5, 

Figure  5-6) and TRPM3 proteins ( 5.3.2.2.2) contain active TRPM3 channels. To address this 

question, I chose an alternative approach. Cells prepared from the IL/PL were stained with 

anti-GLAST antibodies and were separated by fluorescence-activated cell sorting (FACS). 

Staining with anti-GLAST antibodies (GLAST-positive cells) was attributed to pituicytes, 

whereas the absence of immunoreactivity to these antibodies (GLAST-negative cells) was 

attributed to melanotrophs. The cells were sorted onto poly-L-lysine covered coverslips for 

functional and morphological analysis. In addition, 50 GLAST-positive or GLAST-negative 

cells were sorted into tubes for analysis of TRPM3 expression by PCR (see  5.1.4). 

To allow recovery of cells after sorting, Ca2+ imaging experiments were performed as 

described ( 5.4.1) 24 h after the sorting procedure. After loading of the cells with Fura-2, 
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morphological differences were analyzed microscopically (Figure  5-37, A). GLAST-positive 

cells (pituicytes) looked bigger in size and more flat with processes and extensions whereas 

GLAST-negative cells were smaller with a round shape (Figure  5-37, A). While all GLAST-

negative cells (5) showed clear response to the application of both PregS and Hesperetin, 

GLAST-positive cells did not respond to the application of 100 µM PregS (Figure  5-37, C and 

B, respectively). This result again demonstrated the presence of functional TRPM3 channels 

in melanotrophs (GLAST-negative cells) and also confirmed their absence in pituicytes 

although these cells express TRPM3 transcripts and proteins. The absence of functional 

TRPM3 proteins function in pituicytes was proved by additional experiment using the patch-

clamp technique ( 5.5). 

 

Figure  5-37: Morphological and functional analysis of sorted posterior/intermediate lobe cells. 
(A) A microscopic view of Fura-2 AM loaded GLAST-negative cells (left) and GLAST-positive cells 
(right). (B) GLAST-negative cells were analyzed in Ringer solution, during application of 100 µM 
pregnenolone sulfate (PregS) and 10 µM Hesperetin. Ca2+ signals of 5 cells responding to 
PregS/Hesperetin (colored traces) and their mean ± SEM (red trace) are shown. (C) GLAST-positive 
cells were analyzed similarly and displayed no response to PregS. Single cells are shown in colored 
traces and their mean ± SEM as gray trace.   

5.4.2.5 Long-term culture of pituicytes did not recover TRPM3 activity 
The absence of Ca2+ entry into pituicytes after PregS stimulation might be related to the 

preparation of cells and their culture conditions. Therefore, I tested whether primary “explant” 
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cultures of pituicytes displayed PregS-inducible Ca2+ entry. For that purpose, explant cultures 

were prepared as described ([172],  4.1.1.2). The cells proliferated and grew for period of at 

least 12 days. After this time, cells were fixed and stained either with anti-GFAP or anti-

S100B antibodies providing evidence of their identity (Figure  5-38, A). Furthermore, I 

performed Ca2+ imaging experiments. Cells were loaded with Fura-2, but again after addition 

of 100 µM PregS, the cells did not display any change in the intracellular Ca2+ concentration 

(Figure  5-38, B). This experiment demonstrated that living and proliferating pituicytes do not 

respond to PregS albeit they may express TRPM3 proteins. 

 

Figure  5-38: Properties of long-term cultures of pituicytes. 
(A) Fluorescence images of explant pituicytes cultures stained with anti-GFAP antibodies (left image) 

or with anti-S100B antibodies (right image) and Hoechst 33258  (scale bar = 100 µm) (B) Cells were 

analyzed in Ca2+ imaging experiments in Ringer solution, during application of 100 µM pregnenolone 

sulfate (PregS) and 10 µM Hesperetin. The mean ± SEM of 55 cells is shown.  

