Rekonstruktion der unikuspiden Aortenklappe
Hämodynamischer Vergleich zweier OP-Verfahren

Dissertation zur Erlangung des Grades eines
Doktors der Medizin
der Medizinischen Fakultät der UNIVERSITÄT DES SAARLANDES
2012

Vorgelegt von: Moritz Bewarder
geboren am 11. Dezember 1984 in Aschaffenburg
Inhalt

Abkürzungen .. 1
Zusammenfassung ... 2
Summary ... 3
Einleitung .. 4
Anatomie der Aortenklappe ... 4
Anatomie der unikuspiden Aortenklappe ... 5
Embryologie der Aortenklappe ... 6
Inzidenz, natürlicher Verlauf und Begleiterkrankungen der unikuspiden Aortenklappe...... 7
Bisherige Operationsmethoden der unikuspiden Aortenklappe 9
Rekonstruktion der unikuspiden Aortenklappe .. 10
Fragestellung ... 13
Material und Methodik .. 14
Operationsmethoden .. 14
Design 1 .. 14
Design 2 .. 15
Festlegen der Untersuchungsmerkmale ... 16
Versuchsgruppen ... 17
Gruppe A ... 19
Gruppe B ... 21
Gruppe C ... 25
Erlernen der Messmethoden .. 25
Messung von LVEDD, LVESD und der zirkumferenziellen Verkürzungsfraktion (FS) ... 26
Messung der Druckgradienten .. 26
Auswertung der Bilder ... 28
Statistische Methoden ... 31
Ergebnisse ... 32
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vergleich der postoperativen Aorteninsuffizienz</td>
<td>33</td>
</tr>
<tr>
<td>Vergleich der postoperativen Aortenstenose unter Belastung</td>
<td>34</td>
</tr>
<tr>
<td>Einzelne Belastungsstufen</td>
<td>37</td>
</tr>
<tr>
<td>Linksventrikuläre Diameter</td>
<td>40</td>
</tr>
<tr>
<td>Diskussion</td>
<td>41</td>
</tr>
<tr>
<td>Einleitung</td>
<td>41</td>
</tr>
<tr>
<td>Postoperative Aortenklappeninsuffizienz</td>
<td>43</td>
</tr>
<tr>
<td>Postoperative Aortenklappenstenose</td>
<td>43</td>
</tr>
<tr>
<td>Ungleichheit der Gruppen</td>
<td>45</td>
</tr>
<tr>
<td>Messfehler</td>
<td>46</td>
</tr>
<tr>
<td>Konklusion</td>
<td>47</td>
</tr>
<tr>
<td>Beantwortung der Fragestellung</td>
<td>47</td>
</tr>
<tr>
<td>Literaturverzeichnis</td>
<td>48</td>
</tr>
<tr>
<td>Danksagung</td>
<td>54</td>
</tr>
<tr>
<td>Lebenslauf</td>
<td>55</td>
</tr>
</tbody>
</table>
Abkürzungen

<table>
<thead>
<tr>
<th>Abk.</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Aorta ascendens</td>
</tr>
<tr>
<td>AI</td>
<td>Aortenklappeninsuffizienz</td>
</tr>
<tr>
<td>AKR</td>
<td>Aortenklappenrekonstruktion</td>
</tr>
<tr>
<td>cw</td>
<td>continuous wave</td>
</tr>
<tr>
<td>dPmax</td>
<td>maximaler Druckgradient über der Aortenklappe in mmHg</td>
</tr>
<tr>
<td>dPmean</td>
<td>mittlerer Druckgradient über der Aortenklappe in mmHg</td>
</tr>
<tr>
<td>EF</td>
<td>Ejektionsfraktion</td>
</tr>
<tr>
<td>FS</td>
<td>Fractional shortening</td>
</tr>
<tr>
<td>LVEDD</td>
<td>linksventrikulärer enddiastolischer Durchmesser in mm</td>
</tr>
<tr>
<td>LVESD</td>
<td>linksventrikulärer endsystolischer Durchmesser in mm</td>
</tr>
<tr>
<td>n</td>
<td>Umfang der Stichprobe</td>
</tr>
<tr>
<td>p</td>
<td>Signifikanzwert</td>
</tr>
<tr>
<td>Prä – OP</td>
<td>präoperativ</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>W/M</td>
<td>weiblich/männlich</td>
</tr>
</tbody>
</table>
Zusammenfassung

Einleitung
Die unikuspide Aortenklappe ist mit einem Vorkommen von 0.02 % in der Normalbevölkerung eine seltene Erkrankung. Eine Besonderheit dieser Fehlanlage ist außerdem noch, dass diese Aortenklappen sehr früh durch Entwicklung einer Stenose oder Insuffizienz symptomatisch werden. Eine neue Methode zur Korrektur dieser Aortenklappe, die die Nachteile eines Klappenersatzes umgeht, ist die Rekonstruktion. Zwei Varianten (Design 1 und Design 2) dieser Operationsmethode werden von mir bezüglich ihrer Hämodynamik verglichen.

Patientengut und Methoden

Ergebnis
Hierbei wurde in Ruhe für die Gruppe A ein maximaler Druckgradient von 33,8 ± 7,8 mmHg und ein mittlerer Gradient von 19,1 ± 5,4 mmHg gemessen. Die entsprechenden Werte der Gruppe B sind 15,8 ± 5,4 mmHg und 8,2 ± 2,8 mmHg (p < 0,001). Bei 100 Watt Belastung betrugen die gemessenen Drücke über der Aortenklappe maximal 62,7 ± 16,7 mmHg und im Mittel 36,3 ± 11,0 mmHg in Gruppe A im Gegensatz zu 28,1 ± 7,6 mmHg und 15,0 ± 4,5 mmHg in Gruppe B.

Konklusion
Durch die Rekonstruktion der unikuspiden Aortenklappe nach Design 2 kann eine annähernd normale Hämodynamik erreicht werden bei Umgehung der verschiedenen Nachteile eines Klappenersatzes.
Summary

Objectives
Unicuspid aortic valve anatomy leads to dysfunction of the valve in young individuals. A new reconstructive technique contains bicuspidizing of the unicuspid aortic valve by creating a second normal commissure and adding autologous pericardium as partial cusp replacement. Initially the asymmetry of a normal bicuspid aortic valve was copied (design 1), later the design changed into a symmetric one (design 2). The aim of the study was to compare the hemodynamic function of the two designs of a bicuspidized unicuspid aortic valve.

Methods
Aortic valve function was studied at rest and during exercise in 28 patients after repair of a unicuspid aortic valve (group A: n=8; group B: n=20). There were no differences among the groups A and B with respect to age, body size and weight.
Six healthy adults served as controls (group C). Preoperative peak gradients were 73.9 ± 14.2 mmHg (group A) and 33 ± 25.5 mmHg (group B). Preoperative degree of aortic regurgitation was none (n=3), and moderate (n=5) in group A and moderate (n=3) and severe (n=17) in group B. All patients were studied using transthoracic echocardiography. Systolic gradients were assessed by continuous wave Doppler at rest and under exercise on a bicycle ergometer (0 Watt to maximal workload).

Results
Maximum and mean resting gradients were significantly elevated in group A compared to B and the controls (group A: 33.8 ± 7.8 mmHg and 19.1 ± 5.4 mmHg; group B: 15.8 ±5.4 mmHg and 8.2 ± 2.8 mmHg; controls: 6.0±1.6 mmHg and 3.2 ± 0.8 mmHg; p<0.001). At 100 W exercise maximum and mean gradients were also significantly higher in group A than in groups B and the controls (group A: 62.7 ± 16.7 mmHg and 36.3 ± 11.0 mmHg; group B: 28.1 ± 7.6 mmHg and 15.0 ± 4.5 mmHg; controls: 15.4 ± 4.6 mmHg and 7.8 ± 2.5 mmHg; p<0.001).

Conclusions
Reconstruction of the unicuspid aortic valve following design 2 leads to near-normal aortic valve function at rest and during exercise and can therefore be an alternative to the replacement of the aortic valve.
Einleitung

Anatomie der Aortenklappe

In 98% der Fälle ist die Aortenklappe ihrer normalen Anatomie entsprechend mit drei Taschen, also trikuspid angelegt (1). Der gesamte Klappenapparat setzt sich aus den Taschen, den Sinus und dem zwischen den Sinus liegendem Bindegewebe zusammen. Sinus und Bindegewebe werden auch als Aortenwurzel zusammengefasst.

Nach M. A. Silver und W. C. Roberts kann man eine normale Herzklappe als dünne bewegliche Gewebsschicht in einem Kanal oder Durchgang definieren, die dafür sorgt, dass einerseits ein ungestörter Blutfluss durch diesen Kanal möglich ist, andererseits ein Blutrückfluss verhindert wird (2).

Nach dieser Definition besteht die Aortenklappe ausschließlich aus drei Taschen, die man nach den Koronarostien in eine rechte (Valvula semilunaris dextra), eine linke (Valvula semilunaris sinistra) und eine akoronare Tasche (Valvula semilunaris posterior) unterteilt (3).

Da allerdings die Strukturen, mit denen die Taschen in der Aorta und dem linken Ventrikel befestigt sind, für die Anatomie der Klappe und besonders die Funktion während des Herzzyklus von wichtiger Bedeutung sind, müssen diese als Bestandteile des gesamten Klappenapparates gesehen werden. Zu diesen Befestigungsstrukturen der Taschen gehören die Sinus der Aorta sowie das zwischen den Sinus liegende Bindegewebe (4) (5) (6).

