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Abstract 

Folates act as co-enzymes in the de novo synthesis of purines and thymidylates, in the formation 

of S-adenosyl methionine (SAM), and in the metabolism of amino acids. Deficiencies of folates 

and alterations in the folate forms distribution may have severe pathologic consequences. We 

aimed at investigating the folate forms distribution in serum and whole blood (WB), as well as 

the status of related vitamins and metabolites in non-supplemented older German subjects before 

and after the supplementation with B-vitamins. Therefore we performed two randomized and 

double-blind studies. In the short-term supplementation study (duration 3 – 4 weeks) we orally 

supplemented the participants with 400 µg/day folic acid (FA) or 400 µg FA, 8 mg vitamin B6, 

and 10 µg vitamin B12 /day. In the long-term supplementation study (duration 12 months) we 

orally supplemented the participants with 500 µg FA, 500 µg vitamin B12, 50 mg vitamin B6, 

456 mg calcium, and 1,200 IU vitamin D /day or 456 mg calcium, and 1,200 IU vitamin D /day. 

We developed ultra performance liquid chromatography tandem mass spectrometry (UPLC-

MS/MS) methods for the quantification of folate forms in serum and WB, of the methylation 

markers SAM and S-adenosyl homocysteine in plasma, and of betaine and the related metabolites 

choline and dimethylglycine in plasma. We observed that the baseline serum concentrations of 

the sum of folates and of 5-methyltetrahydrofolate (5-methylTHF), and the 5-methylTHF content 

(as % of sum of folates) in serum were age- but not gender-dependent. The vitamin B12 status 

influences the concentrations of the folate forms in serum, as well as of that of the related 

metabolites. Unmetabolized FA in serum was present at baseline and after the supplementation 

with B-vitamins. Subjects co-supplemented with the vitamins B6 and B12 had significantly lower 

amounts of unmetabolized FA, which might reflect a higher turnover of the vitamin. Oral 

B-vitamins supplementation led to a steady-state and a saturation of the red blood cells with 

folate between 6 and 12 months. Although the 5,10-methyleneTHF reductase C677T 

polymorphism had no influence on the baseline folate forms distribution of fasting subjects, we 

found significant differences after the short-term and long-term supplementation. 

Compared to the immunoassay or other methods only measuring the total folate, the UPLC-

MS/MS method provides additional information concerning the folate forms distribution. This is 

especially of interest in populations with a low vitamin B12 status, such as the elderly, pregnant 

women, or vegetarians. We therefore strongly recommend the use of (UP)LC-MS/MS methods 

for the quantification of folates in clinical studies in the future. 
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Zusammenfassung 

Folate spielen eine wichtige Rolle als Koenzyme bei der de novo Synthese von DNA, der 

Bildung von S-Adenosylmethionin (SAM) sowie dem Kreislauf von Aminosäuren. Folatmängel 

und Änderungen der Folatformverteilung können schwere Konsequenzen haben. Ziel der Studie 

war die Untersuchung der Folatformverteilung in Serum und Vollblut (VB) sowie von 

verwandten Metaboliten in nicht-supplementierten, älteren Probanden vor und nach 

Supplementierung mit B-Vitaminen. Aus diesem Grund wurden zwei randomisierte und doppel-

blinde Studien durchgeführt. In der kurzzeitigen Supplementationsstudie (Dauer: 3 – 4 Wochen) 

wurden die Probanden täglich entweder mit 400 µg Folsäure (FS) oder 400 µg FS, 8 mg Vitamin 

B6 und 10 µg B12 supplementiert. In der langzeitigen Supplementationsstudie (Dauer: 12 Monate) 

wurden die Probanden täglich entweder mit 500 µg FS, 500 µg Vitamin B6, 500 µg B12, 456 mg 

Ca und 1.200 IE Vitamin D oder mit 456 mg Ca und 1.200 IE Vitamin D supplementiert. 

Wir haben Ultra-Performance-Flüssigkeitschromatographie-Tandem-Massenspektrometrie  

(UPLC-MS/MS) Methoden für die empfindliche und zuverlässige Quantifizierung von 

Folatformen in Serum und VB sowie von den Methylierungsmarkern SAM und 

S-Adenosylhomocystein und von Betain und dessen verwandten Metaboliten Cholin und 

Dimethylglycin entwickelt. Die Serumkonzentrationen von der Summe der Folate und von 

5-Methyltetrahydrofolat (5-MethylTHF) sowie vom 5-MethylTHF Anteil (% von der 

Folatsumme) im Serum zu Studienbeginn war alters- aber nicht geschlechtsabhängig. Der 

Vitamin B12 Status hat sowohl die Konzentration der Serum-Folatformen als auch die von 

anderen Metaboliten beeinflusst. Unmetabolisierte FS wurde zu Studienbeginn und nach der 

Supplementation im Serum festgestellt. Jedoch hatten die Probanden mit Vitamin B6 und B12 

Kosupplementierung geringere Serumkonzentrationen, was auf einen höheren Vitaminumsatz 

schließen lässt. Die orale Supplementierung mit B-Vitaminen hat zu einem Steady-State und 

einer Sättigung der Erythrozyten mit Folat zwischen 6 und 12 Monaten geführt. Obwohl der 

5,10-Methylentetrahydrofolatreduktase C677T Polymorphismus keinen Einfluss auf die 

Folatformverteilung bei nüchternen Probanden zu Studienbeginn hatte, konnten wir signifikante 

Unterschiede nach der Supplementierung feststellen. 

Verglichen mit dem Immunoassay oder anderen Methoden, die nur das Gesamtfolat messen, 

liefert die UPLC-MS/MS zusätzliche Informationen über die Verteilung der Folatformen. Dies ist 

besonders in Populationen von Interesse, die einen geringen Vitamin B12-Status haben, wie ältere 

Menschen, Schwangere und Vegetarier. Aus diesem Grund empfehlen wir für die Zukunft in 

klinischen Studien den Einsatz von (UP)LC-MS/MS-Methoden für die Bestimmung von Folaten. 
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1 Introduction 

Folates represent a large family of water-soluble B-vitamins, which were first recognized by 

Lucy Wills in 1931 as a hematopoietic factor in yeast and liver extracts (246). In 1940, Snell et 

al. described a factor that is essential for the growth of Lactobacillus casei (208). This factor was 

isolated, characterized, and named later as folate. The term “folic acid” from Latin “folium” or 

“leaf” was marked by Mitchell in 1941, who extracted the substance from spinach leaves (157). 

The synthesis of folic acid (FA; pteroylmonoglutamic acid) in pure crystalline form was 

accomplished by Stokstad et al. in 1943 and Angier et al. in 1945 (3). In 1952, Welch and Nichol 

had cleared most of the tasks of FA in the transfer of one-carbon units (244).  

Since the 1980s folate is in the focus of scientific research as its decisive function in embryonic 

development became apparent. Over the last decades, the role of folate in several biological 

pathways has been recognized. Folates act as essential cofactors in many cellular functions 

including the de novo synthesis of purines and thymidylates and the metabolism of amino acids. 

Folate metabolism intersects with the methionine (Met) cycle, as well as the choline pathway. An 

adequate function of the one-carbon metabolism depends upon availability of the B-vitamins 

(folate, vitamin B6, and B12) and the normal function of the enzymes involved in several 

interacted pathways. Folate deficiency causes hyperhomocysteinemia (HHCY) and megaloblastic 

anemia and it has been related to the risk of neural tube defects (NTDs), cardiovascular diseases 

(CVDs), and cancer (120). 

1.1 Folate chemistry, physiology, and biology 

1.1.1 Chemical structure of folates and folic acid 

FA is the synthetic and the most stable form of the vitamin. FA is fully oxidized and consists of a 

2-amino-4-hydroxy-pteridine ring linked at the C-6 position to a p-aminobenzoic acid (pABA), 

and L-glutamic acid. In its pure form, FA is an orange-yellow crystalline, taste- and odorless 

powder. Therefore, FA is the preferred form to be used in dietary supplements and fortified foods 

(108). Naturally occurring folate forms consist of derivatives of 5,6,7,8-tetrahydropteroyl-γ-

glutamate (THF) that are fully reduced at the 5, 6, 7, and 8 positions of the pyrazine ring. The 

molecular structure of FA, THF, and the reduced folate forms are shown in Figure 1. Natural 

folate forms are polyglutamates. The polyglutamate side chain may contain up to eleven 

glutamate residues and varies between mammalian species with five to eight glutamate residues 

prevailing (46).   
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Figure 1: Molecular structure of folic acid, 5,6,7,8-tetrahydrofolate, and reduced folate forms. Bonds 
at positions 5, 6, 7, and 8 can be oxidized to 7,8-dihydrofolate. One carbon units can be accepted by THF 
at N-5 and/or N-10 positions of the pteridine ring. 
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Folates can have a variety of one-carbon units at the N-5 and/or N-10 positions, which can be 

transferred by means of certain enzymes. Reduced folates function as acceptors and donors of 

one-carbon units at three different oxidation levels: methanol (5-methylTHF), formaldehyde 

(5,10-methyleneTHF), and formic acid (5,10-methenylTHF, 5-formiminoTHF, 5-formylTHF, 

and 10-formylTHF) (237). The oxidation levels differ from each other by the gain (reduction) or 

the loss (oxidation) of two electrons.  

There is a considerable number of theoretical folate forms. In 1983, Krumdieck et al. detected 

100 different vitamers in biological tissues (131). Tannenbaum et al. stated in 1985, that if the 

number of glutamate residues is limited to six there might be about 140 possible forms (220). In 

summary, folates differ in three aspects: first, the hydrogenation of pteridines, which can be 

either oxidized (FA), di-(7,8-dihydrofolate; DHF), or tetrahydrated (THF). Second, the degree of 

substitution at atoms N-5 and N-10. Third, the number of glutamyl residues that are linked by 

γ-peptide bonds (177). These chemical differences are strongly related to bioavailability, cellular 

distribution, and functions. The spectral properties (19;178) of FA and its derivatives are shown 

in Table 1.  

Table 1: Absorption wavelengths and molar extinction coefficients of folates. 

Analyte Wavelength λ, nm Molar extinction coefficient ε 

5-MethylTHF 290 31,700 
5-FormylTHF 285 37,200 
10-FormylTHF 253 15,300 
5,10-MethenylTHF 352 25,000 
5,10-MethyleneTHF 295 25,000 
THF 297 29,100 
DHF 282 22,400 
Folic acid 282 27,600 

1.1.2 Folate sources for humans 

Sources of folates in the human diet are wheat germ, yeast, liver, and leafy vegetables. Although 

mammals can synthesize the pteridine ring they can not connect it with other components and 

therefore depend on the uptake of preformed folates from food (211). Müller et al. determined in 

1993 the amount of folate in vegetables and fruit (165), as well as in foods of animal origin (166) 

using high-performance liquid chromatography (HPLC). The foods with the highest total folate 

sum of folates concentrations in 100 g fresh weight are: beef liver with 963 µg (consisting of 

398 µg THF, 476 µg 5-methylTHF, and 53 µg 5-formylTHF), bovine kidney with 410 µg (198 µg 

THF, 172 µg 5-methylTHF, 28 µg 5-formylTHF), and spinach with 145 µg (4.6 µg THF, 

106.5 µg 5-methylTHF, 40.7 µg 5-formylTHF) sum of folates content (165;166). The main 

dietary folate forms are 5-methylTHF and formylTHF in polyglutamate forms (152).  
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In addition to folates supplied by the diet, folates can be synthesized by the microflora of the 

large intestine. The synthesized folates can be absorbed in the large intestine (58) and were 

believed earlier to be insignificant for vitamin supply (187). Recently, Aufreiter et al. suggested 

that the amount of folate absorbed in the colon is responsible for 5% of the average folate 

requirements for healthy adults, assuming the potential to influence the folate status (9). The 

intake and absorption of dietary folates depend on the bioavailability of the folate form. This is of 

interest for the determination of the Recommended Dietary Allowance (RDA) especially in 

countries applying no fortification of staple foods with FA. The bioavailability of reduced folates 

is estimated by the comparison to the bioavailability of FA. The availability of folate depends on 

a number of factors. First, the intestinal deconjugation of polyglutamates, second, the food 

matrix, third, the stability of the folate forms, and fourth, the presence of other food constituents 

or additives that may influence the folate stability (e.g. ascorbic acid, salts). The bioavailability 

of polyglutamates is significantly lower (≈ 65 – 70%) than those of folate monoglutamates 

(118;154). Tamura and Stokstad found different availabilities of the native reduced folates for 

humans (219). If the bioavailability of FA is set to 100%, THF has a bioavailability of 104.7%, 

5-methylTHF of 120.8%, and 5-formylTHF of 70% (219). Long-term dietary intervention studies 

estimated the folate bioavailability between 30 – 98% of that of FA (28;83;247). However, there 

is a general agreement that the bioavailability of natural food folates is less than that of FA (151) 

especially when it is estimated depending on changes in erythrocyte (RBC) folate concentrations 

(249). Recent studies suggest the use of 5-methylTHF as the reference folate for studying the 

bioavailability (249). 

1.1.3 The recommended dietary allowance of folate  

The RDA recommended by the U.S. Institute of Medicine in 1998 represents the average daily 

intake that is sufficient to meet the nutrient requirements of nearly all (97 – 98%) healthy 

individuals in each age and gender group (109). The recommendation for food folate was based 

on a study by Sauberlich et al., which stated that the bioavailability of food folates was no more 

than 50% of that of FA (190;247). The RDA for folate is 400 µg/d of dietary folate equivalents 

(DFE) for adult males and females and 600 µg/d for pregnant and lactating women, whereas 1 µg 

of DFE is defined as 0.6 µg FA (56;109). The upper tolerable limit for synthetic FA for adults is 

1 mg/d. There is currently little, if any, evidence that high intake of reduced folates can be 

harmful to humans. Table 2 summarizes the RDA and upper intake limits of dietary folate 

according to the U.S. Institute of Medicine (109). 
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Table 2: Recommended dietary allowance at dietary folate equivalents and upper intake limit of 

folic acid by the U.S. Institute of Medicine (109). 

Group 
Recommended dietary 

allowance [µg/d] 

Upper intake limit of 

FA [µg/d] 

Young infants (0 – 6 months) 65 n.d. 
Older infants (7 – 12 months) 80 n.d. 
Children (1 – 3 years) 150 300 
Children (4 – 8 years) 200 400 
Children (9 – 13 years) 300 600 
Adolescents (14 – 18 years) 400 800 
Adults (19 – 50 years) 400 1,000 
Adults (> 50 years) 400 1,000 
Pregnant women (14 – 50 years) 600 1,000a 
Lactating women (14 – 50 years) 500 1,000a 
a: Upper intake level = 800 µg/d for 14 – 18 years and 1,000 µg/d for > 19 years of age. 
n.d.: not determined. 

1.1.4 Blood concentrations of folate  

Serum concentration of folates range from ~ 10 – 50 nmol/L, with 5-methylTHF predominating 

(82 – 93% of the sum of folates) (126;178). In blood, most of the folate is unspecifically bound to 

low-affinity proteins (e.g. α2-macroglobulin, albumin (Kd ~ 1 mmol/L), and transferrin) (145) or 

specifically to high-affinity folate-binding proteins (FBPs) (Kd ~ 1 nmol/L) (97). The 

concentration of FBPs in human serum is approximately 0.6 nmol/L, whereas there is a 10 –

30fold higher molar concentration of folate in serum (18). Although FBPs have a high binding 

affinity, they can bind only very low amounts of folate. Therefore it can be assumed that the 

serum FBPs are fully saturated (17). The liver is responsible for the maintenance of the serum 

folate concentration (145;211). This is ensured by the reversible formation and depletion of the 

intracellular non-methylated folate polyglutamates.  

Folates are incorporated into developing RBCs during erythropoiesis. FBPs are expressed on 

early stage hematopoietic cells and are involved in the folate uptake. Although they do not 

transport great amounts of folates the reduced folate carrier (RFC) is likely necessary for the 

folate transport in erythroid cells (255). RBC folates are mainly 5-methylTHF and formylTHF in 

their polyglutamate form, mostly penta- and hexaglutamates. Under normal conditions, RBC 

folate is 30fold higher than the serum folate concentration. Similar to serum, the RBC folates are 

unspecifically bound to proteins whereas hemoglobin might be one possible binding protein (84). 

Matured RBCs have a life span of approximately 120 days and are impermeable for 

folylpolyglutamates (145;211). This leads to an intracellular retention of the folates with a half-

life of about 100 days (130). Therefore, RBC folate represents a long-term marker for the folate 

status (34;95). This marker is not affected by recent changes in the dietary intake (199).  
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1.1.5 Absorption, transport, and compartmentalization of folates 

Dietary folates and FA enter the circulation via absorption in the small intestine. Upon ingestion, 

dietary folylpolyglutamates must be enzymatically hydrolyzed into monoglutamates at the brush 

border cells of the duodenum and jejunum. The responsible enzyme for this hydrolysis is the 

glutamate carboxypeptidase II (GCPII; EC 3.4.17.21), which is present mainly in the area of the 

proximal mucosa of the small intestine. The brush border GCPII acts as an exopeptidase and has 

a pH optimum in the neutral range (pH 6.5). GCPII has the same affinity for polyglutamates with 

different glutamate residue chain length. In addition, there is the exopeptidase γ-glutamate 

hydrolase (GGH; EC 3.4.19.9) also known as folyl-γ-polyglutamate carboxypeptidase (FGCP) 

(240). The intracellular (lysosomal) form of GGH is found in the chyle. Both forms of the 

enzyme are pH-dependent and saturable (177). In contrast, GGH dissolved in the chyle has an 

optimum at pH 4.5. However, the role of GGH in the intestinal ingestion of folates is unknown 

(65). The intestine plays a central role in regulating the folate homeostasis. When absorbed, the 

monoglutamates are converted intracellularly to polyglutamates by the folylpoly-γ-glutamate 

synthase (FPGS; EC 6.3.2.17) (200). The preferred substrate for FPGS is THF and the affinity for 

5-methylTHF is very poor. In order to prevent cellular efflux of folates they must exist in at least 

triglutamate form (160). FPGS activity is highest in the liver thus making the liver a major 

storage organ for folates. FPGS is absent or only present in negligible amounts in muscle tissue 

and mature blood cells (161).  

Intracellular folylpolyglutamates represent the natural substrates for the folate-metabolizing 

enzymes that exhibit high affinity and low Km for these folates (192). Only the monoglutamates 

can be effectively transported across cell membranes (96). Consequently, polyglutamates are 

efficiently retained within cells allowing them to concentrate folates at much higher levels than in 

the extracellular compartments (199). The chain length of the polyglutamates differ from one cell 

type to another even within different organelles of a single cell (221). The polyglutamate side 

chain of the folates has an additional role in regulation of enzymatic reactions. They can affect 

the Km values of the coenzymes and substrates in the reaction. This effect is translated into higher 

binding of folate to the enzymes and the ability of the enzyme to downregulate certain reactions 

via negative feedback mechanisms (134).  

High extracellular folate concentrations > 10 µmol/L are subject to non-saturable passive 

diffusion (4). Additionally, folylmonoglutamates are transported across cell membranes via a 

saturable process involving both receptor-mediated and carrier-mediated transport mechanisms, 

which are variably expressed in diverse tissues (77). Currently three independent types of 

membrane transport systems are known to internalize folates at physiological concentration: the 

membrane folate receptor (FR) in the form of FBPs, the RFC-1, and the recently described 
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proton-coupled folate transporter/heme carrier protein 1 (PCFT/HCP1). The FR has a high 

affinity for folates (Km ~ 1 nmol/L) and mediates unidirectional transport across the cell 

membrane at neutral pH via receptor-mediated endocytosis (203). FR prefers FA over reduced 

folate forms. In comparison with transmembrane carriers (RFC-1 and PCFT/HCP1) the transport 

via FR is a relatively slow process and the extent to which this receptor is involved in folate 

transport is not well established. RFC-1 bidirectionally transports the folate with a higher affinity 

for 5-methylTHF than for FA and functions optimally at physiological pH (pH 7.5) (87). The 

PCFT/HCP1 system prefers acidic pH (pH 4.5 – 5.5) but has a residual activity at physiological 

pH indicating the role as the major intestinal folate transporter (181). The unidirectional working 

carrier protein has a high affinity for folate (Km ~ 1.7 µmol/L) and prefers oxidized FA to reduced 

folate. The transport into mucosal cells appears to occur primarily via PCFT/HCP1.  

The expression of RFC-1 and PCFT in tissue is ubiquitous. FR is only expressed in certain 

tissues such as kidney, placenta, spleen, and thymus but not in the intestine (64). Both RFC-1 and 

PCFT are not saturated by reduced folate monoglutamates under physiological conditions even 

after the uptake of high doses of folate, which is in contrast to the FR. The transport into 

peripheral tissues occurs primarily via the RFC-1 (253). Transport of folates into the 

cerebrospinal fluid occurs in the choroid plexus where 5-methylTHF is transported across the 

blood-brain barrier by FRα in the adult or FRβ in the fetal brain. PCFT is ubiquitously expressed 

in human brain where it functions in concert with FRα and FRβ, or might export folates after 

FRα-mediated endocytosis (212;254). In kidney, organic anion transporters are involved in 

nonspecific folate transport across the apical membranes (148). The role of these transport 

mechanisms in intestinal and renal folate uptake is not completely understood (44). In Figure 2 

influx and efflux of folates and FA into hepatic cells is shown. 
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Figure 2: Influx and efflux of folates and folic acid into a hepatic cell. Folylmonoglutamates can be 
actively transported across cell membranes by the bidirectional RFC-1, the unidirectional FR, and the 
PCFT/HCP1 system. The ABCC1 is involved in folate efflux. Mitochondrial transport of 
folylmonoglutamate is carried out by MFT. Intracellularly, FPGS forms folate polyglutamates, which can 
be processed by folate-catabolizing enzymes. The lysosomal GGH has similar enzymatic function as 
FGCP. ABCC1: ATP-binding cassette, subfamily C, member 1; MFT: mitochondrial folate transporter. 

Folylpolyglutamates are important regulators of one-carbon metabolism (5;192). Polyglutamate 

chains increase the affinity of folates for folate-dependent enzymes (except DHF reductase 

(DHFR; EC 1.5.1.3)), enhance the cellular retention of folates, and permit metabolic channeling 

of folates among folate-dependent enzymes (192). The expression of FPGS activity can therefore 

regulate the level and the enzymatic conversion of folates in cells (75;200).  

Folates and folate-metabolizing enzymes are compartmentalized primarily between cytosol and 

mitochondria with small amounts in the nucleus (5). In mitochondria, one-carbon units in the 

form of formate are generated through catabolism of serine, glycine, and choline (121) and 

initiator transfer RNA (tRNAf
Met) is produced for protein biosynthesis (15) (Figure 3). In 

cytoplasm, the nucleotide de novo synthesis and the remethylation of homocysteine (Hcy) occur. 

In nucleus thymidylates are generated. Compartmentalization can differ among tissues and 

during development (38). The distribution of folate forms in cytoplasm and mitochondria varies. 

In cytosol of rat liver cells, folate consists of 45% methylTHF, 30% formylTHF, and 25% THF, 

whereas in the mitochondria the predominant forms are methylTHF (7%), formylTHF (44%), 

and THF (48%) (102).  
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Figure 3: Intracellular compartmentalization of folates and important folate related reactions. In the 
cytoplasm of hepatic cells the de novo synthesis of purines and thymidylates occurs, as well as the re-
methylation of homocysteine to methionine. Amino acid synthesis, synthesis of tRNAf

Met, and the glycine 
cleavage takes place in the mitochondria. AICARTF: 5-aminoimidazole-4-carboxamide ribonucleotide 
transformylase; BHMT: betaine homocysteine methyltransferase; CDH: choline dehydrogenase;  
DMGDH: dimethylglycine dehydrogenase; FMT: methionyl-tRNAf

Met formyltransferase; FPGS: folylpoly-
γ-glutamate synthase; GARTF: glycinamide ribonucleotide transformylase; MFT: mitochondrial folate 
transporter; MS: methionine synthase; SDH: sarcosine dehydrogenase; SHMT: serine hydroxy 
methyltransferase; tRNAf

Met: initiator transfer RNA; TS: thymidylate synthase. 

Polyglutamates can not be transported into mitochondria but they can effluxed into the cytosol 

without prior hydrolysis (215). Although the exchange of free folates between cytosol and 

mitochondria is limited (224), both compartments are metabolically connected by transport of 

one-carbon donors (serine, glycine, betaine, and formate) (38;221). Titus and Moran isolated a 

gene encoding a protein that facilitates the transport of cytosolic folate monoglutamates into 

mitochondrial matrix of mammalian cells – the mitochondrial folate transporter (MFT) (223). In 

Table 3 the folate-dependent enzymes and their intracellular location and function are shown.  
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Table 3: Folate-dependent enzymes: intracellular location and function in one-carbon metabolism in hepatic cells. 

Enzyme EC Cofactors Function Location 

Folypoly-γ-glutamate synthase (FPGS) 6.3.2.17  addition of glutamate moieties C/M 

Serine hydroxy methyltransferase (SHMT) 2.1.2.1 B6, NAD THF + Ser + NAD+ ↔ 5,10-methyleneTHF + Gly + H2O C/M 
5,10-MethenylTHF cyclohydrolase (MTHFC) 3.5.4.9  10-formylTHF + H+ ↔ 5,10-methenylTHF + H2O C/M 
5,10-MethyleneTHF dehydrogenase (MTHFD) 1.5.1.5 NADP 5,10-methenylTHF ↔ 5,10-methyleneTHF C/M 
10-FormylTHF synthase (FTHFS) 6.3.4.3  THF + formate + ATP ↔ 10-formylTHF + ADP+Pi C/M 
5,10-MethenylTHF synthase (MTHFS) 6.3.3.2  5-formylTHF + ATP → 5,10-methenylTHF + ADP+Pi C/M 
10-FormylTHF dehydrogenase (FDH) 1.5.1.6 NADP 10-formylTHF → THF + CO2 C/M 
Dihydrofolate reductase (DHFR) 1.5.1.3 NADP folic acid → DHF; DHF → THF C/M 
5,10-MethyleneTHF reductase (MTHFR) 1.5.1.20 FAD, NADP 5,10-methyleneTHF → 5-methylTHF C 
Methionine synthase (MS) 2.1.1.13 B12 5-methylTHF + Hcy → THF + Met C 
Glycinamide ribonucleotide transformylase (GARTF) 2.1.2.2  10-formylTHF → purine + THF C 
5-Aminoimidazole-4-carboxamide ribonucleotide 
transformylase (AICARTF) 

2.1.2.3  10-formylTHF → purine + THF C 

Thymidylate synthase (TS) 2.1.1.45  5,10-methyleneTHF + dUMP → DHF + dTMP C 
Glutamate formiminotransferase 2.1.2.5  THF + formiminoglutamate → 5-formiminoTHF + glutamate C 
5-FormiminoTHF cyclodeaminase (FTCD) 4.3.1.4  5-formiminoTHF + H2O → 5,10-methenylTHF + NH3 C 

Glycine cleavage system (GCS) 
2.1.2.10 
1.4.4.2 
1.8.1.4 

B6, FAD, NAD THF + Gly → 5,10-methyleneTHF + CO2 + NH4
+ M 

Dimethylglycine dehydrogenase (DMGDH) 1.5.99.2 FAD THF + DMG → 5,10-methyleneTHF + sarcosine M 
Sarcosine dehydrogenase (SDH) 1.5.99.1 FAD THF + sarcosine → 5,10-methyleneTHF + Gly M 
Methionyl-t-RNA formyl transferase (FMT) 2.1.2.9  10-formylTHF + tRNAMet → THF + tRNAf

Met M 
C: cytoplasm; DMG: dimethylglycine; dTMP: deoxythymidine monophosphate; dUMP: deoxyuridine monophosphate; FAD: flavin adenine dinucleotide; Gly: glycine;  
M: mitochondrium; Met: methionine; NAD: nicotinamide adenine dinucleotide; NADP: nicotinamide adenine dinucleotide phosphate; Ser: serine; tRNAf

Met: formyl-methionyl 
transfer RNA. 
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1.1.6 Biological functions of folates 

Adequate folate intake is crucial for cell division and homeostasis (13). Folates act as essential 

coenzymes in many biological pathways including purine and thymidylate biosynthesis, 

deoxyribonucleic acid (DNA) methylation (61), and amino acid metabolism (13).  

1.1.6.1 Folate metabolism  

The folate metabolism intersects with the Met cycle and the choline pathway (Figure 4). Apart 

from DNA synthesis, important functions are the methylation of Hcy and the formation of 

S-adenosyl methionine (SAM), which is the most important methyl donor in various reactions, 

including DNA methylation – important in cellular differentiation and genomic imprinting. 

Folate metabolism is mostly located in hepatocytes (hepatic folate levels range from 10 –

35 µmol/L).  

 

Figure 4: Folate, methionine, and choline metabolism. THF is a key folate and 5-methylTHF links 
folate and methionine cycles. BHMT: betaine homocysteine methyltransferase; CBS: cystathionine-β-
synthase; DMG: dimethylglycine; dTMP: deoxythymidine monophosphate; dUMP: deoxyuridine 
monophosphate; Gly: glycine; MS: methionine synthase; MAT: methionine adenosyltransferase;        
MCM: L-methylmalonyl CoA mutase; MMA: methylmalonic acid; MTHFR: 5,10-methyleneTHF 
reductase; SAH: S-adenosyl homocysteine; SAHH: S-adenosyl homocysteine hydrolase; SAM: S-adenosyl 
methionine; Ser: serine; SHMT: serine hydroxy methyltransferase; TS: thymidylate synthase. 
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1.1.6.2 Tetrahydrofolate – the active form of cellular folate 

THF is the active form of folate and is build from DHF in a reaction catalyzed by DHFR. The 

same enzyme catalyzes the formation of DHF from FA. THF acts as one-carbon acceptor and 

serine, glycine, betaine, and formate are the principle one-carbon donors. After attachment of 

one-carbon units to THF the newly developed folate form contributes in folate metabolism. The 

cytosolic folate metabolism consists of three interconnected cycles. One cycle starts from 

10-formylTHF and produces purines, two cycles use 5,10-methyleneTHF to form deoxy 

thymidine monophosphate (dTMP) and Met. In all three cycles THF is returned to the folate pool 

where in the next step one-carbon units are added from three sources. First, formate comes from 

mitochondria and cytosolic sources to form 10-formylTHF. Second, serine is added from the 

cytosolic serine hydroxy methyltransferase (SHMT; EC 2.1.2.1) to form 5,10-methyleneTHF. 

Third, the C-2 of histidine originates from N-formiminoglutamic acid (FIGLU) and forms 

5,10-methenylTHF (46). 

1.1.6.3 5-MethylTHF – the predominant folate form 

5-MethylTHF is the predominant folate form, comprising 82 – 93% of the sum of folates in the 

human blood (178). After the cellular uptake, 5-methylTHF is converted into THF. This 

conversion reaction is carried out by the vitamin B12-dependent Met synthase (MS; EC 2.1.1.13). 

MS links the folate and the Met cycles and represents the only enzyme utilizing 5-methylTHF as 

a substrate. The Met cycle is an important pathway for the conversion of Hcy to Met and the 

formation of SAM. Elevated serum concentrations of total Hcy (tHcy) can be caused by 

deficiencies of B-vitamins (folate, vitamin B6, and B12) or genetic defects (29). 5-MethylTHF is 

generated from 5,10-methyleneTHF by the flavoprotein 5,10-methyleneTHF reductase (MTHFR; 

EC 1.5.1.20) in an irreversible and FADH2 and NADPH-dependent reaction (81) (Figure 5).  

The so called “methyl trap hypothesis” explains why vitamin B12 deficiency often results in a 

functional folate deficiency (90). The vitamin B12-dependent enzyme MS is inactive in vitamin 

B12 deficiency or after exposure to nitrous oxide (35). Because of the irreversible reaction of the 

enzyme MTHFR folate is “trapped” as 5-methylTHF and can neither be converted to THF via 

MS nor back to 5,10-methyleneTHF via MTHFR. This results in the trap of the cellular folates in 

the 5-methylTHF form. As 5-methylTHF is a poor substrate for FPGS, the polyglutamate 

synthesis ceases, which limits the pool of monoglutamates (197). The de novo synthesis of 

purines and thymidylates grinds to a halt (211). Vitamin B12 supplements can terminate the 

inhibition of MS and the folate cycle will not be interrupted. 
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Figure 5: Folate metabolism in a hepatic cell with intersecting homocysteine and choline cycles. 

AICARTF: 5-aminoimidazole-4-carboxamide ribonucleotide transformylase; BHMT: betaine 
homocysteine methyltransferase; CDH: choline dehydrogenase; DMG: dimethylglycine;               
DMGDH: dimethylglycine dehydrogenase; dTMP: deoxythymidine monophosphate; dUMP: deoxyuridine 
monophosphate; FDH: 10-formylTHF dehydrogenase; FIGLU: formimino glutamate; FMT: methionyl-t-
RNA formyl transferase; FTCD: 5-formiminoTHF cyclodeaminase; FTHFS: 10-formylTHF synthase; 
GARTF: glycinamide ribonucleotide transformylase; GCS: glycine cleavage system; Gly: glycine;  
GNMT: glycine-N-methyltransferase; MAT: methionine adenosyltransferase; MS: methionine synthase; 
MTHFC: 5,10-methenylTHF cyclohydrolase; MTHFD: 5,10-methyleneTHF dehydrogenase;  
MTHFS: 5,10-methenylTHF synthase; SAHH: S-adenosyl homocysteine hydrolase; SDH: sarcosine 
dehydrogenase; SHMT: serine hydroxy methyltransferase; tRNAf

Met: initiator transfer RNA;  
TS: thymidylate synthase. 

1.1.6.4 DNA synthesis 

Purine and thymidylate syntheses involve five enzymes. SHMT provides 5,10-methyleneTHF. 

5-Aminoimidazole-4-carboxamide ribonucleotide transformylase (AICARTF; EC 2.1.2.3) and 

glycinamide ribonucleotide transformylase (GARTF; EC 2.1.2.2) are required for the purine 

synthesis. The thymidylate synthase (TS; EC 2.1.1.45) and the DHFR are needed for the 

thymidylate synthesis. The vitamin B6-dependent enzyme SHMT catalyzes the reversible and 

simultaneous conversions of serine to glycine and THF to form 5,10-methyleneTHF (191;211). 