5.4.3 TRPM3-mediated Ca2+ entry is preserved in TRPM3-GFP-Ki mice 

The targeting strategy to generate GFP-Ki mice included the fusion of exon 24 to the splice 

acceptor site of the IRES-GFP cassette which would lead to a frame shift of the TRPM3 

reading frame and a premature stop of translation. However, I observed in the pituitaries of 

mice homozygous for the L3F1 (GFP-Ki) allele that long TRPM3 proteins similar in size to 

the recombinant TRPM3α2 proteins are still expressed ( 5.3.1.2). Consisting with that finding, 

PCR analysis revealed splicing of exon 24 to exon 25, preserving the TRPM3 reading frame 

( 5.3.1.3). Therefore, I tested in Ca2+ imaging experiments whether active TRPM3 channels 

are still present in pituitary cells (Figure  5-39). Cells from the anterior lobe and from the 

intermediate/posterior lobe of TRPM3GFP-Ki/GFP-Ki mice both showed a reliable number of cells 

which displayed PregS-induced Ca2+ entry which was blocked by the addition of Hesperetin. 

This finding demonstrates that active TRPM3 channels are present in the pituitary of GFP-Ki 
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mice. Although the IRES-GFP cassette is spliced out from the primary TRPM3 transcript 

(Figure  5-12), the cells express in addition to TRPM3 the GFP protein.  

 

Figure  5-39: Ca2+ imaging of pituitary cells from mice homozygous for the L3F1 allele 
(TRPM3GFP-Ki/GFP-Ki).  
Ca2+ signals in anterior lobe cells (A) and intermediate/posterior lobe cells (B) from GFP-Ki mice in the 
presence of Ringer solution, during application of 100 µM pregnenolone sulfate (PregS) and 10 µM 
Hesperetin. Mean values ± SEM are displayed of 54 and 69 cells detected in 756 and 134 anterior and 
intermediate/posterior lobe cells, respectively. The number of measurements (n) is indicated. 

5.5 Analysis of ionic currents in pituitary cells of the intermediate and 
the posterior lobe (Dr. Beck) 

The results of the preceding chapters provided strong evidence that TRPM3 proteins are 

expressed in melanotrophs of the intermediate lobe ( 5.3.2.4), and pituicytes of the posterior 

lobe ( 5.3.2.2.2). However, Fura-2 measurements of the IL/PL cell preparations indicated that 

only round and smooth cells that were stained with anti-α-MSH antibodies responded to 

PregS and Hesperetin ( 5.4.2), whereas sorted flat and irregular pituicytes which were stained 

with anti-GLAST antibodies did not (Figure  5-37). In the following chapter, we characterized 

the biophysical properties of ionic currents of these two cell populations by whole-cell patch-

clamp recordings. The electrophysiological experiments were kindly performed by Dr. 

Andreas Beck. 
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5.5.1 Characterization of voltage-gated ionic currents in IL/PL cell 
preparations 

In the culture of primary intermediate and posterior lobe cells, the only endocrine cells were 

the melanotrophs (Figure  5-33), which has been shown to express different types of voltage-

activated sodium channels [3].  

To characterize the primary cells electrophysiologically and to distinguish melanotrophs and 

pituicytes not only by their morphology, but also by their biophysical properties, voltage 

ramps from -100 to +100 mV over 50 ms duration were applied in the whole-cell 

configuration at 0.5 Hz starting from a holding potential (Vh) of -80 mV (Figure  5-40). 

Round cells (Figure  5-40, A) displayed voltage-dependent inward currents when the cells 

were depolarized to ~ -40 mV which inactivated at a membrane potential of ~ -10 mV 

(Figure  5-40, B). When the holding potential between the ramps was increased to 0 mV 

these inward currents disappeared (Figure  5-40, C). The current/voltage relationship at 

Vh = -80 mV (Figure  5-40, B) and the absence of the current at Vh = 0 mV (Figure  5-40, C) 

strongly resembled typical features of voltage-gated Na+ channels and confirm the identity of 

these cells as melanotrophs. In contrast, application of the same protocol to the irregular-

shaped cells (Figure  5-40, D) did not reveal any current, indicating the absence of voltage-

gated Na+ channels in these cells (Figure  5-40, E and F).  

