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1	
  ZUSAMMENFASSUNG	
  

3-Bromomethcathinon (3-BMC) und 3-Fluoromethcathinon (3-FMC) sind zwei neue 

Designerdrogen die zu den Neuerscheinungen der letzten Jahre auf dem weltweiten 

Drogenmarkt zählen und u.a. 2009 in Israel beschlagnahmt wurden. Beide Substanzen finden 

Verwendung als sogenannte „Recreational Drugs“, können über das Internet als sogenannte 

„Badesalze“ oder „Düngemittel“ bezogen werden und traten auch in Deutschland auf. 

Ziel dieser Studie ist die Identifizierung der Phase I und Phase II Metabolite in Rattenurin 

sowie menschlichen Lebermikrosomen unter Verwendung von Gaschromatographie-

Massenspektrometrie (GC-MS) oder Flüssig-Chromatographie-Hochauflösender-

Massenspektrometrie (LC-HRMS) Techniken. Nach Extraktion der Urinproben, jeweils mit 

und ohne Konjugatspaltung, erfolgte die Auftrennung und Identifikation der Metaboliten  

mittels GC-MS und LC-HRMS. Die nachgewiesenen Hauptschritte im Stoffwechsel waren 

demnach die N-Demethylierung, die Reduktion der Ketogruppe zum korrespondierenden 

Alkohol, die Hydroxylierung des aromatischen Ringsystems und Kombinationen dieser 

Schritte. Bezüglich 3-Bromomethcathinon war N-Demethyl-dihydro-3-bromomethcathinon 

der Hauptmetabolit in vivo, für 3-Fluoromethcathinon waren dies Hydroxy-3-

fluoromethcathinon und N-Demethyl-dihydro-3-fluoromethcathinon. Die 

Elementarzusammensetzung der identifizierten Metabolite wurden mittels LC-HRMS 

verifiziert. Auch wurden die korrespondierenden Phase II Metaboliten unter Verwendung der 

LC-HRMS identifiziert.  

Die beiden Substanzen konnten in der sogenannten „Systematisch toxikologischen Analyse“ 

(STA) - nach Verabreichung einer von Konsumenten vermutlich gebräuchlichen Dosis an die 

Ratten - im Urin nachgewiesen werden. 

Schlussendlich war ein weiteres Ziel dieser Arbeit die Identifizierung der menschlichen 

Cytochrom P450 Isoenzyme, welche die wichtigsten Stoffwechselschritte katalysieren. Dies 

ermöglicht Schlussfolgerungen bezüglich Medikamenteninteraktionen oder genetischen 

Variationen, die für Konsumenten von Stoffgemischen, welche diese Designerdrogen 

enthalten, von Bedeutung sein können. Den Cytochrom P-450 (CYP) Enzym-basierten 

Kinetikstudien zufolge war CYP2B6 für die N-Demethylierung von sowohl 3-

Bromomethcathinon als auch von 3-Fluoromethcathinon das in vivo wichtigste Enzym. 
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2	
  SUMMARY	
  

Among the substances of abuse that appeared during the last years on the worldwide drug 

market are 3-bromomethcathinone (3-BMC) and 3-fluoromethcathinone (3-FMC), two new 

designer drugs, which were seized 2009 in Israel among others. Both substances, used as 

recreational drugs, can be purchased online as so called “bath salts” or “plant feeders” and 

appeared also in Germany. The aim of the presented study was to identify the 3-BMC and 3-

FMC phase I and phase II metabolites in rat urine and human liver microsomes using gas 

chromatography-mass spectrometry (GC-MS) or liquid chromatography-high resolution mass 

spectrometry (LC-HRMS) techniques. Rat urine samples were extracted with and without 

enzymatic cleavage of the conjugates. Separation and identification of the metabolites was 

executed via GC-MS and LC-HRMS. The main metabolic steps were N-demethylation, 

reduction of the keto group to the corresponding alcohol, hydroxylation of the aromatic 

system and combinations of these steps. For 3-BMC, the main in vivo metabolites were N-

demethyl-dihydro-3-BMC, for 3-FMC hydroxy-3-FMC and N-demethyl-dihydro-3-FMC. 

LC-HRMS verified the elemental composition of the metabolites postulated by GC-MS 

interpretation. The corresponding Phase II metabolites were also identified using the LC-

HRMS analysis approach. Additionally, both compounds could be detected according to the 

standard systematic toxicological analysis (STA) in rat urine after administration of a 

suspected recreational dose to rats. 

Another aim was the identification of the human cytochrome P450 (CYP) isoenzymes 

catalyzing the main metabolic step allowing conclusions on drug-drug interactions or genetic 

variations gathering importance for humans consuming drugs containing these designer drugs. 