Die Taschen sind also der bewegliche Teil der Aortenklappe, der sich während Systole und Diastole öffnet und schließt. Diese drei Taschen sind halbmondförmig an der Aortenwand befestigt und ziehen dabei vom tiefsten Verankerungspunkt der Taschen, der sich noch innerhalb des Ventrikels befindet, bis auf die Höhe der Kommissuren, die oberhalb oder gleichauf der Abgänge der Koronargefäße liegen (4). Eine Kommissur ist eine Verbindungszone zwischen zwei benachbarten, aber eigentlich getrennten Strukturen. Im Fall der Aortenklappe ist eine Kommissur also der Bereich in dem sich zwei benachbarte Taschen während der Diastole einander anlegen (7). Die Kommissur zwischen linker und akoronarer Tasche werde ich als posterior und die zwischen akoronarer und rechter Tasche als anterior bezeichnen (8).

Abbildung 1: Gut zu erkennen sind die drei Klappentaschen, die durch Kommissuren voneinander getrennt werden. In den Sinus der rechten und linken Tasche befinden sich die Koronarostien (LCO = linkes Koronararterienostium; RCO = rechtes Koronararterienostium); Bild der Homepage der Humboldt Universität Berlin; Matthias Bauer; Thema „Bikuspide Aortenklappe und Dilatation der Aorta ascendens“

Anatomie der unikuspiden Aortenklappe

korrekt angelegten Kommissur um die posteriore, also die zwischen linker und akoronarer Tasche (9).

Ein weiteres Charakteristikum der unikuspiden Aortenklappe ist die fehlende Höhe der rudimentären Kommissuren (7) (8). Normalerweise reicht die Verankerung einer Tasche in der Aortenwand mindestens bis auf Höhe der Koronarostien (4), bei der unikuspiden Klappe endet diese Aufhängung schon 5 – 15 mm tiefer (9).

Abbildung 2: unikuspide AK (ANT = anterior; LCO = linkes Koronararterienostium; RCO = rechtes Koronararterienostium); nach SCHÄFERS et al. (2008)

Neben dieser Form der unikuspiden Aortenklappe besteht die Möglichkeit, dass sich während der Entwicklung keine Kommissur ausbildet und das Blut lediglich durch eine kleine zentrale Öffnung strömen kann. Diese Form der Fehlbildung ist allerdings seltener und geht mit einer schweren Stenose einher, weshalb sie hauptsächlich in der frühen Kindheit als Ursache einer Aortenklappenstenose zu finden ist (10).

Embryologie der Aortenklappe

Seine endgültige Form erreicht das fetale Herz bereits mit 8 Wochen.

Die Entwicklung der Taschenklappen beginnt damit, dass der Truncus arteriosus, der den noch nicht getrennten Ausflusstrakt des embryonalen Herzes darstellt, durch Bildung einer Gewebebrücke durch die Mitte des Truncus in den pulmonalen und aortalen Ausflusstrakt aufgeteilt wird. Von dieser Gewebebrücke aus entstehen anschließend zwei kleine Vorwölbungen, die die Basis der zukünftigen Taschenklappen bilden. Dieser Basis gegenüber
entwickelt sich anschließend, auch in Form einer Vorwölbung, die dritte Tasche (11) (12) (13).

Die trikuspiden Aortenklappe entsteht also im embryonalen Herzen zwischen Trunkus und Conus aus drei Mesenchympolstern aus denen jeweils eine Tasche und ein Sinus mit Kommissuren gebildet werden (14).

Wie die Fehlentwicklungen, die zu einer bikuspiden oder unikuspiden Klappe führen, genau vor sich gehen ist nicht vollständig verstanden (11). Bei der bikuspiden Aortenklappe wird aber eine der drei Kommissuren nicht korrekt gebildet und es entsteht an dieser Stelle eine dicke Gewebeleiste. Dies geschieht bei etwa 1 – 2 % der Bevölkerung und ist damit die häufigste Fehlbildung der Aortenklappe (1). Wenn diese Fehlentwicklung an zwei von drei Kommissuren stattfindet, entsteht eine unikuspid Aortenklappe (15).

Inzidenz, natürlicher Verlauf und Begleiterkrankungen der unikuspiden Aortenklappe

Die Inzidenz der unikuspiden Klappe bei Erwachsenen wird auf Basis einer großen echokardiographischen Studie mit etwa 0,02 % angegeben (16). Dieser Wert steigt allerdings bei Patienten, die wegen einer isolierten Aortenklappenstenose operiert werden müssen, auf etwa 4 – 6 % (17) (18). In einer aktuellen Studie über Patienten, die einen Aortenklappenersatz aufgrund einer Aortenklappenstenose erhielten, liegt die Prävalenz der unikuspiden angelegten Taschenklappen sogar bei 7 % (19).

Man kann davon ausgehen, dass die tatsächliche Inzidenz dieser Anomalie noch darüber liegt, da viele Chirurgen eine solche exzidierte Klappe nicht als unikuspid erkennen. So wurden bei einer Studie mit 744 operativ entfernten stenotischen Aortenklappen nur 6 von 41 unikuspiden Klappen von den Chirurgen übereinstimmend mit dem folgenden pathologischen Befund als solche erkannt (19).

Das durchschnittliche Alter erwachsener unikuspid Patienten beträgt 42 Jahre, mit einem Mann zu Frau Verhältnis von etwa 4 : 1, was den Patientendaten dieser Studie (mittleres Alter 35,7 Jahre; Mann zu Frau Verhältnis ca. 2 : 1) ähnlich ist (10).

Typischerweise wird die unikuspid Klappe aber bereits im Neugeborenenalter symptomatisch und bedarf einer zeitnahen Therapie. Die meistens schwere Stenose der Aortenklappe äußert sich dann häufig in Dyspnöe. Man kann bei Kindern unter einem Jahr mit kritischer Aortenklappenstenose eine Häufigkeit unikuspider Klappen von 9 – 50 % finden (20) (21).
Der natürliche Krankheitsverlauf, den eine unikuspide angelegte Aortenklappe nimmt, ist bisher in der Literatur nur sehr wenig beschrieben. (10).
Es zeigt sich, dass es kaum Daten dazu gibt wie sich eine unikuspide Klappe nach Geburt entwickelt und welche Veränderungen auftreten, die dann die Patienten schon in sehr frühem Alter symptomatisch werden lassen. Auch scheinen diese Prozesse nicht einheitlich zu sein, da bei manchen Patienten eher die Stenose der Klappe, bei anderen aber die Insuffizienz das führende Vitium darstellt. Außerdem ist das Alter bei dem diese Aortenklappen zum ersten Mal symptomatisch werden sehr variabel.

Als Folge der unikuspiden Klappenfehlanklage kann es entweder zu einer Stenose, einer Insuffizienz (15) oder einem kombinierten Vitium kommen, wobei die Stenose eindeutig das führende Problem ist. So hat beinahe jeder (92 %) Patient mit einer unikuspiden Aortenklappe eine Stenose, entweder isoliert oder kombiniert mit einer Insuffizienz (10) (22).

Eine Aortenklappenstenose kann auch durch degenerative Prozesse einer normalen trikuspiden Klappe entstehen, häufiger finden sich aber angeborene Aortenklappenfehler als Grundlage für eine degenerative Veränderung. Hierbei korreliert die schwere der Fehlbildung mit dem Alter in dem die Patienten operiert werden: Je weniger Taschen einer Aortenklappe korrekt angelegt sind, desto jünger präsentieren sich die Patienten mit Aortenklappenstenose (17).

Der hauptsächliche Mechanismus ist hierbei eine Verkalkung der Klappe. Solche Veränderungen finden sich an fast allen unikuspiden Klappen, wobei die Stenose mit dem Grad der Verkalkung zunimmt (23).

scheinen auch Veränderungen in der Tunica media der Aorta ascendens zu sein, denn bei histologischen Untersuchungen der Aortenwand dieser Patienten wurden in manchen Wandabschnitten keine und fast überall zu wenige elastische Fasern gefunden (25).

Bisherige Operationsmethoden der unikuspiden Aortenklappe

Hierbei wird die unikuspide Klappe aber nicht in eine trikuspide umgewandelt, sondern in eine Klappe mit nur zwei Taschen, was im Vergleich zur trikuspide rekonstruierten Klappe eine bessere Funktion und Stabilität gewährt (36). Die Rekonstruktion in eine trikuspide Klappe ist zwar mit guten Ergebnissen möglich, wurde aber jeweils nur bei sehr kleinen und ausgewählten Gruppen von Patienten durchgeführt (37) (38) (39). Außerdem stellt die Umwandlung in ein trikuspides Klappendesign einen Risikofaktor für eine postoperative Aortenklappeninsuffizienz dar (40).

Wie oben beschrieben gehört zur unikuspiden Fehlanlage der Aortenklappe nicht nur das Verschmelzen der Taschenränder, sondern auch, dass die rudimentären Kommissuren nicht auf Höhe der Koronarostien, sondern deutlich tiefer (5 – 15 mm) an der Aortenwand befestigt sind.

Deshalb ist das Ziel der Rekonstruktion einer unikuspiden Klappe die Konstruktion einer zweiten Kommissur, die auf normaler Höhe in der Wand befestigt ist.

Im Folgenden werden zwei verschiedene Methoden zur Konstruktion dieser neuen zweiten Kommissur, die dann später miteinander verglichen werden sollen, beschrieben.

Rekonstruktion der unikuspiden Aortenklappe

Abbildung 3: Design 1 mit Rekonstruktion einer zweiten Kommissur in natürlicher Position; nach SCHÄFERS et al.

Aufgrund dieser Beobachtung wurde die bisherige Operationsmethode zur Rekonstruktion der unikuspiden Aortenklappe abgeändert. Die zweite Kommissur wird nun nicht mehr in Position einer schon rudimentär angelegten Kommissur rekonstruiert, sondern es wird eine 180°-Orientierung zu der korrekt angelegten Kommissur angestrebt: Design 2.