To ensure the identity of NaV channels in the round-shaped melanotrops, whole-cell patch-

clamp experiments were performed in the absence of extracellular Na+ (replaced by 140 mM 

N-Methyl-D-glucamin, NMDG). Removal of extracellular Na+ led to a complete 

disappearance of the inward current (Figure  5-41, A) whereas removal of Ca2+ did not 

change the appearance of the voltage-activated inward current (Figure  5-41, B). These 

experiments proof that the voltage-activated inward current seen in the melanotrophs are 

mediated by NaV channels. 
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Figure  5-40: Morphological and electrophysiological properties of posterior and intermediate 
lobe cells.  
Round cells (A) and flat, irregular-shaped cells (D) were patched (whole-cell configuration) and 
currents were measured during the application of voltage ramps from -100 mV to +100 mV within 50 
ms starting from a holding potential (Vh) of -80 mV (B,E), or within 400 ms starting from Vh of 0 mV 
(C,F). Thick traces indicate the mean of the single traces (gray, B, C, and green, E, F). Flat cells 
neither revealed NaV currents at a holding potential of -80 mV (E) nor the outward rectifying current, 
seen in round cells. n indicates the number of measured cells. 
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Figure  5-41: Identity of NaV channels.  
(A) Current-voltage relationships (IVs) of whole-cell currents in round cells measured as described 
before (Figure  5-40, B) in the presence of 140 mM extracellular NaCl (black trace) and after 
replacement of Na+ by 140 mM NMDG (red trace). (B) Current-voltage relationships (IVs) of NaV 
currents in round cells in the presence (black trace) and absence (red trace) of 1 mM extracellular 
Ca2+, both in the presence of extracellular Na+. 

5.5.2 Identification of TRPM3-mediated ionic currents in primary melanotropic 
cells 

Immunohistochemistry ( 5.3.2.4) and PCR-analysis ( 5.1.4) as well as Ca2+-imaging 

experiments of isolated GLAST-negative cells ( 5.4.2.4), revealed the presence of functional 

TRPM3 ion channels in melanotrophs. We confirmed this finding and analyzed the 

biophysiological properties of endogenous TRPM3 channels in the melanotrophs by whole-

cell patch-clamp experiments (Figure  5-42). After break-in into round shaped-cells, NaV 

currents were measured as described in  5.5.1 to identify the cell as melanotroph. 

Subsequently, a voltage ramp protocol was applied as described in Figure  5-40, C and ionic 

currents were challenged by perfusion of 100 µM PregS. As shown in Figure  5-42, strong 

outward currents and small inward currents appeared upon PregS application resembling the 

typical current-voltage (IV) relationship described for TRPM3 channels ([103], Figure  5-42, A, 

B). In addition, the PregS-induced currents were readily inhibited by 10 µM Hesperetin, and 

thus, displayed the pharmacological fingerprint of recombinant TRPM3α2 channels 

[115,118]. Current-voltage relationship and inhibition of the PregS-induced currents by 

Hesperetin strongly indicate the expression of functional TRPM3 channels in these cells. 

Again, flat and irregular-shaped pituicytes did not show any response to PregS (Figure  5-42, 

C, D).  
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Figure  5-42: PregS-induced currents in primary cells of the intermediate/posterior lobe cells of 
the pituitary.  
(A, C) Inward and outward currents at -80 and +80 mV, respectively, measured in melanotrophs (A) 
and pituicytes (C) during the application of 100 µM PregS, and in (A), 10 µM Hesperetin. Basic 
currents right before PregS application were subtracted. B and D depict the respective current-voltage 
relationships (IVs) of the net current induced by 100 µM PregS in melanotrophs (B, single experiments 
in gray and mean in black) and pituicytes (C, single experiments in light green and mean in green). 
Hesperetin inhibited the PregS-induced currents in melanotrophs (A, B). The IVs of the remaining 
currents in A are shown in B (single experiment in light blue and mean in blue). Data represent means 
(± SEM) of the indicated number of experiments (n). 

TRPM1, the closest relative of TRPM3, may also be activated by PregS [109]. To rule out 

any contribution of TRPM1 channels to the PregS-induced currents in melanotrophs, we 

applied 100 µM Zn2+, which has been shown to inhibit TRPM1 but not TRPM3 [109], during 

the presence of the PregS-induced current. As shown in Figure  5-43, we found almost no 

change of the PregS-induced currents in melanotrophs when 100 µM Zn2+ was added. 