This reaction introduces the β-carbon of serine into the one-carbon pool at the formaldehyde 

level and is an important step in the one-carbon metabolism (145). The produced 

5,10-methyleneTHF is crucial for many other reactions in folate metabolism (82), including the 

function as substrate for TS and 5,10-methyleneTHF dehydrogenase (MTHFD; EC 1.5.1.5, 

which is important for nucleotide synthesis.  
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TS catalyzes the conversion of deoxyuridine monophosphate (dUMP) to dTMP, transferring 

formaldehyde to 5´-position of the dUMP. This is a key reaction in the thymidylate synthesis and 

limits the entire DNA synthesis. The allosteric enzyme DHFR inhibits MTHFR. This ensures that 

the priority lies with nucleotide biosynthesis instead of Met formation (145). Both, TS and DHFR 

are important targets in anti-cancer therapy. Antifolates, such as methotrexate blocks DHFR. 

Pemetrexed and raltitrexed inhibit TS, causing an arrest of thymidylate synthesis, of DNA 

replication, and leads eventually to cell death. In case of DHFR inhibition, the active key folate 

THF can not be regenerated from DHF. Therefore important reactions in folate metabolism are 

reduced or inhibited likewise resulting in cell death or an arrest of cell proliferation.  

Initiation of translation of protein biosynthesis requires a formylated methionyl tRNA (tRNAf
Met) 

species (234). The formylation of tRNAMet is catalyzed by the mitochondrial enzyme methionyl 

tRNAf
Met formyltransferase (FMT; EC 2.1.2.9) in a reaction that requires 10-formylTHF as a 

formyl-donor (234). In this process 10-formylTHF is converted to THF. 

1.1.6.5 Methionine metabolism 

Met is an essential proteinogenic amino acid that can not be synthesized by humans. Since the 

translation start codon is always AUG, Met is used in all proteins as first amino acid at the 

N-terminus where it is usually processed in subsequent steps or split off. Hcy is a non-

proteinogenic amino acid. The single source of Hcy in the body is the demethylation of Met via 

SAM and S-adenosyl homocysteine (SAH). In the liver, three overlapping pathways use Hcy as a 

substrate: the remethylation pathway via 5-methylTHF as a methyl donor, the remethylation 

pathway via betaine as a methyl donor, and the transsulfuration pathway. The latter irreversibly 

cleaves Hcy first to cystathionine (Cys) and then to cysteine. This happens in a vitamin B6 and 

serine-dependent reaction using the enzymes cystathionine-β-synthase (CBS; EC 4.2.1.22) and 

cystathionine-γ-lyase (CGL; EC 4.4.1.1) (73) (Figure 4). Betaine-dependent remethylation and 

transsulfuration occur mainly in liver and kidney (73). The transsulfuration pathway may be 

limited in brain (73), as CBS is expressed but CGL is scarce (235). 

The first step in folate-dependent remethylation is the transfer of the methyl group of 

5-methylTHF to the cofactor vitamin B12 by MS, producing methylcobalamin. Second, the 

methyl group is transferred from methylcobalamin to Hcy, forming Met and THF (200). Met is 

further converted to SAM by the ATP-dependent methionine adenosyltransferase (MAT; EC 

2.5.1.6). After the transfer of the methyl group, the demethylated product of SAM, SAH, can be 

further hydrolyzed to Hcy and adenosine in a reversible reaction that is catalyzed by the SAH 

hydrolase (SAHH; EC 3.3.1.1). This reaction favors SAH formation in case of HHCY (51).  
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1.1.6.6 Role of betaine as an alternative methyl donor 

Choline is an essential nutrient and plays a vital role as component of several major 

phospholipids such as phosphatidylcholine and sphingomyelin, which are important in cell 

membrane lipids, lipoproteins, bile lipids, and lung surfactants (252). Minor choline amounts are 

used to produce the neurotransmitter acetylcholine (59). The choline pathway intersects with the 

Met metabolism and choline acts as a precursor of betaine. Betaine is a major osmolyte.  

 

Figure 6: Choline oxidation pathway. Except from conversion from betaine to DMG (remethylation of 
Hcy), all steps are carried out in mitochondria of liver and kidney. 1: choline dehydrogenase (CDH);         
2: betaine aldehyde dehydrogenase 3: betaine homocysteine methyltransferase; 4: dimethylglycine 
dehydrogenase (DMGDH); 5: sarcosine dehydrogenase (SDH); 6: serine hydroxy methyltransferase 
(SHMT); 7: glycine cleavage system (GCS). FAD: flavin adenine dinucleotide;  
NAD: nicotinamide adenine dinucleotide. 

In mitochondrial choline metabolism THF receives an one-carbon unit forming 

5,10-methyleneTHF (Figure 6). The choline oxidation pathway involves five enzymes to 

eventually form glycine from choline (enzymes 1 – 5 in Figure 6): choline dehydrogenase 

(CDH; EC 1.1.99.1), betaine aldehyde dehydrogenase (BADH; EC 1.1.1.8), betaine 

homocysteine methyltransferase (BHMT; EC 2.1.1.5), dimethylglycine dehydrogenase 

(DMGDH; EC 1.5.99.2), and sarcosine dehydrogenase (SDH; EC 1.5.99.1) (80). Except from 

BHMT, all enzymes are localized in the mitochondria of liver and kidney.  
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The choline oxidation comprises the conversion of choline to betaine aldehyde, which is 

mediated by CDH (138) (Figure 6). Betaine is formed in a subsequent step by BADH in 

mitochondria and then in cytoplasm. Betaine leaves the mitochondria and acts as an alternative 

methyl donor for Hcy where cytosolic BHMT catalyzes the betaine conversion to 

dimethylglycine (DMG). DMGDH transfers a methyl group from DMG to THF, generating 

sarcosine and 5,10-methyleneTHF (145). Sarcosine is methylated to glycine using SDH (16). 

SHMT catalyzes the simultaneous and reversible conversion of glycine and serine. The terminal 

glycine cleavage is tissue specific and is performed by the multi enzyme glycine cleavage system 

(GCS; EC 1.4.4.2, EC 2.1.2.10, EC 1.8.1.4).  

1.1.6.7 Methylation reactions – the roles of S-adenosyl homocysteine and 

S-adenosyl methionine 

SAM is the major methyl donor in all living organisms (42). Creatine synthesis is the major user 

of methyl groups from SAM, utilizing more SAM than all of the other methyltransferases 

combined, resulting in 75% of the Hcy formation (163;164). SAM is important for the 

methylation of DNA, as 5% of cytosines in the genome are converted by DNA methyltransferase 

to 5-methylcytosine (62). The binding of transcription factors is inhibited when the methylation 

of cytosine occurs in CpG islands in the promoter region (106). This leads to the turn-off of 

genes. SAM is needed for the methylation of histones, which acts as another epigenetic 

regulatory mechanism. SAM is necessary for the conversion of phosphatidylethanolamine into 

phosphatidylcholine, which is catalyzed by the liver specific phosphatidylethanolamine-N-

methyltransferase (PEMT; EC 2.1.1.17) and requires three molecules of SAM. SAH is an 

effective competitive inhibitor for most cellular methyltransferases by binding to the active site 

of the enzymes. Under physiological conditions, SAH is hydrolyzed to Hcy. Elevated Hcy 

concentrations reverse the reaction. The SAM/SAH ratio is considered as an indicator for the 

cellular methylation capacity and is named the “methylation index”. Maintenance of the 

methylation index is important for the regulation of the enzymatic activity. 

For the regulation of the methylation index, the enzyme glycine N-methyltransferase (GNMT; 

EC 2.1.1.20) is important. GNMT catalyzes the synthesis of sarcosine and SAH from SAM and 

glycine. The enzyme binds 5-methylTHF as endogenous ligand but catalyzes the reaction of 

sarcosine to glycine without participation of the folate (238). SAM regulates the MTHFR activity 

(high SAM levels downregulate MTHFR) by binding to an allosteric site of the enzyme (132). 

The inhibition can be reversed by SAH (72). Furthermore, SAM activates the CBS (196). At low 

SAM levels, 5-methylTHF production can occur without restrictions while increased SAM levels 

promote the transsulfuration of Hcy (73).  
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1.1.6.8 Role of B-vitamins (vitamins B2, B6, and B12) as cofactors 

For a proper function of the one-carbon metabolism the appropriate intake of B-vitamins (FA, 

vitamin B6, vitamin B12, and vitamin B2) is crucial. Vitamin B2 (riboflavin) serves as cofactor in 

the metabolism of fats, amino acids, carbohydrates, and vitamins (e.g. vitamin B6). Vitamin B2 

deficiency manifests in mouth ulcers, dry and scaling skin, and cracked and red lips. In one-

carbon metabolism, vitamin B2 is required as a cofactor for the MTHFR enzyme, a flavoprotein. 

The coenzymic form of vitamin B2 is FAD, its loss as a cofactor in MTHFR 677 TT 

polymorphism is responsible for the lower enzyme function. Vitamin B2 serves as cofactor for 

the methionine synthase reductase (MTRR; EC 1.16.1.8), which activates the MS.  

The water-soluble vitamin B6 (pyridoxine, pyridoxal, pyridoxal-5-phosphate, etc.) functions as a 

coenzyme in more than 50 reactions, including the amino acid metabolism, the synthesis of 

neurotransmitters (serotonin, epinephrine, norepinephrine, and γ-aminobutyric acid), and of 

amine products (histamine). It plays an important role to reduce oxidative stress and affects cell 

proliferation. Vitamin B6 deficiency manifests in various clinical conditions, e.g. seborrhoeic 

dermatitis, conjunctivitis, and neuropathy. In one-carbon metabolism, vitamin B6 is necessary for 

many interconversions of folates and is a cofactor for CBS and CGL.  

Table 4: RDA reference values for B-vitamins (DGE). 

Vitamin Males Females 

RDA reference values 
B2 1.5 mg/d (15 – 25 years) 

1.4 mg/d (25 – 51 years) 
1.3 mg/d (51 – 65 years) 
1.2 mg/d (> 65 years) 

1.2 mg/d (adults) 
1.5 mg/d (pregnant women (> 4th pregnancy month)) 
1.6 mg/d (lactating women) 

B6 1.5 mg/d (adults) 1.2 mg/d (adults) 
1.9 mg/d (pregnant and lactating women) 

B12 3 µg/d (adults) 3 µg/d (adults) 
3.5 µg/d (pregnant women (> 4th pregnancy month)) 
4.0 µg/d (lactating women) 

Normal plasma concentrations
a
 (67) 

B2 19.2 (9.5 – 71.3) nmol/L 21.8 (10.9 – 77.0) nmol/L 
B6 69.5 (33.5 – 190.5) nmol/L 60.5 (31.1 – 288.5) nmol/L 
B12 274 (154 – 467) pmol/L 303 (170 – 517) pmol/L 
a: The data are medians (5th – 95th percentiles). The normal plasma concentrations were 
determined using n = 1,105 males and n = 1,213 female.  

Vitamin B12 (cobalamin) exists in many chemically related compounds (cyanocobalamin, 

methylcobalamin, adenosylcobalamin, etc.) and is essential for the normal brain function, DNA 

synthesis, and erythropoiesis. In humans, two vitamin B12 coenzyme-dependent enzyme reactions 

exist: MS and methylmalonyl-CoA mutase (MCM; EC 5.4.99.2; isomerization of 

methylmalonyl-CoA to succinyl-CoA) (Figure 4). In case of vitamin B12 deficiency, both 
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reactions are decelerated or stopped, leading to elevated tHcy and methylmalonic acid (MMA) 

concentrations. MMA is therefore a sensitive and specific marker for vitamin B12 deficiency. In 

addition, vitamin B12 deficiency results in the methyl trap of folate and can produce abnormalities 

in both DNA methylation and uracil incorporation (141). In Table 4, RDA reference values in 

conformity with the “Deutsche Gesellschaft für Ernährung” (DGE) are presented. Additionally, 

normal plasma concentrations of vitamins B2, B6, and B12 determined in a case-control study 

within the European Perspective Investigation into Cancer and Nutrition study are shown (67). 

1.2 Clinical relevance 

One-carbon metabolism can be impaired due to low folate concentrations, causing several 

clinical conditions. In addition, it can be disrupted by B-vitamins deficiencies other than folate 

and genetic mutations or polymorphisms. Folate deficiencies manifest in megaloblastic anemia 

(89). Low folate concentrations are associated with the development of NTDs (162) and may 

cause certain types of cancer (114;202) and neurocognitive dysfunction (147;169). The 

accumulation of tHcy is associated with many pathologic conditions (91). 

1.2.1 Health importance of folate and folate deficiency 

In countries without mandatory FA fortification, adequate dietary intake of folates and other 

vitamins is crucial. Flynn et al. summarized the intake of selected nutrients from foods, 

supplementation, and fortification in European countries (74). In Germany, the folate intake in 

adults from diet and diet plus supplements was below the recommended 400 µg/d. During 1997 – 

1999 the mean daily folate intake in Germany of 2,267 adult women without supplementation 

was 241 µg, with supplementation 280 µg, and in 1,763 adult men 288 µg and 307 µg, 

respectively (74). This shows that deficiencies in folate are common even in wealthy countries. 

Folate deficiencies are associated with megaloblastic anemia and development of NTDs. 

Moreover, low folate levels are associated with vascular disease via its influence on tHcy levels. 

Some studies found an inverse relationship between folate status and coronary heart disease 

(185;236). Most prospective cohort studies have found inverse associations between the folate 

status and stroke or other cerebrovascular outcomes (14;86). Merchant et al. found an inverse 

relationship between total folate intake and risk of peripheral arterial disease (156). After 

12 years of follow-up, men with a mean folate intake of 840 µg/d had a ~ 30% lower risk (risk 

ratio = 0.67) of peripheral arterial disease compared to men with a mean folate intake of 

244 µg/d. In addition, low folate status and resulting higher tHcy levels are associated with a 

higher prevalence of cognitive impairment or Alzheimer’s disease (172).  
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Associations of folate intake and cancer risk, which are considered the result of genetic and 

epigenetic changes (e.g. global hypomethylation or promoter hypermethylation) have been 

studied extensively. The one-carbon metabolism is therefore capable of influencing the 

pathogenesis of human cancers. The folate metabolism is also a potential target for chemotherapy 

(antifolate treatment). Evidence indicates significant inverse associations between dietary folate 

intake and risk of breast cancer indicating a protective effect of the vitamin (135). However, one 

has to bear in mind that folate may provide protection early in carcinogenesis but it may promote 

carcinogenesis if administered later and at very high doses.  

Folate deficiencies are often accompanied by the accumulation of tHcy, which causes HHCY 

(77). HHCY is classified into three types: moderate HHCY (tHcy = 12 – 30 µmol/L), 

intermediate HHCY (tHcy > 30 – 100 µmol/L), and severe HHCY (tHcy > 100 µmol/L) (111). 

Moderate HHCY is associated with several pathologic conditions, including cardiovascular and 

neurodegenerative diseases (91). Apart from oxidative stress, another main pathomechanism in 

HHCY is hypomethylation (30). Elevated tHcy concentrations can be lowered by supplementing 

low doses of FA in healthy subjects (27). In a meta-analysis, the Homocysteine Lowering 

Trialists’ Collaboration stated that daily doses of ≥ 800 µg FA are required to achieve the 

maximal reduction in plasma tHcy concentrations (100). Lower doses of 200 and 400 µg FA are 

associated with 60% and 90% tHcy lowering, respectively, of this maximal effect. However, the 

effect of tHcy lowering on pathologic conditions is ambiguous. On the one hand, tHcy lowering 

prevents stroke (189) and cardiovascular events in hemodialysis patients (184), on the other hand 

the risk of major cardiovascular events in patients with vascular disease could not been lowered 

(143), cognitive performance could not be improved in healthy subjects (150), and lower tHcy 

had no beneficial effect on inflammatory markers associated with atherosclerosis in patients with 

stable coronary artery diseases (22).  

1.2.1.1 Folates in pregnancy 

Only recently FA attracted attention as it became evident that it plays a decisive role in 

embryonic development. Maternal folate and micronutrient requirements increase during 

pregnancy due to fetal demands for growth and development (40). Moreover, an increased cell 

division is associated with the rapidly growing placenta and the expansion of maternal RBC 

number. Due to the higher demands of folate, pregnant women are at higher risk of developing 

folate deficiencies and megaloblastic anemia (245). Inadequate folate intake and low serum folate 

concentrations are associated with poor pregnancy outcomes. RBC folate is especially important 

during the pregnancy due to the fact that RBC production increases in the course of the blood 

volume expansion. Additionally, folates are actively transported to the fetus. Despite the fact that 
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the transport mechanism from maternal to fetal circulation is still unknown, participation of 

chorionic FRs is evident. 5-MethylTHF is rapidly bound to FRs in the placenta and transported to 

the intervillous blood. This allows for fetal folate accumulation against a concentration gradient 

and results in markedly elevated folate concentrations in fetal and newborn blood compared to 

maternal circulation (88).  

Folate deficiency during pregnancy favors the occurrence of NTDs, which are congenital 

malformations of the brain and the spinal cord caused by the incomplete closure of the neural 

tube between the days 21 – 28. Defects vary from spina bifida to anencephaly and also can lead 

to premature births. NTDs have an incidence of > 300,000 new cases a year and over 95% of 

them are first occurrence (239). There is evidence that the folate concentrations are associated 

with the occurrence of orofacial clefts (10) and congenital heart defects (24). In addition, low 

maternal folate concentrations and pregnancy complications such as placental abruption, 

preeclampsia, and spontaneous abortions are likely to be associated. In 1970, the U.S. Food and 

Nutrition Board proposed a FA intake of 200 – 400 µg/d for pregnant women, leading to a 

significant decline in folate deficiency symptoms (45). But only in the early 1990s it became 

apparent that there is a correlation between maternal folate status and the incidence of fetal 

malformations, especially of NTDs (218). Studies demonstrated prevention up to three fourths of 

NTDs with FA (48;162). This led to a mandatory food fortification of grain products in some 

countries, which resulted in a significant decline of NTD incidence (140;144;182). For the 

prevention of NTDs supplementation with FA is especially recommended for women of 

childbearing age prior and in the first trimester of the pregnancy. However, even in the presence 

of FA supplementation and fortification NTDs continue to occur (94).  

1.2.1.2 Folate and elderly health  

B-vitamins deficiency is common in elderly people. This can be partly explained by lower intake 

or bioavailability of the vitamins or by reduced resorption. Folate deficiency is a risk factor for 

many age-related diseases such as stroke, dementia, cancer, and coronary vascular disease (91). 

Elevated plasma tHcy has been found in patients with Parkinson’s disease (21). Recently, age-

dependent decreases in DNA methyltransferase levels due to low dietary micronutrients 

including folate and Met were found (136). Hooshmand et al. found in a longitudinal study that 

both tHcy and holotranscobalamin (HoloTC) may be involved in the development of Alzheimer’s 

disease (101). Mild cognitive impairment has a prevalence of 14 – 18% in adults over 70 years 

(176) and approximately half of them will develop Alzheimer’s disease or other forms of 

dementia within 5 years (54). In a recent study with six weeks of FA supplementation in older 

adults (60 – 90 years) it could be demonstrated that supplementation will improve the folate 
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status and lower the tHcy concentration for adults with low serum folate levels (1). Moreover, 

tHcy-lowering by B-vitamins (800 µg FA, 500 µg cyanocobalamin, and 20 mg pyridoxine HCl) 

slows the rate of accelerated brain atrophy in mild cognitive impairment (205). 

Malabsorption of food bound vitamin B12 is often based on an atrophic gastritis. HCl and pepsin 

synthesis are reduced but intrinsic factor, which is important for the receptor-mediated uptake of 

vitamin B12 is sufficiently produced. Once the intrinsic factor is not longer available in sufficient 

concentrations the receptor-mediated uptake by the enterocytes is limited. B-vitamins 

deficiencies are associated with elevated tHcy concentrations and therefore pose a higher risk of 

developing Hcy associated diseases. Plasma tHcy concentrations strongly depend on age. The 

age-related increase in tHcy concentration can be partly explained by the physiological decline in 

the renal function (92). The elevation of tHcy is linear until the age of 60 – 65 years and 

subsequently increases in speed. The average tHcy concentration increases about 10% or 

1 µmol/L per decade (49). 

1.2.2 Supplementation and fortification 

Considering the low intake of folate from food and the risk that is associated with reduced folate 

status, it is not surprising that supplementation with FA is recommended. In some countries like 

the U.S., Canada, and Chile fortification of flour with FA is required by law to reduce the risk of 

NTDs. Already in 1992 the U.S. Public Health Service recommended that all women of 

childbearing age consume 400 µg FA daily to prevent the first occurrence of NTDs (32). Older 

people with reduced folate intake are in need of supplementation to achieve the RDA. Therefore, 

particularly pregnant women and older adults benefit from the mandated FA fortification 

programs. However, there is evidence that high intake of FA is associated with adverse effects. 

1.2.2.1 Folate fortification – benefit and risk 

Fortification is the process of increasing the level of nutrients, which are normally present within 

a food vehicle (e.g. grain flour). In 1996, the U.S. became the first country to mandate 

fortification of all enriched cereal grain products with FA (fortification level of wheat 

flour = 140 µg/100 g) (76). Canada (fortification level of wheat flour = 150 µg/100 g) followed 

closely, then Costa Rica (180 µg/100 g), and Chile (220 µg/100 g). Up to date, more than 50 

countries apply mandatory flour fortification programs but Germany is not among them (33). 

Supplemented or fortified FA is metabolized by the activity of DHFR, which has low affinity for 

FA. Therefore, the reduction of FA to DHF is very slow.  
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FA fortification policies resulted in a reduction of prevalence rate of NTDs and an increase of FA 

intake and blood folate concentrations (53;144). In the U.S. the National Health and Nutrition 

Examination Survey (NHANES) study series observed in adult non-supplement users a mean 

serum folate concentration of 11.4 nmol/L before (NHANES III, n = 9,430) and 26.9 nmol/L 

after (NHANES 1999 – 2000, n = 1,978) FA fortification (57), the mean RBC folate level 

increased from 375 nmol/L before (n = 9,438) to 590 nmol/L after (n = 2,007) fortification. In the 

Framingham Offspring Study cohort, non-supplemented participants showed a reduced incidence 

of abnormally low plasma folate (< 7 nmol/L) from 22% to < 1.7% and a reduced incidence of 

high tHcy concentrations from 18.7 – 9.8% after the fortification (112). 

The safe upper limits for both folate intake and blood folate concentrations are still unknown 

(204). Apart from the beneficial effect of FA supplementation and fortification, in the past years 

suspicion arose about potential adverse effects of consumption of FA. The main targets for FA 

fortification are women of childbearing age. Therefore, question emerged if it is justifiable to 

expose the entire population to mandatorily fortified foods (173). Folate-dependent enzymes 

have different specificities for free FA than for naturally folates. Especially the FR develops an 

extremely tight binding with FA, which could interfere with the transport of other folates. High 

intake of FA might mask vitamin B12 deficiency, especially in older adults because of the high 

prevalence of vitamin B12 malabsorption (198). High plasma folate levels were associated with an 

increased risk of developing cardiovascular diseases (23), premenopausal (139) and 

postmenopausal (213) breast cancer, and colorectal cancer (228). In addition, high folate status 

promotes the progression of already existing preneoplasms (43). As 37.5% of the individuals 

> 50 years have colorectal adenomas, fortification with FA might pose a great risk (137).  

1.2.2.2 Unmetabolized folic acid 

High oral doses of FA from supplements or fortified foods have been shown to bypass the normal 

folate absorption mechanisms, which results in the presence of unmetabolized FA in serum (103). 

Unmetabolized FA poses risks in the diagnosis of vitamin B12 deficiency and the efficiency of 

chemotherapy based on antifolates, which limits the folate availability to tumor cells (204). In 

addition, there is scarce information dealing with the effect of long-term exposure to FA. One 

study measured lower natural killer cell cytotoxicity with increased FA concentration in plasma 

(> 3 nmol/L) in women > 60 years (225).  

In the Framingham Offspring Cohort study unmetabolized FA in non-vitamin users before 

(55.0%, n = 705) and after (74.7%, n = 355) fortification, as well as in B-vitamins users (72.5%, 

n = 398 before fortification vs. 80.7%, n = 245 after fortification) was found (117). After 
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fortification, 19.1% of the non-vitamin users and 24.3% of the vitamin users had high plasma FA 

levels ≥ 1.35 nmol/L, with a positive association of FA intake and FA plasma concentration 

(117). Obeid et al. found in a randomized, double-blind, placebo-controlled supplementation 

study (n = 74 older adults, median age = 82 years, 63 women) that 19% of the participants had 

detectable amounts of unmetabolized FA (> 0.2 nmol/L) in plasma at baseline (168). After 

3 weeks of supplementation with high doses of B-vitamins (5 mg FA, 2 mg cyanocobalamin, and 

40 mg vitamin B6) the median FA concentration increased from 0.08 nmol/L to 15.3 nmol/L. 

This was associated with higher concentrations of THF and 5-methylTHF and lower tHcy levels, 

suggesting the effective reduction and conversion of FA into active folate forms.  

As FA supplementation is important during the pregnancy, pregnant women and their children 

are at risk of unmetabolized FA in the circulation. Sweeney et al. found unmetabolized FA in 17 

of 20 placental cord blood samples, as well as in 18 of the corresponding pregnant women at 

delivery (217). Obeid et al. reported in a study with 87 pregnant women unmetabolized FA in 

43.6% of the subjects and in 55% of umbilical cord serum samples (n = 29) (170). In contrast to 

5-methylTHF and THF, concentrations of FA were not higher in cord than in maternal blood, 

suggesting that FA is not accumulated in the fetus.  

1.2.3 Polymorphisms in the MTHFR gene 

Folate metabolism and the interconnecting Met metabolism require the contribution of a number 

of enzymes and vitamin cofactors. Effects of gene-gene and gene-nutrient interactions have been 

reported for serum folate and serum tHcy concentrations (250). Several genetic polymorphisms 

for instance hundreds of single nucleotide polymorphisms (SNPs) have been identified. Some are 

demonstrated or suspected to be associated with HHCY or may play a role in altering the DNA 

methylation reactions.  

The most common mutation in the MTHFR gene is a C → T substitution in exon 4 at bp 677. 

This causes a substitution of valine for alanine and results in a thermolabile variant of the enzyme 

activity at 37°C (79). The heterozygous CT genotype is associated with a 30% reduction and the 

homozygous TT genotype with a 50 – 70% reduction in the enzyme activity, which decreases the 

conversion of 5,10-methyleneTHF to 5-methylTHF (79;211). The TT variant is present in about 

10 – 20% while the heterozygous genotype amounts approximately 40% of the population. As 

MTHFR is the sole producer of 5-methylTHF, polymorphisms may have a number of deleterious 

effects on the methylation cycle. Decreased 5-methylTHF and increased formylTHF in RBCs 

have been reported in TT individuals (12). The TT mutation causes elevated tHcy levels and leads 

to alterations in the intracellular folate distribution, especially in the absence of adequate folate 
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availability (79). Differences in tHcy concentrations between individuals with CC and TT 

genotype have been shown to increase as the folate concentrations decrease and may only be 

significant at low folate concentrations. At low folate concentrations, deficiencies of vitamin B12 

have also been linked to elevated tHcy concentrations in TT individuals (250). In addition, some 

studies associate polymorphisms of MTHFR C677T with increased risks for cardiovascular 

disease (128), NTDs (174), as well as malignant tumors susceptibility (127).  

The second common polymorphism in the MTHFR gene is the A → C substitution at bp 1,298. 

This SNP results in a glutamate to alanine substitution and to a 50 – 60% decreased enzyme 

activity but without significant differences in tHcy or folate plasma levels (227). The prevalence 

of this polymorphism ranges in Europe from 6 – 11% (39). Individuals with CC genotypes have 

only 60 – 70% of the MTHFR 1298 activity compared to the AA genotype (243). The majority of 

studies concluded that the MTHFR A1298C polymorphism is not an independent risk factor for 

NTDs (227) or other birth defects such as congenital heart defects (232) or cardiovascular disease 

(85). The MTHFR C677T and the A1298C genotypes are in linkage disequilibrium. The 677T and 

the 1298C alleles are rarely found in the cis configuration.  

1.3 Quantitative folate determination  

The accurate measurement of folate forms is essential for monitoring the folate intake and the 

evaluation of the folate status. Therefore serum and plasma, as well as whole blood (WB) folates 

are determined. The quantification of folate forms from various sample material is challenging. 

First methods, including the microbiological and the protein-binding assay only determine the 

total folate (TFOL) of the sample and are unable to distinguish between the different folate 

forms. To this date, even chromatographic methods can separate and quantify some but not all 

folate vitamers. There are several difficulties of developing an appropriate quantification method. 

First, the number of possible folates (oxidation states and number of glutamate residues) is quite 

large. Second, the matrix of the sample material (biological samples or foods) is complex. Third, 

reduced folates are unstable and tend to undergo interconversions. Forth, folates are bound to 

binding proteins. In biological samples folates from serum and plasma are easier to determine 

because they consist exclusively of monoglutamates. In addition, the maintenance of 

polyglutamate chains of WB folate results in complex method outputs. Therefore, the 

folylpolyglutamates are often deconjugated to their monoglutamate forms by either endogenous 

or added conjugase. Prior this step, WB folates must first be extracted from the cells by 

hemolysis. There is high variability of WB folate forms depending on the incubation time, 

temperature, and pH during hemolysis (179). As a result, hemolysis can be incomplete, or folates 

can be trapped in the hemoglobin molecule (248).  
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1.3.1 Folate stability 

Reduced folate forms are known to be sensitive to heat, pH, oxidation, pressure, and ultraviolet 

light (115). Cleavage occurs at the C-9-N-10-bond of the molecule. The major degradation 

products are p-aminobenzoyl-L-glutamic acid (pABG) and pteridine fragments; both are no 

longer coenzymes available for one-carbon metabolism (63). THF, DHF, and 10-formylTHF are 

especially unstable in vitro and readily undergo oxidative degradation.  

In addition to degradation, reduced folates easily undergo enzymatic and non-enzymatic 

interconversions, which are pH-dependent. Especially 5-formylTHF, 10-formylTHF, and 

5,10-methenylTHF demonstrate complex interconversion reactions under different pH 

conditions. De Brouwer et al. summarized the pH and heat stability of individual folate forms in 

in vitro experiments (50) (Figure 7). FA and 5-methylTHF are stable at pH 2 – 10. 5-FormylTHF 

is relatively stable at 37°C and pH 3 – 10 but becomes instable under acidic conditions (pH < 3) 

during heating. 10-FormylTHF can be oxidized to 10-formyl FA. 5,10-MethenylTHF is instable 

at pH values between 3 – 9. 5,10-MethyleneTHF loses under acidic conditions its one-carbon 

unit and converts into THF and formaldehyde. Under basic conditions and in the presence of 

formaldehyde, THF can convert back to 5,10-methyleneTHF. THF is relatively stable in acetic 

solution (pH < 5), whereas DHF is relatively stable at pH > 8. DHF is instable under all pH 

conditions after heating. Under low pH conditions, THF can in vitro be oxidized to DHF and FA. 

In order to stabilize the reduced folates in in vitro experiments, it is decisive to add adequate 

antioxidants such as ascorbic acid, β-mercaptoethanol, or dithiothreitol (DTT).  

 

 

Figure 7: Stability of aqueous folic acid and folate solutions at different pH and temperature. Shown 
are the degradation and interconversion reactions of the folate coenzymes. Adapted from de Brouwer et al. 
(50). 
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1.3.2 Quantification methods 

Folates in biological samples were analyzed over 50 years. First, the microbiological assay was 

introduced. This assay is based on the fact that a specific microorganism (Lactobacillus 

rhamnosus, formerly known as L. casei) grows proportionally to the available folate in the 

sample and is used for the determination of TFOL in serum, WB, and dried blood spots. L. 

rhamnosus is specific to biologically active folate with similar response to a variety of naturally 

occurring folate derivatives and does not respond to pteroic acid, breakdown products (e.g. 

pABA), and folate stereoisomers. Next, the protein-binding assay was introduced. One example 

is the automated chemiluminescent immunoassay on the ADVIA Centaur platform (ADVIA 

Centaur XP System, Bayer Diagnostics, Leverkusen, Germany). This method consists of a 

competitive assay (FOL assay) using FBPs. This method depends on the release of the folate 

from its binding proteins. Prior measurement, samples are treated with DTT to release the folates 

from endogenous BPs. The released serum folate competes against acridinium ester-labeled FA 

for a limited amount of biotin-labeled FBP. The biotin-labeled FBP binds to avidin, which is 

covalently bound to paramagnetic particles in the solid phase. The amount of serum TFOL in the 

sample correlates inversely with the obtained signal. 

Methods used for quantifying TFOL show large disagreements (158) and are unable to detect 

various forms of the vitamins. In the 1970s and 1980s, first chromatographic methods have been 

developed. These methods can distinguish between the different folate forms. Numerous HPLC 

(11;146) and gas chromatography (GC) (188;201) methods have been described for the detection 

of folate forms in serum and WB. Lately, liquid chromatography coupled with mass spectrometry 

(LC-MS) methods and liquid chromatography tandem mass spectrometry (LC-MS/MS) methods 

have been developed to quantify folate monoglutamates in biological fluids and foods 

(155;178;241). LC-MS/MS methods provide three levels of selectively: the chromatographic 

separation of the analytes, the mass-to-charge (m/z) ratio of ionized precursor molecules, and the 

transition of precursor to fragment ion. The functionality of LC-MS/MS, especially of ultra 

performance LC-MS/MS (UPLC-MS/MS), is explained in more detail in Chapter 3.4.1.  

Modern LC-MS/MS methods for the determination of biological samples use more or less 

complex sample extraction and clean-up procedures from protein precipitation to solid phase 

extraction (SPE) with or without concentration of the analytes. They are capable to quantify 

several folate forms in the nanomolar range. The LC-MS/MS methods use a variety of 

monoglutamate or polyglutamate folate standards. In addition, stable isotope-labeled internal 

standards for most of the monoglutamate forms are available. The proper preparation and storage 

of the folate standards and internal standards are critical for the accurate measurement. The 

standard materials and samples should be kept frozen (≤ -70°C). The handling of the standards 
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and samples should be done under subdued light. Stock solutions and buffers should be prepared 

with degassed (N2 or He) water to minimize the oxidation. The concentrations of stock solutions 

should be verified by spectrophotometry. Adequate amounts of antioxidants (10 g/L ascorbic acid 

and/or β-mercaptoethanol) are necessary in stock solutions to protect reduced folates from 

oxidation. Aliquots of lower concentrations should be prepared every month and once thawed 

they should be discarded after use. 
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2 Study aims 

Folate deficiency is common in older adults, because of the low intake of the vitamin and 

compromised absorption or bioavailability. In addition, deficiencies of vitamin B12 and B6 are 

also common in the elderly, suggesting that the folate metabolism might be sensitive to the 

deficiencies in other enzyme cofactors participating in folate cycle. Folate deficiency is a known 

risk factor for several age-related diseases such as stroke, dementia, cancer, and coronary 

vascular disease (91). In contrast, few studies support that increased folate and FA intake can be 

harmful (23;43;228). Folate has essential roles during cell growth and differentiation in the de 

novo synthesis of purines and thymidylates. Moreover, folates in the form of 5-methylTHF 

facilitate SAM synthesis, which is an important methyl donor for maintaining the methylation of 

cytosine. 