Abbildung 4: Design 2 mit Konstruktion einer 2. Kommissur in 180°-Orientierung zur einzig korrekt angelegten Kommissur; nach SCHÄFERS et al.
Fragestellung

Das Ziel meiner Arbeit ist es nun die ursprüngliche OP–Methode zur Rekonstruktion einer unikuspiden Aortenklappe mit dieser neuen, modifizierten Methode bezüglich ihrer Hämodynamik zu vergleichen. Als Maß hierfür dienen die Aortenklappeninsuffizienz und die Aortenklappenstenose. Da Untersuchungen in Ruhe schlecht die alltäglichen Belastungen widerspiegeln, werden alle Messungen auch unter Belastung durchgeführt. Daraus ergeben sich folgende Fragestellungen:

1. Welches Design (*Design 1* oder *Design 2*) zur Rekonstruktion der unikuspiden Aortenklappe liefert die besseren hämodynamischen Ergebnisse?
2. Zeigen sich unter Belastung Unterschiede zu den in Ruhe gemessenen hämodynamischen Ergebnissen?
Material und Methodik

Operationsmethoden

In Intubationsnarkose und Rückenlage wird zuerst eine mediane Sternotomie und daraufhin die Längseröffnung des Perikards durchgeführt. Nach Präparieren des Aortenbogens, Kanülieren von Aorta und rechtem Vorhof kann in die extrakorporale Zirkulation übergegangen und der Patient abgekühlt werden. Anschließend klemmt man die Aorta ascendens direkt unterhalb des Abgangs des Truncus Brachiocephalicus ab, eröffnet diese durch eine Längsinzision und die kardioplege Lösung wird direkt in die Koronarostien gegeben. Jetzt kann die Anatomie der Aortenklappe genau erfasst werden (41).

Design 1

Zunächst wird dann eine verschmolzene Kommissur (meistens die anteriore zwischen rechter und akoronarer Tasche) bis zur Aortenwand durchtrennt und von dort ausgehend das Klappengewebe zu beiden Seiten hin etwa 5 – 10 mm von der Aortenwand gelöst. Dadurch entsteht eine akoronare Tasche und eine gegenüberliegende Tasche, die aus der fusionierten rechten und linken Tasche besteht. Verkalkte oder stark fibrosierte Anteile werden herausgeschnitten, verdickte aber noch gut bewegliche Teile der Taschen erhalten. Durch autologe Perikardpatches wird danach die durchtrennte Kommissur so rekonstruiert, dass diese die gleiche Höhe aufweist wie die einzig normal angelegte Kommissur. Die Perikardflicken wurden vorher für 3 Minuten in 1,5 %iges Glutaraldehyd gelegt, danach 2 Minuten lang mit 0,9%iger Kochsalzlösung abgespült und zu passenden Dreiecken zurecht geschnitten (42).
Insgesamt gesehen wird also eine Klappenanatomie konstruiert, die stark der kongenitalen bikuspiden Aortenklappe ähnelt: Design 1 (9).

Abbildung 5: Design 1 mit Rekonstruktion einer zweiten Kommissur in natürlicher Position; nach SCHÄFERS et al.

Design 2

Hierbei wird als erstes eine zusätzliche Haltenaht gegenüber der normal angelegten posterioren Kommissur in der Aortenwand etwa 5 – 10 mm über dem Abgang der rechten Koronararterie angebracht. Die Stelle an der die neue Kommissur entsteht, liegt meist etwas links des rechten Koronarostiums. Anschließend wird die verformte rechte Tasche komplett entfernt. Mithilfe zweier etwa 2 x 2 cm großer, entsprechend präparierter (42), Perikardpatches kann eine neue Kommissur durch Erweiterung der linken und akoronaren Taschen mit korrekter Höhe aufgebaut werden (41). Diese folgt nun nicht mehr den anatomischen Vorgaben, sondern weist eine 180° - Orientierung zu der normal angelegten Kommissur auf und ist symmetrisch.

Abbildung 6: Design 2 mit Konstruktion einer 2. Kommissur in 180° - Orientierung zur einzig korrekt angelegten Kommissur; nach SCHÄFERS et al.
Festlegen der Untersuchungsmerkmale

Als Kriterien für den Erfolg der Operationsmethoden werden die nach der Korrektur verbleibende Aortenklappeninsuffizienz sowie die maximalen und mittleren Druckgradienten zwischen linkem Ventrikel und Aorta als Maß einer Aortenklappenstenose herangezogen. Aus der theoretischen Überlegung heraus, dass sich eine eventuelle Stenose der Aortenklappe deutlicher bei größerem Blutfluss durch diese zeigt, sind die maximalen und mittleren Druckgradienten zwischen linkem Ventrikel und Aorta nicht nur in Ruhe sondern auch bei körperlicher Belastung der Patienten gemessen worden (43).

Versuchsgruppen

Insgesamt kann man die untersuchten Personen in drei Gruppen aufteilen. Gruppe A, bestehend aus 5 Frauen und drei Männern, wurde nach Design 1, Gruppe B, die sich aus 14 Männern und 6 Frauen zusammensetzt nach Design 2 operiert. Als Kontrollgruppe dienten 6 Personen (eine Frau und 5 Männer, Alter: 24,7 ± 2,9 Jahre, Größe: 180,2 ± 8 cm, Gewicht: 72,2 ± 12,4 kg).

Die Gruppen A und B unterscheiden sich nicht signifikant in Alter (A: 38,6 ± 9,4 Jahre; B: 35,4 ± 8,6 Jahre; p = 0,8), Größe (A: 172 ± 11,3 cm, B: 174 ± 8,8 cm; p = 0,49), präoperativ gemessener Ejektionsfraktion (A: 62 %, B: 63 %; p = 0,7) und Gewicht (A: 70,9 ± 9,6 kg; B: 80,4 ± 13,4 kg; p = 0,09).

Die präoperative Aortenklappeninsuffizienz war allerdings in Gruppe A (n = 5 AI < Grad II; n = 3 AI ≥ Grad II) deutlich niedriger als in Gruppe B (n = 2 AI < Grad III; n = 18 AI ≥ Grad III) (p = 0,0024) und es bestand ein hoch signifikanter Unterschied zwischen den Gruppen A und B bezüglich der präoperativ gemessenen maximalen Druckgradienten über der Aortenklappe (A: 73,9 ± 14,2 mmHg, B: 33,0 ± 25,5 mmHg; p < 0,001). Auch die vor der Operation gemessenen linksventrikulären enddiastolischen und endsystolischen Durchmesser wichen in beiden Gruppen voneinander ab (LVEDD A: 49 ± 8,5 mm, B: 59,7 ± 7,9 mm; p = 0,016; LVESD A: 31,3 ± 9,8 mm, B: 41,1 ± 6,3 mm; p = 0,039).

Die Operationsdauer ist für beide Verfahren in etwa gleich lang. Die Operation nach Design 1 dauerte im Durchschnitt 153 ± 7,9 Minuten, die Methode nach Design 2 170 ± 47,1 Minuten (p = 0,14).

Bei 11 Patienten wurde ausschließlich eine Rekonstruktion durchgeführt, bei den restlichen 17 Patienten wurde entweder noch die Aorta ascendens ersetzt (n = 15) oder die Aortenwurzel bei Dilatation korrigiert (n = 2).

<table>
<thead>
<tr>
<th></th>
<th>Gruppe A</th>
<th>Gruppe B</th>
<th>Kontrolle</th>
<th>p - Werte A vs B</th>
</tr>
</thead>
<tbody>
<tr>
<td>dPmax</td>
<td>73,9 ± 14,2 mmHg</td>
<td>33 ± 25,5 mmHg</td>
<td>6,0 ± 1,6 mmHg</td>
<td>p < 0,001</td>
</tr>
<tr>
<td>dPmean</td>
<td>44,5 ± 12,6 mmHg</td>
<td>17,0 ± 13,5 mmHg</td>
<td>3,2 ± 0,8 mmHg</td>
<td>p < 0,001</td>
</tr>
<tr>
<td>AI</td>
<td>keine (n=3) bis mäßige (n=5) AI</td>
<td>mäßige (n=3) bis schwere (n=17) AI</td>
<td>keine AI</td>
<td>p = 0,002</td>
</tr>
<tr>
<td>LVEDD</td>
<td>49 ± 8,5 mm</td>
<td>59,7 ± 7,9 mm</td>
<td>48,2 ± 2,5 mm</td>
<td>p = 0,016</td>
</tr>
<tr>
<td>LVESD</td>
<td>31,3 ± 9,8 mm</td>
<td>41,1 ± 6,3 mm</td>
<td>32,8 ± 4,1 mm</td>
<td>p = 0,039</td>
</tr>
<tr>
<td>FS</td>
<td>31,9 ± 3,24 %</td>
<td>31 ± 3,25 %</td>
<td>31,7 ± 7,8 %</td>
<td>p = 0,54</td>
</tr>
</tbody>
</table>

Tabelle 1: Wichtigste präoperative Daten beider Gruppen im Überblick
Gruppe A

<table>
<thead>
<tr>
<th>Geburtsdatum</th>
<th>Alter</th>
<th>Größe</th>
<th>Gewicht</th>
<th>w/m</th>
<th>Prä - OP Al</th>
<th>Prä - OP dP in mmHg</th>
<th>Prä - OP LVEDD</th>
<th>Prä - OP EF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30.05.1967</td>
<td>43</td>
<td>165cm</td>
<td>77kg</td>
<td>W</td>
<td>II</td>
<td>dPmean 43</td>
<td>44mm</td>
</tr>
<tr>
<td>2</td>
<td>28.11.1986</td>
<td>23</td>
<td>168cm</td>
<td>70kg</td>
<td>W</td>
<td>I</td>
<td>dPmax 84</td>
<td>39mm</td>
</tr>
<tr>
<td>3</td>
<td>20.10.1957</td>
<td>52</td>
<td>179cm</td>
<td>84kg</td>
<td>M</td>
<td>II - III</td>
<td>dPmax 76, dPmean 47</td>
<td>76%</td>
</tr>
<tr>
<td>4</td>
<td>17.07.1974</td>
<td>36</td>
<td>156cm</td>
<td>54kg</td>
<td>W</td>
<td>O</td>
<td>dPmax 98, dPmean 72</td>
<td>44mm</td>
</tr>
<tr>
<td>5</td>
<td>05.11.1970</td>
<td>39</td>
<td>167cm</td>
<td>64kg</td>
<td>W</td>
<td>O</td>
<td>dPmax 80, dPmean 44</td>
<td>50mm</td>
</tr>
<tr>
<td>6</td>
<td>31.07.1978</td>
<td>32</td>
<td>190cm</td>
<td>73kg</td>
<td>M</td>
<td>O</td>
<td>dPmax 67, dPmean 34</td>
<td>60mm</td>
</tr>
<tr>
<td>7</td>
<td>08.03.1965</td>
<td>45</td>
<td>179cm</td>
<td>74kg</td>
<td>M</td>
<td>I - II</td>
<td>dPmax 68, dPmean 46</td>
<td>45mm</td>
</tr>
<tr>
<td>8</td>
<td>18.01.1988</td>
<td>22</td>
<td>165cm</td>
<td>67kg</td>
<td>W</td>
<td>II - III</td>
<td>dPmax 68</td>
<td>61mm</td>
</tr>
</tbody>
</table>