Furthermore, TRPM1 transcripts were not detectable in these cells ( 5.1.4).   
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Figure  5-43: PregS-induced currents are not inhibited by zinc ions in melanotropic cells.  
(A) Inward and outward currents measured at -80 and +80 mV, respectively, during application of 100 
µM PregS and 100 µM Zn2+. (B) Current-voltage relationships of the net PregS-induced current (basic 
currents subtracted) before (black) and in the presence of 100 µM Zn2+ (red). Data represent means 
(± SEM) of the indicated number of experiments (n). 

To further proof the identity of the PregS/Hesperetin-sensitive currents in melanotrophs as 

TRPM3-dependent, we isolated melanotrophs from TRPM3-deficient mice (KO, Figure  5-44). 

The whole-cell patch-clamp experiments, revealed no difference in the appearance of the 

voltage-gated Na+ currents in melanotrophs from both genotypes (Figure  5-44, A, D). 

However, in contrast to melanotrophs isolated from wild type mice (Figure  5-44, B, C), 

melanotrophs isolated from TRPM3-deficient mice (Figure  5-44, E, F) did not reveal any 

current upon application of 100 µM PregS.  

This data prove the presence of functional TRPM3 channels in melanotrophic cells of mouse 

pituitary.     
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Figure  5-44: PregS-inducible currents are absent in melanotrophs isolated from TRPM3-
deficient (KO) mice.  
(A, D) Current-voltage relationships (IVs) of NaV currents measured as described in Figure  5-40, B in 
melanotrophs from WT (A) and TRPM3-KO mice (D). (B, E) Inward and outward currents at -80 and 
+80 mV, respectively, measured in WT cells (B) and TRPM3-KO cells (E) during the application of 100 
µM PregS, and 10 µM Hesperetin. (C) and (F) depict the respective current-voltage relationships (IVs) 
of the net measured current (basic currents subtracted) induced by 100 µM PregS in WT cells (B, 
single experiments in gray and mean in black) and TRPM3-KO cells (single experiments in light red 
and mean in red). Hesperetin inhibited the PregS-induced currents in WT cells (B, C). The IVs of the 
remaining current is shown in C (single experiments in light blue and mean in blue). Data represent 
means (± SEM) of the indicated number of experiments (n). The amplitude of the PregS-induced 
currents in WT melanotrophs were slightly smaller than in the experiment shown in (Figure  5-42, A, B). 
This might be due to the different internal solutions used in both experiments. Experiments in 
Figure  5-42 were done using Cs-glutamate in the patch pipette and in the present experiment Cs-
methanosulfonate was used. 
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6 Discussion 

The current work aimed at the identification of TRPM3 proteins in mouse pituitary gland and 

the definition of pituitary cell types expressing these proteins.  

Using GFP-Ki mice and a collection of cell type-specific antibodies, I identified three types of 

cells that express TRPM3 proteins. 

1. Folliculostellate cells of the adenohypophysis which form a signaling network 

connected by gap junctions and which are considered to be non-secretory cells. 

2. Pituicytes, which are glial cells of the neurohypophysis that mainly assist in the 

storage and release of hypothalamic hormones. 

3. Melanotrophs of the intermediate lobe that release α-MSH into the blood. 

I also aimed at the determination of TRPM3-mediated Ca2+-signals and TRPM3 currents in 

pituitary cells in order to elucidate the physiological role of TRPM3 channels in the 

hypophysis. Using a combination of the TRPM3 agonist PregS and the antagonist 

Hesperetin, I dissected TRPM3-mediated Ca2+ signals in cell preparations of both the anterior 

lobe and the intermediate/posterior lobe demonstrating the activity of native TRPM3 

channels in both regions of the hypophysis and confirming the results of the 

immunohistochemical experiments. Finally, characterization of PregS/Hesperetin-sensitive 

currents in primary melanotrophic cells proofed the presence of functional TRPM3 channels. 