Folate intake from natural sources is often below the RDA (74), suggesting that folate deficiency 

can be common even in a wealthy society. Folate fortification of grain products has been initiated 

in the U.S. in 1998 with the aim of reducing the incidence and recurrence of NTDs by ensuring a 

daily intake of folate of 400 µg for all women of child bearing age. Despite that, there has been 

some doubt about the application of folate fortification and exposure of the entire population to 

an increased intake of FA (173). Nevertheless, there have been no metabolic studies confirming 

the fate of supplemented FA in the cell. Furthermore, little is known about the metabolism of FA 

within the cell and the distribution of folate forms that promote the DNA synthesis. Moreover, it 

has not been tested whether subjects with polymorphisms in the MTHFR gene might show a 

different folate forms distribution after folate or B-vitamins supplementation. Because elderly 

people are at risk of developing cancer and other age-related diseases this population group is of 

special interest for the folate research.  
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The aims of this study are: 

The development of sensitive methods for the quantification of metabolites of folate and 

Met cycle using UPLC-MS/MS 

- The development of a method for the quantification of folate forms in serum und WB 

samples. 

- The development of a method for the quantification of methylation markers SAH and 

SAM. 

- The development of a method for the quantification of alternative methyl donor 

betaine as well as choline and DMG. 

- The determination of reference ranges for the new methods in healthy subjects. 

The investigation of the folate forms distribution before and after short-term and long-term 

supplementation with B-vitamins in older adults in relation to the MTHFR C677T 

polymorphism 

- The determination of the folate forms distribution in serum and WB before and after 

the short-term and long-term supplementation with B-vitamins at different doses. 

- The determination of the influence of gender, age, and vitamin B12 status on the 

concentration and the distribution of folate forms. 

- The determination of the influence of co-supplementation with vitamins B6 and B12 

on the folate forms distribution. 

- The incidence of the MTHFR C677T polymorphism and the effects on the folate 

forms distribution in serum und WB before and after supplementation with B-

vitamins. 
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3 Materials and methods 

3.1 Study design 

All studies were approved by the local ethics commission of the Saarland University Hospital 

and all participants signed informed consent documents. The studies were conducted at the 

Saarland University Hospital, Department of Clinical Chemistry and Laboratory Medicine – 

Central Laboratory, Homburg, Germany in collaboration with the rehabilitation center in St. 

Ingbert, Germany. Patient information sheets including consent form, a randomization sheet, and 

a questionnaire for telephone calls are summarized in Appendix G. Randomizations were 

performed at the Department of Medical Biometry, Epidemiology, and Medical Informatics of 

the Saarland University Hospital, Homburg, Germany. The trial (study I) was registered at 

clinicaltrials.gov as NCT01105351. 

Study I: Short-term supplementation folic acid vs. folic acid plus vitamin B6 and B12 

The aim of the study was to investigate the effect of low doses of oral FA supplementation with 

and without the co-supplementation of vitamin B6 and vitamin B12 given over a period of several 

weeks on the folate forms and the polymorphisms in folate catabolizing enzymes (MTHFR) in 

elderly people (> 50 years). The study included two arms (T1: FA or T2: FA co-supplemented 

with vitamins B6 and B12) and was double-blind. Following approved supplements were applied: 

Folverlan 0.4 mg tablets (400 µg FA) and Medyn tablets (200 µg FA, 8 mg vitamin B6, and 

10 µg vitamin B12) for the co-supplementation arm. The co-supplementation arm received 

additionally half a Folverlan tablet. Blood samples were collected under fasting conditions at 

baseline and at the end of the study (see Figure 8). The recruitment and the randomization of the 

volunteers were performed during August 2009 and June 2010. Inclusion criteria were: older 

adult Germans (> 50 years), performing several weeks of treatment in the rehabilitation center in 

St. Ingbert. Exclusion criteria were: renal dysfunction, recent stroke or coronary event within the 

last 3 months, current cancer, antifolate treatment, ileum resection, existing B-vitamins 

supplementation, and megaloblastic anemia. Termination criteria were: indication for a high-dose 

vitamin B, poor physical condition (e.g. heart attack, stroke), or surgical procedures during the 

study. 

 



Study design 

31 

 

Figure 8: Study plan of the short-term supplementation study.  

Study II: Long-term supplementation with folic acid, vitamin B6, vitamin B12, vitamin D, 

and calcium vs. vitamin D and calcium 

Aim of the study was the supplementation of elderly subjects (> 50 years) with calcium and 

vitamin D in both study arms in addition to B-vitamins (FA, vitamin B12, and vitamin B6) over a 

period of 1 year in a randomized, and double-blind study (see Figure 9). Study participants’ daily 

supplement intake contained 3 capsules: 1 green in the morning (group A: 500 µg FA, 50 mg 

vitamin B6, 500 µg vitamin B12, and 160 IU vitamin D, or group B: only 160 IU vitamin D), 

1 white (228 mg calcium) at lunch, and 1 brown (228 mg calcium and 1,040 IU vitamin D) in the 

evening. The regular intake of the supplements was verified by telephone calls at intervals of 2 –

3 months. Blood was collected under fasting conditions at baseline, after 6 months, and at the end 

of the study (12 months). The recruitment and the randomization of the volunteers were 

performed during August 2009 and June 2010. Inclusion criteria were: older adult Germans 

(> 50 years). Exclusion criteria were: renal dysfunction, recent stroke or coronary event within 

the last 3 months, current cancer, antifolate treatment, ileum resection, existing B-vitamins 

supplementation, and megaloblastic anemia. Termination criteria were: indication for a high-dose 

vitamin B, poor physical condition (e.g. heart attack, stroke), or surgical procedures during the 

study.  
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Figure 9: Study plan of the long-term supplementation study. 

3.2 Sample collection 

Blood samples from fasting subjects were collected by venous puncture either in vacutainer tubes 

containing an anticoagulant (EDTA (ethylenediaminetetraacetate), citrate, or lithium heparin) or 

in tubes without anticoagulant. For WB folate quantification, EDTA WB samples were 

immediately aliquoted and stored at -70°C until analysis. Serum samples were allowed to clot for 

30 minutes at room temperature and were centrifuged at 2,000 x g and 4°C for 10 minutes. 

Plasma samples were centrifuged within 30 minutes at 2,000 x g and 4°C for 10 minutes. Serum 

and plasma were immediately separated, divided into multiple aliquots, and processed. For the 

SAH and SAM measurement, SAM has to be immediately stabilized by acidifying the sample to 

avoid the degradation to SAH. For this purpose, 500 µL EDTA plasma was acidified with 50 µL 

1 N acetic acid and mixed thoroughly. For the tHcy determination, EDTA plasma has to be 

rapidly separated from erythrocytes, as a time and temperature-dependent release of Hcy has 

been reported (2;226). Sample aliquots were stored at -70°C until analysis. For quality control in 

all UPLC-MS/MS methods, pooled samples of serum, EDTA plasma, and EDTA WB were 

prepared.
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3.3 Materials 

3.3.1 Equipment, chemicals, and reagents 

A list of the chemicals and reagents used, as well as their description, ordering number, and 

companies is provided in Appendix A. An overview of the equipment used is summarized in 

Appendix B.  

General equipment 

- Aurius CE2041 Spectrophotometer (CECIL Instruments Ltd., Cambridge, UK) 

- Biohit m10 (0.5 – 10 µL), m200 (20 – 200 µL), m1000 (100 – 1000 µL) pipette (Biohit 

Deutschland GmbH, Rosbach v. d. Höhe, Germany)  

- Eppendorf centrifuge 5810 R, A-4-62 Rotor (Eppendorf AG, Hamburg, Germany) 

- Eppendorf concentrator 5301 (Eppendorf AG)  

- Hettich Mikro 20 centrifuge (Andreas Hettich GmbH & Co. KG, Tuttlingen, Germany) 

- RM5-40 Horizontal Mixer (Bennett Scientific Ltd., Newton Abbot, UK) 

- Schott Intruments Lab 870 pH meter and N 6000 A electrode (SI Analytics GmbH, 

Mainz, Germany)  

- Thermo Scientific Haake Open-Bath Circulators C10-W19 (Thermo Fischer Scientific, 

Waltham, USA)  

- VARIOMAG Monotherm Heatable Magnetic Stirrer (VARIOMAG-USA, Daytona 

Beach, USA) 

- Waters Acquity UPLC coupled to a MicroMass Quattro Premier XE (Waters 

Corporation, Milford, USA) 

General chemicals 

- acetic acid (glacial; >99.99%; Sigma Aldrich, Munich, Germany) 

- acetonitrile (ULC/MS grade; Biosolve, Valkenswaard, The Netherlands) 

- ammonium acetate (ULC/MS grade; Biosolve) 

- ammonia solution analaR NORMAPUR (25%; VWR International GmbH, Darmstadt, 

Germany) 

- formic acid (ULC/MS grade; Biosolve) 

- methanol (ULC/MS grade; Biosolve) 

- water (18.2 MΩ; Milli-Q water purification system; Millipore, Molsheim, France)
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3.4 Methods 

3.4.1 Ultra-performance liquid chromatography tandem mass 

spectrometry  

Chromatography was defined in 1993 by the International Union of Pure and Applied Chemistry 

(IUPAC) as follows (66): 

“Chromatography is a physical method of separation in which the components to be separated are 

distributed between two phases, one of which is stationary (stationary phase) while the other (the 

mobile phase) moves in a definite direction.” 

HPLC uses a liquid mobile phase, which is delivered at the desired flow rate under high pressure 

(up to 400 bar), and a stationary phase in form of a separation column. The chromatographic 

separation occurs by the interaction of the compounds to different extents with the mobile and 

stationary phase, leading to different retention times (tR) for each analyte from sample 

introduction to detection. In general, HPLC requires a mobile phase in which the target analytes 

are soluble. Two basic elution modes are used: a constant composition of mobile phase is termed 

isocratic elution. In the second mode (gradient elution) the mobile phase changes over a period of 

time. Gradient curve profiles are shown in (Figure 10).  

 

Figure 10: Gradient curve profiles. Curve no. 1: immediately goes to specified conditions; curve no.  
2 – 5: convex; curve no. 6: linear gradient; curve no. 7 – 10: concave; curve no. 11: maintains start 
conditions until next step. Adapted from: MassLynx NT Inlet Control Guide, Version 4.0, Waters Part No. 
7150000399, 2002. 

Although the HPLC technique is frequently used in analytical chemistry and biochemistry, it has 

its limitations such as low efficiency and poor sensitivity. Using smaller particles enhances the 

column efficiency because it provides more theoretical plates per unit length. In 2004, UPLC 
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technology was introduced by Waters Corporation, which enables improved results in resolution, 

speed, and sensitivity.  

The coupling of a LC system to a mass spectrometer (Figure 11), which is known as LC-MS 

leads to a more sensitive and far more specific detection of the analytes. It provides the molecular 

weight and thus reduces the number of possible structures for the analyte. Additional advantages 

of LC-MS are the identification of components in unresolved chromatographic peaks and the 

possibility to analyze compounds that lack a chromophore (e.g. choline). For mass spectrometric 

analysis the molecules are ionized and later on sorted and identified according to the m/z ratios. 

Common ionization methods in LC-MS include chemical ionization, electron ionization, 

electrospray (ESI) and atmospheric-pressure chemical ionization (APCI). In the ESI mode, a 

liquid including the dissolved analyte is passed through a metallic capillary at atmospheric 

pressure and maintained at high voltage between probe tip and sampling cone – a spray is created 

(6). Depending on the voltage polarity, highly charged droplets are created at the tip of the 

capillary, which are desolvated on their way to a counter electrode. The size of the droplets 

reduces while the density of charges at the droplet surface increases – until the repulsion forces 

between the charges are too high and the droplet explodes. Eventually, analyte ions are created, 

which pass into the source of the mass spectrometer for separation. 

The quadrupole mass spectrometer consists of two pairs of parallel metallic rods; one set is at a 

positive electrical potential, the other one at a negative potential. Constant direct current (DC) 

and radio frequency (RF) voltages are both applied on each set (209). Only the ions of a given 

m/z ratio will resonate and can be detected for a given amplitude of the RF and DC voltages 

while other ions hit the rods (7;242) (Figure 12).  
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Figure 11: Schematic representation of an UPLC system coupled to a mass spectrometer. The sample 
is injected via injector device into the UPLC system and separated by the UPLC column. The mobile phase 
is pumped at high pressure through the column. After separation of the analytes, the sample is ionized in 
the ion source via ESI or APCI. Identification occurs by means of the mass-to-charge (m/z) ratio. Using a 
triple quadrupole, a specific analyte can be structurally investigated by fragmentation using a collision gas, 
creating precursor and product ions. 

MS/MS covers a number of methods in which one stage of mass spectrometry is used for the 

isolation of an ion. The second stage is used to investigate the relationship of this ion with others 

from which it may have been generated or which it may have generated on decomposition. The 

most widely used MS/MS instrument is the triple quadrupole. It consists of three sets of 

quadrupoles in series. MS 1 and MS 2 are used as mass analyzers, whereas the second set of 

quadrupoles is used as a collision cell where the fragmentation and focusing of ions is carried out 

(Figure 12). 
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Figure 12: Assembly and functionality of a single quadrupole and a triple quadrupole in multiple 

reaction monitoring mode of a mass spectrometer. The quadrupole consists of four parallel metallic 
rods; one pair is at a positive electrical potential, the other one at a negative potential. Constant DC and RF 
voltages are applied. Ions of a given m/z ratio will resonate and can be detected for a given amplitude of 
the RF and DC voltages, while nonresonant ions hit the rods. The triple quadrupole consists of three sets of 
quadrupoles (MS 1, collision cell, and MS 2) in series. In MRM mode, a selected precursor-ion is isolated 
in MS 1, fragmented in the collision cell, and a selected product-ion is detected in MS 2. 

Collision-induced dissociation is a mechanism by which molecular ions are fragmented in the gas 

phase by collision with neutral gas molecules (argon, helium, or nitrogen). Using MS/MS a large 

number of experiments can be carried out: the product-ion scan, the precursor-ion scan, the 

constant-neutral-loss scan, and the multiple reaction monitoring (MRM) (Table 5). MRM is a 

highly selective MS/MS mode, typically used for quantification of known analytes in complex 

samples. In MRM mode, a selected precursor-ion is isolated in MS 1, fragmented in the collision 

cell, and a selected product-ion is detected in MS 2 (Figure 12).  
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Table 5: Selected MS/MS techniques and operation modes of mass analyzers MS 1 and MS 2 in mass 

spectrometry. 

MS/MS technique MS 1 MS 2 

Product-ion scan 
static 

(selected precursor-ion) 
full scan 

Precursor-ion scan full scan 
static 

(selected product-ion) 

Constant-neutral-loss scan 
full scan 

(synchronized with MS 2) 
full scan 

(synchronized with MS 1) 

Multiple reaction monitoring 
static 

(selected precursor-ion) 
static 

(selected product-ion) 

The quantification of analytes using LC-MS/MS involves the comparison of the intensity of the 

analyte signal in a sample with that obtained from standards containing known amounts of the 

analyte. The internal standard is added as early as possible in the same concentration, correcting 

the possible loss of analyte during the sample preparation or the sample inlet. In addition, in 

biological samples the internal standard corrects for the so called matrix effect, which influences 

the measurement by enhancing or suppressing the signal intensities of the analytes. Internal 

standards generally match the analyte of interest as closely as possible but not completely. Stable 

isotope labeled analogues of the analytes contain unusual isotopes (e.g. replacing hydrogen with 

deuterium) in their chemical composition. Since the stable isotopes and the analytes have 

different masses they can be distinguished from each other without difficulty by MS. For all 

UPLC-MS/MS methods, the data acquisition was performed by MassLynx V4.1 and the 

QuanLynx software. Calculations and statistics are presented in Chapter 3.5. 

3.4.1.1 Quantification of folate forms 

A sensitive and reliable method for the determination of key folate forms (5-methylTHF, 

5-formylTHF, 5,10-methenylTHF, THF, and FA) in serum using UPLC-MS/MS technique was 

developed by Kirsch et al. (126). The method enables the quantification of the folate forms either 

in serum or plasma. A modified method for the quantification of 5-methylTHF and non-

methylTHF (sum of formylTHF, 5,10-methenylTHF, 5,10-methyleneTHF, THF, DHF, and FA) 

in WB was recently described by Kirsch et al. (123). Both methods use the same liquid 

chromatography and mass spectrometry conditions but differ in the sample preparation step. As 

WB folate has to be first extracted from the cells and deconjugated into monoglutamates, the 

sample preparation is more complex and time consuming.  

For method comparison purposes, serum TFOL was determined using ADVIA Centaur XP 

System. With the assay, 150 µL of serum folate can be determined. The assay had a measurement 

range of 0.79 (= LOD) – 54.36 nmol/L, a mean recovery after dilution of serum samples of 
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101.0%, and a mean recovery after spiking of 97.2%. The inter- and intraassay CVs for serum 

samples of four different concentrations (3.85, 12.00, 22.67, and 33.86 nmol/L) were ≤ 7.93%. 

The reference range for TFOL with this method was > 5.38 ng/mL (> 12.19 nmol/L) 

Solid-phase extraction column 

- Oasis MAX (1 ccm/30 mg and 3 ccm/60 mg; Waters Corporation, Milford, USA)  

Standards and internal standards 

- (6S)-5-CH3-H4PteGlu-Na2 (= 5-methylTHF) 

- (6S)-5-CHO-H4PteGlu-Na2 (= 5-formylTHF) 

- (6R)-10-CHO-H4PteGlu-Na2 (= 10-formylTHF) 

- (6R)-5,10-CH+-H4PteGlu-Cl x HCl (= 5,10-methenylTHF) 

- (6R)-5,10-CH2-H4PteGlu-Na2 (= 5,10-methyleneTHF) 

- (6S)-H4PteGlu-Na2 (= THF) 

- 7,8-H2PteGlu (= DHF) 

- PteGlu-Na2 (= FA)  

- (6S)-5-CH3-H4Pte[13C5]Glu, Ca-salt (= [13C5]-5-methylTHF)  

- (6S)-5-CHO-H4Pte[13C5]Glu, Ca-salt (= [13C5]-5-formylTHF) 

- (6R)-5,10-CH+-H4Pte[13C5]Glu (= [13C5]-5,10-methenylTHF) made from 

[13C5]-5-formylTHF by acidification with 10% formic acid and incubation at 4°C for 1 d  

- (6S)-H4Pte[13C5]Glu (= [13C5]-THF) 

- Pte[13C5]Glu, free acid form (= [13C5]-FA; Merck Eprova AG, Schaffhausen, 

Switzerland) 

Additional chemicals and equipment 

- activated charcoal Darco, powder, ~ 100 mesh particle size (Sigma Aldrich) 

- L(+)-ascorbic acid (puriss. 99.7%, Riedel-de-Haën (Sigma Aldrich)) 

- L-cysteine (≥ 99.5%; Fluka (Sigma Aldrich)) 

- Triton X-100 (for electrophoresis; Sigma Aldrich) 

- 5 mL glass tubes (5-SV – EPA Screw Top Vials; Chromacol, Herts, UK) 

- Maximum recovery glass vials (Waters Corporation) 
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Preparation of stock solutions, calibrators, and quality control samples 

To avoid the degradation of reduced folates, it is decisive to avoid the exposure to light, high 

temperatures, and oxygen. Stock solutions of standards and internal standards were therefore 

quickly prepared under subdued light with N2 degassed buffers containing antioxidants. Stock 

solutions I (440 µmol/L) were prepared according to Pfeiffer et al. in 20 mmol/L of di-

ammonium hydrogen phosphate, pH 7.2 (178). The concentrations were verified by using an 

Aurius CE2041 spectrophotometer and the determination of the transmittance (T) of 1:20- and 

1:50-diluted samples (19;178) (see Table 1 for wavelengths and molar extinction coefficients). 

The concentration of stock solution I was calculated by following equations: 

A = -log T  (1) 

Aλ = ε c l  (2) 

The absorbance (A) is defined as the logarithm (base 10) of the reciprocal of the transmittance 

(Equation 1). The Lambert Beer’s law states, that the absorbance (Aλ) is proportional to the 

concentration (c) for a given substance dissolved in a given solute and measured at a given 

wavelength (Equation 2) (107). For avoiding the degradation of the reduced folates, ascorbic 

acid (10 g/L) and L-cysteine (1 g/L) were added to all solutions except to that of FA after 

photometric quantification. Stock solutions II (220 µmol/L) were prepared according to the 

determined concentration of stock solution I with 10 g/L ascorbic acid (reduced folates) or water 

(FA). Aliquots of stock solution II were stored at -70°C for no longer than one year. Working 

standard stock solutions III (22 µmol/L) were prepared in 1 g/L aqueous acetic acid solution 

(reduced folates) or water (FA). An internal standard mix from five internal standards was 

prepared containing 0.4 µmol/L of [13C5]-5-methylTHF, 0.2 µmol/L of [13C5]-5-formylTHF, 

0.4 µmol/L of [13C5]-5,10-methenylTHF, 0.4 µmol/L of [13C5]-THF, and 0.6 µmol/L of 

[13C5]-FA. Aliquots were stored at -70°C for no longer than one month and discarded after use. 

Calibrators were prepared from stock solution III in 1 g/L ascorbic acid solution and were 

included in each batch of samples. Concentrations of calibrators were 0, 0.2, 0.5, 2, 10, 50, and 

100 nmol/L for all folate forms. Control samples at two different concentrations (0.6 and 

160 nmol/L of each analyte) were prepared from stock solution III in 1 g/L ascorbic acid solution 

and were included in each batch of samples. One serum pool sample or WB pool sample was 

included in each batch of samples as quality control. 
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Sample preparation serum folate 

Sample extraction and cleanup was performed with Oasis MAX SPE columns. These columns 

combine a mixed-mode anion exchange and reversed-phase sorbent and have high selectivity for 

acidic compounds. Folates are weak acids and are negatively charged at pH > 7. Ion-exchange 

works best with a positive charged stationary phase of the SPE column (anion exchange). The 

aqueous and basic sample is loaded onto the columns. For elution, a stronger solvent (methanol 

or acetonitrile) has to be used under acidic conditions (pH < 3). 

Serum samples were thawed at 4°C in the dark. 250 µL of the sample and 500 µL of the 

calibrator or the quality control sample were incubated with 700 µL or 450 µL ammonium 

acetate buffer (200 mmol/L, pH 10), respectively. 50 µL internal standard solution mix was 

added (total volume = 1 mL). Samples were vortexed and incubated in the dark at room 

temperature for 15 – 30 minutes, to ensure the release of the folates from the binding proteins and 

the equilibration of the labeled internal standard and the unlabeled endogenous folate. The SPE 

columns were preconditioned with 2 x 1 mL methanol following 1 mL 200 mmol/L of 

ammonium acetate buffer (pH 10), containing 10 g/L ascorbic acid. The prepared samples were 

loaded onto the column and impurities were removed by washing the columns with 1 mL 5% 

aqueous NH4OH following 1 mL methanol. The elution of the folates was performed by 

6 x 250 µL elution solution (methanol containing 1% formic acid). The eluates (1,500 µL) were 

transferred into glass vials (Maximum Recovery vials) and taken to dryness in an Eppendorf 

Concentrator 5301 at 45°C. Dried samples were dissolved in 100 µL H2O/methanol (60:40, v/v), 

containing 0.1% formic acid and 1g/l ascorbic acid. Concentrated eluates were immediately 

measured. 

Sample preparation whole blood folate 

Depending on the standards and internal standards, the developed UPLC-MS/MS method is only 

capable of quantification of monoglutamate folates. Therefore, folate polyglutamates have to be 

first deconjugated into their monoglutamate forms. WB hemolysates were prepared as follows: 

200 µL EDTA WB was slowly dropped into 5 mL glass vials containing 2 mL of a 10 g/L 

ascorbic acid solution (pH 4.0, containing 0.2% Triton X-100), representing a 1:11-dilution. 

73.3 µL of internal standard mix was added and samples were incubated for 1 h at 37°C for 

hemolysis and deconjugation of the polyglutamates by endogenous plasma folate conjugases. 

The hemolysates were processed using SPE or frozen at -70°C until analysis.  
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Hemolysates were centrifuged for 5 minutes at 4,000 x g at 4°C. 1,550 µL of the supernatant 

containing 1,500 µL hemolysate and 50 µL internal standard mix was added to 1,450 µL of a 

200 mmol/L ammonium acetate buffer, pH 10 in 5 mL glass vials. Samples were incubated for 

20 minutes for equilibration. For SPE conditioning, 2 x 3 mL methanol and 3 mL 200 mmol/L 

ammonium acetate buffer, pH 10 was used. Wash steps were performed with 2 x 3 mL 5% 

aqueous NH4OH and 2 x 3 mL methanol. After resuspension, the concentrated samples were 

centrifuged in the Eppendorf Concentrator and supernatant was transferred to glass vials; samples 

were measured immediately.  

UPLC-MS/MS conditions 

Sample measurement was performed by using an UPLC-MS/MS system. Separating and analysis 

conditions for the folate assay were summarized in Table 6. Information on gradient curve 

profiles is shown in (Figure 10). 

Table 6: UPLC-MS/MS conditions for the folate assay. 

UPLC conditions 

UPLC column Acquity UPLC HSS T3 column (50 mm x 2.1 mm (i.d.) 1.8 µm particle 
size; Waters Corporation) 

UPLC pre-column Acquity BEH C18 VanGuard pre-column (5 mm x 2.1 mm (i.d.); 1.7 µm 
particle size; Waters Corporation) 

In-line filter 0.2 µm in-line filter (Waters Corporation) 
Mobile phase A Aqueous acetic acid (glacial), pH 2.636 
Mobile phase B Methanol 
Column temperature 30°C 
Sample temperature 4°C 
Gradient 0.0 minutes, 10% B  

0.4 minutes, 25% B (convex curve 2) 
0.6 minutes, 45% B (convex curve 2)  
0.8 minutes, 85% B (linear gradient)  
1.0 minutes, 85% B (concave curve 11) 
1.1 minutes, 10% B (linear gradient) 

Run time 2.5 minutes 
Flow rate 0.5 mL/minutes 
Injection volume  10 µL 
Mass spectrometer conditions 

Modus ESI+ 
Source temperature 110°C 
Desolvation gas  N2 
Cone gas N2 
Collision gas Ar 

Cone and collision energy voltages, dwell times, MRM mass transitions, and tRs of the folates 

and the corresponding internal standards in ESI+ are summarized in Table 7. 
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Table 7: Multiple reaction monitoring in ESI
+
 of folate compounds and internal standards. 

Variable 
Cone 

voltage 

[V] 

Collision 

energy 

[eV] 

Precursor 

ion  

(m/z) 

Product 

ion  

(m/z) 

Dwell 

time 

[s] 

Retentio

n time 

[min] 

Folic acid 22 16 442.08 295.13 0.04 1.03 
THF 25 22 446.31 299.28 0.04 0.67 
5,10-MethenylTHF 55 27 456.12 412.12 0.04 0.70 
5-MethylTHF 23 19 460.29 313.26 0.04 0.69 
5-FormylTHF 27 20 474.27 327.24 0.08 0.97 
[13C5]-Folic acid 22 16 447.08 295.13 0.04 1.00 
[13C5]-THF 25 22 451.33 298.88 0.04 0.67 
[13C5]- 5,10-MethenylTHF 55 27 461.12 416.12 0.04 0.70 
[13C5]-5-MethylTHF 23 19 465.29 313.26 0.04 0.69 
[13C5]-5-FormylTHF 25 20 479.27 327.24 0.04 0.96 

Studies on the stability of folate forms in vitro and during sample preparation 

Due to the known instabilities and interconversions of reduced folates, several preanalytic 

conditions should be considered (36;50;175). The stabilities of the folate coenzymes at 4°C over 

24 h with and without ascorbic acid at different pHs were studied. For this purpose, solutions of 

each folate compound (100 nmol/L) were prepared in water, in 1 g/L aqueous solution of 

ascorbic acid without further pH adjustment (pH ~ 3.4), in 1 g/L aqueous solution of ascorbic 

acid at pH 2.6, and 1 g/L aqueous solution of ascorbic acid at pH 7.0. The folate forms were then 

measured at start (time 0), 1, 5, and 24 h. The stabilities of the folate forms in serum, and WB 

were determined using serum pool and WB pool samples, respectively.  

Linearity and sensitivity 

The linearity over the physiological range was tested for the folate forms between 0.2 –

200 nmol/L for each analyte. Limits of detection (LOD) and limits of quantification (LOQ) for 

serum and WB folate validation were calculated in a two-step approach. The first step is the 

determination of the instrumental detection limit (IDL) and instrumental quantification limit 

(IQL), which are defined as the smallest amount of an analyte that can be reliably detected or 

quantified from the background on an instrument. IDL and IQL were estimated by calculating the 

root mean square error (RMSE; Equation 7) of five 5-point calibration curves containing 0, 0.2, 

0.5, 2, 5, and 10 nmol/L of each folate form. The next step is the calculation of the method 

detection limit (MDL) and method quantification limit (MQL) (Equation 9 and 10), which are 

defined as the smallest amount of an analyte that can be reliably detected or quantified from the 

background for a particular matrix. MDL (= LOD) and MQL (=LOQ) were determined in ten 

aliquots of folate-free serum pool and WB hemolysate samples using the t99sLLMV method. To 

generate folate-free serum and WB hemolysate, serum pool (1:1, v/v with 1 g/L ascorbic acid 
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solution) and hemolysate of WB pool were treated with activated charcoal (5 mg/mL for serum 

and 20 mg/mL for hemolysates) for 40 minutes at ambient temperature under constant shaking. 

Samples were centrifuged for 10 minutes at 4,000 x g. Folate-free serum and WB hemolysate 

were spiked to obtain folate concentrations in the range of 1 – 5 times the IDL.  

Precision and recovery 

The precision of the method was assessed by quantifying folate in serum pool, in WB pool, and 

in quality control samples. The intraassay CV was determined by the measurement of 10 aliquots 

of the samples within one run, the interassay CV was assessed over a period of 10 days. 

Recovery experiments were performed by spiking serum and WB hemolysate samples with 

quality control samples at two different levels over a period of three days. 

Evaluation of the relative matrix effect in whole blood 

The relative matrix (CV% of mean slope) effects were determined by calculating the standard 

line slopes of 5 different lots (149) of WB samples spiked after the SPE with 0, 0.2, 0.5, 2, 10, 

50, 100, and 200 nmol/L of each analyte and 50 µL of internal standard mix. 

Method comparison 

The sum of folates concentrations from 70 serum samples were measured by either the ADVIA 

Centaur System (TFOL) or the newly developed UPLC-MS/MS method. The agreement between 

methods for serum samples (UPLC-MS/MS method vs. immunological method performed by 

ADVIA Centaur) was assessed by Bland-Altman difference plots (20). 

Studies on concentrations of folate forms and reference ranges in healthy individuals 

The data from a subset of 32 apparently healthy non-vitamin users (8 males, age range: 17 – 

55 years from the medical staff of the Saarland University Hospital) was used for studying the 

normal range of folate forms in serum. The samples were collected in the course of a medical 

checkup in February 2009. For the determination of the normal folate form ranges in WB 

hemolysate, data from a subset of study I and II participants (42 subjects (8 males) who were 

non-supplemented and from 35 subjects (11 males) supplemented with 500 µg FA, 50 mg 

vitamin B6, and 500 µg vitamin B12 /day for 6 months) was used.  
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3.4.1.2 Quantification of S-adenosyl homocysteine and S-adenosyl 

methionine 

For the simultaneous quantification of SAH and SAM, a sensitive UPLC-MS/MS method has 

been developed (125). The method comprises a phenylboronic acid-containing SPE procedure. 

The preparation of stock solutions, calibrators, and quality control samples, as well as the method 

validation were described in detail by Kirsch et al. (125) and can be found in Appendix C.  

Solid-phase extraction column 

- Varian Bond Elut PBA columns (Varian Inc., Palo Alto, USA)  

Standards and internal standards    

- S-(5’-adenosyl)-L-homocysteine, crystalline (= SAH; Sigma Aldrich) 

- S-(5′-adenosyl)-L-methionine p-toluenesulfonate salt, from yeast (= SAM; Sigma 

Aldrich) 

- S-adenosyl-L-methionine-d3-tetra(p-toluenesulfonate) salt (= [2H3]-SAM; CDN Isotopes, 

Quebec, Canada) 

- S-(5’-adenosyl)-L-homocysteine (= [13C5]-SAH; Henkjan Gellekink group, Radboud 

University Nijmegen Medical Centre, Nijmegen, The Netherlands) 

In brief, the method was linear over the ranges of 25 – 200 nmol/L for SAM and of 6 – 

48 nmol/L for SAH. The coefficients of linear correlation were R² > 0.999 for both SAM and 

SAH. The LOD was 0.2 nmol/L for SAM and 0.3 nmol/L for SAH. Intraassay CVs in 12 plasma 

pool samples were 3.3% for SAM and 3.9% for SAH. Interassay CVs in 15 plasma pool samples 

were 7.9% for SAM and 8.6% for SAH. The mean (SD) recoveries were 101.7 (4.1)% for SAH 

and 100.0 (4.6)% for SAM. 

SAH and SAM concentrations and reference ranges in healthy individuals 

The data from 31 apparently healthy individuals (6 males, age range: 20 – 55 years) from the 

medical staff of the Saarland University Hospital was used for the study of normal range of SAH 

and SAM. The samples were collected in the course of a medical checkup in February 2009. The 

obtained reference ranges are presented in Table 8. 
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Table 8: SAH and SAM reference ranges in healthy subjects (124). 

Variable  

Age range, years 20 – 55 
SAH, nmol/L 14.6 (5.5) 
SAM, nmol/L 94 (12) 
SAM/SAH ratio 7.0 (1.8) 
The data are means (SD) if not stated otherwise.  

3.4.1.3 Quantification of betaine, choline, and dimethylglycine 

For the simultaneous quantification of betaine, choline, and DMG in plasma, a sensitive 

hydrophilic interaction chromatography (HILIC) UPLC-MS/MS method has been developed 

(124). The method comprises a protein precipitation using acetonitrile. The preparation of stock 

solutions, calibrators, and quality control samples, as well as the method validation were 

described in detail by Kirsch et al. (124) and can be found in Appendix D. 