Tabelle 2: Allgemeine und präoperative Daten aller Patienten aus Gruppe A
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 02.11.2006</td>
<td>Kombiniertes Vitium, AA - Dilatation</td>
<td>AKR, Ascendensersatz</td>
<td>2 Std 25 min</td>
<td>60 min</td>
<td>71 min</td>
<td>03.07.2010</td>
<td>44 Monate</td>
</tr>
<tr>
<td>2 27.10.2005</td>
<td>AS</td>
<td>AKR</td>
<td>2 Std 39 min</td>
<td>45 min</td>
<td>69 min</td>
<td>29.05.2010</td>
<td>55 Monate</td>
</tr>
<tr>
<td>3 10.10.2006</td>
<td>Kombiniertes Vitium, AA - Dilatation</td>
<td>AKR, Ascendensersatz</td>
<td>2 Std 27 min</td>
<td>69 min</td>
<td>83 min</td>
<td>29.05.2010</td>
<td>43 Monate</td>
</tr>
<tr>
<td>4 12.10.2006</td>
<td>AS</td>
<td>AKR, Ascendensersatz</td>
<td>2 Std 33 min</td>
<td>58 min</td>
<td>69 min</td>
<td>15.05.2010</td>
<td>43 Monate</td>
</tr>
<tr>
<td>5 07.02.2005</td>
<td>AS</td>
<td>AKR</td>
<td>2 Std 35 min</td>
<td>51 min</td>
<td>80 min</td>
<td>10.07.2010</td>
<td>65 Monate</td>
</tr>
<tr>
<td>6 03.05.2006</td>
<td>Kombiniertes Vitium, AA - Dilatation</td>
<td>AKR, Ascendensersatz</td>
<td>2 Std 48 min</td>
<td>72 min</td>
<td>91 min</td>
<td>17.07.2010</td>
<td>50 Monate</td>
</tr>
<tr>
<td>7 10.05.2007</td>
<td>Kombiniertes Vitium</td>
<td>AKR</td>
<td>2 Std 25 min</td>
<td>58 min</td>
<td>77 min</td>
<td>07.08.2010</td>
<td>39 Monate</td>
</tr>
<tr>
<td>8 22.07.2005</td>
<td>Kombiniertes Aortenvitium</td>
<td>AKR</td>
<td>2 Std 35 min</td>
<td>54 min</td>
<td>77 min</td>
<td>27.09.2010</td>
<td>62 Monate</td>
</tr>
</tbody>
</table>

Tabelle 3: Operationsbezogene Daten aller Patienten aus Gruppe A
Gruppe B

Allgemeine und präoperative Daten aller Patienten aus Gruppe B

<table>
<thead>
<tr>
<th>Geburtsdatum</th>
<th>Alter</th>
<th>Größe</th>
<th>Gewicht</th>
<th>M/W</th>
<th>Prä - OP Al</th>
<th>Prä - OP dP In mmHg</th>
<th>Prä - OP LVEDD</th>
<th>Prä - OP EF</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.05.1981</td>
<td>29</td>
<td>184cm</td>
<td>111kg</td>
<td>M</td>
<td>III</td>
<td>dPmax 5, dPmean 3</td>
<td>60mm</td>
<td>70%</td>
</tr>
<tr>
<td>25.04.1975</td>
<td>35</td>
<td>180cm</td>
<td>89kg</td>
<td>M</td>
<td>III</td>
<td>dPmax 10, dPmean 7</td>
<td>53mm</td>
<td>62%</td>
</tr>
<tr>
<td>01.10.1981</td>
<td>28</td>
<td>180cm</td>
<td>99kg</td>
<td>M</td>
<td>IV</td>
<td>dPmax 25, dPmean 16</td>
<td>69mm</td>
<td>70%</td>
</tr>
<tr>
<td>29.03.1974</td>
<td>36</td>
<td>176cm</td>
<td>89kg</td>
<td>M</td>
<td>III</td>
<td>dPmax 38, dPmean 27</td>
<td>60mm</td>
<td>70%</td>
</tr>
<tr>
<td>29.11.1986</td>
<td>23</td>
<td>165cm</td>
<td>60kg</td>
<td>W</td>
<td>III</td>
<td>dPmax 21, dPmean 11</td>
<td>60mm</td>
<td>63%</td>
</tr>
<tr>
<td>11.02.1987</td>
<td>23</td>
<td>175cm</td>
<td>65kg</td>
<td>M</td>
<td>III</td>
<td>dPmax 50, dPmean 25</td>
<td>67mm</td>
<td>58%</td>
</tr>
<tr>
<td>24.08.1971</td>
<td>39</td>
<td>188cm</td>
<td>81kg</td>
<td>M</td>
<td>III</td>
<td>dPmax 98</td>
<td>49mm</td>
<td>70%</td>
</tr>
<tr>
<td>21.02.1982</td>
<td>28</td>
<td>168cm</td>
<td>72kg</td>
<td>W</td>
<td>III</td>
<td>dPmax 50, dPmean 25</td>
<td>55mm</td>
<td>60%</td>
</tr>
<tr>
<td>10.05.1984</td>
<td>26</td>
<td>180cm</td>
<td>82kg</td>
<td>M</td>
<td>III</td>
<td>keine AS</td>
<td>47mm</td>
<td>60%</td>
</tr>
<tr>
<td>14.08.1971</td>
<td>39</td>
<td>184cm</td>
<td>74kg</td>
<td>M</td>
<td>III</td>
<td>keine AS</td>
<td>70mm</td>
<td>70%</td>
</tr>
</tbody>
</table>

Fortsetzung siehe nächste Seite
<table>
<thead>
<tr>
<th></th>
<th>Datum</th>
<th>Alter</th>
<th>Größe</th>
<th>Gewicht</th>
<th>Geschlecht</th>
<th>Klassifikation</th>
<th>dPmax</th>
<th>dPmean</th>
<th>dDurchschnitt</th>
<th>Prozentsatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>28.11.1979</td>
<td>30</td>
<td>165cm</td>
<td>54kg</td>
<td>W</td>
<td>III</td>
<td>67</td>
<td>62mm</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10.02.1967</td>
<td>43</td>
<td>174cm</td>
<td>83kg</td>
<td>M</td>
<td>III</td>
<td>67</td>
<td>70mm</td>
<td>62%</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>26.08.1972</td>
<td>38</td>
<td>185cm</td>
<td>88kg</td>
<td>M</td>
<td>II</td>
<td>65%</td>
<td>50mm</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>02.08.1980</td>
<td>30</td>
<td>170cm</td>
<td>72kg</td>
<td>M</td>
<td>III</td>
<td>67</td>
<td>66mm</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>03.10.1962</td>
<td>47</td>
<td>161cm</td>
<td>72kg</td>
<td>W</td>
<td>III</td>
<td>67</td>
<td>50mm</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>08.05.1967</td>
<td>43</td>
<td>170cm</td>
<td>82kg</td>
<td>M</td>
<td>III</td>
<td>67</td>
<td>70mm</td>
<td>54%</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>25.09.1981</td>
<td>28</td>
<td>186cm</td>
<td>97kg</td>
<td>M</td>
<td>III</td>
<td>67</td>
<td>69mm</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>31.10.1960</td>
<td>49</td>
<td>166cm</td>
<td>83kg</td>
<td>W</td>
<td>II - III</td>
<td>67</td>
<td>56mm</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>04.01.1961</td>
<td>49</td>
<td>165cm</td>
<td>78kg</td>
<td>M</td>
<td>III - IV</td>
<td>67</td>
<td>56mm</td>
<td>61%</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>05.02.1965</td>
<td>45</td>
<td>162cm</td>
<td>76kg</td>
<td>W</td>
<td>II</td>
<td>67</td>
<td>54mm</td>
<td>75%</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 4: Allgemeine und präoperative Daten aller Patienten aus Gruppe B
Operationsbezogene Daten aller Patienten aus Gruppe B