6.1 Possible roles of TRPM3 channels in folliculostellate (FS) cells of 
the anterior lobe 

Fura-2 measurement of anterior pituitary cells uncovered Ca2+-signals ( 5.4.1) that were 

activated by PregS and inhibited by Hesperetin. Thus, these cells displayed the 

pharmacological fingerprint of recombinant TRPM3 channels and therefore it is reasonable to 

sugesst that these signals were mediated by TRPM3 channels. 15 % of the cells displayed 

such a phenotype, which is in good agreement with the number of folliculostellate (FS) cells 

described in pituitary gland [1]. This functional observation was strongly supported by my 

immunohistochemical results. First, no hormone secreting cell population within the 

adenohypophysis matched to the GFP-fluorescence observed in pituitaries of GFP-Ki mice. 

Vice versa, glutamate aspartate transporter (GLAST) proteins have been described to be 

expressed on the surface of FS cells [8] and cells stained with anti-GLAST antibodies co-
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stained with anti-GFP antibodies in these mice. Thus, it is reasonable to conclude that 

TRPM3 proteins build Ca2+-permeable ion channels in FS cells. 

FS cells are known to form a three dimensional cell network connected by gap junctions [5]. 

This network was shown to carry Ca2+ waves and other small diffusible molecules over long 

distances in the millimeter range providing a communication system between anterior lobe 

cells. It has been described that the initiation of this Ca2+ waves is dependent on the activity 

of voltage-activated Na+ and Ca2+ channels expressed in these cells [9]. Na+ and Ca2+ influx 

through TRPM3 channels might increase the membrane potential and may facilitate the 

activation of voltage-activated channels. This way TRPM3 channels may contribute to the 

propagation of Ca2+ waves through the FS cell network.  

FS cells influence the release of FSH from gonadotrophs [55,184]. Binding of pituitary 

adenylate cyclase-activating peptide (PACAP) to its receptor on FS cells stimulates 

transcription of the follistatin gene through cyclic adenosine monophosphate/protein kinase A 

(PKA) signaling. TRPM3 might be involved in this process in a hitherto undiscovered 

manner. Since follistatin is known to reduce FSH-release from gonadotrophs of the pituitary, 

TRPM3 might have an indirect regulatory influence upon ovulation [184]. 

Vascular endothelial growth factor (VEGF) is a signal protein that stimulates vasculogenesis 

and angiogenesis and has been implicated as an important factor in tumorigenesis such as 

in mamma carcinoma [185,186]. Therefore, VEGF has been recognized as a drug target to 

treat solid tumors and a number of anti-VEGF antibodies such as bevacizumab and 

ranibizumab have been developed as anti-tumor drugs [186]. The secretion of vascular 

endothelial growth factor (VEGF) from FS cells has been shown to be Ca2+-dependent [187]. 

Ca2+ influx through TRPM3 might trigger the release of VEGF and contribute this way to 

disease development. Agonists of TRPM3 such as Hesperetin and isosakuranetin [118,168] 

may reduce TRPM3-dependent VEGF release from FS cells and may finally represent an 

alternative approach for the treatment of solid tumors. 

6.2 Possible roles of TRPM3 channels in pituicytes of the 
neurohypophysis 

Immunohistochemical analysis of the posterior lobe revealed that neither vasopressin (VP)- 

nor oxytocin (OXT)-releasing nerve terminals matched to GFP staining of the posterior lobe 

indicating that TRPM3 proteins are absent in nerve endings of the neuropituitary.  Pituicytes, 

a subtype of astrocytes in the pituitary gland [188], are known to express GLAST, GFAP and 
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S100B proteins [8,182]. I found that cells stained with anti-GLAST antibodies were co-

stained with anti-GFP antibodies indicating that TRPM3 is expressed in the pituicytes. 

However, the colocalization displayed a spectrum of coloration due to the difference in 

intensity of each immune reaction. Therefore, the identity of these green cells was confirmed 

by co-staining of both GFAP and S100B antibodies. I found that all GFP-positive cells were 

immunoreactive to anti-S100B antibodies. On the other hand, there were cells which were 

GFP-positive but did not show staining with anti-GFAP antibodies. This finding is in good 

agreement with the fact that two types of pituicytes including parenchymatous and fibrous 

pituicytes exist [182]. The parenchymatous pituicytes have been shown to be 

immunoreactive to both anti-GFAP and anti-S100B antibodies but the fibrous pituicytes are 

only immunoreactive to anti-S100B antibodies [182]. In contrast to my immunohistochemical 

results indicating the presence of TRPM3 in pituicytes, these cells did not respond to PregS. 