Standards and internal standards 

- betaine anhydrous (Sigma Aldrich) 

- choline chloride (Sigma Aldrich) 

- N,N,-dimethylglycine (= DMG; Sigma Aldrich) 

- N,N,N-trimethyl-d9-glycine hydrochloride (= d9-betaine; Isotec, Sigma Aldrich) 

- choline chloride-trimethyl-d9 (=d9-choline; Isotec) 

- N,N-dimethyl-d6-glycine HCl (= d6-DMG; CDN Isotopes) 

The assay was linear over 0.2 – 150 µmol/L for each analyte. The coefficients of linear 

regression (n = 5) were: R² > 0.999 for all analytes. The LOD was 0.18 µmol/L for betaine, 0.13 

µmol/L for choline, and 0.13 nmol/L for DMG. Intraassay CVs in 10 plasma pool samples were 

2.0% for betaine, 2.4% for choline, and 7.0% for DMG. Interassay CVs in 10 plasma pool 

samples were 5.8% for betaine, 8.4% for choline, and 9.6% for DMG. The mean recoveries in the 

plasma pool samples were: 93.0% for betaine, 100.4% for choline, and 102.5% for DMG. 

Choline metabolite concentrations and reference ranges in healthy individuals 

Concentrations of betaine, choline, and DMG in plasma samples from 44 older fasting adults 

(subset of study I and II, > 50 years; 24 males) were used for studying the normal range of 

betaine, choline, and DMG. The obtained reference ranges are presented in Table 9.  
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Table 9: Betaine, choline, and DMG reference ranges in fasting older subjects (124). 

Variable Females Males p 

n 20 24 - 
Age, years 59 (50 – 73) 66 (57 – 75) 0.062 
Betaine, µmol/L 29.0 (18.7 – 37.5) 29.7 (25.2 – 46.8) 0.150 
Choline, µmol/L 9.0 (7.0 – 11.7) 9.2 (7.43 – 12.4) 0.465 
DMG, µmol/L 2.1 (1.5 – 3.7) 3.1 (2.0 – 4.3) 0.001 
The data are medians (10th – 90th percentiles). P values are according to the  
Mann-Whitney-U test. 

3.4.2 Gas chromatography tandem mass spectrometry 

GC is used for separating and analyzing of compounds that can be vaporized. GC is in principle 

similar to LC. In LC a mobile phase is used while in GC an inert carrier gas (e.g. He, Ar, or N2) 

is utilized. The stationary phase consists of a column, which is 1.5 to several meters in length. 

The packing of the column contains solid support material that is coated with a solid or liquid 

stationary phase. The separation of the analytes is carried out by adsorption of the molecules to 

the stationary phase, creating a specific tR. Prior GC separation, many analytes must be 

derivatized. Derivatization reduces the polarity and increases the volatility, the stability, and the 

detectability of some compounds. After passing the ionization chamber, the vaporized analytes 

are mostly positively charged. Due to instabilities of the created ions, the molecules are 

fragmented, creating a characteristic fragmentation pattern.  

3.4.2.1 Quantification of homocysteine, cystathionine, and methylmalonic 

acid 

The quantification of tHcy, Cys, and MMA was performed by a GC-MS method, modified by the 

previously described protocol of Stabler et al. (210). Cys and tHcy were simultaneously 

determined in serum or EDTA plasma. The GC-MS system consisted of a HP GC System, 6890 

Series, G 1530 with a HS 5973 Mass Selective Detector, G 1099AX and a HP-5ms GC column 

(cross-linked 5% PH ME siloxane; 30 m x 0.25 mm x 0.25 µm; Agilent Technologies, 

Waldbronn, Germany). 

Solid-phase extraction column 

- poly-prep chromatography columns, 0.8 x 4 cm  

- anionic resin: AG MP-1, 100 – 200 mesh, chloride form (Bio-RAD) 
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Internal standards  

- methyl-d3-malonic acid (= d3-MMA; CDN Isotopes) 

- DL-homocystine-3,3,3’,3’,4,4,4’,4’-d8 (= d8-Hcy; Cambridge Isotope Laboratories Inc., 

Andover, USA) 

- DL-(2-amino-2-carboxyethyl)-homocysteine-3,3,4,4-d4 (= d4-Cys; CDN Isotopes) 

Additional chemicals and equipment 

- acetic acid, glacial EMPROVE (Merck Chemicals) 

- dithiothreitol (AppliChem GmbH, Darmstadt, Germany) 

- hydrochloric acid (Merck Chemicals) 

- N-methyl-N-tert-butyldimethylsilyltrifluoro-acetamid (MBDSTFA; Machery and Nagel, 

Düren, Germany) 

- sodium hydroxide (Merck Chemicals) 

- 5 mL glass tubes (5-SV – EPA Screw Top Vials; Chromacol) 

- Panasonic NN-5256 microwave (Panasonic Deutschland GmbH, Hamburg, Germany) 

Column preparation 

Equal volumes of anionic resin and 1 N HCl were incubated for 30 minutes at ambient 

temperature. The HCl was removed; an equal volume methanol was added and incubated for 

30 minutes. The methanol was removed and the resin was left to dry for 1 – 2 days at 50°C. Poly-

prep columns were packed with ~100 mg anionic resin and 1 mL methanol. 

Methylmalonic acid assay 

In 5 mL glass tubes, 1 mL water, 400 µL sample, and 50 µL d3-MMA (1.635 nmol/L) were 

added. Methanol was removed from the poly-prep columns and columns were conditioned with 

3.3 mL water. Preparated samples were loaded using glass Pasteur pipettes. The columns were 

washed with 3 mL water and 3 x 3 mL of 0.01 N acetic acid/methanol solution. The samples 

were eluted using 1.1 mL elution solution (4 N acetic acid/1 N HCl (9:1, v/v)).  

Total homocysteine and cystathionine assay 

In 5 mL glass tubes, 1 mL water, 250 µL sample, 15 µL d8-Hcy (392 µmol/L), 20 µL d4-Cys 

(413.36 pmol/50 µL), and 30 µL DTT (10 mg/mL in 1 N NaOH; freshly prepared) were added. 
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DTT is necessary for releasing the protein bound Hcy. After vortexing, the samples were 

incubated at 45°C for 35 minutes for the reduction of disulfides of homocystine to Hcy. The 

methanol was removed from the poly-prep columns and the columns were conditioned with 1 mL 

methanol and 3.3 mL water. Preparated samples were loaded using glass Pasteur pipettes. The 

columns were washed with 3 x 3 mL water and 3 mL methanol. The samples were eluted in a 

glass vial using 1.1 mL elution solution (0.4 N acetic acid in methanol).  

Derivatization of the analytes 

Eluted samples from both assays were taken to dryness for a minimum of 3 h at 60°C in an 

Eppendorf concentrator. Dried samples were derivatized (silylated) with 20 µL acetonitrile and 

10 µL MBDSTFA. After vortexing, the samples were derivatized in the microwave at 440 Watts 

for 5 minutes. The samples were vortexed and analyzed by GC-MS. For both assays, serum pool 

samples were included at each batch of samples. The reference ranges for the analytes 

determined by this method were: tHcy < 12 µmol/L, Cys < 301 nmol/L, and 

MMA ≤ 271 nmol/L. 

3.4.3 Quantification of vitamin B12 and holotranscobalamin II 

The quantification of vitamin B12 (cyanocobalamin) was performed using a chemiluminescent 

immunoassay performed on the ADVIA Centaur XP System platform. The commercially 

available VB12 assay operates similar to the folate assay. The difference is the competition of 

released serum or plasma vitamin B12 against acridinium ester-labeled vitamin B12 for a limited 

amount of intrinsic factor. With the assay vitamin B12 can be determined from 100 µL serum or 

plasma. The assay has a measurement range of 33 (= LOD) – 1,476 pmol/L, a mean recovery 

after dilution of serum samples of 97.3%, and a mean recovery after spiking of 101.8%. The 

intraassay CVs of serum samples of four different concentrations (131.89, 152.89, 449.19, and 

991.51 pmol/L) were ≤ 5.0%, whereas the interassay CVs were ≤ 9.2%. The reference range for 

vitamin B12 determined by this method was 156 – 672 nmol/L. 

In serum, vitamin B12 is bound to two proteins: transcobalamin (TC) and haptocorrin (HC). The 

complex of cobalamin:TC is also called HoloTC or active B12, whereas the complex of 

cobalamin:HC, which consists of 70 – 90% of the vitamin B12 in serum, is metabolically inert. 

The determination of HoloTC was performed using a micro particle enzyme immunoassay 

(AxSYM Active-B12; Axis-Shield, Oslo, Norway), which was performed on an AxSYM platform 

(Abbott Diagnostics, Vienna, Austria). The AxSYM Active-B12 assay is based on a monoclonal 

mouse antibody specific for human HoloTC, which is bound to magnetic micro spheres, and a 
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monoclonal antibody specific for TC, which exists as conjugate of alkaline phosphatase. Serum 

HoloTC binds to the anti-HoloTC antibody. Further, the antigen-antibody complex is irreversibly 

bound to a glass fiber matrix. In the next step, the conjugate of anti-TC:alkaline phosphatase is 

added and binds to the antigen-antibody complex. After a washing step, the substrate 

4-methylumbelliferyl-phosphate is added. The alkaline phosphatase conjugate catalyses the 

separation of a phosphate group from the substrate – the fluorescent 4-methylumbelliferon is 

generated. The fluorescent product is detected by the AxSYM system at 448 nm wavelength. 

With the assay HoloTC can be determined from 173 µL serum samples. The assay has a 

measurement range of 0 (LOD ≤ 1) – 128 pmol/L and a mean recovery of 109.3%. The interassay 

CVs of serum samples at different concentrations (22.8 and 48.2 pmol/L) were ≤ 8.5%. The 

reference range for HoloTC determined by this method was ≥ 35 pmol/L. 

3.4.4 MTHFR C677T polymorphism determination 

Genomic DNA was isolated from EDTA blood samples using either the automated TECAN Te-

MagS magnetic bead separation module (TECAN Group Ltd., Männedorf, Switzerland) or 

manually with a QIAamp DNA blood mini kit (Qiagen, Hilden, Germany). The MTHFR 677 CT 

SNP was assessed by polymerase chain reaction (PCR) of genomic DNA and pyrosequencing 

(186;233). PCR conditions were: 13 µL genomic DNA (30 µg/mL), 1.5 µL forward-primer 

(10 pmol/µL; Invitrogen GmbH, Karlsruhe, Germany), 1.5 µL reverse-primer (10 pmol/µL; 

Invitrogen), 5.0 µL PCR reaction buffer (with MgCl2, 10 x conc.; Roche Diagnostics GmbH, 

Mannheim, Germany), 5.0 µL dNTP mix (2.5 mmol/L each dNTP; 5 Prime GmbH, Hamburg, 

Germany), 1.5 µL Taq DNA polymerase (1 U/µL; Roche) in 50 µL of H2O (Eppendorf AG). The 

thermal cycling in an Eppendorf Mastercycler ep gradient S (Eppendorf AG) was: 2 minutes at 

94°C, 36 cycles of 94°C for 30 s, 59°C for 45 s, and 72°C for 30 s, with a final step at 72°C for 

10 minutes. 30 µL of the biotinylated PCR product was immobilized with 3 µL streptavidin 

sepharose high performance beads (GE Healthcare, Freiburg, Germany), 37 µL binding buffer, 

and 10 µL H2O. The samples were pyrosequences using a PSQ 96MA instrument (Biotage AB, 

Uppsala, Sweden). The immobilization, washing, denaturation, and primer annealing steps with 

40 µL of sequencing-primer (100 pmol/µL; Invitrogen) were performed. Sequencing and analysis 

of the single-stranded biotinylated PCR product was performed with a PSQ 96MA instrument 

and SNP analysis software. The primer sequences were summarized in Appendix E. 
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3.4.5 Determination of routine parameters 

The blood count was determined from EDTA WB either by the SYSMEX SF 3000 or the 

SYSMEX XE 5000 platform (SYSMEX Germany GmbH, Norderstedt, Germany). From lithium-

heparin plasma following parameters were determined using the automated Roche/Hitachi 917a 

system (Roche Diagnostics GmbH): creatinine, alanine aminotransferase (ALAT), C-reactive 

protein (CRP), cholesterol, glucose, triglycerides, and high density lipoprotein (HDL) 

cholesterol. Reference ranges for the routine parameters are summarized in Appendix F. 

3.5 Calculations and statistics 

Calculations 

For all UPLC-MS/MS assays, calibrators were used for the construction of a standard curve by 

plotting the response (y = area analyte/area internal standard) against the corresponding 

concentrations (c) of the calibrators. The slope (m) and the intercept (i) of the standard curve are 

used for calculating the concentration of the unknown sample: 

m

iy
analyteunknowntheofionConcentrat

−
=       (3) 

WB folate was determined using following equation: 

Hematocrit

100factordilutionionconcentratMeasured
folateWBionConcentrat

××
=      (4) 

, whereas the dilution factor for WB folate was 3.667 (1:11-dilution of 1,500 µL WB hemolysate, 

in relation to 500 µL sample volume of the calibrator): 

Recovery [%] was calculated as: 
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RMSE was calculated as:  
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, whereas n is the number of standards and E is the error associated with each measurement.  

IDL and IQL were calculated as: 

m

RMSE3
IDL

×
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m

RMSE10
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×
=    (8) 

, whereas m is the slope of the calibration curve. 

MDL and MQL were determined by the t99sLLMV method, using the following equations: 

SDtMDL n ×= − )1(99     (9) 

MQL = 3 × MDL        (10) 

, whereas t99 (n - 1) is the one-tailed t-statistic for n - 1 observations at the 99% confidence level 

(t99 (n -1) = 2.821 for 10 aliquots or 9 degrees of freedom) and SD is the standard deviation.  

Quantification of tHcy, Cys, and MMA was carried out using following equations: 

39.2
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Statistics 

Statistical analyses were performed using SPSS (Statistical Package for the Social Sciences, 

version 19.0). The correlation analyses were performed by using the Spearman-Rho test. For 

folate assay, the agreement between methods (UPLC-MS/MS method vs. immunological method 

performed by ADVIA Centaur) was assessed by a Bland-Altman difference plot (20). Results are 

shown as medians (10th – 90th percentiles) or means (SD). Oneway ANOVA and the Tamhane-T 

test were used for testing possible differences in the means of continuous variables between 

several groups. The differences in continuous variables between two independent groups were 

tested by the Mann-Whitney-U test and those in categorical variables by the Chi square test. 

Bottom and top of box plots represent the 25th – 75th percentiles; a horizontal band indicates the 

median. Whisker ends represent the minimum and maximum values that are not outliers. All tests 

used were 2-sided and p values < 0.05 were considered to be statistically significant. 
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4 Results 

4.1 Development of sensitive methods for the quantification of 

folate forms using UPLC-MS/MS 

Chromatography and mass spectrometry 

The quantification methods of folate forms in serum and WB using stable-isotope dilution 

UPLC-MS/MS were recently published by Kirsch et al. (123;126). Ideal MRM conditions were 

obtained in the positive electrospray ionization mode. Typical m/z transitions of the folate forms, 

as well as the MS/MS-conditions for serum and WB are shown in Table 7.  

The mass loss from precursor to product ion can be explained by the neutral loss of the glutamic 

acid residue from the protonated molecule to produce the major product ions [M + H+ - 147] for 

unlabeled and [M + H+ - 152] for [13C5]-labeled compounds. The analytes 5,10-methenylTHF, 

10-formylTHF, and DHF produced only small amounts of this ion. For 5,10-methenylTHF a non-

specific fragment loss of CO2 [M + H+ - 44] occurred, whereas 10-formylTHF mostly converted 

to 5,10-methenylTHF (m/z 456). DHF showed mainly a cleavage between the pteridine and the 

pABA moiety [M + H+ - 266], which was confirmed by the work of other groups (206). The 

collision-induced product ion spectra are summarized in Figure 13.  
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Figure 13: Collision-induced product ion spectra of the individual protonated folate forms. Spectra 
were produced in positive electrospray ionization mode of the mass spectrometer and were scaled to 100% 
on the basis of the most abundant product ion.  

The MRM chromatograms from serum and WB are shown in Figure 14. In serum and WB, 

5-methylTHF, [13C5]-5-methylTHF, 5,10-methenylTHF, [13C5]-5,10-methenylTHF, coeluted at 

tRs between 0.64 and 0.70 minutes. [13C5]-THF and THF coeluted in serum at 0.64 and 

0.69 minutes but were not detected in WB hemolysates, possibly due to interconversions or 

degradation. 5-FormylTHF and FA, including their [13C5]-labeled compounds, coeluted between 

0.93 and 1.01 minutes.  
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Figure 14: MRM-traces of folate forms in (A) a serum and (B) a whole blood sample. The serum 
sample concentrations (multiplied by the dilution factor) were 6.44 (12.89) nmol/L for 5-methylTHF, 
0.08 (0.16) nmol/L for 5-formylTHF, 0.96 (1.93) nmol/L for THF, 0.03 (0.07) nmol/L for 
5,10-methenylTHF, and 0.06 (0.11) nmol/L for FA. In the WB sample, measured concentrations 
(multiplied by the dilution factor and the hematocrit) of the folates were 61.0 (545) nmol/L for 
5-methylTHF, 3.19 (28.5) nmol/L for 5-formylTHF, 28.3 (253) nmol/L for 5,10-methenylTHF, and 
3.89 (34.8) nmol/L for FA. m/z transitions and peak intensities are shown in the upper right. The arrows 
indicate the correct peaks.  

An additional peak emerged at ~ 0.75 minutes for 5-formylTHF and [13C5]-5-formylTHF. The 

additional peaks were excluded from the data analysis. 5-MethylTHF showed the highest peak 

intensity in serum and WB. Smaller but reproducible peaks were found for reduced folate forms, 

whereas 5,10-methenylTHF, THF, and FA were barely quantifiable in serum samples that have 

been collected from non-supplemented subjects. Due to low concentrations, 5-formylTHF was 

barely quantifiable in WB samples. THF was not detectable in WB samples. 

Studies on the stability of folate forms in vitro and during sample preparation 

The stability of aqueous folate solutions at 4°C over 24 hours with and without ascorbic acid at 

different pH was tested. Folate solutions (100 nmol/L) were prepared in water, in 1 g/L aqueous 

solution of ascorbic acid without pH adjustment (pH ~ 3.4), in 1 g/L aqueous solution of ascorbic 

acid (pH 2.6), and in 1 g/L aqueous solution of ascorbic acid (pH 7.0). The folate forms were 

measured at start, 1, 5, and 24 hours. The results are shown in Table 10 and Figure 15.  



Development of sensitive methods for the quantification of folate forms using UPLC-MS/MS 

57 

Table 10: Interconversions of folate compounds after 24 h of incubation at 4°C (126). 

Variable 
Main interconversion 

products 

Main interconversion product of initial 

concentration in H2O 

[%] 

Antioxidant added  - 
ascorbic 

acid 

ascorbic 

acid 

ascorbic 

acid 
pH  - 3.4 2.6 7.0 

Folic acid none - - - - 
5-MethylTHF none - - - - 
DHF folic acid 15.0 16.7 16.2 12.7 
5,10-MethenylTHF 5-formylTHF 4.8 4.7 4.3 3.4 
5-FormylTHF 5,10-methenylTHF 1.2 24.1 51.2 1.4 
 10-formylTHF 4.1 3.6 2.9 4.7 
10-FormylTHFa 5,10-methenylTHF 75.2 102.0 104.1 70.6 
 5-formylTHF 3.6 3.6 3.3 2.7 
5,10-MethyleneTHFb THF 0.1 34.2 28.1 45.9 
 5,10-methenylTHF 2.0 1.3 2.2 1.6 
THF DHF 4.4 1.2 1.5 4.2 
 folic acid 2.8 0.9 1.0 1.1 
 5,10-methyleneTHF 0.1 0.2 0.3 2.7 
Interconversions below the LOD were not included. The results are the percentages of the main 
interconversion products of the initial concentration at start time.  
a: immediate interconversion to 5,10-methenylTHF at pH ≤ 7.0 
b: immediate interconversion to THF and formaldehyde at pH ≤ 7.0 

5-MethylTHF and FA were stable over 24 h at 4°C under all conditions with no evidence for 

interconversion to other forms (Table 10). DHF showed degradation at acidic conditions and 

interconversion to FA. 5-FormylTHF, 10-formylTHF, and 5,10-methenylTHF are known to 

undergo complex interconversion reactions under acidic conditions (50). We demonstrated that 

5-formylTHF slowly converted under acidic conditions into 5,10-methenylTHF. In addition, 

small amounts of 10-formylTHF were detected. Due to acidic conditions during the sample 

preparation and the measurement, we expect that 5-formylTHF in serum samples might undergo 

interconversion thus causing some of the 5-formylTHF to be detected as 5,10-methenylTHF. 

5,10-MethenylTHF was stable at acidic conditions and showed a minor interconversion to 

5-formylTHF. 10-FormylTHF and 5,10-methyleneTHF were unstable under acidic and neutral 

conditions and were below the LOD of the assay. 



Development of sensitive methods for the quantification of folate forms using UPLC-MS/MS 

58 

 

Figure 15: Stability of folate compounds (126). The amount of folate compounds are shown as 
percentage of the initial concentration (100 nmol/L) in H2O, ascorbic acid solution (1 g/L), ascorbic acid 
solution pH 2.6, and ascorbic acid solution pH 7.0. The samples were incubated at 4°C for 24 h and 
measured immediately (start time), after 1, 5, and 24 h. 10-FormylTHF and 5,10-methyleneTHF were 
unstable under the selected conditions and were therefore not possible to detect.  

10-FormylTHF immediately converted into 5,10-methenylTHF and small amounts of 

5-formylTHF. Moreover, 5,10-methyleneTHF completely converted to THF and formaldehyde, 

with a slight interconversion to 5,10-methenylTHF. This unusual nonenzymatic oxidation 

reaction could not be prevented by the addition of the antioxidant ascorbic acid or flushing the 

H2O with N2 prior experiments. Impurities of the standards used could be an explanation. THF 

showed complete degradation within 24 h of incubation at 4°C in H2O without antioxidant. By 

addition of ascorbic acid, this process could be strongly decelerated (Figure 15). Apart from the 

degradation, THF showed minor interconversions into FA and DHF. Interestingly, under pH 7.0 

conditions small amounts of 5,10-methyleneTHF could be detected. This seems unusual due to 

the lack of formaldehyde as one-carbon donor.  

In serum and WB, THF degraded to FA in a dose-dependent manner during the sample 

preparation (Figure 16). To exclude an enzymatic conversion of the folate forms, serum pool 

samples were inactivated by heating for 2 minutes at 100°C. THF was added at concentrations of 

5 and 20 nmol/L to the serum pool samples, the heat inactivated serum pool samples (supernatant 

after 10 minutes at 10,000 rpm), and the WB pool hemolysate samples. The folate forms were 

measured after incubation for 15 minutes at ambient temperature in the dark. An increase of FA 

in serum by a mean of 0.9 nmol/L (after adding 5 nmol/L of THF) and 3.6 nmol/L (after adding 

20 nmol/L of THF) was observed (Figure 16).  
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Figure 16: Median concentrations of folate forms in serum, in heat inactivated serum, and in whole 

blood pool hemolysates after spiking with tetrahydrofolate (123). THF was partly converted to FA in a 
dose-dependent manner. FA concentrations were 3 – 4 times higher in WB pool samples than in serum. 
The asterisks (*) indicate significant differences (p < 0.05) comparing the baseline concentration with the 
5 nmol/L THF levels. The section signs (§) indicate significant differences (p < 0.05) comparing the 
5 nmol/L THF concentration with the 20 nmol/L THF levels. P values were calculated using the Tamhane-
T test.  

The results were similar in the heat inactivated serum pool samples (0.9 and 3.8 nmol/L of FA 

after incubation with 5 and 20 nmol/L of THF, respectively), suggesting a non-enzymatic 

interconversion in the serum. The oxidation of THF to FA was ~ 2 – 3fold higher in WB 

hemolysates than in serum (mean 2.0 and 10.1 nmol/L increase in FA after spiking with 5 and 

20 nmol/L of THF, respectively). This could be due to a higher proportion of ammonium acetate 

buffer (pH 10) or the longer time required for the SPE (more wash steps with larger volume). 

Possible oxidation and degradation products of THF are summarized in Figure 17.  

We were able to quantify 5-methylTHF, 5-formylTHF, 5,10-methenylTHF, THF, and FA in 

serum. Due to interconversions of the folate forms, the measured THF concentrations were the 

sum of concentrations of THF and 5,10-methyleneTHF, whereas 5,10-methenylTHF 

concentrations represent the sum of 5,10-methenylTHF and 10-formylTHF. In WB we 

summarized the data as 5-methylTHF and non-methylTHF (sum of formylTHF, 

5,10-methenylTHF, 5,10-methyleneTHF, THF, DHF, and FA). 
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Figure 17: Possible ways of in vitro conversion of tetrahydrofolate and resulting compounds (123). 

Based on earlier reports (37;183) and own observations (126). 

Linearity and sensitivity 

Calibration curves were linear over the ranges of 0.2 – 200 nmol/L for all folate forms (Figure 

18). The mean coefficients of linear regression for 5 independent experiments were R² ≥ 0.9999 

for all folate forms.  
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Figure 18: UPLC-MS/MS calibration curves for folate forms. Linear equations from 5 independent 
experiments are presented as mean (SD).  

The mean (SD) IDLs were 0.23 (0.07) nmol/L for 5-methylTHF, 0.24 (0.11) nmol/L for 

5-formylTHF, 0.26 (0.17) nmol/L for 5,10-methenylTHF, 0.76 (0.45) nmol/L for THF, and 

0.14 (0.09) nmol/L for FA. The mean (SD) concentrations of the analytes in folate-free serum 

pool and WB pool hemolysates and the LODs were presented in Table 11. Corresponding LOQs 

in serum were 0.84 nmol/L for 5-methylTHF, 0.69 nmol/L for 5-formylTHF, 1.00 nmol/L for 

5,10-methenylTHF, 2.01 nmol/L for THF, and 0.64 nmol/L for FA and in WB were 0.50 nmol/L 

for 5-methylTHF, 0.36 nmol/L for 5-formylTHF, 1.19 nmol/L for 5,10-methenylTHF, and 

0.45 nmol/L for FA. 
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Table 11: Limit of detection and recovery of folate forms. 

Variable 

LOD
a
  Recovery

b
 

Measured LOD Endogenous Spike 

Measured in 

spiked 

samples 

% Recovery 

(SD) 

Analyte concentrations in serum 

5-MethylTHF 1.44 (0.10) 0.28 6.9 (0.3) 
40.0 46.9 (1.7) 99.5 (7.8) 
5.00 11.7 (0.4) 97.3 (2.3) 

5-FormylTHF 1.06 (0.08) 0.23 0.12 (0.06) 
4.00 4.15 (0.60) 98.6 (9.2) 
0.50 0.67 (0.10) 105.9 (9.7) 

5,10-
MethenylTHFc 

1.29 (0.12) 0.33 0.02 (0.02) 
4.00 4.46 (0.23) 112.4 (8.7) 
0.50 0.54 (0.06) 110.1 (14.2) 

THFd 0.79 (0.24) 0.67 0.38 (0.20) 
4.00 3.88 (1.28) 73.9 (25.1) 
0.50 0.73 (0.56) 82.0 (43.5) 

Folic acide 1.35 (0.24) 0.21 0.06 (0.01) 
4.00 3.67 (0.04) 92.2 (5.7) 
0.50 0.56 (0.03) 104.3 (10.8) 

Analyte concentrations in whole blood 

5-MethylTHF 1.52 (0.06) 0.17 45.2 (0.46) 
20.0 64.3 (0.37) 98.4 (0.4) 
6.25 51.1 (1.55) 99.1 (2.3) 

5-FormylTHF 1.81 (0.04) 0.12 1.41 (1.31) 
20.0 22.0 (1.04) 101.6 (8.1) 
6.25 7.6 (0.71) 97.1 (6.9) 

5,10-
MethenylTHFc 

2.07 (0.14) 0.40 4.76 (1.51) 
20.0 24.9 (2.13) 100.9 (6.7) 
6.25 10.8 (1.73) 99.6 (6.0) 

Folic acide 1.34 (0.05) 0.15 0.76 (0.52) 
20.0 20.9 (1.48) 99.7 (3.9) 
6.25 7.3 (0.71) 102.7 (4.1) 

The data are means (SD), the concentration are nmol/L if not stated otherwise. 
a: For the LOD determination, serum pool samples and hemolysates from WB pool samples (n = 10) 
were treated with activated charcoal for 40 minutes at ambient temperature prior experiment until they 
reached concentrations of 1 – 5 times the instrumental detection limit. Shown analyte concentrations 
have not been multiplied by the dilution factor and divided by the hematocrit. 
b: Mean of 4 independent experiments for serum and n = 3 for WB. Experiments were performed using 
3 individually prepared samples, each. Shown concentrations have not been multiplied by dilution 
factor and divided by hematocrit. 
c: Sum of 5,10-methenylTHF and 10-formylTHF. 
d: Sum of THF and 5,10-methyleneTHF. 
e: Sum of FA, DHF, and partly oxidized THF. 

Precision and recovery 

The precision of the method was assessed by quantifying the folate forms in an in-house prepared 

serum and WB pool. The intraassay and the interassay CVs are shown in Table 12. In serum 

pool, the concentrations of FA, THF, and 5,10-methenylTHF were below the LOQs. 

5-MethylTHF had an interassay CV of 2.8% in serum samples and 7.4% in WB samples. The 

interassay CVs for the quality control samples (0.6 and 160 nmol/L of each folate form) for 

10 days were between 1.9% (5-formylTHF in 160 nmol/L quality control sample) and 11.2% 

(THF in 0.6 nmol/L of quality control sample) (123). 
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Table 12: Precision of folate forms in serum pool and whole blood pool samples. 

Variable 

Serum Whole blood 

Mean (SD)  

[nmol/L] 

CV  

[%] 

Mean (SD)  

[nmol/L] 

CV  

[%] 

Intraassay (n = 10) 

5-MethylTHF 12.6 (0.3) 2.0 399 (13.7) 3.4 
5-FormylTHF 0.17 (0.01) 7.2 - - 

5,10-MethenylTHFa < LOQe - - - 
THFb < LOQe - - - 
Folic acidc < LOQe - - - 

Non-methylTHFd - - 65.5 (4.5) 6.9 
Interassay (n = 10) 

5-MethylTHF 13.5 (0.4) 2.8 405 (29.9) 7.4 
5-FormylTHF < LOQe - - - 
5,10-MethenylTHFa < LOQe - - - 

THFb < LOQe - - - 
Folic acidc < LOQe - - - 

Non-methylTHFd - - 64.2 (9.9) 15.4 
Folates in WB have been multiplied by the dilution factor and divided by the hematocrit.  
a: Sum of 5,10-methenylTHF and 10-formylTHF. 
b: Sum of THF and 5,10-methyleneTHF. 
c: Sum of FA, DHF, and partly oxidized THF. 
d: Sum of formylTHF, 5,10-methenylTHF, 5,10-methyleneTHF, THF, DHF, and FA. 
e: Between LOD and LOQ. 

Recovery experiments were performed by spiking serum samples and WB pool hemolysates with 

two different levels over a period of three days (Table 11). Mean recoveries were 82.3% (THF), 

98.2% (FA and 5-methylTHF), 102.3% (5-formylTHF), and 110.8% (5,10-methenylTHF) in 

serum samples and 98.8% (5-methylTHF), 99.3% (5-formylTHF), 100.3% (5,10-methenylTHF), 

and 101.2% (FA) in WB pool samples.  

Evaluation of the relative matrix effect in whole blood 

The relative matrix effect was 2.2% for 5-methylTHF, 2.5% for 5-formylTHF, 2.8% for 

5,10-methenylTHF, and 4.0% for FA. The addition of the stable isotope-labeled analytes 

effectively eliminated the relative matrix effect in WB hemolysates (relative matrix effect 

≤ 4.0%) (123). 

Method comparison 

The sum of folate forms in 70 serum samples was assessed by UPLC-MS/MS and by ADVIA 

Centaur (TFOL). Concentrations of the sum of folates measured by UPLC-MS/MS correlated 

strongly with those measured by the ADVIA Centaur (R = 0.939; p < 0.001). The mean (SD) 
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sum of folates concentration in serum samples was 18.5 (12.1) nmol/L for the UPLC-MS/MS 

method and the TFOL was 23.4 (13.7) nmol/L for the ADVIA Centaur.  

 

Figure 19: Bland-Altman difference plot between total folate concentrations of n = 70 serum samples 

obtained by immunological assay (ADVIA Centaur System) and UPLC-MS/MS (126). The solid line 

represents the mean difference between the two methods. The dashed lines represent the 95% limits of 
agreement of the differences between the two methods (mean difference ± 2 SD).  

The sum of the folate forms measured by the UPLC-MS/MS method were generally lower than 

the TFOL measured by ADVIA Centaur. The Bland-Altman difference plot indicated that the 

difference between the two methods positively correlated to the TFOL measured by the 

immunoassay (Figure 19). At folate concentrations below 35 nmol/L, the two methods showed a 

mean (SD) difference of 4.9 (4.8) nmol/L. 

Studies on concentrations of folate forms and reference ranges in healthy individuals 

The concentrations of folate forms were measured in serum samples from 32 apparently healthy 

non-vitamin users (non-fasting conditions), in the WB of 42 non-supplemented fasting subjects, 

and in the WB of 35 supplemented fasting subjects (500 µg FA, 50 mg vitamin B6, and 500 µg 

vitamin B12 /d for 6 months) (Table 13). 5-MethylTHF and its respective polyglutamates were 

the predominant folate forms in serum and WB. In serum, the median concentrations of 

5-formylTHF, 5,10-methenylTHF, and FA were above the LOD but could not reach the LOQ. 
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5-MethylTHF and the non-methyl folate forms in WB were higher in supplemented than in 

non-supplemented subjects.   

Our results regarding serum folate concentrations are in line with similar reports (Table 13). 

Wang et al. reported mean 5-methylTHF concentrations of 14.6 nmol/L, 4.35 nmol/L of 

5-formylTHF, and 1.39 nmol/L of FA (241). The serum 5-methylTHF concentrations reported by 

Obeid et al. (168) were lower than those reported by other groups presumably due to the higher 

age of the participants. They detected higher levels of 5-formylTHF and FA, but no THF and 

5,10-methenylTHF. 

Folate concentrations from countries with FA fortification programs or supplemented subjects 

were higher in WB folate content than in non-vitamin users (Table 13). The WB 5-methylTHF 

concentration in our assay of 42 adults without FA fortification and supplementation is similar to 

that obtained by Smulders et al. (n = 109 adults from The Netherlands). However, we found 

higher non-methylTHF concentration. Fazili et al. reported 50% lower folate concentration, 

measured in 75 WB samples obtained from an European blood bank (71). Our results on 

5-methylTHF after supplementation of 35 adults with B-vitamins (500 µg FA, 50 mg vitamin B6, 

and 500 µg vitamin B12) for 6 months are in the range of that obtained in fortified countries 

(104;216). The non-methylTHF concentrations in our study were higher than those reported by 

Summers et al. (216). 
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Table 13: Folate concentrations in serum, plasma, and whole blood samples determined by LC-MS/MS (123). 