<table>
<thead>
<tr>
<th>Op - Datum</th>
<th>Op - Indikation</th>
<th>Operation</th>
<th>Op - Dauer</th>
<th>Aortenabklemm - Zeit</th>
<th>Bypass - Zeit</th>
<th>Datum meiner Untersuchung</th>
<th>Follow - up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 22.07.2008</td>
<td>AI</td>
<td>AKR</td>
<td>2 Std 40 min</td>
<td>56 min</td>
<td>69 min</td>
<td>31.07.2010</td>
<td>24 Monate</td>
</tr>
<tr>
<td>2 20.10.2008</td>
<td>Kombiniertes Vitium</td>
<td>AKR, Ascendensersatz</td>
<td>3 Std 42 min</td>
<td>68 min</td>
<td>94 min</td>
<td>17.07.2010</td>
<td>21 Monate</td>
</tr>
<tr>
<td>3 07.11.2008</td>
<td>AI, AA - Dilatation</td>
<td>AKR, Ascendensersatz</td>
<td>2 Std 48 min</td>
<td>70 min</td>
<td>97 min</td>
<td>04.06.2010</td>
<td>19 Monate</td>
</tr>
<tr>
<td>4 24.09.2009</td>
<td>AI, AA - Dilatation</td>
<td>AKR, Ascendensersatz</td>
<td>2 Std 40 min</td>
<td>65 min</td>
<td>81 min</td>
<td>14.06.2010</td>
<td>9 Monate</td>
</tr>
<tr>
<td>5 04.07.2007</td>
<td>AI, AA - Dilatation</td>
<td>AKR</td>
<td>2 Std 35 min</td>
<td>47 min</td>
<td>79 min</td>
<td>10.07.2010</td>
<td>36 Monate</td>
</tr>
<tr>
<td>6 18.07.2007</td>
<td>Kombiniertes Vitium</td>
<td>AKR</td>
<td>2 Std 35 min</td>
<td>62 min</td>
<td>73 min</td>
<td>19.06.2010</td>
<td>35 Monate</td>
</tr>
<tr>
<td>7 15.05.2007</td>
<td>Kombiniertes Vitium, AA - Dilatation</td>
<td>AKR, Ascendensersatz</td>
<td>2 Std 46 min</td>
<td>77 min</td>
<td>94 min</td>
<td>24.07.2010</td>
<td>38 Monate</td>
</tr>
<tr>
<td>8 21.06.2007</td>
<td>Kombiniertes Vitium, AA - Dilatation</td>
<td>AKR, Ascendensersatz</td>
<td>2 Std 20 min</td>
<td>76 min</td>
<td>88 min</td>
<td>03.07.2010</td>
<td>37 Monate</td>
</tr>
<tr>
<td>9 05.07.2007</td>
<td>AI, AA - Dilatation</td>
<td>AKR, Ascendensersatz</td>
<td>2 Std 35 min</td>
<td>56 min</td>
<td>76 min</td>
<td>10.07.2010</td>
<td>36 Monate</td>
</tr>
<tr>
<td>10 15.04.2008</td>
<td>AI, AA - Dilatation</td>
<td>AKR, Remodellieren der Aortenwurzel</td>
<td>4 Std 45 min</td>
<td>90 min</td>
<td>106 min</td>
<td>18.06.2010</td>
<td>26 Monate</td>
</tr>
</tbody>
</table>

Fortsetzung siehe nächste Seite
11	15.06.2007	Kombiniertes Vitiurn	AKR	2 Std 1 min	62 min	75 min	12.06.2010	36 Monate
12	07.11.2008	AI, AA - Dilatation	AKR, Ascendensersatz	2 Std 33 min	57 min	74 min	10.07.2010	20 Monate
13	29.07.2008	AI, AA - Dilatation	AKR, Ascendensersatz	4 Std 30 min	100 min	150 min	24.07.2010	24 Monate
14	01.09.2008	AI	AKR	2 Std 25 min	50 min	66 min	12.06.2010	21 Monate
15	28.11.2008	Kombiniertes Vitiurn, AA - Dilatation	AKR, Ascendensersatz	3 Std 55 min	74 min	104 min	29.05.2010	18 Monate
16	13.02.2009	AI, AA - Dilatation	AKR, Remodellieren der Aortenwurzel	3 Std 6 min	86 min	120 min	29.05.2010	15 Monate
17	28.07.2008	AI	AKR	2 Std 5 min	49 min	61 min	23.06.2010	23 Monate
18	18.12.2009	Kombiniertes Vitiurn, AA - Dilatation	AKR, Ascendensersatz	2 Std 20 min	47 min	68 min	24.07.2010	7 Monate
19	26.03.2010	AI	AKR	1 Std 52 min	46 min	65 min	19.07.2010	4 Monate
20	15.05.2007	Kombiniertes Vitiurn, AA - Dilatation	AKR, Ascendensersatz	2 Std 30 min	69 min	79 min	07.08.2010	39 Monate

Tabelle 5: Operationsbezogene Daten aller Patienten aus Gruppe B
Gruppe C

<table>
<thead>
<tr>
<th>Geburtsdatum</th>
<th>Alter</th>
<th>Größe</th>
<th>Gewicht</th>
<th>LVEDD</th>
<th>LVESD</th>
<th>FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.04.1990</td>
<td>20</td>
<td>172cm</td>
<td>58kg</td>
<td>47mm</td>
<td>31mm</td>
<td>34%</td>
</tr>
<tr>
<td>09.11.1985</td>
<td>24</td>
<td>187cm</td>
<td>80kg</td>
<td>48mm</td>
<td>35mm</td>
<td>27%</td>
</tr>
<tr>
<td>17.07.1981</td>
<td>29</td>
<td>190cm</td>
<td>90kg</td>
<td>53mm</td>
<td>32mm</td>
<td>40%</td>
</tr>
<tr>
<td>04.10.1985</td>
<td>24</td>
<td>185cm</td>
<td>68kg</td>
<td>48mm</td>
<td>37mm</td>
<td>23%</td>
</tr>
<tr>
<td>06.01.1985</td>
<td>25</td>
<td>174cm</td>
<td>60kg</td>
<td>45mm</td>
<td>26mm</td>
<td>42%</td>
</tr>
<tr>
<td>22.12.1983</td>
<td>26</td>
<td>173cm</td>
<td>77kg</td>
<td>48mm</td>
<td>36mm</td>
<td>25%</td>
</tr>
</tbody>
</table>

Tabelle 6: Überblick der Kontrollgruppe

Erlernen der Messmethoden

Ein besonderes Augenmerk wurde dabei auf das Einstellen des Vier- und Fünfkammerblickes sowie auf die Suche nach einem deutlichen Flusssignal im kontinuierlichen Dopplerprofil, das die maximale Blutflussgeschwindigkeit über der Aortenklappe anzeigt, gelegt.

anschließend wurde begonnen die Patienten, die an der Studie teilnehmen sollten, anzurufen und einzubestellen.

Messung von LVEDD, LVESD und der zirkumferenziellen Verkürzungsfraktion (FS)

Die Werte von LVEDD, LVESD und der zirkumferenzielle Verkürzungsfraktion der beiden Patientengruppen sind aus Patientenakten zusammengestellt worden. Um diese Werte für die Kontrollgruppe zu erhalten, wurde im apikalen Vierkammerblick zunächst die enddiastolischen und endzystolischen Durchmesser bestimmt und daraufhin aus diesen Zahlen die prozentuale Verkürzung während der Systole errechnet:

\[
\left(\frac{\text{LVEDD} - \text{LVESD}}{\text{LVEDD}}\right) \times 100 \ (1).
\]

Messung der Druckgradienten

Alle Messungen wurden von der selben Person durchgeführt. Als Messmethode diente die continuous – wave Doppler Echokardiographie, was eine für diese Fragestellung geeignete Methode ist, da die so gewonnenen Werte der maximalen und mittleren Druckgradienten sehr gut mit den Druckdifferenzen korrelieren, die mittels Herzkatheter gemessen werden können (44).

Das Untersuchungsgerät war das „Vivid i“ von „GE Medical Systems“ mit einer Phased – Array – Sector – Sonde (Frequenz: 1,5 – 3,3 MHz). Das Gerät auf dem sich die Operierten belasteten ist ein Fahrrad (Ergo-Metrics 900 L; Ergoline; Bitz, Germany) mit einem um 50° nach hinten gekippten Sitz.

Die transaortalen Gradienten wurden im apikalen Vier- oder Fünfkammerblick mit kontinuierlichem Doppler registriert (1).

Alle Untersuchungen fanden in der kardiologischen Ambulanz des Universitätsklinikums des Saarlandes statt. Traubenzucker und ein Notfalltelefon standen immer bereit.

es gelungen war den Herzschlag zu tasten, war das der Punkt der Orientierung zum Auffinden eines Schallfensters.

Sobald der Vierkammerblick mit den vier Herzohlen eingestellt war, ist der Schallkopf leicht nach kranial anguliert worden, wodurch meist der linksventrikuläre Ausflussstrakt mit Aortenklappe ins Bild kam. Bei Schwierigkeiten ein klares Signal zu bekommen konnte das gesamte Gerät mit Patient in eine für diese Untersuchung optimale 45° - Linksschärfelage gebracht werden (1).

Um jetzt eine Aussage über den Stenosegrad der Aortenklappe treffen zu können, muss zunächst die Geschwindigkeit mit der das Blut durch diese fließt gemessen werden. Dies ist mit Hilfe des Dopplerverfahrens im „continuous wave“ Modus möglich. Hierbei wird die Frequenzverschiebung zwischen ausgesandtem und empfangenem Ultraschall detektiert und in eine Bewegungsgeschwindigkeit umgerechnet. Von dem Verfahren werden jetzt aber nur die Geschwindigkeitsvektoren gemessen, die genau koaxial zum Schallstrahl liegen. Zeigen also der Ausflussstrakt des linken Ventrikels und der Schallstrahl nicht in die gleiche Richtung werden zu niedrige Geschwindigkeiten gemessen. „Der Zusammenhang zwischen wahrer Geschwindigkeit v, Winkelabweichung (α) des Geschwindigkeitsvektors zur Ausbreitungsrichtung des Schalls und gemessener Geschwindigkeit lautet: \(v(\text{DOPP}) = v \cdot \cos \alpha \)“ (1). Zeigt der Schallstrahl genau in Richtung des Blutflusses so beträgt \(\alpha \) gleich 0°. Da \(\cos 0° = 1 \) entspricht die gemessene Geschwindigkeit der tatsächlichen Geschwindigkeit. Diese weichen aber umso mehr voneinander ab, je größer der Winkel \(\alpha \) zwischen Schallstrahl und Geschwindigkeit des Blutstromes wird.