This unexpected finding was confirmed by three individual approaches:  

1. The posterior/intermediate lobe (PL/IL) and the anterior lobe (AL) could be easily 

separated from each other under the stereomicroscope [189]. However, the 

intermediate lobe was always tightly attached to the posterior lobe and could not be 

removed. Cell preparations of the PL/IL contained mainly two types of cells which 

could be already distinguished by their shape: round cells and flat star-shaped cells 

(Figure  5-37, Figure  5-40). Co-staining with anti-α-MSH and anti-GFAP antibodies 

identified round cells as melanotrophs and flat cells as pituicytes (Figure  5-33). Fura-

2 imaging experiments demonstrated that the round-shaped melanotrophs responded 

to PregS whereas the flat shaped pituicytes did not. The identity of the analyzed cells 

was reconfirmed by staining of the very same cells on a grided coverslip 

(Figure  5-36). 

2. Patch-clamp recordings of the round cells identified Na+-currents mediated by 

voltage-activated NaV
 channels (Figure  5-40). These channels have already been 

described in melanotrophs [3] confirming that the round cells represent melanotrophs 

and the voltage-gated Na+ currents were taken as independent functional indicator of 

the identity of melanotrophs. Without any exception all NaV-positive cells displayed 

currents in response to PregS that were absent in the presence of Hesperetin 

(Figure  5-42). However, measurements of the flat cells within the preparations did 

never show any response to PregS. 

3. I made use of fluorescence-activated cell sorting (FACS) to separate GLAST-positive 

pituicytes from GLAST-negative cells and analyzed these cells in calcium imaging 

experiments. GLAST-positive cells did not respond to PregS in contrast to GLAST-
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negative cells (Figure  5-37). Thus although pituicytes do express TRPM3, they do not 

respond to PregS. 

The most probable reason for such a behavior was, that the pituicytes did not survive the cell 

preparation process. However, pituicytes (I) immediately responded to a change of the 

extracellular Ca2+ concentration (not shown); (II) showed reasonable low basal currents after 

break-in with the patch pipette (Figure  5-40) and (III) could be kept in culture for 8-12 days 

[48]. In culture, the cells proliferated but still did not respond to PregS (Figure  5-38). Another 

explanation for the lack of a PregS response could be that the TRPM3 isoforms expressed in 

pituicytes form non-functional channels or channels that are impermeable for Ca2+. However, 

PCR analysis of GLAST-positive cells isolated by FACS indicated that the TRPM3 transcripts 

expressed in these cells encode channels with a Ca2+-permeable pore [103] and which do 

not lack the ICF-region that is indispensable for channel function [111].  

Thus it remains an open question, whether functional TRPM3 channels are present in 

pituicytes and how they get activated. There is still an ongoing debate, if PregS is really a 

physiological ligand of TRPM3 channels and additional modulators of TRPM3 activity have 

been identified recently [163]. Perhaps, additional or other stimuli like D-erythrosphingosine 

[161], increased temperature [105] and hypoosmotic extracellular conditions [101] are 

necessary to activate TRPM3 channels in pituicytes and need to be tested in the future. 

Indirect evidence supports the idea that TRPM3 may be involved in one of the key functions 

of pituicytes, which is the regulation of vasopressin and oxytocin release by hypothalamic 

nerve terminals. Under resting conditions, pituicytes form a physical barrier between axon 

terminals and blood vessels thereby reducing hormone availability. Under stress such as 

dehydration or parturition, pituicytes undergo morphological changes and retract from the 

vessels leading to an increased hormone output from the axons into the blood [10,48]. This 

process is called “stellation” and has been studied in vitro using explant cultures of primary 

pituicytes. Adenosine has been found to induce stellation of pituicytes after activation of A1 