Reference Material Subjects Supplementation 
5-MethylTHF 

[nmol/L] 
Non-methylTHF forms [nmol/L] 

Countries without mandatory folic acid fortification 

Kirsch et al. (123;126)a 
Serum 32 adults (8 males) no 15.8 (5.6 – 26.7) 2.07 (< LOD – 4.05) THF 
WB 42 adults (8 males) no 576 (264 – 886) 73.6 (52.5 – 120)f 
WB 35 adults (11 males) n = 35g 1,206 (841 – 2,067) 155 (97.3 – 252)f 

Obeid et al. (168)a Serum 
37 older adults  
(71 – 88 years) 

no 5.6 (2.4 – 19.1) 
3.4 (1.3 – 16.0) THF 
0.08 (0.00 – 0.85) folic acid 

Wang et al. (241) Serum 50 pregnant women no data available 14.58 (9.06) 
4.35 (2.60) 5-formylTHF 
1.39 (2.93) folic acid 

Fazili et al. (71) WB 
75 from an European 
blood bank 

no data available 207 (30.2 – 462)b 
29.2 (13.1 – 68.9)b 5-formylTHF 
9.65 (0 – 167) 5,10-methenylTHF 
0 (0 – 23.5) THF 

Smulders et al. (207) WB 109 adults (52 males) no 427 (92.5 – 1,089)b 4.1 (0 – 786)b,f 
Countries with mandatory folic acid fortification (collected after introduction of folic acid fortification programs) 

Summers et al. (216) 
Plasma 
WB 

21 Caucasian women  n = 15c  
50.2 (22.5)d 
1,122 (279)d 

no data available 

37.5 (3.2)d THF 

Fazili et al. (71) WB 
96 from an U.S. blood 
bank  

no data available 304 (94.7 – 703)b 
41.4 (22.7 – 93.9)b 5-formylTHF 
10.1 (0 – 212) 5,10-methenylTHF 
0 (0 – 142) THF 

The data are medians (10th – 90th percentiles), b: medians (range), d: means (SD), or e: mean concentrations. 
a: UPLC-MS/MS. 
c: Supplements included multivitamins, B-vitamins, and FA. 
f: Sum of formylTHF, 5,10-methenylTHF, 5,10-methyleneTHF, THF, DHF, and FA. 
g: 500 µg FA, 50 mg vitamin B6, 500 µg vitamin B12 /d. 
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4.2 Folate forms distribution before and after short-term and 

long-term supplementation with B-vitamins in older adults 

in relation to the MTHFR C677T polymorphism 

For examination of the folate concentration and the distribution of the key folate forms in serum 

and in WB, as well as of related metabolites in older adults we combined the baseline values of 

the two studies (short-term supplementation and long-term supplementation study). Parts of the 

results were reported earlier (122). Information concerning the study population and the baseline 

characteristics of the two clinical studies are described in the following paragraphs. 

Short-term supplementation with folic acid vs. folic acid plus vitamin B6 and B12 

An overview of the number of study participants of the short-term co-supplementation study, as 

well was their group assignment over the duration of the study are presented in Table 14. 

Seventyseven subjects were randomized to receive the vitamin supplements (group T1 (FA) and 

group T2 (FA, B6, B12)) out of which 54 participants completed the study. Ten (18.5%) of the 

54 participants were males. The median (10th – 90th percentiles) duration of the supplement intake 

was 23.5 (15.0 – 34.5) days for group T1 and 26.0 (14.0 – 33.0) days for group T2.  

Table 14: Overview of number and group assignment of study participants (short-term 

supplementation study). 

 Group T1
a 

FA 

Group T2
b 

FA, B6, B12 
Total Comment 

Study participants  
randomized 

40 37 77 
 

Blood collection  
at baseline 

40 37 77 
 

Blood collection  
at study end 

30 24 54 
23 persons withdrew or were 
excluded due to termination 
criteria 

a: 400 µg FA /d. 
b: 400 µg FA, 8 mg vitamin B6, 10 µg vitamin B12 /d. 

The baseline study characteristics of the study participants who completed the study are 

presented in Table 15. We could find no significant differences between the two groups at 

baseline. The median (10th – 90th percentiles) plasma glucose concentration was above the 

reference range (≤ 100 mg/dL) in both groups. 
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Table 15: Baseline study characteristic (short-term supplementation study). 

Variable 

Group T1
a 

FA 

n = 30 

Group T2
b 

FA, B6, B12 

n = 24 

p value 

Females, n (%) 26 (86.7%) 18 (75.0%) - 
Study duration, d 23.5 (15.0-34.5) 26.0 (14.0-33.0) 0.930 
Age, y 81 (72 – 88) 84 (73 – 92) 0.106 
Hemoglobin, g/dL 11.5 (9.7 – 13.7) 11.4 (9.2 – 13.8) 0.859 
Hematocrit, % 35.2 (29.3 – 40.2) 34.6 (29.4 – 42.2) 0.579 
Creatinine, µmol/L 70.7 (53.0 – 121.1) 70.7 (44.2 – 109.6) 0.745 
Glucose, mg/dL 126 (88 – 216) 114 (84 – 236) 0.311 
ALAT, U/L 22.0 (10.3 – 38.7) 22.0 (9.8 – 39.8) 0.936 
CRP, mg/L 1.27 (0.27 – 4.49) 1.73 (0.20 – 4.38) 0.368 
Total cholesterol, mg/dL 197 (138 – 263) 189 (135 – 270) 0.795 
HDL cholesterol, mg/dL 45.1 (33.4 – 75.1) 47.0 (31.9 – 79.7) 0.975 
Triglycerides, mg/dL 155 (73 – 229) 161 (70 – 297) 0.893 
The data are medians (10th – 90th percentiles). P values are according to the Mann-Whitney-U test. 
a: 400 µg FA /d. 
b: 400 µg FA, 8 mg vitamin B6, 10 µg vitamin B12 /d. 

Long-term supplementation with calcium, vitamin D, folic acid, vitamin B6, and vitamin B12 

vs. calcium and vitamin D 

An overview of the study participants of the long-term B-vitamins supplementation study, as well 

was their group assignment over the duration of the study is presented in Table 16. From a total 

sum of 111 randomized subjects, 96 were selected to take the vitamin supplements (group A (B, 

D, Ca) or group B (D, Ca)) out of which 65 participants completed the study (study duration: 

12 months).  
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Table 16: Overview of number and group assignment of study participants (long-term 

supplementation study). 

 Group A
a 

B, D, Ca 

Group B
b 

D, Ca 
Total Comment 

Study 
participants  
randomized 

59 52 111 

14 persons withdrew/were 
excluded: 
10 on account of premedication, 
4 on account of personal reasons 

Blood 
collection  
at baseline 

50 46 96 
 

Study 
participants  
after 6 months 

37 34 71 

25 persons withdrew/were 
excluded: 
10 on account of personal reasons,  
8 on account of adverse reactions 
such as gastric disorders and 
mood swings,  
6 on account of termination 
criteria such as surgery, severe 
illness, infarction or intake of 
medication/ supplements,  
1 deceased 

Blood 
collection 
after 6 months 

35 31 66 
from 5 persons no blood was 
collected  

Blood 
collection 
after 12 
months 

34 31 65 
6 persons withdrew on account of 
personal reasons 

a: 500 µg FA, 500 µg vitamin B12, 50 mg vitamin B6, 456 mg calcium, and 1,200 IU vitamin D /d. 
b: 456 mg calcium and 1,200 IU vitamin D /d. 

The baseline study characteristics of all participants (intention-to-treat) were presented in Table 

17. The study included 39 males (40.6%) who started the intervention. We could find no 

significant differences between the two groups at baseline. The median (10th – 90th percentiles) 

plasma glucose concentrations were above the reference range (≤ 100 mg/dL) in both groups. In 

addition, the median total cholesterol concentration in group A was elevated (reference range: 

≤ 200 mg/dL).
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Table 17: Baseline study characteristic (long-term supplementation study). 

Variable 

Group A
a 

B, D, Ca 

Group B
b 

D, Ca p value 

 n  n 

Females, n (%) 35 (70 %) 50 22 (48%) 46 - 
Age, y 68 (54 – 83) 50 71 (58 – 86) 46 0.089 
Hemoglobin, g/dL 14.4 (12.6 – 16.1) 39 14.2 (12.4 – 15.4) 39 0.121 
Hematocrit, % 42.5 (39.3 – 47.5) 39 41.9 (36.9 – 45.2) 39 0.079 
Creatinine, µmol/L 70.7 (53.0 – 113.2) 41 79.6 (53.0 – 114.0) 40 0.867 
Glucose, mg/dL 104 (94 – 125) 41 106 (88 – 137) 40 0.590 
ALAT, U/L 22.0 (14.2 – 44.4) 41 23.5 (14.1 – 40.5) 40 0.917 
CRP, mg/L 1.50 (0.60 – 5.28) 41 1.05 (0.60 – 4.78) 40 0.211 
Total cholesterol, mg/dL 208 (149 – 254) 41 200 (142 – 261) 40 0.688 
HDL cholesterol, mg/dL 56 (37 – 84) 41 55 (33 – 94) 40 0.561 
Triglycerides, mg/dL 101 (60 – 165) 41 116 (64 – 281) 40 0.279 
The data are medians (10th – 90th percentiles). P values are according to the Mann-Whitney-U test. 
a: 500 µg FA, 500 µg vitamin B12, 50 mg vitamin B6, 456 mg calcium, and 1,200 IU vitamin D /d. 
b: 456 mg calcium and 1,200 IU vitamin D /d. 

4.2.1 Folate forms distribution in older adults and the effect of B-vitamins 

supplementation 

The combined study included 146 non-supplemented and non-fortified older adults (median 

(10th – 90th percentiles) age = 74 (58 – 87) years, 50 males). The concentrations of the folate 

forms and of related metabolites are presented in Table 18. The median serum concentration of 

5-methylTHF was in the range found in our earlier study on older adults (168). 5-MethylTHF 

was the predominant folate form in serum and WB and constituted 87.5% (70.2 – 96.0%) of the 

sum of folates in serum. 5-MethylTHF and non-methylTHF in WB were in the normal range. The 

minor folate forms often did not reach the LOD. In serum, 5-formylTHF 

concentrations ≥ 0.10 nmol/L were detected in 122 (83.6%) subjects, THF ≥ 0.91 nmol/L in 

88 (60.3%) subjects, and 5,10-methenylTHF ≥ 0.16 nmol/L in 70 (47.9%) subjects. 

Unmetabolized FA (≥ 0.21 nmol/L) was detected in the serum of 17 (11.6%) of the subjects.  



Folate forms distribution in older adults and the effect of B-vitamins supplementation 

71 

Table 18: Folate forms in serum and whole blood (n = 146) (122). 

Variable  

S sum of folates, nmol/L 11.9 (4.7 – 36.9) 
S 5-methylTHF 10.0 (3.4 – 35.3) 
S 5-formylTHF, nmol/L 0.14 (< LOD – 0.51) 
S 5,10-methenylTHF, nmol/La 0.08 (< LOD – 0.25) 
S THF, nmol/Lb 1.03 (< LOD – 3.47) 
S 5-methylTHF/THF ratio 9.0 (2.8 – 40.9) 
WB sum of folates, nmol/L 562 (325 – 1,013) 
WB 5-methylTHF, nmol/L 495 (257 – 893) 
WB non-methylTHF, nmol/Lc 72.7 (47.9 – 126.2) 
The data are medians (10th – 90th percentiles) unless otherwise specified.  
a: Sum of 5,10-methenylTHF and 10-formylTHF. 
b: Sum of THF and 5,10-methyleneTHF. 
c: Sum of 5-formylTHF, 10-formylTHF, 5,10-methenylTHF, 5,10-methyleneTHF, THF, 
 DHF, and FA. 

Short-term supplementation folic acid vs. folic acid plus vitamin B6 and B12 

We tested the effect of short-term FA supplementation with and without the combination of 

vitamin B6 and B12 on the folate forms distribution in serum and WB. The folate forms in serum 

and WB samples of the study participants who completed the study and had WB and serum 

available from baseline and after the supplementation are summarized in Table 19. 5-MethylTHF 

was the predominant folate form in serum (as monoglutamate) and WB (as polyglutamates) at 

baseline and after supplementation in both study arms (Table 19). At baseline, median (10th –
 90th percentiles) 5-methylTHF serum concentrations in both groups were lower than in younger 

and non-fasting adults (Table 13). 

5-MethylTHF in serum was significantly higher after supplementation with FA in group T1 

(~ 2.2fold, p = 0.022) and group T2 (~ 2.2fold, p < 0.001) (Figure 20). All other folate forms did 

not differ significantly comparing the baseline levels and the concentrations after the 

supplementation. After the supplementation, we found no significant changes of serum 

5-methylTHF concentrations comparing group T1 and group T2 (p = 0.338). Compared to group 

T2, unmetabolized FA was significantly higher in group T1 after the supplementation. Folate 

forms in serum showed no significant differences between both groups at baseline and after 

supplementation for 3 – 4 weeks. 
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Table 19: Folate forms in serum and whole blood of study participants (short-term 

supplementation study). 

Variable 

Group T1
a 

FA 

n = 30 

[nmol/L] 

Group T2
b 

FA, B6, B12 

n = 24 

[nmol/L] 

p value 

Baseline 
S 5-methylTHF 6.9 (3.2 – 20.1) 6.1 (3.0 – 15.3) 0.562 
S 5-formylTHF < LOD 0.05 (< LOD – 0.27) 0.502 
S 5,10-methenylTHFc 0.01 (< LOD – 0.26) 0.00 (< LOD – 0.20) 0.646 
S THFd 1.08 (< LOD – 3.52) 0.99 (< LOD – 2.84) 0.376 
WB 5-methylTHF 570 (296 – 1,086) 589 (239 – 845) 0.981 
WB non-methylTHFf 69.4 (50.9 – 145.5) 81.0 (52.4 – 120.6) 0.644 
After supplementation 
S 5-methylTHF 15.1 (7.0 – 24.9) 13.5 (7.6 – 24.9) 0.338 
S 5-formylTHF 0.08 (< LOD – 0.32) 0.10 (< LOD – 0.24) 0.378 
S 5,10-methenylTHFc 0.08 (< LOD – 0.26) 0.00 (< LOD – 0.31) 0.224 
S THFd 1.74 (< LOD – 3.32) 1.64 (< LOD – 2.82) 0.377 
S folic acide 0.53 (< LOD – 1.56) 0.17 (< LOD – 0.51) 0.001 
WB 5-methylTHF 731 (521 – 1,299) 689 (362 – 943) 0.295 
WB non-methylTHFf 92.8 (64.1 – 165.9) 90.0 (55.4 – 161.6) 0.903 
The data are medians (10th – 90th percentiles). P values are according to the Mann-Whitney-U test.  
a: 400 µg FA /d. 
b: 400 µg FA, 8 mg vitamin B6, 10 µg vitamin B12 /d. 
c: Sum of 5,10-methenylTHF and 10-formylTHF. 
d: Sum of THF and 5,10-methyleneTHF. 
e: Sum of FA, DHF, and partly oxidized THF. 
f: Sum of 5-formylTHF, 10-formylTHF, 5,10-methenylTHF, 5,10-methyleneTHF, THF, DHF, and FA. 

Comparing the treatment arm T1 with T2, we could find no significant differences of the baseline 

concentrations and after the supplementation of FA with and without co-supplementation with 

vitamins B6 and B12 in the WB folate forms. After the supplementation, WB 5-methylTHF 

(p < 0.001 for both T1 and T2) and WB non-methylTHF concentrations (1.3fold, p = 0.003 for 

T1 and 1.1fold, p = 0.014 for T2) were significantly higher in both groups. 
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Figure 20: 5-MethylTHF concentrations in serum at baseline and after 3 – 4 weeks of 

supplementation (short-term supplementation study). After the supplementation group T1 and T2 
showed significantly higher 5-methylTHF concentrations compared to the baseline. No significant changes 
were observed for 5-methylTHF concentrations comparing both groups. 

Long-term supplementation with calcium, vitamin D, folic acid, vitamin B6, and vitamin B12 

vs. calcium and vitamin D 

We tested the effect of long-term (12 months) B-vitamins supplementation on the folate forms 

distribution in serum and WB. The folate forms in serum and WB samples of the study 

participants, who completed the study and had WB and serum available from baseline, after 

6 months, and after 12 months (n = 59) are summarized in Table 20. 5-MethylTHF, 

monoglutamates and polyglutamates, respectively, were the predominant folate form, in serum 

and WB at baseline and after the supplementation in both study arms (Table 20).  

At baseline, the median (10th – 90th percentiles) 5-methylTHF serum concentrations were 

comparable to the concentrations of younger and non-fasting adults (15.8 (5.6 – 26.7) nmol/L) 

shown in Table 13. Folate forms showed no significant differences between the two groups. 

After 6 months of supplementation, group A had significantly higher serum concentrations of 

5-methylTHF (~ 2.5fold), 5,10-methenylTHF (~ 6fold), THF (~ 2fold), and FA (~ 1.5fold) 

compared to group B, which received no B-vitamins supplementation. 
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Table 20: Folate forms in serum and whole blood of study participants who completed the study 

(long-term supplementation study). 

Variable 

Group A
a 

B, D, Ca 

n = 31 

[nmol/L] 

Group B
b 

D, Ca 

n = 28 

[nmol/L] 

p value 

Baseline 
S 5-methylTHF 15.4 (6.3 – 36.3) 19.4 (4.4 – 47.2) 0.616 
S 5-formylTHF 0.19 (< LOD – 0.70) 0.26 (< LOD – 0.70) 0.649 
S 5,10-methenylTHFc 0.13 (< LOD – 0.27) 0.12 (< LOD – 0.32) 0.613 
S THFd 1.04 (< LOD – 3.96) 1.64 (< LOD – 5.59) 0.395 
WB 5-methylTHFf 424 (219 – 882) 438 (251 – 902) 0.999 
WB non-methylTHFf,g 69 (48 – 127) 68 (40 – 149) 0.930 
After 6 months of supplementation 
S 5-methylTHF 46.8 (28.5 – 75.4) 17.0 (6.8 – 34.4) <0.001 
S 5-formylTHF 0.31 (0.18 – 0.65) 0.38 (0.20 – 0.72) 0.098 
S 5,10-methenylTHFc 0.44 (0.18 – 6.45) 0.07 (< LOD – 0.26) <0.001 
S THFd 2.28 (0.98 – 8.88) 1.01 (< LOD – 4.29) 0.001 

S folic acide 0.12 (< LOD – 0.41) 0.08 (< LOD – 0.21) 0.040 
WB 5-methylTHFf 1,278 (971 – 2,159) 534 (301 – 1,080) <0.001 
WB non-methylTHFf,g 157 (76 – 269) 74 (31 – 144) <0.001 

After 12 months of supplementation 
S 5-methylTHF 44.7 (17.6 – 70.9) 14.2 (5.8 – 35.7) <0.001 

S 5-formylTHF 0.21 (< LOD – 0.30) 0.18 (< LOD – 0.45) 0.808 
S 5,10-methenylTHFc 0.06 (< LOD – 0.20) 0.08 (< LOD – 0.29) 0.460 
S THFd 2.22 (< LOD – 5.74) 1.11 (< LOD – 3.46) 0.004 

S folic acide 0.39 (< LOD – 4.58) 0.06 (< LOD – 0.23) <0.001 
WB 5-methylTHFf 1,234 (694 – 2,030) 476 (242 – 836) <0.001 
WB non-methylTHFf,g 120 (94 – 241) 62 (43 – 124) <0.001 
The data are medians (10th – 90th percentiles). P values are according to the Mann-Whitney-U test.  
a: 500 µg FA, 500 µg vitamin B12, 50 mg vitamin B6, 456 mg calcium, and 1,200 IU vitamin D /d. 
b: 456 mg calcium and 1,200 IU vitamin D /d. 
c: Sum of 5,10-methenylTHF and 10-formylTHF. 
d: Sum of THF and 5,10-methyleneTHF. 
e: Sum of FA, DHF, and partly oxidized THF. 
f: WB folate forms were available for n = 19 subjects in group A and n = 22 subjects in group B. 
g: Sum of 5-formylTHF, 10-formylTHF, 5,10-methenylTHF, 5,10-methyleneTHF, THF, DHF, and FA. 

In group A, 5-methylTHF concentrations were comparable after 6 and 12 months and 

significantly higher compared to the baseline (~ 3fold higher, p < 0.001). In group B, the median 

5-methylTHF concentrations in serum were highest at baseline and lower after 6 months and 

after 12 months. In group A, the THF concentrations in serum were significantly higher after  

6 months (p = 0.002) and after 12 months (p = 0.009), as well as FA (p = 0.009 after 6 months 

and p < 0.001 after 12 months). Serum 5,10-methenylTHF was significantly higher after 

6 months in group A. In group B, serum FA was significantly higher after 6 months compared to 

the baseline concentrations (p = 0.016). 

Comparing group A and B, the median (10th – 90th percentiles) 5-methylTHF and 

non-methylTHF concentrations in WB were not significantly different at baseline, but after 

6 months (~ 2.4fold higher 5-methylTHF and ~ 2.1fold higher non-methylTHF) and 12 months 
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of supplementation (~ 2.6fold higher 5-methylTHF and ~ 1.9fold higher non-methylTHF). After 

supplementation for 6 and 12 months, the WB 5-methylTHF and non-methylTHF concentrations 

were significantly higher (~ 2.5fold higher, p < 0.001) in group A compared to the baseline.  

 

Figure 21: 5-MethylTHF concentrations in (A) serum and (B) whole blood at baseline, after 6 

months, and after 12 months of supplementation (long-term supplementation study). After 
supplementation for 6 and 12 months with B-vitamins, group A showed significantly higher 5-methylTHF 
concentrations (p < 0.001) compared to the baseline in serum and WB. No significant changes were 
observed for 5-methylTHF concentrations in group B. Mean concentrations are stated in the figure. P 
values are according to the Mann-Whitney-U test. 

The mean 5-methylTHF concentrations in serum and WB at baseline, after 6 and 12 months in 

both study arms are shown in Figure 21. Group A (n = 19 subjects) showed significantly higher 

mean 5-methylTHF concentrations in serum and WB after 6 and 12 months of supplementation 

(p < 0.001). No significant changes were observed in group B (n = 22 subjects). The correlation 

of the 5-methylTHF concentrations in serum and in WB for group A and B at baseline and after  

6 and 12 months of supplementation are shown in Figure 22. The serum and WB 5-methylTHF 

concentrations of all study participants positively correlated at baseline (R = 0.595; p < 0.001) 

(Figure 22). After 6 months of supplementation, the 5-methyTHF serum and WB concentrations 

in group A were higher compared to group B, but were significantly correlated (R = 0.458; 

p = 0.017). After 12 months, the correlation of 5 methylTHF in serum and WB in group A 

became non significant. This indicates that a steady-state and the saturation of the folate storages 

in RBCs by supplements (500 µg FA/d) were reached between 6 – 12 months.   
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Figure 22: The correlation of 5-methylTHF in serum and whole blood according to the Spearman 

test (long-term supplementation study). Serum and WB 5 methylTHF concentrations were significantly 
correlated in the combined groups A and B at baseline, after 6 months for groups A and B, and after 
12 months for group B. After 12 months of supplementation in group A, the correlation of 5-methylTHF in 
serum and WB became non significant, indication a steady-state of the RBC folate. 

The correlations of the folate forms in 146 non-supplemented and non-fortified older adults are 

summarized in Table 21. At baseline (n = 93) and after 6 months of supplementation in group A 

(n = 35), serum 5-methylTHF correlated positively with its demethylated product THF. After 

12 months of supplementation, the correlation was not significant anymore (p = 0.073). In 

addition, 5-methylTHF in serum correlated with WB 5-methylTHF at baseline (p < 0.001) and 

after 6 months of supplementation (p = 0.017), but not after 12 months of supplementation 

(p = 0.257). At baseline, serum 5-formylTHF correlated positively with 5,10-methenylTHF and 

THF in serum, but not after 6 and 12 months of supplementation. Serum 5-methylTHF positively 

correlated with serum 5,10-methenylTHF after 6 months of supplementation, but not at baseline 

and after 12 months. Furthermore, serum FA significantly correlated with its reduced product 

THF in serum (R = 0.451, p = 0.007) after 6 months of supplementation.  
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Table 21: Correlations of folate forms at baseline (combined study) and after 6 and 12 months of 

supplementation in group A (long-term supplementation study). 

 

WB non-methylTHF correlated positively at baseline with 5-methylTHF (p < 0.001), THF 

(p = 0.023) in serum, and with 5-methylTHF in WB (p < 0.001). After 6 and 12 months of 

supplementation, WB non-methylTHF correlated with WB 5-methylTHF. We could find 

significant correlations with WB non-methylTHF and serum FA at baseline (p = 0.035) and after 

12 months (p = 0.014), but not after 6 months of supplementation. 

Variable 
S  

5,10-methenyl 

THF 

S  

THF 

 

WB  

5-methyl 

THF 

WB  

non-methyl 

THF
b
 

Baseline (all participants) 

S 5-methylTHF 
 R = 0.379 

p < 0.001 
n = 93 

R = 0.595 
p < 0.001 

n = 64 

R = 0.501 
p < 0.001 

n = 64 

S 5-formylTHF 
R = 0.242 
p = 0.019 

n = 93 

R = 0.248 
p = 0.016 

n = 93 

  

S THF 
   R = 0.283 

p = 0.023 
n = 64 

S folic acid 
   R = 0.264 

p = 0.035 
n = 64 

WB 5-methylTHF 
   R = 0.813 

p < 0.001 
n = 64 

After 6 months of supplementation (group A)
a
 

S 5-methylTHF 
R = 0.402 
p = 0.01 
n = 35 

R = 0.362 
p = 0.033 

n = 35 

R = 0.458 
p = 0.017 

n = 35 

 

S folic acid 
 R = 0.451 

p = 0.007 
n = 35 

  

WB 5-methylTHF 
   R = 0.458 

p = 0.006 
n = 35 

After 12 months of supplementation (group A)
a 

S folic acid 
   R = 0.496 

p = 0.014 
n = 24 

WB 5-methylTHF 
   R = 0.662 

p < 0.001 
n = 24 

The correlation analysis was performed using the Spearman-Rho test. Only significant correlations are 
shown. 
a: 500 µg FA, 500 µg vitamin B12, 50 mg vitamin B6, 456 mg calcium, and 1,200 IU vitamin D /d. 
b: Sum of 5-formylTHF, 10-formylTHF, 5,10-methenylTHF, 5,10-methyleneTHF, THF, DHF, and FA. 
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4.2.2 The influence of age and gender on the folate forms distribution  

We tested the folate forms distribution in relation to the age in non-supplemented and non-

fortified older adults. The folate form and metabolite concentrations according to the age 

quartiles are presented in Table 22. We found significant differences in concentrations of the 

sum of folates (p = 0.003), as well as that of 5-methylTHF (p = 0.001) and its percentage 

(p = 0.001) between the age quartiles. The youngest group (median age: 60 years) showed 

significantly higher sum of folate forms and 5-methylTHF in serum and lower tHcy compared to 

the oldest group (median age: 87 years). No significant differences were found in the 

concentrations of the other folate forms and FA between the age quartiles. Subjects in the lowest 

age quartile had significantly higher median 5-methylTHF proportion (% of the sum of folates) in 

comparison to that in the 3rd and 4th age quartile (Figure 23). The reason for this finding is 

unknown. In contrast to folate form concentrations in serum, we found no significant age-related 

changes in WB (Table 22). 

 

Figure 23: Serum 5-methylTHF as percentage of the sum of folates in relation to the age in 146 older 
subjects. Participants were divided into quartiles according to their age. Significantly lower 5-methylTHF 
contents (% of the sum of folates) were obtained in the 3rd and the 4th age quartile. 
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Table 22: Concentrations of folate forms and metabolites in relation to the age of the combined study (n = 146) (122). 

Variable 
Quartile of age 

p
 

1 (lowest) 2 3 4 (highest) 

Number 38 36 35 37 - 
Age, years 60 (52 – 64) 71 (68 – 74) 80 (76 – 83) 87 (84 – 91) - 
S sum of folates, nmol/L 18.2 (8.6 – 51.7) 14.9 (6.4 – 38.9) 8.9 (4.5 – 22.3) 7.8 (3.3 – 17.7) 0.003 

S 5-methylTHF, nmol/L 16.5 (7.6 – 49.1) 13.7 (4.0 – 36.3) 7.1 (3.3 – 19.3) 6.3 (2.6 – 16.1) 0.001 
S 5-formylTHF, nmol/L 0.18 (< LOD – 0.50) 0.23 (< LOD – 0.65) 0.08 (< LOD – 0.47) 0.08 (< LOD – 0.67) 0.189 
S 5-formylTHF ≥ LOD, n (%) 30 (78.9%) 31 (86.1%) 30 (85.7%) 31 (83.8%) - 
S 5,10-methenylTHF ≥ LOD, n (%)a 17 (44.7%) 15 (41.7%) 21 (60.0%) 17 (45.9%) - 
S THF, nmol/Lb 1.14 (< LOD – 3.12) 1.06 (< LOD – 3.60) 1.27 (< LOD – 3.86) 0.96 (< LOD – 3.02) 0.851 
S THF ≥ LOD, n (%)b 23 (60.5%) 19 (52.8%) 21 (60.0%) 25 (75.7%) - 
S Folic acid ≥ LOD, n (%)c 4 (10.5%) 3 (8.3%) 7 (20.0%) 3 (8.1%) - 
WB sum of folates, nmol/Ld 545 (281 – 1,093) 487 (278 – 827) 679 (409 – 1,064) 590 (291 – 1,062) 0.118 
WB 5-methylTHF, nmol/Ld 475 (247 – 980) 421 (240 – 749) 572 (356 – 960) 519 (243 – 936) 0.106 
WB non-methylTHF, nmol/Ld,e 75.3 (36.2 – 131.7) 65.8 (48.8 – 107.3) 73.0 (52.5 – 169.4) 77.2 (41.6 – 125.7) 0.415 
Creatinine, µmol/L 70.7 (53.0 – 106.1) 70.7 (32.7 – 126.4) 79.6 (26.5 – 123.8) 70.7 (47.7 – 144.9) 0.718 
tHcy, µmol/L 11.9 (8.0 – 15.1) 12.6 (9.0 – 23.2) 18.4 (11.4 – 39.6) 17.5 (10.2 – 37.3) <0.001 

Cys, nmol/L 176 (111 – 472) 268 (150 – 647) 385 (165 – 1,148) 312 (172 – 1,018) 0.313 
MMA, nmol/L 209 (120 – 300) 202 (115 – 501) 277 (139 – 511) 242 (138 – 472) 0.141 
HoloTC, pmol/L 50 (26 – 66) 48 (31 – 88) 47 (26 – 128) 61 (28 – 128) 0.093 
Vitamin B12, pmol/L 306 (189 – 436) 280 (184 – 436) 265 (136 – 641) 266 (165 – 529) 0.459 
SAH, nmol/L 17.6 (10.9 – 28.5) 19.4 (10.7 – 36.9) 27.9 (13.8 – 55.2) 26.9 (18.2 – 45.9) <0.001 
SAM, nmol/L 117 (88 – 181) 122 (90 – 159) 132 (99 – 206) 140 (106 – 185) 0.013 
SAM/SAH ratio 7.2 (5.6 – 9.0) 6.2 (4.0 – 9.0) 4.8 (3.5 – 8.6) 5.0 (3.5 – 6.2) <0.001 

Betaine, µmol/L 34.1 (25.6 – 43.9) 30.7 (20.6 – 46.7) 27.3 (16.9 – 43.0) 31.5 (19.8 – 44.1) 0.034 
Choline, µmol/L 8.7 (6.6 – 12.5) 9.2 (5.8 – 14.7) 10.5 (6.5 – 14.3) 11.3 (7.9 – 15.4) 0.016 
DMG, µmol/L 2.8 (2.0 – 3.9) 3.3 (1.7 – 6.5) 5.5 (2.5 – 11.0) 5.1 (4.0 – 8.6) <0.001 
The data are medians (10th – 90th percentiles) unless otherwise specified. P values are according to the ANOVA test.  
a: Sum of 5,10-methenylTHF and 10-formylTHF. 
b: Sum of THF and 5,10-methyleneTHF. 
c: Sum of FA, DHF, and partly oxidized THF. 
d: WB folate forms were available from 30 subjects in quartile 1, 27 subjects in quartile 2, 28 subjects in quartile 3, and 22 subjects in quartile 4. 
e: Sum of 5-formylTHF, 10-formylTHF, 5,10-methenylTHF, 5,10-methyleneTHF, THF, DHF, and FA. 
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The creatinine concentrations were in the normal ranges in all age groups, indicating a normal 

glomerular filtration rate and a normal renal function. SAH and SAM concentrations, as well as 

the resulting SAM/SAH ratio depended on the age of the subjects. Lowest SAH and SAM 

concentrations were found in the youngest group (median: 60 years), which corresponded with 

the highest SAM/SAH ratio. The SAM/SAH ratio was significantly lower in older subjects, 

indicating a reduced methylation capacity.  

In addition, betaine, choline, and DMG concentrations were age-related. Highest choline and 

DMG concentrations were found in older subjects (3rd and 4th quartile). Lowest betaine plasma 

concentrations were found in the 3rd age quartile. These findings are in agreement with the 

elevated tHcy concentrations found at higher age. Due to low serum folate concentrations, 

betaine acts as alternative methyl donor for the methylation of Hcy, resulting in elevated DMG 

concentrations. In addition, we found a tendency for higher holoTC, MMA, and Cys 

concentrations with higher age. The elevated metabolite concentrations can not be explained by a 

reduced renal function, as the median creatinine concentrations were all in the normal ranges.  

Table 23: Folate forms distribution (nmol/L) in older subjects according to gender (n = 146). 

Variable 
Males 

(n = 50) 

Females 

(n = 96) 
p 

Serum 

Sum of folates 13.2 (5.0 – 35.9) 9.6 (4.6 – 38.9) 0.303 
5-MethylTHF 12.2 (3.7 – 32.1) 8.3 (3.3 – 37.1) 0.246 
5-FormylTHF 0.21 (< LOD – 0.52) 0.12 (< LOD – 0.51) 0.056 
5,10-MethenylTHFa 0.11 (< LOD – 0.24) 0.08 (< LOD – 0.28) 0.329 
THFb 1.12 (< LOD – 3.66) 1.01 (< LOD – 3.13) 0.940 
Whole blood

c
 

Sum of folates 531 (331 – 1,011) 573 (296 – 1,031) 0.422 
5-MethylTHF 454 (288 – 889) 505 (253 – 922) 0.520 
Non-methylTHFd 67.0 (49.3 – 127.3) 74.8 (47.5 – 125.4) 0.399 
The data are medians (10th – 90th percentiles). P values are according to the Mann-Whitney-U test.  
a: Sum of 5,10-methenylTHF and 10-formylTHF. 
b: Sum of THF and 5,10-methyleneTHF. 
c: WB folate forms were available from 35 males and 72 females. 
d: Sum of 5-formylTHF, 10-formylTHF, 5,10-methenylTHF, 5,10-methyleneTHF, THF, DHF, and FA. 