Für den Fall, dass es nicht möglich war den Schallstrahl genau koaxial zum Ausflussstrakt auszurichten, konnte im Nachhinein die Korrektur – Funktion der Vivid i – Software angewendet werden.

Im Fünfkammerblick des noch in Ruhe auf dem Fahrrad sitzenden Patienten konnte schließlich vom 2-D – Modus in den „continuous wave“ – Modus umgeschaltet werden. Mit Hilfe eines eingefrorenen Bildes des B-Modes, in das die Richtung des Schallstrahles eingebettet wurde, wurde versucht den Schallkopf so zu positionieren, dass der Ultraschallstrahl möglichst genau die Richtung des Blutflusses durch die Aortenklappe hat. Gleichzeitig begann die Suche nach einem „zuverlässigen kontinuierlichen Dopplerspektrum“ (1). Wenn mit großer Sicherheit die maximale Geschwindigkeit über der Klappe gemessen werden konnte, wurde das Flusssignal gespeichert und die Schallkopfposition auf dem Thorax markiert.

Auswertung der Bilder

Abbildung 7:
Flussprofil einer Aortenklappe gemessen mittels kontinuierlichem Doppler. Hier befindet sich der Patient noch in Ruhe. Das Spektrum zeigt nach unten, das heißt vom Schallkopf weg, und zeichnet die systolischen transaortalen Flussgeschwindigkeiten auf. Aus den beiden ausgewerteten Flussprofilen werden Mittelwerte gebildet, um Messungenaigkeiten auszugleichen.
Abbildung 8: Aufzeichnung des transaortalen systolischen Flussprofils des gleichen Patienten wie in Abbildung 4, jetzt allerdings bei einer getretenen Leistung von 100 Watt. Man sieht die deutlich angestiegene Flussgeschwindigkeit von 3,24 m/s auf 4,3 m/s. Auch kann man erkennen, dass es mit steigender Belastung zunehmend schwieriger wurde zuverlässige Flusssignale aufzuzeichnen.
Statistische Methoden

Für die statistische Auswertung der gesammelten Daten ist das Programm IBM SPSS Statistics in der 19. Version verwendet worden. Als statistisch signifikant wurden p – Werte kleiner 0.05 angenommen.

Alle Daten sind als Mittelwerte ± Standartabweichung angegeben.

Ergebnisse

<table>
<thead>
<tr>
<th></th>
<th>Gruppe A</th>
<th>Gruppe B</th>
<th>Kontrolle</th>
<th>p - Werte Gr. A vs B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präoperativ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dPmax</td>
<td>73,9 ± 14,2 mmHg</td>
<td>33 ± 25,5 mmHg</td>
<td></td>
<td>p < 0,001</td>
</tr>
<tr>
<td>dPmean</td>
<td>44,5 ± 12,6 mmHg</td>
<td>17,0 ± 13,5 mmHg</td>
<td></td>
<td>p < 0,001</td>
</tr>
<tr>
<td>AI</td>
<td>keine (n=3) bis</td>
<td>mäßige (n=3) bis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mäßige (n=5) AI</td>
<td>schwere (n=17) AI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVEDD</td>
<td>49 ± 8,5 mm</td>
<td>59,7 ± 7,9 mm</td>
<td></td>
<td>p = 0,016</td>
</tr>
<tr>
<td>LVESD</td>
<td>31,3 ± 9,8 mm</td>
<td>41,1 ± 6,3 mm</td>
<td></td>
<td>p = 0,039</td>
</tr>
<tr>
<td>FS</td>
<td>31,9 ± 3,24 %</td>
<td>31 ± 3,25 %</td>
<td></td>
<td>p = 0,54</td>
</tr>
<tr>
<td>Postoperativ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dPmax</td>
<td>33,8 ± 7,8 mmHg</td>
<td>15,8 ± 5,4 mmHg</td>
<td></td>
<td>p < 0,001</td>
</tr>
<tr>
<td>dPmean</td>
<td>19,1 ± 5,4 mmHg</td>
<td>8,2 ± 2,8 mmHg</td>
<td></td>
<td>p < 0,001</td>
</tr>
<tr>
<td>AI</td>
<td>milde (n=8) AI</td>
<td>keine (n=6) bis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>milde (=14) AI</td>
<td></td>
<td>p = 0,045</td>
</tr>
<tr>
<td>LVEDD</td>
<td>50,6 ± 4,6 mm</td>
<td>52,2 ± 4,6 mm</td>
<td></td>
<td>p = 0,43</td>
</tr>
<tr>
<td>LVESD</td>
<td>31 ± 7,3 mm</td>
<td>36,5 ± 4 mm</td>
<td></td>
<td>p = 0,08</td>
</tr>
<tr>
<td>FS</td>
<td>34,57 ± 10,86 %</td>
<td>30,5 ± 4,57 %</td>
<td></td>
<td>p = 0,33</td>
</tr>
<tr>
<td>dPmax</td>
<td></td>
<td>6,0 ± 1,6 mmHg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dPmean</td>
<td></td>
<td>3,2 ± 0,8 mmHg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td></td>
<td>keine AI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVEDD</td>
<td></td>
<td>48,2 ± 2,5 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVESD</td>
<td></td>
<td>32,8 ± 4,1 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS</td>
<td></td>
<td>31,7 ± 7,8 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 7: Vergleich der Gruppen A, B und C im Ruhe – Echo
Vergleich der postoperativen Aorteninsuffizienz

Sowohl in Gruppe A als auch in Gruppe B ist die postoperativ gemessene Aorteninsuffizienz bei allen Patienten \(\leq \) Grad I. Wenn man für Grad 0 – I den Wert 0,5 annimmt, ergibt sich für Gruppe A ein Mittelwert von 0,8 ± 0,26 für die Aorteninsuffizienz und von 0,5 ± 0,44 für Gruppe B. Dieser Unterschied ist allerdings nur leicht signifikant mit einem p – Wert von 0,045.

Gemessen wurde die AI von Gruppe A im Durchschnitt 35,6 Monate nach OP und von Gruppe B durchschnittlich 16,6 Monate nach dem Eingriff.

<table>
<thead>
<tr>
<th>Gruppe A</th>
<th>Gruppe B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>0 – 1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0 – 1</td>
</tr>
<tr>
<td>0 - 1</td>
<td>0</td>
</tr>
<tr>
<td>0 - 1</td>
<td>0 – 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabelle 8: Auflistung der postoperativen Insuffizienzgrade
Vergleich der postoperativen Aortenstenose unter Belastung

Bei der Untersuchung wurden jetzt also die mittleren und maximalen Druckgradienten zwischen linkem Ventrikel und Aorta aller Patienten gemessen. Da sich eventuelle Unterschiede zwischen den nach Design 1 und den nach Design 2 operierten Aortenklappen wahrscheinlich noch deutlicher bei größerer hämodynamischer Leistung zeigen würden, sind die Gradienten nicht nur in körperlicher Ruhe, sondern auch unter Belastung gemessen worden.

Die gesammelten Daten der Gruppen A, B und C wurden in Ruhe, bei 25 W, bei 50 W, bei 75 W, bei 100 W und noch bei der Leistung, bei der die Patienten ausbelastet waren, verglichen.

Hierbei wurde in Ruhe für die Gruppe A, die nach Design 1 operiert wurde, ein maximaler Druckgradient von durchschnittlich 33,8 ± 7,8 mmHg und ein mittlerer Gradient von 19,1 ± 5,4 mmHg gemessen. Die entsprechenden Werte der Gruppe B, die nach Design 2 behandelt wurde, sind 15,8 ± 5,4 mmHg als maximaler Druckunterschied und 8,2 ± 2,8 mmHg als mittlere Druckdifferenz. Im Vergleich unterscheiden sich beide Gruppen hoch signifikant mit einem p- Wert von jeweils < 0,001. Auch der Unterschied von beiden Gruppen zur Kontrollgruppe mit maximal 6,0 ± 1,6 mmHg (p < 0,001) und im Mittel 3,2 ± 0,8 mmHg (p < 0,001) Druckdifferenz ist deutlich.

Mit dem Anstieg der Leistung auf 25 Watt erhöhten sich auch erwartungsgemäß die Druckgradienten aller Gruppen. Maximaler und mittlerer Gradient stiegen in Gruppe A auf 39,6 ± 8,7 mmHg und 22,3 ± 5,6 mmHg, in Gruppe B auf 18,0 ± 6,0 mmHg und 9,7 ± 3,4 mmHg und in der Kontrollgruppe auf 7,9 ± 2,0 mmHg und 4,2 und 1,2 mmHg. Alle drei Gruppen unterscheiden sich in Bezug auf den Druckgradienten mit p < 0,001.

Ein weiterer Anstieg der Gradienten zeigte sich nach Steigerung der Leistung auf 50 Watt. In Gruppe A auf maximal 49,5 ± 13,5 mmHg und im Mittel 29,0 ± 8,9 mmHg, in Gruppe B auf 22,7 ± 6,7 mmHg und 12,0 ± 3,7 mmHg und in der Kontrolle auf 9,2 ± 2,3 mmHg und 4,8 ± 1,1 mmHg mit einem statistisch signifikanten Unterschied von p < 0,001.

Bei 75 Watt stieg der durchschnittliche maximale Gradient von Gruppe A auf 57,2 ± 12,4 mmHg, von Gruppe B auf 25,4 ± 7,8 mmHg und von der Kontrollgruppe auf 12,0 ± 4,1 mmHg an. Die mittleren Gradienten lagen bei 32,6 ± 8,3 mmHg (Gruppe A), bei 13,6 ± 4,8 mmHg (Gruppe B) und bei 6,0 ± 1,9 mmHg (Kontrollgruppe). Beim Vergleich der Gruppen untereinander konnte auch bei dieser Belastungsstufe ein deutlich signifikanter Unterschied zwischen den Druck - Werten festgestellt werden (p - Werte < 0,001).