adenosine receptors but this process is independent of the intracellular calcium 

concentration since it also happens when [Ca2+]i is buffered with BAPTA [172]. However, 

released vasopressin acts on V1a-vasopressin receptors present on the surface of  pituicytes 

resulting in an increase of  [Ca2+]i  and a subsequent taurine release which acts as a negative 

feedback inhibitor of VP release from the nerve terminals [46,48]. Taurine release from 

pituicytes has also been shown to be induced under hypotonic conditions, but hypotonic 

solutions were not able to evoke calcium signals in the cells [172]. When [Ca2+]i was buffered 

with BAPTA, both the vasopressin and the hypotonicity induced taurine release was blocked. 
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These findings suggest that Ca2+ plays an important role in pathways underlying taurine 

release [48]. TRPM3 channels may coordinate the different stimuli involved in taurine release 

and may only get active under hypotonic conditions after binding of vasopressin to its 

receptors. 

6.3 TRPM3 is expressed in melanotrophs and may contribute to the 
release of α-MSH and other hormones  

In the intermediate lobe of GFP-Ki mice, immunohistochemical staining using anti-GFP 

antibodies and anti-α-MSH antibodies indicated the expression of TRPM3 in α-MSH-

producing melanotrophs (Figure  5-29). The expression of TRPM3 in melanotrophs was 

confirmed using anti-TRPM3 antibodies (AK695) which strongly labelled the whole 

intermediate lobe of the gland similar to anti-α-MSH antibodies (Figure  5-30). Both Fura-2 

measurements and patch-clamp recordings confirmed this finding and demonstrated 

functionally active TRPM3 channels in these cells ( 5.4.2.4,  5.5):  

• Almost all cells which displayed Ca2+ signals in response to PregS and Hesperetin 

were stained with anti-α-MSH antibodies (Figure  5-36).  

• PregS inducible Ca2+-signals that were sensitive to Hesperetin were absent in IL/PL 

cell preparations of TRPM3-deficient mice (Figure  5-34)  

• GLAST-negative cells isolated by FACS showed the typical morphology of 

melanotrophs, responded to both PregS and Hesperetin (Figure  5-37) and contained 

TRPM3 transcripts (Figure  5-5). 

• Round cells prepared from  IL/PL showed both voltage-activated Na+ currents and 

PregS induced currents which displayed a current/voltage relationship (Figure  5-42) 

highly similar to currents through recombinant TRPM3 channels [103]. These currents 

were absent in both the presence of Hesperetin and in cells obtained from TRPM3-

deficient mice.   

Melanotrophs release α-MSH, which fulfills important physiological functions including 

melanogenesis, inflammation, energy homeostasis, appetite regulation and inhibition of food 

intake [35,38,39,190].  POMC precursor peptides undergo proteolytic cleavage resulting in 

the formation of α-MSH, β-endorphin and other regulatory peptides. It has been described 

that gene expression of POMC as well as its cleavage by prohormone convertase are Ca2+-

dependent [191-193]. Furthermore, hormone peptides are packaged in secretory vesicles 

and are released by Ca2+-dependent exocytosis [62]. Ca2+ influx through TRPM3 might be 



Discussion  
 

 

 
101 

important in one or more of the processing steps of POMC as well as in the release of α-

MSH. 

Outlook  

It would be exciting to investigate the influence of TRPM3 upon α-MSH release eg. by 

enzyme-linked immunosorbent assay (ELISA). One could ask whether the activation of 

TRPM3 with PregS could increase the release of α-MSH. Furthermore, one could compare 

α-MSH release or the amount of α-MSH inside the cell between wild type and TRPM3-

deficient mice. Preliminary data of ELISAs and bead-based immunoassays (not shown) 

indeed indicated that TRPM3 participates in the production and/or the release α-MSH from 

primary melanotrophs. The amount of α-MSH was increased in the supernatant of PregS-

treated cells but not in the presence of Hesperetin. Furthermore, the α-MSH concentrations 

in the supernatant of melanotrophs prepared from TRPM3-deficient mice (KO) was strongly 

reduced as was the amount of β-endorphin. Thus, TRPM3 may not only be important for the 

release of α-MSH but also for the release of β-endorphin.    
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