We tested the study population of differences in the folate forms distribution according to the 

gender (Table 23). Folate forms did not differ significantly between males and females. Only a 

tendency (p = 0.056) was found for serum 5-formylTHF, where the median concentrations were 

higher in males than in females. 
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4.2.3 Unmetabolized folic acid and the effect of co-supplementation on 

the folate forms distribution  

Seventeen (11.6%) of the non-supplemented subjects had detectable concentrations of 

unmetabolized FA in the serum (Table 18). We compared older adults with serum FA 

< 0.21 nmol/L (LOD = 0.21 nmol/L) to those with serum FA ≥ 0.21 nmol/L. Serum sum of folate 

forms and 5-methylTHF concentrations were higher in the group with detectable FA. However, 

we found no significant differences in the median 5-methylTHF or the sum of folates 

concentrations (Table 24). In addition, all other serum folate forms did not differ significantly. 

Table 24: Serum folate forms distribution according to unmetabolized folic acid (n = 146). 

Variable 
Folic acid 

< 0.21 nmol/L 

Folic acid 

≥ 0.21 nmol/L 
p 

Number (%) 129 (88.4%) 17 (11.6%) - 
S sum of folates, nmol/L 11.6 (4.7 – 36.1) 13.6 (5.6 – 61.7) 0.276 
S 5-methylTHF, nmol/L 9.5 (3.4 – 32.4) 12.7 (3.6 – 56.9) 0.357 
S 5-formylTHF, nmol/L 0.14 (< LOD – 0.53) 0.06 (< LOD – 0.45) 0.177 
S 5,10-methenylTHF, nmol/La 0.08 (< LOD – 0.24) 0.08 (< LOD – 0.39) 0.827 
S THF, nmol/Lb 1.03 (< LOD – 3.04) 0.94 (< LOD – 5.94) 0.966 
The data are medians (10th – 90th percentiles). P values are according to the Mann-Whitney-U test.  
a: Sum of 5,10-methenylTHF and 10-formylTHF. 
b: Sum of THF and 5,10-methyleneTHF. 

Short-term supplementation folic acid vs. folic acid plus vitamin B6 and B12 

The short-term co-supplementation with the vitamins B6 and B12 had no effect on the 

concentrations of serum folate forms other than FA (Table 19). For further studying the effect of 

co-supplementation on the detected unmetabolized FA after supplementation, we divided the two 

study arms into two groups each: the 1st with no detectable amounts of FA (< 0.21 nmol/L) and 

the 2nd with detectable FA ≥ 0.21 nmol/L. The results are shown in Figure 24. 

At baseline, 7 of the 30 subjects (23.3%) of group T1 and 2 of the 24 subjects (8.3%) of group T2 

had detectable amounts of FA in serum. After the supplementation, 23 of the 30 subjects (76.7%) 

of group T1 had detectable amounts of unmetabolized FA in the serum. In comparison, in the 

group T2 with co-supplementation of vitamins B6 and B12 only 9 of the 24 subjects (37.5%) had 

detectable FA ≥ 0.21 nmol/L in the serum. This might be related to a higher turnover of the 

supplemented FA in the presence of the vitamins B6 and B12.  
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Figure 24: Unmetabolized folic acid at baseline and after 3 – 4 weeks of supplementation (short-term 

supplementation study). After the supplementation, 23 of 30 subjects of group T1 had detectable amounts 
of unmetabolized FA in the serum. In comparison, in the group with co-supplementation of vitamins B6 
and B12 (T2) only 9 of the 24 subjects had detectable FA ≥ 0.21 nmol/L in the serum.  

4.2.4 The influence of the vitamin B12 status on the folate forms 

distribution  

We tested the folate forms distribution in serum and WB, as well as the metabolite concentration 

in relation to the MMA and tHcy concentrations (n = 35) (93). Subjects with MMA > 271 nmol/L 

and tHcy > 12.0 µmol/L were likely to be vitamin B12 or vitamin B12 and folate deficient. The 

results are summarized in Table 25. Elevated tHcy and MMA concentrations were significantly 

correlated with higher age and higher creatinine concentration compared to normal metabolites. 

The concentrations of HoloTC, total vitamin B12, 5-methylTHF, and sum of folates were 

significantly lower in the group with elevated tHcy and MMA. In addition, elevated MMA and 

tHcy were associated with a lower 5-methylTHF proportion (% of sum of folates) and a higher 

5-formylTHF concentrations compared to the group with normal MMA and tHcy. The ratio of 

5-methylTHF/THF was also lower in subjects with elevated MMA and tHcy concentrations 

compared to those with normal metabolites. Folates in WB did not differ significantly. 



The influence of the vitamin B12 status on the folate forms distribution 

83 

Table 25: Folate forms and metabolites according to the vitamin B12 status (122). 

Variable 

MMA ≤ 271 nmol/L 

and  

tHcy ≤ 12.0 µmol/L 

 MMA > 271 nmol/L 

and  

tHcy > 12.0 µmol/L 

p 

Number 35 38 - 
Age, years 66 (56 – 84) 81 (62 – 87) <0.001 
Creatinine, µmol/L 61.9 (40.7 – 88.4) 79.6 (53.0 – 125.5) 0.007 

S sum of folates, nmol/L 25.4 (7.2 – 50.9) 10.1 (4.4 – 28.2) <0.001 
S 5-methylTHF, nmol/L 23.7 (6.2 – 47.7) 10.2 (2.8 – 26.3) <0.001 
S 5-methylTHF, % of sum of 
folates 

92.6% (78.1 – 97.1%) 83.2% (58.1 – 91.2%) <0.001 

S THF, nmol/La 1.10 (< LOD – 2.94) 1.49 (< LOD – 4.29) 0.194 
S THF ≥ LOD, n (%)a 22 (62.9%) 28 (73.9%) 0.450e 
S 5-formylTHF, nmol/L 0.20 (< LOD – 0.45) 0.33 (< LOD – 0.91) 0.014 
S 5-formylTHF ≥ LOD, n (%) 29 (82.9%) 33 (86.8%) 0.748e 
S 5-methylTHF/THF ratio 14.77 (4.14 – 58.75) 6.67 (1.60 – 27.74) <0.001 
WB sum of folates, nmol/L 541 (297 – 940) 640 (289 – 1,163) 0.383 
WB 5-methylTHF, nmol/Lb 455 (258 – 836) 533 (239 – 1,061) 0.456 
WB non-methylTHF, nmol/Lb, c 75.7 (42.8 – 118.3) 72.1 (60.4 – 189.0) 0.702 
tHcy, µmol/L 9.2 (7.1 – 11.8) 18.8 (13.6 – 42.3) <0.001 

Cys, nmol/L 190 (104 – 385) 445 (167 – 1,314) <0.001 
MMA, nmol/L 174 (106 – 243) 374 (284 – 623) <0.001 

HoloTC, pmol/Ld 54 (39 – 110) 39 (25 – 103) 0.002 
Vitamin B12, pmol/Ld 322 (195 – 498) 221 (132 – 434) 0.002 

SAH, nmol/L 16.0 (10.9 – 25.4) 24.0 (14.7 – 63.5) <0.001 
SAM, nmol/L 113 (89 – 155) 131 (98 – 209) 0.001 
SAM/SAH ratio 7.0 (4.9 – 9.0) 5.1 (3.4 – 8.4) <0.001 
Betaine, µmol/L 35.0 (24.2 – 48.5) 27.0 (18.3 – 41.5) 0.001 
Choline, µmol/L 9.4 (6.2 – 12.6) 11.4 (7.2 – 16.7) 0.007 
DMG, µmol/L 3.0 (2.0 – 6.0) 4.9 (2.4 – 11.4) 0.002 
The data are medians (10th – 90th percentiles) unless otherwise specified. P values are according to the 
Mann-Whitney-U test unless otherwise specified.  
a: Sum of THF and 5,10-methyleneTHF. 
b: WB folate forms were available from 23 subjects in the group with normal vitamin B12 status and 

24 subjects in the group with low vitamin B12 status.  
c: Sum of 5-formylTHF, 10-formylTHF, 5,10-methenylTHF, 5,10-methyleneTHF, THF, DHF, and FA. 
d: HoloTC and vitamin B12 concentrations were available from 32 subjects in the group with normal 

vitamin B12 status and 33 subjects in the group with low vitamin B12 status. 
e: P values according to the Chi square test for categorical variables.  

Subjects with elevated MMA and tHcy had higher concentrations of SAH, SAM, choline, and 

DMG but a lower SAM/SAH ratio and plasma betaine concentrations. This suggests that betaine 

acts as alternative methyl donor – the action of BHMT is vitamin B12 independent. As a 

consequence, Hcy is methylated to Met and more DMG is produced (median 3.0 vs. 4.9 µmol/L 

of DMG) in the group with elevated MMA and tHcy. In addition, at high tHcy concentration 

SAH concentrations were also high (median 16.0 vs. 24.0 nmol/L of SAH; p < 0.001). Elevated 

SAM concentrations promote the transsulfuration of Hcy to Cys by the action of the CBS 

(median 190 vs. 445 nmol/L of Cys). 
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4.2.5 The interaction between the MTHFR C677T polymorphism and 

folate forms and the effect of supplementation 

Folate forms distributions from 32 non-fasting, middle-aged subjects (median age: 33 years) 

according to the MTHFR C677T genotypes are shown in (Table 26) (126). The incidence for the 

CC genotype was 62.5% and 37.5% for the CT and the TT genotype. Serum sum of folates 

concentrations were significantly different between carriers and non carriers of the mutated 

MTHFR 677 T allele (p = 0.036). Compared to the CC genotypes, carriers of the T allele showed 

significantly lower concentrations of 5-methylTHF (p = 0.043), and THF (p = 0.004).  

Table 26: Serum folate forms distribution in 32 serum samples from middle-aged non-fasting 

subjects according to the MTHFR C677T genotype (126). 

Variable 
MTHFR C677T genotype  

CC 

(n = 20) 
CT + TT 

(n = 12) 
p 

Age, years 40 (20 – 51) 32 (19 – 54) - 
tHcy, µmol/L 10.3 (7.1 – 16.9) 10.0 (7.3 – 37.5) 0.967 
S sum of folates, nmol/L 22.2 (8.0 – 30.6) 12.2 (6.0 – 29.9) 0.036 
S 5-methylTHF, nmol/L 18.5 (6.6 – 27.2) 10.7 (4.7 – 26.3) 0.043 
S THF, nmol/La 2.77 (1.18 – 4.43) 1.09 (< LOD – 3.50) 0.004 
The data are medians (10th – 90th percentiles). P values are according to the Mann-Whitney-U test.  
a: Sum of THF and 5,10-methyleneTHF 

In addition, we tested the folate forms distribution, as well as the vitamin and metabolite 

concentrations according to the MTHFR C677T genotype in elderly subjects. The incidence for 

the CC genotype was 40.8%, 48.3% for the CT genotype, and 10.8% for the TT genotype. In 

contrast to the study on non-fasting subjects, we found no significant differences in serum and 

WB sum of folates and folate forms according to the MTHFR C677T genotype (Table 27). 

However, we could find a lower folate status in the older subjects. The lower THF concentrations 

indicate a reduced methyl transfer from 5-methylTHF which might be related to a folate trap 

caused by a low vitamin B12 status. The low folate status and a possible folate trap both may 

overlay the effect of the MTHFR C677T polymorphism on the folate forms distribution in this 

population.  
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Table 27: Concentrations of folate forms and metabolites in relation to the MTHFR C677T genotype 

in 120 older non-supplemented subjects of the combined study (122). 

 

 

Variable 
MTHFR C677T genotype p  

(CC vs. TT)
 

CC CT TT 

Number (%) 49 (40.8%) 58 (48.3%) 13 (10.8%) - 
Age, years 76 (56 – 88) 73 (58 – 87) 78 (57 – 92) 0.508 
S sum of folates,  
nmol/L 

10.8  
(4.7 – 49.8) 

13.6  
(5.3 – 37.0) 

13.0  
(4.9 – 48.1) 

0.306 

S 5-methylTHF, 
nmol/L 

14.7  
(4.5 – 55.6) 

14.2  
(4.5 – 33.8) 

13.9  
(3.3 – 44.3) 

0.949 

S 5-methylTHF,  
% of sum of folates 

89.1  
(72.9 – 96.1) 

87.6  
(69.6 – 96.7) 

91.4  
(54.8 – 96.1) 

0.425 

S THF,  
nmol/La 

1.27  
(< LOD – 4.29) 

1.31  
(< LOD – 3.69) 

0.94  
(< LOD – 3.31) 

0.384 

S 5-formylTHF, 
nmol/L 

0.20  
(< LOD – 0.70) 

0.24  
(< LOD – 0.70) 

0.40  
(< LOD – 0.98) 

0.131 

WB sum of folates ,  
nmol/L 

567  
(304 – 1,013) 

561  
(328 – 1,079) 

454  
(199 – 978) 

0.472 

WB 5-methylTHF, 
nmol/L 

494 
(255 – 895) 

497  
(285 – 950) 

396  
(159 – 849) 

0.368 

WB non-methylTHF, 
nmol/Lb 

71.4  
(48.1 – 121.4) 

72.7  
(48.1 – 127.0) 

64.1  
(39.1 – 238.3) 

0.897 

tHcy,  
µmol/L 

14.1  
(8.7 – 29.6) 

14.0  
(9.2 – 24.8) 

14.2  
(7.2 – 54.4) 

0.815 

Cys,  
nmol/L 

287  
(138 – 1,057) 

271  
(113 – 728) 

385  
(133 – 2,011) 

0.713 

MMA,  
nmol/L 

199  
(123 – 390) 

235  
(145 – 462) 

238  
(126 – 540) 

0.367 

HoloTC,  
pmol/L 

49  
(25 – 108) 

49  
(31 – 123) 

54  
(29 – 81) 

0.886 

Vitamin B12,  
pmol/L 

259  
(163 – 448) 

302  
(162 – 503) 

265  
(164 – 370) 

0.977 

SAH,  
nmol/L 

24.7  
(12.3 – 61.1) 

19.5  
(12.4 – 38.9) 

24.0  
(11.2 – 57.6) 

0.061 

SAM,  
nmol/L 

132  
(96 – 193) 

122  
(91 – 182) 

129  
(95 – 228) 

0.403 

SAM/SAH  
ratio 

5.5  
(3.4 – 8.1) 

6.1  
(4.0 – 8.9) 

4.9  
(3.9 – 9.0) 

0.124 

Betaine,  
µmol/L 

30.9  
(19.8 – 42.9) 

31.8  
(19.9 – 46.8) 

28.6  
(17.2 – 41.5) 

0.430 

Choline,  
µmol/L 

10.0  
(5.9 – 13.4) 

10.2  
(6.3 – 14.9) 

10.1  
(6.4 – 16.4) 

0.676 

DMG,  
µmol/L 

4.4  
(2.2 – 9.9) 

3.8  
(2.1 – 7.8) 

4.6  
(2.8 – 8.1) 

0.128 

The data are median (10th – 90th percentiles) unless otherwise specified. P values are according to the 
ANOVA test.  
a: Sum of THF and 5,10-methyleneTHF. 
b: Sum of 5-formylTHF, 10-formylTHF, 5,10-methenylTHF, 5,10-methyleneTHF, THF, DHF, and FA. 
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Short-term supplementation folic acid vs. folic acid plus vitamin B6 and B12 

The mean (SD) concentrations of folate forms in serum and WB, as well as of the related 

metabolites after 3 – 4 weeks of supplementation according to the treatment arm and the MTHFR 

C677T genotype are summarized in Table 28. The CT + TT genotype of group T1 consisted of 

11 subjects with the CT and 2 subjects with the TT genotype. In group T2 the CT + TT genotype 

consisted of 13 subjects with the CT and 1 subject with the TT genotype. 

In group T2 we observed a significantly higher 5-methylTHF proportion (% of sum of folates) in 

subjects with the MTHFR 677 CT + TT genotypes (p = 0.032). A tendency in group T2 was 

found for lower SAH and SAM concentrations, as well as for higher plasma choline 

concentrations in subjects with the CT + TT genotype, but this was not significant. In addition, 

we observed higher choline concentrations in group T1 in T allele carriers. All other parameters 

did not differ significantly between the genotypes. 
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Table 28: Concentrations of folate forms and metabolites in relation to the MTHFR C677T genotype 

in 54 older subjects after 3 – 4 weeks of supplementation (short-term supplementation study). 

Variable 

Group T1
a 

FA
 

Group T2
b 

FA, B6, B12
 

MTHFR C677T genotype
 

CC CT + TT p CC CT + TT p 

Number 17 13 - 10 14 - 
Age, years 81 (5) 81 (7) 0.952 84 (6) 83 (7) 0.809 
S sum of folates,  
nmol/L 

18.9  
(5.1) 

22.3 
(14.9) 

0.392 
14.9  
(5.4) 

17.7  
(6.6) 

0.261 

S 5-methylTHF, 
nmol/L 

16.2  
(4.5) 

19.0 
(13.7) 

0.438 
12.7  
(5.0) 

15.9  
(6.1) 

0.161 

S 5-methylTHF,  
% of sum of folates 

86.0  
(2.8) 

84.1  
(7.5) 

0.476 
84.2  
(7.5) 

90.0  
(5.0) 

0.032 

S THF,  
nmol/Lc 

1.86  
(1.34) 

1.96 
(0.89) 

0.584 
1.77 

(0.96) 
1.42 

(0.82) 
0.402 

S 5-formylTHF, 
nmol/L 

0.12  
(0.13) 

0.11 
(0.14) 

0.760 
0.10 

(0.10) 
0.12 

(0.10) 
0.429 

S folic acid,  
nmol/Ld 

0.61  
(0.40) 

1.10 
(2.10) 

0.865 
0.27 

(0.39) 
0.17 

(0.17) 
0.621 

WB sum of folates,  
nmol/L 

921  
(252) 

947  
(522) 

0.878 
738  

(244) 
827  

(248) 
0.429 

WB 5-methylTHF, 
nmol/L 

821  
(229) 

838  
(457) 

0.906 
639  

(212) 
730  

(225) 
0.370 

WB 5-methylTHF,  
% of sum of folates 

89.0  
(2.8) 

88.4  
(3.1) 

0.632 
86.6  
(1.9) 

87.8  
(4.8) 

0.494 

WB non-methylTHF, 
nmol/Le 

100.3  
(35.2) 

108.3 
(73.0) 

0.730 
98.6 

(37.5) 
97.3 

(37.6) 
0.937 

tHcy,  
µmol/L 

20.1 
(7.2) 

20.6  
(6.8) 

0.706 
16.1  
(6.0) 

14.7  
(3.7) 

0.999 

Cys,  
nmol/L 

625  
(548) 

496  
(334) 

0.818 
388  

(305) 
299  

(156) 
0.578 

MMA,  
nmol/L 

346  
(203) 

341 
 (161) 

0.802 
275  

(134) 
239  
(73) 

0.753 

SAH,  
nmol/L 

29.8  
(10.6) 

34.5 
(17.7) 

0.615 
41.1 

(26.6) 
29.3 

(17.3) 
0.121 

SAM,  
nmol/L 

153  
(31) 

148  
(39) 

0.530 
149  
(20) 

130  
(40) 

0.057 

SAM/SAH  
ratio 

5.5  
(1.4) 

4.9  
(1.9) 

0.137 
4.8  

(2.9) 
5.6  

(2.4) 
0.198 

Betaine,  
µmol/L 

29.0  
(9.9) 

32.4 
(10.5) 

0.368 
36.9 

(10.2) 
40.2 

(26.6) 
0.639 

Choline,  
µmol/L 

9.7  
(2.7) 

12.2  
(3.6) 

0.069 
12.3  
(3.2) 

18.3 
(20.9) 

0.219 

DMG,  
µmol/L 

5.9  
(2.2) 

6.2  
(2.2) 

0.818 
6.0  

(2.0) 
5.5  

(1.5) 
0.682 

The data are means (SD). P values are according to the ANOVA test.  
a: 400 µg FA/ d. 
b: 400 µg FA, 8 mg vitamin B6, 10 µg vitamin B12 /d. 
c: Sum of THF and 5,10-methyleneTHF. 
d: Sum of FA, DHF, and partly oxidized THF. 
e: Sum of 5-formylTHF, 10-formylTHF, 5,10-methenylTHF, 5,10-methyleneTHF, THF, DHF, and FA. 
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Long-term supplementation with calcium, vitamin D, folic acid, vitamin B6, and vitamin B12 

vs. calcium and vitamin D 

The mean (SD) concentrations of the folate forms in serum and WB, as well as of the related 

metabolites after 12 months of supplementation according to the treatment arm and the MTHFR 

C677T genotype from 60 older adults are summarized in Table 29. The CT + TT genotype of 

group A consisted of 18 subjects with the CT and 4 subjects with the TT genotype. In group B the 

CT + TT genotype consisted of 16 subjects with the CT and 3 subjects with the TT genotype.  

In group A we observed significantly higher concentrations of serum THF in subjects with the 

CC genotype (3.75 vs. 2.14 nmol/L; p = 0.038). The THF concentrations in serum were higher 

after the supplementation with B-vitamins. This indicates that the methyl trap of 5-methylTHF 

was annulled which led to an undisturbed methyl transfer and THF formation – the effect of the 

MTHFR C677T polymorphism on the folate forms distribution is not overlayed anymore. In 

addition to the higher THF concentrations in serum, we found higher sum of folate forms and 

5-methylTHF levels in serum and WB and higher plasma betaine and choline concentrations in 

subjects with the CC genotype, but these were not significant. In group B we found a 

significantly higher WB 5-methylTHF proportion (% of sum of folates; p = 0.017) and plasma 

betaine concentrations (p = 0.050) in subjects with the CC genotype. Participants with the 

MTHFR 677 CT + TT genotype were older (p = 0.054) and had lower sum of folate forms and 

5-methylTHF in serum and plasma, but these differences were not significant. We found higher 

tHcy, Cys, and SAH concentrations and lower betaine and choline concentrations in T-allele 

carriers, but again these were not significant.  
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Table 29: Concentrations of folate forms and metabolites in relation to the MTHFR C677T genotype 

in 60 older subjects after 12 months of supplementation (long-term supplementation study). 

Variable 

Group A
a
 

Vit B, D, Ca 

Group B
b 

Vit D, Ca
 

MTHFR C677T genotype
 

CC CT + TT p CC CT + TT p 

Number 10 22 - 9 19 - 
Age, years 64 (11) 64 (9) 0.996 65 (8) 71 (10) 0.054 
S sum of folates ,  
nmol/L 

57.7  
(20.7) 

47.0 
(18.0) 

0.148 
23.2  

(11.5) 
17.8 

(10.6) 
0.229 

S 5-methylTHF, 
nmol/L 

52.1  
(18.3) 

43.5 
(18.0) 

0.221 
21.0  

(11.1) 
16.1 

(10.5) 
0.272 

S 5-methylTHF,  
% of sum of folates 

90.7  
(4.6) 

91.7  
(6.0) 

0.647 
88.4  
(8.6) 

87.9 
(10.5) 

0.912 

S THF,  
nmol/Lc 

3.75  
(3.02) 

2.14 
(1.24) 

0.038 
1.80  

(1.19) 
1.29 

(1.19) 
0.301 

S 5-formylTHF, 
nmol/L 

0.20  
(0.10) 

0.21 
(0.13) 

0.824 
0.22  

(0.16) 
0.19 

(0.13) 
0.678 

S folic acid,  
nmol/Ld 

1.49  
(2.51) 

1.07 
(1.88) 

0.600 
0.12  

(0.08) 
0.07 

(0.12) 
0.303 

WB sum of folates , 
 nmol/L 

1,612 
(1,088) 

1,343 
(444) 

0.408 
641  

(244) 
590  

(225) 
0.633 

WB 5-methylTHF, 
nmol/L 

1,445  
(984) 

1,213 
(415) 

0.435 
578  

(227) 
512  

(198) 
0.489 

WB 5-methylTHF,  
% of sum of folates 

89.3  
(2.0) 

90.0  
(2.5) 

0.564 
89.7  
(2.4) 

86.5  
(2.8) 

0.017 

WB non-methylTHF, 
nmol/Le 

167.1 
(107.1) 

129.5 
(43.2) 

0.243 
62.5  

(21.9) 
77.7 

(30.6) 
0.249 

tHcy,  
µmol/L 

9.1  
(2.5) 

9.9  
(5.8) 

0.673 
12.4  
(3.2) 

21.1 
(22.1) 

0.254 

Cys,  
nmol/L 

162  
(78) 

223  
(151) 

0.241 
213  
(95) 

513  
(679) 

0.202 

MMA,  
nmol/L 

211  
(96) 

230  
(87) 

0.593 
278  

(151) 
266  

(131) 
0.831 

SAH,  
nmol/L 

18.9  
(8.5) 

28.0 
(29.7) 

0.430 
17.9  
(4.5) 

24.2 
(15.8) 

0.254 

SAM, 
 nmol/L 

134  
(41) 

131  
(57) 

0.895 
112  
(16) 

117  
(41) 

0.761 

SAM/SAH  
ratio 

7.6  
(2.0) 

6.6  
(2.5) 

0.269 
6.7  

(1.9) 
5.7  

(2.2) 
0.259 

Betaine,  
µmol/L 

38.5  
(8.0) 

34.2 
(7.2) 

0.142 
40.7  
(8.0) 

31.2 
(12.8) 

0.050 

Choline,  
µmol/L 

13.4  
(3.8) 

11.8  
(2.9) 

0.210 
13.4  
(3.8) 

11.0  
(3.1) 

0.094 

DMG,  
µmol/L 

3.0  
(0.5) 

3.9  
(3.2) 

0.385 
4.2  

(1.4) 
3.5  

(0.8) 
0.094 

The data are means (SD). P values are according to the ANOVA test.  
a: 500 µg FA, 500 µg vitamin B12, 50 mg vitamin B6, 456 mg Ca, and 1,200 IU vitamin D /d.  
b: 456 mg calcium and 1,200 IU vitamin D /d. 
c: Sum of THF and 5,10-methyleneTHF. 
d: Sum of FA, DHF, and partly oxidized THF. 
e: Sum of 5-formylTHF, 10-formylTHF, 5,10-methenylTHF, 5,10-methyleneTHF, THF, DHF, and FA. 



 

90 

4.3 The effect of short-term and long-term B-vitamins 

supplementation on vitamins and methionine cycle related 

metabolites in older adults  

Short-term supplementation folic acid vs. folic acid plus vitamin B6 and B12 

The baseline concentrations and the concentrations after 3 – 4 weeks of supplementation of 

vitamins and Met cycle related metabolites are summarized in Table 30. Shown are the results of 

all study participants. At baseline, the plasma betaine, the total vitamin B12, and the HoloTC 

concentrations were significantly higher in group T2. All other vitamins and metabolites did not 

differ significantly between both study arms. In comparison to the group T1, tHcy and Cys 

concentrations were significantly lower and choline concentrations were significantly higher in 

group T2 after the co-supplementation with the vitamins B6 and B12.  

After the supplementation, the median tHcy concentrations were significantly higher in group T1, 

while choline concentrations were significantly lower in group T1. The median (10th – 90th 

percentiles) tHcy baseline concentration was elevated in both groups (moderate HHCY) (Table 

30). After supplementation, tHcy was significantly lower (p < 0.001) comparing the 

concentrations at baseline and after supplementation in group T2 (co-supplementation with 

vitamins B6 and B12). Oral 400 µg/d FA led to significantly lower tHcy concentrations (~ 6% 

lower). The absolute reduction was ~ 1.2 nmol/L. The group receiving 400 µg/d FA in 

combination with the vitamins B6 and B12 (T2) had significantly lowered the tHcy concentrations 

after the treatment (~ 4% lower; ~ 0.5 nmol/L). The median (10th – 90th percentiles) tHcy 

concentrations were elevated in both groups (moderate HHCY) even after the supplementation. 

The supplementation with 400 µg FA daily for 3 – 4 weeks was not sufficient to effectively 

lower the tHcy concentration.  
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Table 30: Vitamins and metabolites of all study participants (short-term supplementation study). 

Variable 

Group T1
a 

FA 

n = 30 

Group T2
b 

FA, B6, B12 

n = 24 

p value 

Baseline 

tHcy, µmol/L 19.2 (13.6 – 39.6) 16.2 (10.7 – 27.8) 0.174 
Cys, nmol/L 398 (167 – 1,049) 304 (198 – 1,356) 0.971 
MMA, nmol/L 265 (156 – 483) 198 (120 – 460) 0.057 
Vitamin B12, pmol/L 210 (137 – 500) 342 (203 – 608) 0.020 
HoloTC, pmol/L 49 (25 – 111) 66 (37 – 128) 0.034 

SAH, nmol/L 30.2 (14.8 – 52.2) 26.6 (16.2 – 76.8) 0.910 
SAM, nmol/L 147 (94 – 205) 138 (108 – 190) 0.986 
SAH/SAM ratio 5.0 (3.6 – 6.6) 4.9 (2.2 – 8.4) 0.899 
Betaine, µmol/L 25.5 (16.3 – 41.4) 31.2 (22.0 – 56.7) 0.013 
Choline, µmol/L 11.1 (5.5 – 16.6) 11.4 (7.6 – 15.2) 0.531 
DMG, µmol/L 6.1 (3.7 – 10.1) 5.7 (4.0 – 14.9) 0.807 
After supplementation 
tHcy, µmol/L 18.0 (12.8 – 31.7) 15.6 (9.4 – 22.3) 0.003 
Cys, nmol/L 383 (191 – 1,201) 271 (149 – 588) 0.012 
MMA, nmol/L 307 (156 – 701) 239 (141 – 390) 0.085 
SAH, nmol/L 30.1 (13.8 – 46.8) 27.0 (13.4 – 70.0) 0.801 
SAM, nmol/L 151 (100 – 189) 139 (102 – 181) 0.158 
SAH/SAM ratio 4.8 (3.6 – 8.0) 4.9 (2.2 – 9.3) 0.851 
Betaine, µmol/L 29.8 (16.8 – 43.6) 34.6 (24.4 – 54.8) 0.076 
Choline, µmol/L 10.2 (6.2 – 15.7) 13.0 (8.6 – 17.6) 0.023 
DMG, µmol/L 5.4 (3.8 – 9.9) 5.0 (4.0 – 8.7) 0.542 
The data are medians (10th – 90th percentiles). P values are according to the Mann-Whitney-U test. 
a: 400 µg FA /d. 
b: 400 µg FA, 8 mg vitamin B6, 10 µg vitamin B12 /d. 

Long-term supplementation with calcium, vitamin D, folic acid, vitamin B6, and vitamin B12 

vs. calcium and vitamin D 

Vitamins and metabolites at baseline and after 6 and 12 months of supplementation are 

summarized in Table 31. Shown are the results of all study participants. At baseline, vitamins 

and metabolites showed no significant differences between both study arms. In group A, SAM 

concentrations were significantly higher after 6 months compared to the baseline (p = 0.026). In 

addition, the median SAM concentrations were significantly higher after 6 months of 

supplementation when comparing group A with group B (p = 0.029) (Table 31). No significant 

differences were found for median SAH concentrations.  

After 6 and 12 months of supplementation, the median tHcy and Cys concentrations were 

significantly lower in group A. The median tHcy concentration in group A was significantly 

lowered (~ 30%, p < 0.001) after 6 and 12 months from moderate HHCY (median 12.9 µmol/L 

of tHcy at baseline) to normal tHcy concentrations (median 8.9 µmol/L of tHcy after 6 and 
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12 months), whereas the moderate HHCY remained in group B. Compared to the short-term 

supplementation, the supplementation with B-vitamins over several months efficiently 

normalized the tHcy concentrations.  

Table 31: Vitamins and metabolites of all study participants (long-term supplementation study). 

Variable 
Group A

a 

B, D, Ca 

Group B
b 

D, Ca p value 

 n  n 

Baseline      
tHcy, µmol/L 12.9 (8.7 – 20.4) 46 13.0 (8.6 – 21.3) 45 0.968 
Cys, nmol/L 232 (120 – 651) 46 225 (109 – 513) 45 0.470 
Vitamin B12, pmol/L 280 (176 – 495) 41 288 (190 – 425) 36 0.752 
MMA, nmol/L 212 (142 – 402) 47 212 (126 – 388) 45 0.916 
HoloTC, pmol/L 53 (35 – 79) 41 47 (26 – 85) 36 0.288 
SAH, nmol/L 17.6 (11.9 – 29.2) 46 18.3 (10.8 – 33.1) 44 0.508 
SAM, nmol/L 121 (88 – 167) 46 116 (95 – 178) 44 0.821 
Betaine, µmol/L 33.2 (22.5 – 42.7) 46 32.0 (22.0 – 48.9) 45 0.994 
Choline, µmol/L 8.9 (6.3 – 12.8) 46 8.9 (6.0 – 12.6) 45 0.592 
DMG, µmol/L 2.8 (1.8 – 4.8) 46 3.0 (2.1 – 5.2) 45 0.298 
After 6 months of supplementation 
tHcy, µmol/L 8.9 (7.1 – 14.1) 35 13.1 (9.4 – 20.9) 31 <0.001 
Cys, nmol/L 157 (104 – 438) 35 218 (112 – 487) 31 0.002 

Vitamin B12, pmol/L 405 (277 – 848) 21 260 (197 – 436) 19 <0.001 
MMA, nmol/L 275 (209 – 391) 35 285 (162 – 514) 30 0.869 
HoloTC, pmol/L 150 (73 – 150) 21 77 (35 – 126) 20 <0.001 

SAH, nmol/L 16.5 (10.6 – 34.1) 35 17.3 (8.6 – 29.9) 31 0.662 
SAM, nmol/L 126 (98 – 188) 35 115 (91 – 151) 31 0.029 

Betaine, µmol/L 36.3 (25.2 – 56.3) 35 33.7 (21.7 – 49.0) 31 0.289 
Choline, µmol/L 10.4 (7.2 – 14.5) 35 9.3 (7.0 – 12.7) 31 0.199 
DMG, µmol/L 2.5 (1.5 – 4.3) 35 3.0 (1.8 – 4.6) 31 0.066 
After 12 months of supplementation 
tHcy, µmol/L 9.1 (6.0 – 14.1) 33 14.9 (8.7 – 28.5) 31 <0.001 

Cys, nmol/L 152 (92 – 352) 33 283 (106 – 1,236) 31 0.005 
Vitamin B12, pmol/L 459 (316 – 862) 34 261 (169 – 360) 31 <0.001 
MMA, nmol/L 212 (146 – 303) 34 237 (143 – 478) 31 0.203 
SAH, nmol/L 18.4 (11.4 – 41.9) 34 18.9 (11.3 – 41.2) 31 0.646 
SAM, nmol/L 120 (92 – 196) 34 120 (79 – 159) 31 0.250 
Betaine, µmol/L 36.9 (25.4 – 46.6) 34 32.8 (20.4 – 49.6) 31 0.351 
Choline, µmol/L 12.0 (7. 8 – 16.3) 34 11.1 (8.3 – 18.0) 31 0.490 
DMG, µmol/L 3.0 (2.2 – 4.5) 34 3.8 (2.4 – 5.8) 31 0.033 
The data are medians (10th – 90th percentiles). P values are according to the Mann-Whitney-U test. 
a: 500 µg FA, 500 µg vitamin B12, 50 mg vitamin B6, 456 mg calcium, and 1,200 IU vitamin D /d. 
b: 456 mg calcium and 1,200 IU vitamin D /d. 
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Figure 25: Correlation of baseline 5-methylTHF concentrations in serum and whole blood with the 

total homocysteine concentration (long-term supplementation study). At baseline, serum and WB 
5-methylTHF concentrations were significantly correlated with tHcy concentrations. 5-MethylTHF in 
serum showed a stronger negative correlation with tHcy than WB 5-methylTHF. 