100 Watt konnten noch 26 von 28 Patienten treten.
Die gemessenen Drücke über der Aortenklappe betrugen maximal 62,7 ± 16,7 mmHg und im Mittel 36,3 ± 11,0 mmHg in Gruppe A, 28,1 ± 7,6 mmHg und 15,0 ± 4,5 mmHg in Gruppe B und 15,4 ± 4,6 mmHg und 7,8 ± 2,5 mmHg in Gruppe C mit einem statistisch höchst signifikanten Unterschied zwischen den Gruppen (p < 0,001).

Bei der Watt – Zahl, die die Patienten gerade noch treten konnten, wurden auch noch einmal die Druckgradienten gemessen. Ausbelastet wurde bei Gruppe A ein maximaler Gradient von 66,3 ± 16,5 mmHg und ein mittler Druckunterschied von 38,3 ± 11,4 mmHg gemessen. 34,8 ± 10,2 mmHg und 18,3 ± 5,5 mmHg sind der maximal und im Mittel gemessene Gradient der Gruppe B. Die gesunde Kontrollgruppe lag bei einem maximalen Druckunterschied von 23,0 ± 5,2 mmHg und einem mittleren Gradienten von 11,7 ± 2,1 mmHg. Die Gruppe A hatte signifikant (p < 0,01) höhere Druckgradienten als die Gruppen B und C.

Ausbelastet war Gruppe A allerdings schon bei 111 ± 19,7 Watt, Gruppe B bei 143 ± 33,5 Watt und die Kontrollgruppe bei 185 ± 57,6 Watt.

Abbildung 9: Übersicht der maximalen Druckgradienten aller Gruppen bei allen Belastungsstufen
Abbildung 10: Übersicht der mittleren Druckgradienten aller Gruppen bei allen Belastungsstufen
Einzelne Belastungsstufen

Abbildung 11: Vergleich der Druckgradienten in Ruhe

Abbildung 12: Vergleich der Druckgradienten bei 25 Watt
Abbildung 13: Vergleich der Druckgradienten bei 50 Watt

Abbildung 14: Vergleich der Druckgradienten bei 75 Watt
Abbildung 15: Vergleich der Druckgradienten bei 100 Watt

Abbildung 16: Vergleich der Druckgradienten bei der Belastungsstufe bei der die Patienten ausbelastet waren
Linksventrikuläre Diameter

Außer der Aortenklappeninsuffizienz und der Aortenklappenstenose wurden bei allen Patienten noch die linksventrikulären Diameter sowohl präoperativ als auch postoperativ bestimmt. Hierbei kam es in Gruppe B zu einem deutlichen Rückgang der linksventrikulären Maße nach der Operation. Präoperativ lagen der linksventrikuläre enddiastolische und endsystolische Diameter bei 59,7 ± 7,9 mm sowie 41,1 ± 6,3 mm. Beide Werte verringerten sich postoperativ auf 52,2 ± 4,6 mm und 36,5 ± 4,0 mm und glichen sich damit den linksventrikulären Durchmessern der Gruppe A an, auf die die Operation kaum Einfluss hatte (siehe Tabelle 7). Möglicherweise entsteht dieser Unterschied der Gruppen dadurch, dass in Gruppe B präoperativ ein deutlich höherer Insuffizienzgrad vorhanden war, der die Ventrikel dieser Gruppe dilatierte. Nach Rekonstruktion der Klappe und Behebung der Insuffizienz konnten sich dann die Ventrikelmaße wieder normalisieren (37).
Diskussion

Einleitung

Nicht ganz so eindeutig ist die Verteilung der Vitien in dieser Studie. Von den 28 Patienten wurden 16 Patienten (57 %) entweder wegen einer isolierten Stenose oder wegen eines kombinierten Vitiums operiert.

Die bisher beschriebenen Methoden zur Korrektur von Insuffizienz oder Stenose bei deformierter Aortenklappe beruhen alle darauf, die Klappe komplett zu entfernen und eine neue Klappe, die aus verschiedensten Materialien bestehen kann, einzusetzen. Außer in Einzelfällen (34) (35) fand die Rekonstruktion der unikuspiden Aortenklappe bisher keine Anwendung. Dagegen wird zur Korrektur einer Aorteninsuffizienz bei bikuspid angelegter Aortenklappe schon seit 1991 die Methode der Rekonstruktion benutzt (32), die auch gute und stabile Ergebnisse bringt. Wenn man eine Aortenklappe nicht völlig ersetzt, sondern die ursprüngliche Klappe nur korrigiert, hat das verschiedene Vorteile. So ist keine dauerhafte Antikoagulation nötig, bei jungen Patienten hat die Klappe die Möglichkeit mit dem Körperwachstum mitzuwachsen und was die dauerhafte Haltbarkeit betrifft wird bei der Rekonstruktion von insuffizienten bikuspiden Aortenklappen eine gute Stabilität erzielt (33).

Einen neuen Ansatz zur Therapie der symptomatischen unikuspiden Aortenklappe stellten nun Schäfers HJ et al. im Jahr 2008 vor (9). Zu Beginn wurde dabei versucht die Öffnungsfläche der Klappe zu vergrößern indem man eine der beiden kongenital verschmolzenen Kommissuren, meistens die zwischen rechter und akoronarer Tasche, durchtrennte und dann mit Hilfe von Perikardflicken rekonstruierte (Design 1). Nach einiger Zeit lernte man aus der Erfahrung mit der Rekonstruktion von bikuspiden Aortenklappen, dass eine größere Stabilität dieser Klappen erreicht wird wenn die beiden Kommissuren möglichst eine Gerade bilden (33), weshalb dann das ursprüngliche Design angepasst wurde (Design 2).

So viele Vorteile eine Rekonstruktion auch bietet, so ist doch die gute hämodynamische Funktion das entscheidende Kriterium bei der Beurteilung der verschiedenen Operationsmethoden. Bezüglich dieser Funktion wurden in dieser Arbeit die beiden Rekonstruktionsverfahren verglichen, um zu untersuchen welches Design mit der besten Hämodynamik einhergeht und damit am ehesten als Alternative zum Klappenersatz in Frage kommt. Als Maß für die Funktion des Aortenkappendesigns diente der Stenose- und Insuffizienzgrad der Aortenklappe. Die Druckgradienten wurden auch noch unter Belastung
gemessen und verglichen, da so die alltäglichen Anforderungen an die Klappen simuliert werden sollten und eventuelle Schwachstellen eher sichtbar würden.

Postoperative Aortenklappeninsuffizienz

Interessant ist noch, dass sich die Durchmesser des linken Ventrikels der Patienten aus Gruppe B nach Operation verkleinerten. Auch hier kam die Ungleichheit beider Gruppen (LVEDD Guppe B: 60 mm, Gruppe A: 49 mm) wohl dadurch zustande, dass diese nicht normalverteilt waren. Der LVEDD war zwar mit 60 mm nur grenzwertig erhöht (normal bis 59 mm) (1), doch kann man vermuten, dass ohne eine Operation die Durchmesser noch weiter zugenommen hätten und es erst durch die Korrektur der Fehlanlage zu einem Umbau des Herzens mit Reduktion der Diameter kam.

Postoperative Aortenklappenstenose

Bei Betrachtung der postoperativen Ergebnisse in Bezug auf die Aortenklappenstenose in Ruhe und unter Belastung scheinen diese eindeutig zu sein.

In Gruppe A wurden in Ruhe ein maximaler und mittlerer Druckgradient von 34 mmHg und 19 mmHg gemessen, die dann bei einer Belastung von 100 Watt auf 63 mmHg und 36 mmHg anstiegen. Die Druckgradienten von Gruppe B hingegen waren nur etwa halb so hoch (in Ruhe: 16 mmHg und 8 mmHg; bei 100 Watt: 28 mmHg und 15 mmHg) und kamen damit den
Werten aus der Kontrollgruppe recht nahe (in Ruhe: 6 mmHg und 3 mmHg; bei 100 Watt: 15 mmHg und 8 mmHg).

Ähnliche Werte für die Aortenklappengradienten von gesunden Probanden wurden auch von anderen Arbeiten veröffentlicht. So kann man bei Graeter et al. (43) einen maximalen Ruhegradienten von 4,9 ± 1,6 mmHg finden (diese Arbeit: 6,0 ± 1,6 mmHg) und Oury et al. (46) haben für ihre Kontrollgruppe bei maximaler Belastung einen mittleren Gradienten von 14,61 mmHg gemessen (diese Arbeit: 11,7 ± 2,1 mmHg). Dies spricht dafür, dass trotz der relativ geringen Erfahrung des Untersuchers mit den Praktiken der Echokardiografie verlässliche Daten erhoben wurden. Dem Einwand der Unerfahrenheit kann außerdem noch entgegengesetzt werden, dass sich eventuelle Fehler bei der Durchführung durch alle Untersuchungen durchgezogen und somit aufgehoben hätten.

Diese für Gruppe B (Design 2) doch deutlich niedrigeren Druckwerte könnten auch erklären, dass die maximal getretene Leistung in Gruppe A nur 111 Watt, die in Gruppe B aber 143 Watt war. Im Vergleich dazu traten die Probanden aus der Kontrollgruppe durchschnittlich 185 Watt. Die bessere Hämodynamik und die damit verbundene bessere Leistungsfähigkeit scheinen also die Klappen, die nach Design 2 operiert wurden, zu erbringen.

Verschiedene Punkte müssen aber bei der Bewertung dieser Ergebnisse noch berücksichtigt werden:
Ungleichheit der Gruppen

Wenn man alleine die postoperativen Ergebnisse betrachtet, ist der Unterschied im Stenosegrad der Gruppen A und B sehr eindeutig. Es muss allerdings noch darauf hingewiesen werden, dass schon präoperativ ein deutlicher Unterschied der Druckgradienten bestand (Gruppe A: 73,9 ± 14,2 mmHg; Gruppe B: 33 ± 25,5 mmHg; p < 0,001). Diese Ungleichheit der Gruppen kann man alleine auf die niedrige Probandenzahl der Gruppe A zurückführen, weswegen man nicht von einer Normalverteilung ausgehen kann.

Es kommt aber die Frage auf, ob für das gute postoperative Ergebnis die Operationsmethode oder die präoperativ geringere Aortenstenose verantwortlich ist. Da während der Operation alle verkalkten und stenotischen Anteile der Herzklappe entfernt wurden und viel Klappengewebe mit Hilfe von Perikardflicken neu aufgebaut wurde, ist es wahrscheinlich, dass dadurch der Einfluss der ursprünglichen Stenose auf das postoperative Ergebnis minimiert wurde und doch das Operationsverfahren der entscheidende Faktor ist.

Um genauer zu untersuchen wie stark der postoperative Stenosegrad von dem Ausmaß der präoperativen Stenose abhängt, wurde die Gruppe B in zwei Gruppen unterteilt. Die Probanden aus Gruppe B1 (n = 9) hatten alle einen präoperativen dPmax < 25 mmHg. In Gruppe B2 (n = 11) war präoperativ bei allen Patienten der maximale Druckgradient ≥ 25 mmHg. Die postoperativen maximalen Druckdifferenzen über der Aortenklappe unterschieden sich nicht signifikant zwischen diesen beiden Gruppen (p = 0,26). Dieses Ergebnis spricht auch dafür, dass der entscheidende Faktor für das gute postoperative Ergebnis die Wahl des Designs ist und nicht der Grad der präoperativen Aortenstenose. Damit diese Frage allerdings eindeutig geklärt werden kann, müssten die gleichen Untersuchungen mit zwei Gruppen wiederholt werden, die sich nicht in ihrem präoperativen Druckgradienten unterscheiden.
Messfehler

Da eine direkte Messung des maximalen und mittleren Druckgradienten über der Aortenklappe nur invasiv möglich ist, muss zunächst die Geschwindigkeit des Blutes durch die Klappe mittels CW–Doppler gemessen werden, um auf die Druckgradienten schließen zu können. Die Berechnung dieser erfolgt dann durch das kontinuierlich aufgezeichnete Dopplersignal (1). Je größer die gemessene Geschwindigkeit, desto größer ist die Druckdifferenz und desto höher ist der Stenosegrad. Ein mittlerer Gradient von > 50 mmHg entspricht einer schweren, ein Gradient zwischen 25 mmHg und 50 mmHg einer mittleren und eine Druckdifferenz von < 25 mmHg einer leichten Aortenstenose. Bei dieser indirekten Methode zur Bestimmung der Druckunterschiede zwischen linkem Ventrikel und Aorta können nun verschiedene Fehler auftreten. So muss sehr gründlich nach einem zuverlässigen kontinuierlichen Dopplerspektrum gesucht werden mit dem man auch die maximalen Flussgeschwindigkeiten erfasst (1). Da für jede Messung der Gradienten bei steigenden Belastungsstufen nur 3 Minuten vorgesehen waren, wurde vor Beginn der Untersuchung sehr viel Zeit darauf verwendet ein optimales Schallfenster zu finden. Dieses wurde daraufhin markiert, um sicher zu sein während des gesamten Versuchs die höchsten Flüsse zu messen. Ein weiteres Problem besteht darin, dass die Druckgradienten nicht nur von der Öffnungsfläche der Aortenklappe abhängig sind, sondern auch vom Schlagvolumen, sodass bei einer eingeschränkten linksventrikulären Funktion zu niedrige Gradienten gemessen würden (1). Die Frage ist nun wie man eine Aussage über die Funktion des linken Ventrikels meiner Patienten treffen kann. In der Arbeit von Graeter et al. (43) wird von einer guten linksventrikulären Funktion ausgegangen, sobald Blutdruck und Puls der Patienten adäquat anstiegen und sich beide Werte nach Belastung wieder normalisierten. In Gruppe A stieg der systolische Blutdruck von 110 mmHg auf 170 mmHg und fiel nach 5 Minuten Pause wieder auf 120 mmHg. Der Puls stieg im gleichen Zeitraum von 70 auf 140 Schläge pro Minute und fiel dann wieder auf 90 Schläge in der Minute nach kurzer Erholung. Bei Gruppe B konnte ein systolischer Blutdruckanstieg von 110 mmHg auf 180 mmHg und ein Pulsanstieg von 75 auf 140 Schläge pro Minute gemessen werden. Nach 5 – minütiger Pause lag der systolische Blutdruck bei 125 mmHg und die Herzfrequenz bei 100. Damit konnten die beiden Patientengruppen ihren Blutdruck und Puls zwar nicht so weit steigern wie die Kontrollgruppe (BP maximal: 200 mmHg; Puls maximal: 190), doch kann man deutlich sehen, dass die operierten Herzen durchaus imstande waren ihre Leistungsfähigkeit erheblich zu steigern, was für eine erhaltene linksventrikuläre Funktion spricht.
Zur orientierenden Einschätzung der linksventrikulären Pumpfunktion kann außerdem die zirkumferenzielle Verkürzungsfraktion herangezogen werden. Als normal werden hier Werte > 25 % angesehen (I). Für die Gruppen A, B und C wurden Werte von 34,57 ± 10,86 %, 30,5 ± 4,57 % und 31,7 ± 7,8 % errechnet. Damit liegen die Werte der beiden Patientengruppen nicht nur im Normbereich, sondern auch sehr nah an der Kontrollgruppe, was zusätzlich für eine gute Funktion des linken Ventrikels spricht.

Konklusion

Zusammenfassend kann man also festhalten, dass bei der Wahl der Therapie von unikuspide angelegten Aortenklappen auch die Rekonstruktion in Betracht gezogen werden muss. Nicht nur dass dieses Verfahren die Nachteile eines Klappenersatzes umgeht, auch die damit erzielten hämodynamischen Eigenschaften sind mindestens gleichwertig zu denen der verschiedenen möglichen Klappenprothesen. Der mittlere Ruhegradient des Design 1 liegt bei 19,1 ± 5,4 mmHg und der des Design 2 bei 8,2 ± 2,8 mmHg. Eine Hancock – Bioprothese weist zum Beispiel einen entsprechenden Wert von 11 ± 2,3 mmHg auf, der mittlere Gradient einer mechanischen St. Jude Medical Zweiflügel – Prothese beträgt 10 ± 6 mmHg und der einer mechanischen Sorin Zweiflügel – Prothese 5 mmHg (I). Man kann also durch die Rekonstruktion einer unikuspiden Aortenklappe nach Design 2 einen niedrigeren postoperativen transaortalen Druckgradienten erzielen als mit den meisten Klappenprothesen. Auch, dass bei allen Patienten postoperativ eine Aortenklappeninsuffizienz gemessen wurde, die kleiner oder gleich Grad I ist, spricht für die Therapieoption der Rekonstruktion. Ein eindeutiger Unterschied zwischen Design 1 und Design 2 bezüglich dieses hämodynamischen Parameters scheint eher nicht zu bestehen, was allerdings bei einem sehr guten Ergebnis beider Gruppen nicht weiter von Bedeutung ist.

Beantwortung der Fragestellung

1. Beide Verfahren resultieren also in einer sehr zufriedenstellenden Hämodynamik der Aortenklappen, wobei aufgrund meiner Ergebnisse Design 2 zu bevorzugen ist.
2. Die hämodynamischen Ergebnisse der beiden Operationsverfahren unter Belastung unterscheiden sich nicht von den Ergebnissen, die in Ruhe gemessen werden können.
Literaturverzeichnis

37. Prêtre R, Kadner A, Dave H, Bettes D, Genoni M. Tricuspidisation of the aortic valve with creation of a crown-like annulus is able to restore a normal valve function in

41. OP – Berichte

Danksagung

Danken möchte ich Frau PD Dr. Aicher für die Vergabe des Themas, für die Unterstützung beim Erlernen der Messmethoden und den ständigen Rat bei der Durchführung meiner Untersuchungen.

Herrn Prof. Dr. med. Schäfers möchte ich besonders danken für seine Hilfsbereitschaft, Ratschläge und weiterführenden Ideen.

Weiter danke ich Frau Dr. rer. nat. Mei Fang Ong (Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik, Universitätsklinikum des Saarlandes) für die Beratung zu der statistischen Auswertung dieser Arbeit.

Herrn Dr. Kindermann danke ich für die Einführung in die Technik der Echokardiographie und die Hilfe beim Aufbau und Ablauf des Versuchs.

Nicht zuletzt danke ich meiner Familie.
Lebenslauf

Moritz Bewarder, geboren am 11. Dezember 1984 in Aschaffenburg,
Eltern Fritz–Peter und Manuela Bewarder
Geschwister Lisa und Julian Bewarder
Wohnhaft in 66424 Homburg/Saar, Kirrbergerstraße 11 A

2004 Abitur
2004 – 2005 Ableistung des Zivildienstes in der Hofgartenklinik Aschaffenburg
2005 – 2006 Universität Konstanz, Studium der Rechtswissenschaften
Seit 2006 Universität des Saarlandes, Studium der Humanmedizin
2006 – 2007 Hilfswissenschaftlicher Mitarbeit am Zellbiologischen Institut
der Universität des Saarlandes
2008 Erster Abschnitt der Ärztlichen Prüfung
2009 Klinikum Aschaffenburg, Kardiologie
Famulatur
2009 Korle – Bu Krankenhaus Accra, Ghana, Allgemeinchirurgie
Famulatur
2010 Anästhesiepraxis im Elisen-Palais, Aschaffenburg
Famulatur
2011 Universitätsklinikum des Saarlandes, Thorax- und Herz-Gefäß-
Chirurgie
Famulatur
Seit 2011 Universitätsklinikum des Saarlandes
Praktisches Jahr
2012 Erlangung der Approbation
Veröffentlichung