5-MethylTHF correlated negatively with tHcy in serum (R = -0.601, p < 0.001) and in WB  

(R = -0.260, p = 0.040) (Figure 25) at baseline. The stronger correlation of tHcy with serum 

5-methylTHF indicates that serum 5-methylTHF is a better determinant of tHcy as WB 

5-methylTHF. 
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Figure 26: 5-MethylTHF concentrations in serum according to the tHcy concentration of group A 

and group after 6 months of supplementation (long-term supplementation study). After 6 months of 
B-vitamins supplementation in group A, no significant correlations were found between 5-methylTHF and 
tHcy. In group B, 5-methylTHF concentrations were significantly and negatively correlated with tHcy. The 
dark grey area intermediate HHCY (≤ 30 µmol/L); the light grey area indicates moderate HHCY (12 –
30 µmol/L). 

After the long-term supplementation for 6 months, group B showed a significant correlation of 

serum 5-methylTHF with tHcy while in group A no correlation was found in group A (Figure 

26). The increased intake of FA and the therefore increased serum 5-methylTHF and reduced 

tHcy levels might interfere with each other, which led to the loss of the correlation. 
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5 Discussion 

Folate and other B-vitamins deficiencies are common in older adults, due to a lower vitamin 

intake, bioavailability, or absorption. Folate deficiency is a risk factor for various age-related 

diseases including cardiovascular diseases, stroke, and cancer (91;194;214). Little is known 

about the metabolism of folate within the cell and the distribution of folate forms in serum and 

WB. FA, the synthetic vitamin, is often used as an oral supplement (8). To date, there are only 

few metabolic studies confirming the fate of supplemented FA. Insufficient concentrations of 

folates, vitamin B6, and vitamin B12 are related to an elevated tHcy concentration, which is an 

independent risk factor for pathologic conditions. Although the underlying pathogenic 

mechanisms are still poorly understood, it has been recently suggested that an increase of SAH, 

resulting in an altered SAM/SAH ratio, might play a role in developing age-related vascular and 

neurodegenerative diseases (31;91;142). The metabolisms of choline and folate are interrelated 

and both participate in Hcy methylation and delivering of SAM. Alterations in choline 

metabolism, including betaine and DMG, have also been associated with tHcy accumulation and 

age-related disorders such as cognitive dysfunction and dementia (193). It has been barely tested 

whether subjects with polymorphisms in the MTHFR 677 gene might show different folate forms 

distribution after B-vitamins supplementation compared to carriers of other genotypes. 

We developed sensitive UPLC-MS/MS methods for the quantification of key folate forms in 

serum and WB, SAM and SAH in acidified EDTA plasma, and betaine, choline, and DMG in 

EDTA plasma. We determined the fasting folate forms distribution in serum and WB, as well as 

the concentrations of related metabolites in non-supplemented and non-fortified older adults. We 

tested the hypothesis if gender, age, vitamin B12 status, unmetabolized FA, or the MTHFR C677T 

genotypes have an influence on the distribution of the folate forms in serum and WB. We 

performed two B-vitamins supplementation studies with short-term (3 – 4 weeks FA with and 

without co-supplementation with vitamin B6 and B12) and long-term (12 months with calcium, 

and vitamin D and with and without FA and vitamins B6 and B12) supplementation. We analyzed 

the concentrations of folate forms, vitamin B12 markers, tHcy, and related metabolites before and 

after the supplementation with B-vitamins. Furthermore, we tested the hypothesis if the co-

supplementation with the vitamins B6 and B12 influences the folate forms distribution. 
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5.1 Development of sensitive methods for the quantification of 

folate forms using UPLC-MS/MS 

The reliable quantification of folate forms in serum and WB is difficult due to rapid 

interconversions and instabilities of non-methyl folate forms. We previously described the 

quantification methods of folate forms in serum and WB using stable-isotope dilution 

UPLC-MS/MS (123;126). The method enables the specific and sensitive measurement of 

5-methylTHF, 5-formylTHF, 5,10-methenylTHF (sum of 5,10-methenylTHF and 

10-formylTHF), THF (sum of THF and 5,10-methyleneTHF), and FA in serum, and 

5-methylTHF and non-methylTHF (sum of 5-formylTHF, 10-formylTHF, 5,10-methyleneTHF, 

5,10-methenylTHF, DHF, THF, and FA) in WB hemolysates.  

The short time required for the sample preparation (serum: 40 samples in 120 minutes, WB: 

40 samples in 200 minutes) and measurement (2.5 minutes/sample) enables folate quantifications 

in large scale clinical studies. Compared to our method, earlier methods for the WB folate 

quantification have a longer incubation time (68;70;71;159;206) and a longer run time per sample 

(between 45 and 6 minutes) (70;104;159;206). The folate assay shows a linearity over a broad 

range (0.2 – 200 nmol/L for each folate form), which enables the measurement of serum and WB 

hemolysates from supplemented subjects without dilution of the samples. The high sensitivity 

(LODs between 0.21 – 0.67 nmol/L in serum, 0.12 – 0.40 nmol/L in WB hemolysates) of our 

assay enables the accurate measurement of serum and WB folate in the low or deficient ranges. 

Compared to other methods, the described method for the folate forms determination in WB has 

a greater sensitivity (expressed as LOQ) for the minor forms 5-formylTHF (0.36 nmol/L by our 

method vs. 4 nmol/L by Smith et al. method) and FA (0.45 nmol/L by our method vs. 2 nmol/L 

by Smith et al. method) (206), which led to more precise determinations of non-methyl folates. 

Recoveries for folate forms in serum and WB hemolysates were in the range of 73.9 – 112.4%. 

The interassay CV for 5-methylTHF in serum was < 2.8% and < 7.4% in WB samples. Higher 

CVs for non-methyl folates can be explained by low concentrations of those compounds.  

Comparing the new UPLC-MS/MS method with the established immunological assay (ADVIA 

Centaur), a strong correlation was observed. However, the correlation was lower in the upper 

range of serum folate (> 35 nmol/L). Preliminary results suggested that the higher the THF 

fraction, the bigger the difference between the two methods was. The immunological assay might 

not equally detect 5-methylTHF and other forms of folate. Another explanation might be that the 

UPLC-MS/MS method uses the same analytes for preparing the calibration curve, whereas the 

immunological assay uses 5-methylTHF for quantifying the TFOL. 
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In contrast to 5-methylTHF, the quantification of 5-formylTHF, 10-formylTHF, 

5,10-methyleneTHF, 5,10-methenylTHF, DHF, THF, and FA has a relatively low accuracy in 

serum and WB hemolysates. Moreover, the interconversion of the folate forms especially the 

oxidation of THF to FA during the sample processing could not be completely avoided by the 

addition of antioxidants. Therefore, in WB we considered the sum of these compounds as non-

methylTHF. Similar observations have been reported by other groups (36;50;175). Smith et al. 

summarized their results into 5-methylTHF, non-methylTHF (sum of THF, 5,10-methyleneTHF, 

5,10-methenylTHF, 5-formylTHF, and 10-formylTHF), and unsubstituted (partly) oxidized 

folates (sum of FA and DHF) (206). This was not the case in our method, since we were able to 

demonstrate the partial oxidation of THF into FA during sample preparation. The FA formation 

was more pronounced in WB pool hemolysates than in serum pool samples. The oxidation into 

FA could explain why we were not able to detect THF and its internal standard in WB samples. 

This could be due to a higher proportion of ammonium acetate buffer (pH 10) or the longer time 

required for the sample processing (more wash steps with larger volume). Our study showed that 

free FA can be artificially generated from THF and DHF during sample processing in serum and 

WB. This might lead to misinterpretation of studies looking at FA concentrations in subjects with 

slightly higher THF.  

In accordance with previous studies (178), we confirmed that 5-methylTHF is the predominant 

folate form in serum (as monoglutamate) (126) and WB (as polyglutamates) (123). In serum, we 

detected less FA compared to a study by Pfeiffer et al. (178). Nevertheless, this might be 

explained by differences in the population tested since the study by Pfeiffer et al. was conducted 

on an U.S. population after the introduction of folate fortification programs and the subjects in 

our study were from Germany, a country without mandatory folate fortification (178). Pfeiffer et 

al. found a mean sum of folates concentration in serum of 35.5 nmol/L (178). Samples with a 

sum of folates < 50 nmol/L contained 93.3% 5-methylTHF, 4.4% 5-formylTHF, and 2.3% FA. In 

comparison, in our study we found 87.2% 5-methylTHF, 1.1% 5-formylTHF, and 0.6% FA in 

serum samples of 32 subjects (126). However, we additionally found 11.4% THF and 0.2% 

5,10-methenylTHF in the serum. Differences might be related to the population tested and the 

use of vitamin supplements or fortified foods. The concentrations of WB folate obtained by our 

methods (123) are comparable to data from countries not applying fortification with FA. The 

median concentration of WB 5-methylTHF in 48 non supplemented subjects from our study is 

similar to that reported in subjects from the Netherlands (n = 109 adults) (207). However, the 

concentration of the non-methylTHF was ~ 20times higher in our study, which could be related 

to differences in sample processing. The sample extraction in the method by Smith et al. is 

accomplished by affinity chromatography. Due to different affinities of the folate binding 

proteins for the reduced folates, the folate forms distribution might be altered. Moreover, the 
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LOQs in our study were below that reported by Smith et al., which might also explain the higher 

non-methylTHF concentration. Compared to our results, Fazili et al. reported lower folate 

concentrations in 75 WB samples obtained from an European blood bank (207 vs. 445 nmol/L of 

5-methylTHF and 38.9 vs. 71.2 nmol/L of non-methylTHF) (71). In addition, the same group 

reported lower WB sum of folates in earlier studies (68) compared to other research groups 

(104;207;216). This might be related to differences in sample preparation, sample storage, or in 

the tested population. Concentrations of WB 5-methylTHF in subjects receiving FA (500 µg/d) 

for 6 months are in the range of that observed in countries applying mandatory fortification with 

FA (104;216). The non-methylTHF concentrations in our supplemented subjects were ~ 5times 

higher than that reported by studies on subjects consuming fortified staple foods (104;216).  

Despite the good correlation of the UPLC-MS/MS method and the immunoassay, the results for 

the quantification of the folates may vary greatly in individuals due to the non-specific detection 

of the folate forms via the immunological methods. In addition, the UPLC-MS/MS method 

provides more information than the TFOL of the sample. 5-MethylTHF in serum negatively 

correlated stronger with tHcy than the sum of folates, indicating that 5-methylTHF in serum is a 

better determinant of tHcy. In addition, (UP)LC-MS/MS methods can monitor the metabolization 

of FA or occurrence of unmetabolized FA after fortification or supplementation. Furthermore, by 

determining the 5-methylTHF/THF ratio the remethylation of Hcy by means of the MS gene can 

be monitored which adds information of a possible methyl trap of the vitamin and a resulting 

secondary folate deficiency. This is especially of interest in populations with a low vitamin B12 

status, such as the elderly, pregnant women, or vegetarians.  

In conclusion, we developed a sensitive, precise, and reliable method for the quantification of 

5-methylTHF, 5-formylTHF, 5,10-methenylTHF, THF, and FA in serum, and 5-methylTHF and 

non-methylTHF in WB samples. The method can be used in large-scale clinical studies. We 

observed a conversion of THF into FA during sample preparation. This could not be prevented 

by the addition of several antioxidants. Therefore we highly recommend a fast sample 

preparation and measurement to minimize the effect.  
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5.2 Folate forms distribution before and after short-term and 

long-term supplementation with B-vitamins in older adults 

in relation to the MTHFR C677T polymorphism  

Seventy seven participants were recruited for the short-term supplementation study and 

96 subjects were recruited for the long-term supplementation study. A total of 54 (short-term 

supplementation study) and 65 subjects (long-term supplementation study), respectively, 

completed the studies. We could find no significant changes in the baseline study characteristic 

of both studies. In order to investigate the folate forms distribution in serum and WB of non-

supplemented and non-fortified older adults (median age: 74 years) according to gender, age, 

vitamin B12 concentrations, unmetabolized FA, or the MTHFR C677T genotype we combined the 

baseline concentrations of the vitamins and metabolites of the two studies (n = 146). Parts of the 

results were published previously (122). 

5.2.1 Folate forms distribution in older adults and the effect of B-vitamins 

supplementation 

The median concentrations of the serum sum of folates were comparable to those found in our 

earlier investigations (168), but were approximately 50% lower than in populations regularly 

consuming products fortified with FA (69). As expected, 5-methylTHF was the predominant 

folate form in serum, which is consistent with earlier results (126;168). However, compared to 

our earlier study (168), we found higher 5-methylTHF (combined study: 10.0 vs. 6.5 nmol/L) and 

lower THF (combined study: 1.0 vs. 5.5 nmol/L) concentrations with a comparable serum sum of 

folates concentration (combined study: 11.9 vs. 11.7 nmol/L). The reasons for the higher 

5-methylTHF and the lower THF are unknown. It might be related to the lower age of the 

subjects (combined study: 74 vs. 81 years). 

Concentrations of WB folates were in the range reported in our earlier study (123) (Table 13). 

However, these data originate from a subset of the short-term and the long-term supplementation 

study. 5-MethylTHF in WB was comparable to that reported by Smulders et al. and 

approximately twice as high as published by Fazili et al. in non-supplemented and non-fortified 

adults (71;207). Non-methylTHF concentrations were twice as high as described by Fazili et al. 

and ~ 20fold higher than that reported by Smulders et al. (71;207). The WB 5-methylTHF 

concentrations were approximately 50% lower than in countries applying FA fortification 

programs (104;216).  
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The baseline serum 5-methylTHF concentrations of the short-term supplementation study were in 

the lower normal or deficiency range (Table 13) and comparable to that reported by Obeid et al. 

(168). The intake of 400 µg/d or 500 µg/d of FA led in a short time to a significant increase of the 

5-methylTHF levels in serum (2.2 – 2.5fold) and in WB (1.1 – 2.1fold) (Table 19, Table 20). 

This led to a normalization of the 5-methylTHF concentration in the short-term supplementation 

study after 3 – 4 weeks and to higher 5-methylTHF levels after 6 months in group A of the long-

term supplementation study. The increase in serum 5-methylTHF was lower than that reported by 

Obeid et al. after 3 weeks of B-vitamins supplementation (168). However, they used high doses 

of B-vitamins (5 mg FA, 1 mg vitamin B12, and 40 mg vitamin B6 /d), which can explain the 

lower 5-methylTHF (as well as THF and FA) levels in serum in our study. Van Oort et al. 

supplemented 43 older adults (50 – 75 years) with 400 µg/d FA for 4 and 12 weeks (229). After 

4 weeks of supplementation, they found a mean (SD) increase of plasma sum of folates from 

13.8 (5.3) nmol/L to 31.9 (15.3) nmol/L. This is twice as high as the concentrations we found in 

our study. Nevertheless, they showed a 2.3fold increase of the sum of folates, which is consistent 

with our findings. In a recent study Hursthouse et al. long-term supplemented women of 

childbearing age with placebo (n = 47), 140 µg/d (n = 49), and 400 µg/d (n = 48) FA (105). In the 

group receiving 400 µg/d FA the mean (SD) or mean (95% CI) plasma sum of folates 

concentrations were 19.3 (1.9) nmol/L at baseline, 37.3 (31.1 – 43.4) nmol/L after 29 weeks, and 

39.5 (33.0 – 46.1) nmol/L after 40 weeks. Corresponding, the RBC sum of folates concentrations 

were 757 (1.6) nmol/L at baseline, 1,122 (978 – 1,265) nmol/L after 29 weeks, and 1,273 (1,110 

– 1,437) nmol/L after 40 weeks (105). In our study, we found lower WB 5-methylTHF 

concentrations, and higher serum 5-methylTHF concentrations after 6 and 12 months of 

supplementation. These differences can be explained by the different study population and the 

higher FA dose in our study. The concentrations of WB non-methylTHF were significantly 

higher after the supplementation for 3 – 4 weeks (short-term supplementation study), 6 months, 

and 12 months (long-term supplementation study). All other folate forms did not differ 

significantly. Long-term supplementation with 500 µg/d of FA led to significantly higher serum 

concentrations of THF and FA after 6 and 12 months.  

5-MethylTHF levels in serum and WB were correlated at baseline and after 6 months of 

supplementation but the correlation was lost after 12 months of supplementation. This suggests 

that a steady-state was reached and that the folate storages in the RBCs were saturated between 

6 and 12 months of supplementation. This is in line with the findings of Pietrzik et al. who 

calculated the RBC folate steady-state conditions after daily supplementation of FA or 

5-methylTHF in women of childbearing age (180). They state that a steady-state was not 

achieved after 24 weeks of supplementation with 400 µg/d FA. They state further, that a RBC 

folate steady-state should be reached after 5 t1/2 (~ 40 weeks; t1/2 of RBCs ~ 60 days) (180). 
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Comparing the groups T1 and T2 of the short-term supplementation study, no significant changes 

were found for 5-methylTHF (serum and WB), 5-formylTHF, 5,10-methenylTHF, THF, and WB 

non-methylTHF. This indicates that the co-supplementation of vitamin B6 and B12 had no 

measureable effect on the mentioned folate forms. Only the serum FA concentrations were 

significantly higher in group T1. Comparing the group A (B-vitamins supplementation) with 

group B (no B-vitamins supplementation) of the long-term supplementation study, as expected 

we could find significantly higher levels of almost all folate forms in group A.  

In serum, 5-methylTHF was positively correlated with its demethylated product THF (Table 21). 

Serum 5-formylTHF was positively correlated with 5,10-methenylTHF. The folate 

interconversion from 5-formylTHF to 5,10-methenylTHF can either be carried out enzymatically 

by the action of the MTHFS enzyme (Figure 4) or by changes in the pH value and heating (50), 

presumably during heating step in sample preparation (Figure 7). In addition, 5-formylTHF and 

THF were positively correlated in serum. The WB non-methylTHF was positively associated 

with the serum folate forms 5-methylTHF, THF, and FA and with the WB 5-methylTHF.  

5.2.2 The influence of age and gender on the folate forms distribution 

Our study confirms the inverse association between folate and age (lower sum of folates 

comparing the 1st and the 4th age quartile; p = 0.003) in serum (41;171) but not in WB 

(p = 0.118). Furthermore, age is also inversely related to serum concentrations of 5-methylTHF 

but not to the other folate forms. This might partly be explained by the renal function. The reason 

for a lower 5-methylTHF proportion (% of sum of folates) in serum at an older age is unknown. 

A lower intake of folate or a lower absorption might be related to a lower sum of folates at an 

older age; however, we did not assess the daily folate intake. Other possible explanations might 

be decreased enzyme activities at an older age, lower absorption of the 5-methylTHF in the 

intestine, or the relatively common vitamin B12 deficiency in older subjects that affects the 

turnover rate of 5-methylTHF (200). In a recent study, Zappacosta et al. found significant 

gender-dependent serum folate concentrations with a higher serum TFOL in 79 female Italian 

blood donors (mean: 10.3 vs. 11.9 nmol/L; p < 0.05) (251). These could be explained by 

differences in dietary folate intake, e.g. in form of fruit and vegetable consumption. Flynn et al. 

demonstrated, that the mean daily folate intake was higher in males than in females (288 µg/d vs. 

241 µg/d) (74). In our study, we did not find gender-dependend changes in folate forms 

distribution in serum and WB.  

The serum or plasma concentrations of tHcy, SAH, and SAM increase with higher age while the 

SAM/SAH ratio decreases (171). We could confirm these findings in our study. The 
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physiological decline in renal function might explain the increase in the tHcy levels in the elderly 

(92). Konstantinova et al. found higher betaine and choline concentrations in older (71 – 

74 years) than in middle-aged (47 – 49 years) subjects (129). We could confirm the finding that 

choline was higher in older subjects (median age: 87 years) than in younger subjects (median 

age: 60 years). The DMG levels according to the age were similar to the tHcy concentrations, 

which were lowest in the youngest age group and highest in the 3rd age quartile (median age: 

80 years). In combination with the finding that serum sum of folates and 5-methylTHF 

concentrations were significantly lower in older adults, this indicates that the Hcy remethylation 

increasingly occurred via the alternative betaine pathway. This is in line with our finding that the 

betaine concentrations were highest in the 1st age quartile and lowest in the 3rd age quartile, 

suggesting an increased depletion during the Hcy remethylation.  

5.2.3 Unmetabolized folic acid and the effect of co-supplementation on 

the folate forms distribution 

Increased FA intake promotes the appearance of unmetabolized FA in blood, which is suspected 

to mask the vitamin B12 deficiency and to interfere with antifolates. To date, several studies have 

questioned the role of unmetabolized FA in blood (117;170;225). In a recent study by Obeid et 

al., the plasma folate forms concentrations of 74 older German subjects (median age: 82 years) 

were examined at baseline and after 3 weeks of administrating therapeutic doses of B-vitamins 

(5 mg FA, 40 mg vitamin B6, and 2 mg vitamin B12 /d) or placebo (168). At baseline, 19% of the 

participants had detectable concentrations of unmetabolized FA in their plasma. In the present 

study, we could find serum FA concentrations > LOD in 17 (11.6%) of the participants. This was 

lower than that reported by Obeid et al. (168). However, the presence of unmetabolized FA was 

not associated with significant differences in concentrations of sum of folates or 5-methylTHF in 

serum, suggesting that unmetabolized FA in serum might be related to consuming fortified foods. 

Nevertheless, this does not account for the improvement of the individual folate status of the 

participants. Additionally, minor amounts of FA in serum might be generated during the sample 

preparation (45°C during sample drying step) from the oxidation of THF and DHF (183).  

Unmetabolized FA showed no age-dependent changes in non-supplemented subjects. This might 

not exclude age-related differences in FA metabolism in case of FA supplementation. A higher 

turnover rate of folates in young people compared to older adults has been proposed earlier (52). 

To show this, the absorption and conversion of [2H2]-FA were studied in 12 middle-aged 

(≥ 50 years) and 12 young adults (< 30 years) before and after the supplementation of 400 µg FA 

or [6R,S]-5-methylTHF for 5 weeks (52). Middle-aged subjects showed lower absorption of 

[2H2]-FA compared to the younger subjects. In the group of the young adults, 400 µg FA caused 
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an increase, and [6R,S]-5-methylTHF caused a decrease in the absorption of [2H2]-FA. FA or 

[6R,S]-5-methylTHF caused no changes in the absorption of [2H2]-FA in the middle-aged group 

(52). Differences in the FA absorption according to age might be related to higher gastric pH, 

atrophic gastritis, ess turnover rate, or changes in folate enzyme activities in the elderly (52). 

To our knowledge, this is the first study investigating the effect of FA supplementation and co-

supplementation with vitamins B6 and B12 on folate forms in serum and WB. The co-

supplementation with the vitamins B6 and B12 had no significant influence on the levels of folates 

other than FA in serum. We could find significantly higher serum FA concentrations in the group 

only receiving the FA supplement. Oral doses of FA from supplements or fortified foods 

> 200 µg have been shown to bypass the normal folate absorption mechanisms and result in the 

presence of unmetabolized FA in serum (103;116;119). The co-supplementation with the 

vitamins B6 and B12 led to lower concentrations of unmetabolized FA in the serum. The division 

of the participants into two groups (FA < 0.21 nmol/L and FA ≥ 0.21 nmol/L) led to a more 

pronounced result. After supplementation, 76.7% of the subjects in group T1 (FA 

supplementation) but only 37.5% of the subjects in group T2 (co-supplementation with vitamin 

B6 and B12) had detectable amounts of serum FA. This suggests that the presence of the vitamins 

B6 and B12 led to a higher turnover of the supplemented FA.  

5.2.4 The influence of the vitamin B12 status on the folate forms 

distribution 

Elevated tHcy and MMA levels, as markers of the B-vitamin status, are common in older adults, 

which were shown in our study. Elevated levels of tHcy and MMA are related to lower serum 

concentrations of active vitamin B12 (HoloTC) and 5-methylTHF. The concentrations of serum 

MMA and tHcy were directly related, indicating a decreased Hcy remethylation to methionine 

when vitamin B12 is limited. Interestingly, the content of the predominant folate form decreased 

with increasing MMA and tHcy levels (lower 5-methylTHF proportion). However, a lower 

5-methylTHF proportion was also related to age, because subjects with elevated tHcy and MMA 

concentrations were older than those with normal metabolite levels. Low vitamin B12 is common 

in elderly subjects and is possibly related to a lower dietary vitamin B12 intake or vitamin B12 

malabsorption. The lower HoloTC and 5-methylTHF concentrations in subjects with elevated 

concentrations of the metabolites might suggest a lower intake or absorption of folates and 

vitamin B12. However, this does not explain the reduction of the 5-methylTHF proportion. Our 

results suggest that vitamin B12 might play a yet underestimated role in the absorption of 

5-methylTHF or in the in vivo turn-over of folates, which was proposed earlier (167;222). 



The interaction between the MTHFR C677T polymorphism on the folate forms distribution and 

the effect of supplementation 

104 

Similar to tHcy the Cys levels were significantly higher in the group with elevated metabolite 

concentrations and consequently vitamin B12 or folate and vitamin B12 deficiency. We found 

elevated SAH and SAM concentrations but a reduced SAM/SAH ratio in the group with higher 

tHcy levels (113). The elevated SAM concentrations in combination with elevated SAH (and 

tHcy) levels can be explained by the inhibitory function of the SAH. By the inhibition of the 

methyltransferase reaction by SAH, SAM can not be demethylated and is accumulated. The 

betaine levels were lower and the DMG levels were higher in subjects with vitamin B12 or folate 

and vitamin B12 deficiency. This indicates that betaine is used as an alternative methyl donor for 

the remethylation of Hcy generating Met and DMG. 

5.2.5 The interaction between the MTHFR C677T polymorphism on the 

folate forms distribution and the effect of supplementation 

The enzyme MTHFR converts 5,10-methyleneTHF to 5-methylTHF and thus makes this 

available for Hcy remethylation. The common MTHFR C677T polymorphism results in a 

thermolabile enzyme with less activity (79). Accordingly, higher folate levels can stabilize the 

enzyme and retain its activity (79). The polymorphism in MTHFR C677T is associated with 

lower levels of serum 5-methylTHF, serum THF (126), or 5-methylTHF in RBCs compared with 

the CC genotype (126;207). The TT variant has been reported to cause accumulation of 

formylated THF (12). In our earlier study with 32 healthy non-supplemented subjects, we 

confirmed that the CC subjects have higher serum sum of folates than the group of T allele 

carriers (126). Subjects with the CT and TT genotype who had less 5-methylTHF available for 

the tHcy methylation had also a lowered THF concentrations. This can be explained by a reduced 

remethylation rate and a consequently reduced formation of THF. Moreover, the serum 

5-methylTHF levels available for the tHcy remethylation seemed to be sufficient thus C and T 

allele carriers had comparable concentrations of plasma tHcy. The tHcy increasing effect of the C 

to T polymorphism of the MTHFR gene is preferably seen in subjects having serum folate in the 

low normal to decreased concentration range.  

However, in the present study of the 120 subjects with MTHFR C677T genotyping results 

available, no differences in the concentrations of folate forms or metabolites in the serum, as well 

as in the WB were found between the CC and TT genotypes (Table 27). The reasons for these 

findings are unknown but might be related to the fasting vs. the non-fasting conditions of the 

subjects in our earlier report. In addition, in the earlier study the subjects were younger (age 

range: 17 – 55 years) than in the present study (126). Furthermore, the older subjects had a lower 

folate status with a reduce methyl transfer rate and a possible trap of the folates as 5-methylTHF 

which both might overlay the effect of the gene polymorphism. 
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We had the MTHFR C677T genotyping results available of 54 older subjects in the short-term 

supplementation study and 60 older subjects in the long-term supplementation study who 

terminated the studies. After the supplementation for 3 – 4 weeks with FA with and without co-

supplementation we could find a significantly lower serum 5-methylTHF content (as % of sum of 

folates) in the participants with the CC genotype in the study arm receiving the combined B-

vitamins (Table 28). After the long-term supplementation with B-vitamins we found 

significantly higher concentrations of serum THF in the subjects with the CC genotype in 

comparison to the T allele carriers (Table 29). A tendency for higher sum of folates and 

5-methylTHF in serum and WB was found in the subjects with the CC genotype. This is 

consistent with earlier work (47;126;207). The differences in the folate forms distribution should 

only be present in low folate status (71;78;128) but this was not the case in our study. In the 

group receiving no B-vitamins, we found a significantly higher WB 5-methylTHF proportion (as 

% of sum of folates) in the MTHFR 677 CC subjects. Moreover, we found significantly lower 

betaine concentrations in the subjects with the CT and the TT genotype. This was in line with 

findings earlier reported by Holm et al. (99).  

5.3 The effect of short-term and long-term B-vitamins 

supplementation on vitamins and methionine cycle related 

metabolites in older adults  

In the short-term co-supplementation study we found significantly lower total vitamin B12 and 

HoloTC baseline levels in the group T1. Unfortunately we did not quantify the total vitamin B12 

and HoloTC levels after the supplementation but we can assume that the total vitamin B12 and the 

HoloTC levels were higher after the supplementation with vitamin B12 in the group T2. In 

addition, the betaine concentrations were higher at baseline (p = 0.013) and after the 

supplementation (p = 0.076) in the group T2. This might be related to a higher proportion of male 

participants in this group (13.3% males in group T1 and 25% males in group T2). This is in line 

with findings from Lever et al. and from Holm et al. who found significantly higher betaine 

concentrations in males (98;133), which may be related to the effect of sex steroids on plasma 

betaine (98). After the supplementation for 3 – 4 weeks, the Cys levels were significantly lower 

in the group T2, which is in agreement with the lower tHcy concentrations. The choline 

concentration was significantly higher in the group T2. This is in line with a recent 

supplementation trial on rats where B-vitamins supplemented rats showed higher choline 

concentrations than rats on a B-vitamins poor diet (230).  

In the long-term B-vitamins supplementation study we found significantly lower tHcy and Cys 

concentration, as well as higher total vitamin B12 levels in the group receiving B-vitamins after 
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6 months and after 12 months. The HoloTC and SAM levels were higher in group A after 

6 months of supplementation. Both findings are related to the higher folate and vitamin B12 status 

after the supplementation. Similar to the short-term supplementation study we found higher 

betaine concentrations in group A but the differences were not significant. However, the elevated 

betaine concentrations might be related to the B-vitamins intake (153). We found significantly 

higher DMG levels in group B only receiving calcium and vitamin D, which is presumably 

associated with the lower folate status in serum and WB in the participants in this group.  

In both of our studies, the baseline tHcy concentrations were elevated. The Hcy metabolism is 

regulated by the nutritional status of folate, vitamin B6, and vitamin B12, whereas the folate status 

has the greatest impact on the plasma tHcy concentrations (195). It is a known fact that the 

supplementation of FA with and without other B-vitamins effectively reduces the tHcy levels and 

normalizes the HHCY in a dose-dependent manner (25-27;55). In a recent meta-analysis on 

25 trials and 2,596 subjects (mean (SD) age: 52 (19) years) it has been shown that the 

supplementation of FA plus vitamin B12 has a better tHcy-lowering effect than FA alone (100). 

The mean (SD) treatment duration was 8 (6) weeks. The supplementation with 400 µg/d FA led 

to 20% lower tHcy concentrations; the addition of vitamin B12 was associated with 7% more 

reduction of the tHcy level. This led to an absolute reduction of ~ 3 – 4 µmol/L of tHcy in 

populations with a median tHcy level of ~ 10 – 12 µmol/L. However, in our study, short-term 

supplementation was associated with ~ 6% lower (group T1; 400 µg/d FA) and ~ 4% lower 

(group T1; 400 µg/d FA and vitamin B6 and B12) tHcy levels. This might be the case due to the 

shorter time of supplementation (3 – 4 vs. 8 weeks) and the lower number of participants. The 

median tHcy concentrations were significantly lower (p = 0.003) in the group receiving co-

supplementation. This might either be because of the co-supplementation or the fact that the 

baseline tHcy concentrations were lower in the group T2 at the start of the study. Nevertheless, 

the supplementation with FA or B-vitamins for only 3 – 4 weeks did not efficiently normalize the 

tHcy levels. 

The long-term supplementation with B-vitamins normalized the tHcy concentrations within 

6 months (~ 30% or ~ 4 nmol/L lower tHcy). This is in line with earlier findings (100). It has to 

be mentioned that the baseline tHcy levels were lower than that in the short-term 

supplementation study (~ 13 nmol/L vs. ~ 18 nmol/L of tHcy). In the group receiving only 

calcium and vitamin D the moderate HHCY remained after 12 months of supplementation.  

Previous findings from our group (126;168) and many other studies (60;110;231) have shown 

strong negative correlations of serum or plasma folate, particularly 5-methylTHF, and circulating 

tHcy levels. We could confirm this finding and add that the tHcy concentrations are negatively 
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correlated to WB 5-methylTHF (Figure 25). In an earlier study we demonstrated that tHcy 

correlates stronger with serum 5-methylTHF than with the sum of folates (126). Serum 

5-methylTHF and tHcy were not correlated after 6 months of supplementation with B-vitamins 

(Figure 26). The increased intake of FA and the therefore increased serum 5-methylTHF and 

reduced tHcy levels might interfere with each other. The stronger correlation of tHcy with serum 

5-methylTHF indicates that the serum 5-methylTHF is a better determinant of tHcy as WB 

5-methylTHF. 
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6 Conclusion 

We aimed at investigating the folate forms distribution in serum and WB, as well as that of 

related vitamins and metabolites at baseline and after the supplementation with B-vitamins in 

older German adults. Therefore we performed two randomized and double-blind studies. In the 

short-term supplementation study we supplemented the participants with daily 400 µg FA or 

400 µg FA, 8 mg vitamin B6, and 10 µg vitamin B12 for 3 – 4 weeks. In the long-term 

supplementation study we daily supplemented the participants with 500 µg FA, 500 µg vitamin 

B12, 50 mg vitamin B6, 456 mg calcium, and 1,200 IU vitamin D or 456 mg calcium, and 

1,200 IU vitamin D for one yeat. The main novel findings of this study are: 

- The development of UPLC-MS/MS methods for the quantification of folate forms and 

related metabolites of the Met cycle and the establishment of reference ranges.  

- The baseline sum of folates and the 5-methylTHF concentrations in serum and the 

5-methylTHF content (as % of sum of folates) in serum are age- but not gender-

dependent.  

- The vitamin B12 status influences the concentrations of folate forms in serum, as well as 

that of the related metabolites. 

- Unmetabolized FA could be detected in the serum at baseline and after supplementation. 

The co-supplementation with vitamins B6 and B12 led to lower amounts of unmetabolized 

FA in the serum, which might reflect a higher turnover of the vitamin. 

- The long-term oral supplementation with B-vitamins led to a steady-state and a 

saturation of the RBC folate between 6 and 12 months. 

- The MTHFR C677T genotype had a significant influence on the folate forms distribution, 

whereas the sum of folates, the 5-methylTHF, and the THF concentrations were 

significantly higher in subjects with the CC genotype in non-fasting middle-aged 

participants but not in fasting older adults. After short-term supplementation with the 

combined B-vitamins subjects with the CC genotype had significantly lower serum 

5-methylTHF contents. Long-term supplementation with B-vitamins resulted in 

significantly higher serum THF concentrations in subjects with the CC genotype.  

 

Compared to the immunoassay or other related methods that only determine the TFOL, the 

UPLC-MS/MS method provides more information concerning the folate forms distribution. We 

could demonstrate that 5-methylTHF in serum is a better determinant of tHcy than the sum of 

folates. By using (UP)LC-MS/MS methods the metabolization of FA or occurrence of 

unmetabolized FA after fortification or supplementation can be monitored, and by determining 
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the 5-methylTHF/THF ratio the remethylation of Hcy by means of the MS gene can be observed. 

This is especially of interest in populations with a low vitamin B12 status, such as the elderly, 

pregnant women, or vegetarians. We therefore strongly recommend the use of (UP)LC-MS/MS 

methods in clinical studies in the future.  
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8 Appendix 

Appendix A: Standards and chemicals  
 
Chemical Purity Company CAS number Catalogue number 

Folate monoglutamates: standards and internal standards 

(6S)-5-CHO-H4PteGlu-Na2  
(= 5-formylTHF) 

97.3% Merck Eprova AG, Schaffhausen, 
Switzerland 

641-41-8  

(6R)-10-CHO-H4PteGlu-Na2 

(= 10-formylTHF) 
95.9% Merck Eprova AG, Schaffhausen, 

Switzerland 
2800-34-2  

(6R)-5,10-CH+-H4PteGlu-Cl x HCl 
(= 5,10-methenylTHF) 

96.0% Merck Eprova AG, Schaffhausen, 
Switzerland 

7444-29-3  

(6S)-5-CH3-H4PteGlu-Na2 
(= 5-methylTHF) 

97.7% Merck Eprova AG, Schaffhausen, 
Switzerland 

76937-22-9  

(6R)-5,10-CH2-H4PteGlu-Na2 
(= 5,10-methyleneTHF) 

91.4% Merck Eprova AG, Schaffhausen, 
Switzerland 

3432-99-3  

(6S)-H4PteGlu-Na2 
(= THF) 

94.0% Merck Eprova AG, Schaffhausen, 
Switzerland 

135-16-0  

7,8-H2PteGlu 
(= DHF) 

95.0% Merck Eprova AG, Schaffhausen, 
Switzerland 

4033-27-6  

PteGlu-Na2 
(= folic acid) 

96.4% Merck Eprova AG, Schaffhausen, 
Switzerland 

9007-43-6  

(6S)-5-CHO-H4Pte[13C5]Glu, Ca-salt 
(= [13C5]-5-formylTHF) 

>99 atom % D Merck Eprova AG, Schaffhausen, 
Switzerland 

  

(6S)-5-CH3-H4Pte[13C5]Glu, Ca-salt 
(= [13C5]-5-methylTHF) 

>99 atom % D Merck Eprova AG, Schaffhausen, 
Switzerland 

  

Pte[13C5]Glu, free acid form 
(= [13C5]-folic acid) 

>99 atom % D Merck Eprova AG, Schaffhausen, 
Switzerland 
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Appendix A: Standards and chemicals (continued) 
Chemical Purity Company CAS number Catalogue number 

(6S)-H4Pte[13C5]Glu, Ca-salt 
(= [13C5]-THF) 

>99 atom % D Merck Eprova AG, Schaffhausen, 
Switzerland 

  

SAH and SAM: standards and internal standards 
S-(5’-Adenosyl)-L-homocysteine, crystalline 
(= SAH) 

 Sigma Aldrich, Munich, Germany 979-92-0 A9384 

S-(5′-Adenosyl)-L-methionine p-toluenesul-
fonate salt, from yeast (L-methionine enriched) 
(= SAM) 

≥80% (HPLC) 
 

Sigma Aldrich, Munich, Germany 17176-17-9 A2408 

S-Adenosyl-L-methionine-d3 (S-methyl-d3) 
tetra(p-toluenesulfonate) salt  
(= [2H3]-SAM) 

85% chemical 
purity;  
99 atom % D 

CDN Isotopes, Quebec, Canada 17176-17-9 
(unlabeled 
compound) 

D-4093 

S-(5’-Adenosyl)-L-homocysteine 
(= [13C5]-SAH) 

 Henkjan Gellekink group, Radboud 
University Nijmegen Medical Centre, 
Nijmegen, The Netherlands 

979-92-0 
(unlabeled 
compound) 

 

Choline related metabolites: standards and internal standards 
Betaine anhydrous ultra; ≥ 99.0% Sigma Aldrich, Munich, Germany 107-43-7 61962 
Choline chloride ≥ 99% Sigma Aldrich, Munich, Germany 67-48-1 C7017 
N,N,-Dimethylglycine 
(= DMG) 

99% Sigma Aldrich, Munich, Germany 1118-68-9 D1156 

N,N,N-Trimethyl-d9-glycine hydrochloride 
(= d9-betaine) 

98 atom % D Isotec, Sigma Aldrich, Munich, 
Germany 

 616656 

Choline chloride-trimethyl-d9 
 (=d9-choline) 

98 atom % D Isotec, Sigma Aldrich, Munich, 
Germany 

61037-86-3 492051 

N,N-Dimethyl-d6-glycine HCl  
(= d6-DMG) 

99 atom % D CDN Isotopes, Quebec, Canada 347840-03-3 D-3509 

Homocysteine, methylmalonic acid, cystathionine: internal standards 
DL-(2-Amino-2-carboxyethyl)-homocysteine-
3,3,4,4-d4  
(= d4-Cys) 

98 atom % D CDN Isotopes, Quebec, Canada 56-88-2 D-3349 

DL-Homocystine-3,3,3’,3’,4,4,4’,4’-d8  
(= d8-Hcy) 

98 atom % D Cambridge Isotope Laboratories Inc., 
Andover, MA, USA 

870-93-9 DLM-3619 
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Appendix A: Standards and chemicals (continued) 
Chemical Purity Company CAS number Catalogue number 

Methyl-d3-malonic acid  
(= d3-MMA) 

99.7 atom % D CDN Isotopes, Quebec, Canada 42522-59-8 D-2810 

Other chemicals 
Acetic acid, glacial 99.99+% Sigma Aldrich, Munich, Germany 64-19-7 338826 
     
Acetonitrile ULC/MS grade Biosolve, Valkenswaard, The 

Netherlands 
75-05-8 01204102 

Activated charcoal Darco, powder, ~ 100 mesh 
particle size 

 Sigma Aldrich, Munich, Germany 7440-44-0 242276 

Ammonia solution analaR NORMAPUR 25% BDH Prolabo (VWR International 
GmbH, Darmstadt, Germany) 

1336-21-6 1133.2500 

Ammonium acetate ULC/MS grade Biosolve, Valkenswaard, The 
Netherlands 

631-61-8 01244156 

Ammonium formate ULC/MS grade Biosolve, Valkenswaard, The 
Netherlands 

540-69-2 01984156 

L(+)-Ascorbic acid puriss; 99.7% Riedel-de-Haën (Sigma Aldrich, 
Munich, Germany) 

50-81-7 33034 

L-Cysteine ≥ 99.5% Fluka (Sigma Aldrich, Munich, 
Germany) 

52-90-4 30089 

Dithiothreitol  
(= DTT) 

≥ 99.5% AppliChem GmbH, Darmstadt, 
Germany 

27565-41-9 A2948 

Ethylenediaminetetraacetic acid disodium salt 
dihydrate  
(= EDTA) 

99.6% Sigma Aldrich, Munich, Germany 6381-92-6 E4884 

Formic acid ULC/MS grade; 
99% 

Biosolve, Valkenswaard, The 
Netherlands 

64-18-6 06914131 

Hydrochloric acid fuming, pro 
analysi; 37% 

Merck Chemicals, Darmstadt, Germany 7647-01-0 100317 
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Appendix A: Standards and chemicals (continued) 
Chemical Purity Company CAS number Catalogue number 

Methanol, absolute ULC/MS grade Biosolve, Valkenswaard, The 
Netherlands 

67-56-1 13684102 

N-Methyl-N-tert-butyldimethylsilyltrifluoro-
acetamid 
(= MBDSTFA) 

 Machery and Nagel, Düren, Germany 77377-52-7 701440.201 

β-Mercaptoethanol cell culture tested Sigma Aldrich, Munich, Germany 60-24-2 M7522 
Sodium hydroxide, solid pro analysi; ≥ 99% Merck Chemicals, Darmstadt, Germany 1310-73-2 106495 
Triton X-100 for electrophoresis Sigma Aldrich, Munich, Germany 9002-93-1 T8532 



 

132 

Appendix B: Equipment 
 
Equipment Description Company 

Analytical balance 
Sartorius CP224S-0CE Sartorius AG, Göttingen, 

Germany Sartorius ME215P-0CE 

Blood collection 

Citrate: S-Monovette 5 mL 9NC, 
92 x 11 mm 

Sarstedt, Nümbrecht, Germany 

EDTA: S-Monovette 2.7 mL 
K3E, 66 x 11 mm; S-Monovette 9 
mL K3E, 92 x 16 mm 
Li-Hep: S-Monovette 4.7 mL LH-
Gel, 75 x 15 mm 
Needle: Safety-Multifly 21G tube 
200 mm 
Serum: S-Monovette 4.7 mL Z-
Gel, 75 x 15 mm 

Centrifuge 

Eppendorf centrifuge 5810 R, A-
4-62 Rotor 

Eppendorf AG, Hamburg, 
Germany 

Hettich Mikro 20 
Andreas Hettich GmbH & Co.KG, 
Tuttlingen, Germany 

Sigma 3K12,  
Sigma Laborzentrifugen GmbH, 
Osterode, Germany 

Optima LE-80K Preparative 
Ultracentrifuge, Type 50.2 Ti 
Rotor 

Beckman Coulter GmbH, Krefeld, 
Germany 

Cooling 
Ziegra Ice machine ZBE 70-35 

Ziegra Eismaschinen GmbH, 
Isernhagen, Germany  

Heraeus HERA freeze HFU-Basic 
Series, -86°C 

Thermo Fischer Scientific, 
Waltham, USA  

Concentrator Eppendorf concentrator 5301 
Eppendorf AG, Hamburg, 
Germany 

DNA isolation 
QIAamp DNA blood mini kit Qiagen GmbH, Hilden, Germany 
TECAN Te-MagS magnetic bead 
separation module 

TECAN Group Ltd., Männedorf, 
Switzerland 

Gases 
ALPHAGAZ 1 Argon 

AIR LIQUIDE Deutschland 
GmbH, Düsseldorf, Germany 

Cmc instruments NGM nitrogen-
membrane-generator (LCMS) 

Cmc instruments GmbH, 
Eschborn, Germany 

Heating 
Thermo Scientific Haake Open-
Bath Circulators C10-W19  

Thermo Fischer Scientific, 
Waltham, USA 

HPLC system Waters 2795 alliance HT 
Waters Corporation, Milford, 
USA 

Mass spectrometer 

MicroMass Quattro Micro API 
(coupled to HPLC system) Waters Corporation, Milford, 

USA MicroMass Quattro Premier XE 
(coupled to UPLC system) 

Microwave NN-5256, 900 watts 
Panasonic Deutschland GmbH, 
Hamburg, Germany 
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Equipment Description Company 

Mixer/Shaker/Vortex 

IKA MS2 Minishaker 
IKA – Werke GmbH & Co. KG, 
Staufen, Germany 

RM5-40 Horizontal Mixer 
Bennett Scientific Ltd., Newton 
Abbot, UK 

VARIOMAG Monotherm Heatable 
Magnetic Stirrer 

VARIOMAG-USA, Daytona 
Beach, USA 

PCR 
Eppendorf Mastercycler ep gradient 
S 

Eppendorf AG, Hamburg, 
Germany 

PSQ 96MA instrument Biotage AB, Uppsala, Sweden 

pH meter 
Schott Intruments Lab 870 pH 
meter (N 6000 A electrode) 

SI Analytics GmbH, Mainz, 
Germany 

Photometer Aurius CE2041 Spectrophotometer 
CECIL Instruments Ltd., 
Cambridge, UK 

Pipetting 

Biohit m10 (0.5-10 µL), m200 (20-
200 µL), m1000 (100-1000 µL) 
pipette 

Biohit Deutschland GmbH, 
Rosbach v. d. Höhe, Germany 

Combitips plus; 0.5, 1, 5, 10, 25 mL Eppendorf AG, Hamburg, 
Germany Multipette plus 

Pipette tips 20 µL, 200 µL, 1000 µL 
Sarstedt, Nümbrecht, Germany 

Serological Pipette 10 mL, 25 mL 

Reaction tubes 

PCR Tubes 0.2 mL, PCR clean 
Eppendorf AG, Hamburg, 
Germany 

Microtube 1.5 mL 

Sarstedt, Nümbrecht, Germany 
Tube 12 mL, 105x16.8 mm, PS; 
Tube 15 ml, 120x17 mm, PP; Tube 
50 mL, 114x28 mm, PP 
OptiSeal Polyallomer Centrifuge 
Tubes 1 x 3 ¼ in. (26 x 77 mm), 
29.9 mL  

Beckman Coulter GmbH, 
Krefeld, Germany 

Sample preparation 

Oasis MAX (1 ccm/30 mg and 3 
ccm/60 mg) columns 

Waters Corporation, Milford, 
USA 

Varian Bond Elut PBA columns Varian Inc., Palo Alto, USA 

Ultrasonic cleaner VWR USC600T 
VWR International GmbH, 
Darmstadt, Germany 

UPLC columns 

Acquity UPLC HSS T3 column  
(50 mm x 2.1 mm (i.d.) 
1.8 µm particle size) 
Acquity UPLC BEH C18 column 
(50 mm x 2.1 mm (i.d.); 
1.7 µm particle size) 
Acquity UPLC BEH HILIC column 
(100 mm x 2.1 mm (i.d.); 
1.7 µm particle size) 

Waters Corporation, Milford, 
USA 

UPLC in-line filter 0.2 µm in-line filter 
Waters Corporation, Milford, 
USA 
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Equipment Description Company 

UPLC precolumns 

Acquity BEH C18 VanGuard pre-
column (5 mm x 2.1 mm (i.d.); 
1.7 µm particle size) 
Acquity HILIC VanGuard pre-
column (5 mm x 2.1 mm (i.d.); 
1.7 µm particle size) 

Waters Corporation, Milford, 
USA 

UPLC system Waters Acquity UPLC 
Waters Corporation, Milford, 
USA 

Vials and glassware 

5-SV – EPA Screw Top Vials, 5 
mL glass tubes 

Chromacol, Herts, UK 

11 mm Snap Cap with 
PTFE/Silicone septa 

SUN-Sri (Thermo Fischer), 
Rockwood, USA 

12 x 32 Maximum Recovery glass 
vials including Snap Caps with 
locked-in, Pre-slit PTFE/Sil Septa 

Waters Corporation, Milford, 
USA 

Snap/Crimp V-Vial 8002-SC-
D/V15µ 

Glastechnik Graefenroda GmbH, 
Gräfenroda, Germany 

Wheaton Sample Vial Clear, with 
Screw Thread, 19x65 mm, 12 mL, 
with Screw Caps 

neoLab Migge Laborbedarf-
Vertriebs GmbH, Heidelberg, 
Germany 

DURAN GL 45 glass bottles, 200 
mL, 500 mL, 1000 mL 

DURAN Group GmbH, 
Wertheim/Main, Germany 

Water purification Milli-Q Academic Millipore, Molsheim, France 
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Appendix C: Quantification of S-adenosyl homocysteine and S-

adenosyl methionine 
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Appendix D: Quantification of betaine, choline, and 

dimethylglycine 
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Appendix E: Primer for the MTHFR C677T genotype 

determination 
 
Primer Sequence Company 

MTHFR 677 CT forward- 
primer 

TTG AGG CTG ACC TGA 
AGC AC 

Invitrogen GmbH, Karlsruhe, 
Germany 

MTHFR 677 CT reverse-
primer 

Biotin-5GTG ATG CCC ATG 
TCG GTG 

Invitrogen GmbH, Karlsruhe, 
Germany 

MTHFR 677 CT sequencing-
primer 

GGT GTC TGC GGG AG Invitrogen GmbH, Karlsruhe, 
Germany 
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Appendix F: Reference ranges for laboratory parameters 
 
Parameter Sample material Method of 

determination 

Reference range 

ALAT  
Lithium-heparin 
plasma 

IFCC (37°C) 
males: 10 – 50 U/L 
females: 10 – 35 U/L 

Blood count 
EDTA whole 
blood 

SYSMEX  
SF 3000 or 
XE 5000 

males: 
Hb: 14.0 – 18.0 g/dL 
Hct: 41 – 53% 
 
females: 
Hb: 12.0 – 16.0 g/dL 
Hct: 36 – 46% 

CRP 
Lithium-heparin 
plasma 

Immunoturbidimetric 
determination 

< 5 mg/L 

Cholesterol, 
HDL, 
triglycerides 

Lithium-heparin 
plasma 

Colorimetric enzyme 
assay 

cholesterol:  
< 200 mg/dL  
 
HDL: 
males: 
35 – 55 mg/dL  
 
females: 
45 – 65 mg/dL  
 
triglycerides:  
< 200 mg/dL 

Creatinine 
Lithium-heparin 
plasma 

Jaffé determination  
(kinetic colorimetric 
assay) 

males: 0.7 – 1.2 mg/dL  
(61.9 – 106.1 µmol/La) 
 
females: 0.5 – 0.9 mg/dL  
(44.2 – 79.6 µmol/L) 

Glucose 
Lithium-heparin 
plasma 

UV test  
(hexokinase/G6P-DH) 

60 – 100 mg/dL  
a: Conversion factor creatinine: 88.4 
Reference values were retrieved October 11, 2010 from: http://www.uniklinikum-saarland.de/ 
facilities/departments-and-institutes/zentrallabor/referenzwerte-verfahrensliste/.  
Conversion factors were retrieved October 11, 2010 from: http://jama.ama-assn.org/content/ 
vol295/issue1/images/data/103/DC6/JAMA_auinst_si.dtl. 
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Appendix G: Study information sheets long-term 

supplementation study  
 
Informationen für die Hausärztin bzw. den Hausarzt 

KnoViB: Knochenstoffwechsel und Vitamin B 
Sehr geehrte Frau Kollegin, sehr geehrter Herr Kollege, 
Ihre Patientin bzw. Ihr Patient 
_______________________________________ nimmt an einer von der 
Ethikkommission genehmigten prospektiven, randomisierten, 
doppelblinden und placebokontrollierten Studie teil. Diese wird von der 
Universitätsklinik Homburg in Zusammenarbeit mit der Geriatrischen 
Rehaklinik St. Ingbert durchgeführt. 

Ziel: 
Es ist das Ziel, die in vitro beobachteten positiven Effekte von Vitamin B 
auf den Knochenstoffwechsel auch prospektiv in vivo bei älteren 
Menschen nachzuweisen. Dies könnte Auswirkungen auf die 
Ernährungsempfehlungen einer großen Bevölkerungsschicht haben. 

Ablauf: 
Jeder Patient erhält als Basistherapie Vitamin D und Calcium. Zusätzlich 
erhalten die Patienten entweder Vitamin B6, Folsäure (=B9) und Vitamin 
B12 oder Placebo. Die Verum- und Placebokapseln unterscheiden sich 
äußerlich nicht. Die Vitamin B – Dosen entsprechen denen, die zur 
Vorbeugung und Behandlung von Vitaminmangelerscheinungen 
empfohlen sind. Jeder Patient nimmt ein Jahr lang täglich morgens eine 
grüne, mittags eine weiße und abends eine braune Kapsel ein. Den 
Medikamentenvorrat erhalten die Patienten von uns. Zu Beginn der 
Untersuchung und am Ende wird von uns Blut und Urin abgenommen, um 
darin verschiedene Marker des Vitamin- und Knochenstoffwechsels zu 
messen. Wir werden in regelmäßigen Abständen telefonisch mit den 
Patienten oder den Angehörigen in Kontakt bleiben. 

Abbruchkriterien: 
Selbstverständlich hat jede medizinisch erforderliche Behandlung Vorrang 
vor der Studie. Deshalb ergeben sich folgende Abbruchkriterien: 
Medikamente:  Corticosteroide, Methotrexat, spezifische 

osteologische Therapie, zusätzliche Therapie mit 
Vitamin B12, Folsäure, Vitamin B6, Vitamin D 
oder Calcium. 

Akute Erkrankungen: Herzinfarkt, Krebserkrankung, Apoplex oder ein 
operativer Eingriff führen ebenfalls zum 
Studienabbruch. 

Ihre Aufgabe: 

Außer den Abbruchkriterien brauchen Sie nichts zu beachten. Sollten 

diese eintreten, bitten wir um eine kurze Benachrichtigung.  
Wenn Sie weitere Fragen haben oder Informationen wünschen, können Sie 
sich gerne mit uns in Verbindung setzen:  
Frau Prof. Dr. Obeid: Tel. 06841 - 1630711, CA Dr. Eckert: s.o. 

Vielen Dank 

Mit freundlichen kollegialen Grüßen 

Dr. Eckert 

 

Gesundheitspark 1 

66386 St. Ingbert 

Telefon: 0 68 94 – 108 451 

Telefax: 0 68 94 – 108 452 

E-mail: geriatrie@ 
kkh-geriatrie-igb.de 

Internet: www.kkh-geriatrie-igb.de 

 

GERIATRISCHE REHAKLINIK 

Zertifiziert nach DIN EN ISO 9001 
Gem. Kr. nach § 4 Abs. 5 MB/KK 

CA Dr. Rudolf Eckert 

Ihr Ansprechpartner/-in: 

Frau Ley 

Unsere Zeichen: Eck /  
Telefon: 0 68 94 / 108 - 451 

Datum: August 2009 

 

Wir behandeln ältere  
multimorbide Patienten,  
deren Selbständigkeit  
eingeschränkt ist: 

fachärztlich: 
- Innere Medizin  
- Physikalische und  

Rehabilitative Medizin 
- Allgemeinmedizin 
- konsiliarisch u. a. 

Chirurgie  
Unfallchirurgie 
Kardiologie 
Neurologie 

rehabilitativ: 
- Ergotherapie 
- Logopädie 
- Pflegedienst 
- Physiotherapie 
- Physikalische Therapie 
- Psychologie 
- Sozialdienst 

 

Geschäftsführer: 
Wolfgang Steil 
Dipl.-Kfm. Frank F. Banowitz 

Aufsichtsratsvorsitzender: 
Clemens Lindemann 

Amtsgericht Saarbrücken:  
HRB 32799 
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Patienteninformation und Einwilligungserklärung 
 
Untersuchung möglicher Auswirkungen der Nahrungsergänzung mit Vitamin B6, Folsäure 

(= Vitamin B9) und Vitamin B12 auf den Knochenstoffwechsel zusätzlich zur Therapie mit 

Vitamin D und Kalzium 

 
 
Sehr geehrte Patientin, sehr geehrter Patient, 
wir möchten Sie bitten, an einer Studie der Universitätsklinik Homburg in Zusammenarbeit mit 
der Geriatrischen Rehaklinik St. Ingbert teilzunehmen, mit der die Auswirkungen von 
Vitaminpräparaten auf den Knochenstoffwechsel untersucht werden.  
 

Gründe, Ablauf und Ziel der Untersuchung 
Mit zunehmendem Alter wird der Knochen immer stärker entkalkt. Dies führt schließlich zu 
Osteoporose. Wir wollen untersuchen, ob die Vitamine B6, Folsäure (= Vitamin B9) und Vitamin 
B12, die zusätzlich zu der üblichen Therapie mit Vitamin D und Kalzium eingenommen werden, 
eine positive Wirkung auf den Knochenaufbau haben. 
Der Knochenstoffwechsel reagiert sehr langsam. Deshalb dauert die Therapie ein Jahr. Sie 
nehmen in dieser Zeit täglich morgens eine grüne, mittags eine weiße und abends eine braune 
Kapsel ein, die Vitamin D und Kalzium (mit schon nachgewiesener guter Wirkung auf den 
Knochen) und ggf. zusätzlich die oben genannten B-Vitamine ein. Zu Beginn der Untersuchung 
und nach einem Jahr wird der Urin untersucht und es wird Ihnen Blut abgenommen, um darin die 
Konzentrationen der Vitamine und die der Marker des Knochenstoffwechsels zu messen. 
Die Einnahme der niedrig dosierten Vitaminpräparate ist unbedenklich, da die Dosen offiziell zur 
Behandlung und Vorbeugung von Vitaminmangelerscheinungen empfohlen sind und zuvor 
Gegenindikationen ausgeschlossen wurden. Sie werden alle 3 Monate telefonisch nach Ihrem 
Befinden gefragt und erhalten in diesem Intervall von uns kostenlos die nächsten Kapseln. Die 
Blutentnahme aus einer Armvene erfolgt mit den im Krankenhaus üblichen Nadeln. Die damit 
verbundenen Risiken wie z. B. Bluterguss oder Verletzung anderer Gewebe sind minimal. 
Durch die Studie haben Sie praktisch keine zusätzlichen Belastungen. Sie sollten lediglich darauf 
achten, dass Sie keine anderen Vitamine der B – Gruppe und nicht zusätzlich Vitamin D und 
Kalzium einnehmen. Wenn die Einnahme von bestimmten Medikamenten, die den 
Knochenaufbau oder den Knochenabbau beeinflussen, während des Studienzeitraumes notwendig 
wird, ist die weitere Teilnahme an dieser Untersuchung nicht möglich. Ihr Hausarzt ist darüber 
informiert. 
Diese Studie kann einen Beitrag zum effektiven und nebenwirkungsarmen Vorbeugen oder zur 
Therapie mit Vitaminen liefern, um der Knochenentkalkung entgegenzuwirken. Ihre Teilnahme 
hat damit Bedeutung für die Weiterentwicklung der medizinischen Therapie. Zusätzlich sparen 
Sie die Kosten der ohnehin sinnvollen Vitaminergänzung. 

 
Einwilligungserklärung 
Die Studienteilnahme ist freiwillig. Sie können jederzeit Ihre Einwilligung widerrufen und die in 
der Studie verwendete Blutprobe von der Untersuchung zurückziehen. Versicherungsschutz 
besteht im Rahmen einer allgemeinen Patientenversicherung der Geriatrischen Rehaklinik St. 
Ingbert.  
 
Datenschutz 

1) Ich erkläre mich damit einverstanden, dass die im Rahmen dieser klinischen Prüfung erhobene 
Daten, insbesondere Angaben über meine Gesundheit, in Papierform und auf elektronischen 
Datenträgern in der geriatrischen Rehaklinik St. Ingbert aufgezeichnet werden. Soweit 
erforderlich, dürfen die erhobenen Daten pseudoanonymisiert (verschlüsselt) weitergegeben 
werden. 
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2) Außerdem erkläre ich mich damit einverstanden, dass autorisierte und zur Verschwiegenheit 
verpflichtete Beauftragte die zuständigen inländischen und ausländischen 
Überwachungsbehörden in meine beim Prüfarzt vorhandenen personenbezogenen Daten, 
insbesondere meine Gesundheitsdaten, Einsicht nehmen, soweit dies für die Überprüfung der 
ordnungsgemäßen Durchführung der Studie notwendig ist. Für diese Maßnahme entbinde ich den 
Prüfarzt von der ärztlichen Schweigepflicht. 
 
3) Die Einwilligung zur Erhebung und Verarbeitung meiner personenbezogenen Daten, 
insbesondere der Angaben über meine Gesundheit, ist unwiderruflich. Ich bin bereits darüber 
aufgeklärt worden, dass ich jederzeit die Teilnahme an der klinischen Prüfung beenden kann. Im 
Fall eines solchen Widerrufs meiner Einwilligung, an der Studie teilzunehmen, erkläre ich mich 
damit einverstanden, dass die bis zu diesem Zeitpunkt gespeicherten Daten ohne 
Namensnennung weiterhin verwendet werden dürfen, soweit dies erforderlich ist.  
 
4) Ich erkläre mich damit einverstanden, dass meine Daten nach Beendigung oder Abbruch der 
Prüfung mindestens zehn Jahre aufbewahrt werden, wie es die Vorschriften über die klinische 
Prüfung von Arzneimitteln bestimmen. Danach werden meine personenbezogenen Daten 
gelöscht, soweit nicht gesetzliche, satzungsmäßige oder vertragliche Aufbewahrungsfristen 
entgegenstehen. 
 
 

Einwilligungserklärung zu Studienteilnahme und Datenschutz 
 

Mit Ihrer Unterschrift erklären Sie, dass Sie diese Probandeninformation gelesen und 

verstanden haben und freiwillig zur Teilnahme an der Untersuchung bereit sind.  

 

Ferner stimmen Sie mit Ihrer Unterschrift der Weitergabe der während der Studie 

erhobenen Daten in anonymisierter Form an autorisierte Dritte zu.  

 

Sie haben das Recht, jederzeit die Teilnahme an der Untersuchung ohne Nennung von 

Gründen zu widerrufen.  

 

 

 

___________________        ______________________          ______________________ 

Ort, Datum                          Name Patient                                  Unterschrift Patient 

 

 

                                                                                                        ______________________ 

                                                                                                 aufklärender Arzt 
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Beeinflussung des Knochenstoffwechsels durch Vitamin B (KnoViB) 

 
Untersuchung möglicher Auswirkungen einer Vitamin B6-, Folat- und Vitamin B12 - 

Supplementation zusätzlich zu Vitamin D und Calcium auf den Knochenstoffwechsel bei 

älteren Menschen (randomisiert, doppelblind) 

 

Randomisierungsbogen 
 

1 Im Zentrallabor UKS zu erledigen: 

Sr.: Aktuelles Datum:  . .20  

Sr.: Interne Patienten-Nr.:    

Sr.: Initialen Patient: Vorname, Name:    

Sr.: Geschlecht:   männlich  

weiblich 

Sr.: Geburtsdatum:  . .19  

CA: Handzeichen Zentrallabor (Obeid): _______ 

Sek: Fax an Biometrie:  06841 – 16 22062 
(Bei Rückfragen: Tel. 06841 – 16 22060) 

 

2 In der Biometrie zu erledigen: 

Zuordnung Therapiegruppe:   A  B 

Patienten-Nr. in der Studie:  

Handzeichen Biometrie: _______ 

Fax an Zentrallabor:  06841 – 16 30703 

(Bei Rückfragen: Tel. 06841 – 16 30711) 
 

 

3 Therapiebeginn: 

 

CA: Info an Station und Therapiebeginn: . .20  

CA: Handzeichen Zentrallabor (Obeid): _______ 
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Untersuchung über die Beeinflussung des Knochenstoffwechsels durch  

Vitamin B (KnoViB) 
 

Telefoncheckliste 
(s. R. = siehe Bemerkungen auf der Rückseite diese Blattes) 

 

Datum: ___________________ 

Guten Tag Frau/Herr ________________________! 

Mein Name ist _____________________________ von der Universitätsklinik Homburg. Sie / 

Ihre Angehörige nehmen an einer Untersuchung über den Einfluss verschiedener Vitamine auf 

den Knochenstoffwechsel teil. Die Untersuchung wurde in der geriatrischen Rehaklinik St. 

Ingbert begonnen. Jetzt bin ich für Sie zuständig. Haben Sie einen Moment Zeit zur 

Beantwortung einiger Fragen? (Wenn nein: Wann kann ich Sie wieder anrufen (Tag, Uhrzeit)? 

 

1. Wie geht es Ihnen?  s. R.___________________________________________________  

2. Haben Sie außergewöhnliche gesundheitliche Beschwerden?  s. R.__________________ 

3. Wurden Sie in letzter Zeit operiert?  s. R. ______________________________________ 

4. Waren Sie in letzter Zeit im Krankenhaus?  s. R.________________________________ 

5. Nehmen Sie noch regelmäßig die Vitamintabletten ein?  s. R.______________________ 

6. Wann nehmen Sie die Tabletten ein?  s. R._____________________________________ 

7. Wie viele Vitamintabletten haben Sie noch?  s. R._______________________________ 

8. Wir würden Ihnen gerne den Bedarf für die nächsten 3 Monate per Post schicken!  s. R. 

Haben Sie vom Arzt neue Medikamente oder Vitamine bekommen?  s. R.____________ 

9. Wenn ja, welche?  s. R.____________________________________________________ 

10. Haben Sie Ihren Hausarzt gewechselt oder sind Sie noch bei Dr._____________________?  

 s. R.___________________________________________________________________ 

 

Das sind schon alle meine Fragen. Vielen Dank für die Auskunft, Frau/Herr _________! Ich 

wünsche Ihnen (auch weiterhin) alles Gute und werde mich in 3 Monaten wieder telefonisch bei 

Ihnen melden. Sollten Sie noch weitere Fragen haben, können Sie mich gerne anrufen. Meine 

Telefonnummer ist ____________________. 

 

Auf Wiederhören! 