According to the CYP enzyme kinetic studies, CYP2B6 was the most relevant enzyme for 

both the N-demethylation of 3-BMC and 3-FMC. 
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3	
  INTRODUCTION	
  

In recent years, many new substances appeared on the drugs of abuse market. Among these 

compounds were new cathinone derivates that are synthesized and sold via the internet to a 

worldwide customer base as so called new “legal highs”, declared as “plant feeders” or “bath 

salts”. 

The added ingredients of the compounds sold online are caffeine, lidocaine, procaine, or often 

even unknown [1]. 

Another problem is the use of trivial names for these substances of abuse, so called “street 

names”, leading to the risk of misinterpretation because of names sounding too similar, e.g. 

“Mephedrone” (4-Methylmethcathinone), “Methedrone” (4-Methoxymethcathinone), 

“Flephedrone” (4-Fluoromethcathinone) or “Fluphedrone” (3-Fluoromethcathinone) [2]. 

Last but not least, due to the fact that the producers can not be controlled and are not subject 

of any restriction, ingredients get replaced or new agents are added but the compound is still 

sold under the identical name, as it is discussed in several online forums, e.g. for the 

compound “charge+” that will also be discussed later because of its agent 3-FMC [3].  

In conclusion, the risks for health and possible addiction can not be estimated and seem to be 

very high as, in the worst case, a recreational user of these online-sold drugs of abuse is 

consuming an unknown amount of a compound of unknown main agent with unknown added 

substances.  

In 2009, several of these psychoactive substances were seized by the Israeli police, among 

others 3-BMC and 3-FMC (fluphedrone).  Samples were sent to our institute with request for 

further research. 

 

3.1	
  Chemical	
  characterization	
  of	
  3-­‐BMC	
  and	
  3-­‐FMC	
  

3-BMC and 3-FMC are synthetic derivates of cathinone, a natural stimulant with effects 

similar to amphetamine, which can be synthesized and also extracted from fresh leaves of 

Catha Edulis [4]. 

The only difference concerning the chemical structure of both substances lies within the 

different ring-substituting heteroatom in ring position three, which is bromine in the case of 3-

BMC and fluorine for 3-FMC as depicted in Fig. 1.  

As these substances are cathinone derivates, a characteristic keto-group can be found in beta 

position. The alpha carbon is the chiral center of the two analytes.   
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The molecular formula for 3-BMC is C10H12BrNO with a nominal molecular mass of 242 

g/mol, according to the natural appearance of the two isotopes 79Br, accounting for 50.69% 

and 81Br, making up 49.31% of  the natural bromine appearance, leading to a molecular 

weight of 241 Da or 243 Da, respectively. The IUPAC name of 3-BMC is 1-(3-

bromophenyl)-2-(methylamino)propan-1-one. 

Concerning 3-FMC, the molecular formula is C10H12FNO with a nominal molecular mass of 

181 g/mol and 1-(3-fluorophenyl)-2-(methylamino)propan-1-one as IUPAC name. 

 

 

	
  

 

 

Figure 1. Chemical structure of 3-bromomethcathinone (left) and 3-fluoromethcathinone (right); 
numbering according to the IUPAC nomenclature (blue), alpha-beta numbering in relation to 
functional group (red) 

	
  

3.2	
  Effects	
  of	
  3-­‐BMC	
  and	
  3-­‐FMC	
  

Except for 3-BMC, for which was shown to act as a serotonin and norepinephrine reuptake 

inhibitor [5] with more intense antidepressant than stimulating properties [6], there is no 

scientific knowledge about the effects of 3-BMC and 3-FMC on the human organism after 

consumption.  

Due to their chemical similarity to mephedrone (4-methylmethcathinone), the most popular of 

the cathinone derivates [7], and according to users’ reports found in online forums, both 

should cause similar stimulant and empathogenic effects as mephedrone [8].  

In a study published by Winstock et al. [9], mephedrone consumers indicated the most 

prevalent effects: increased energy, euphoria, talkativeness, urge to move and do things, 

empathy, bruxism, body sweats, no appetite for food, heart racing, feeling restless or anxious, 

increased sexual desire, forgetting things, overheating, tremor in extremities, blurred vision 

and improved concentration. Described withdrawal effects were tiredness, insomnia at end of 

session, nasal congestion, inability to concentrate, irritability, lost memory of mephedrone 

session, depression, being in an emotional state and anxiety.  
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Trip reports which can be found in numerous online forums revealed that 3-BMC and 3-FMC 

seem to be consumed orally, smoked, nasal inhaled or injected intravenously [8].  

These compounds are scheduled in Israel, Australia, New Zealand and other countries, but not 

in Germany (so far -03/2012). 

They are still available via the internet, e.g. as part of a compound named “Charge+” or as 

agent in capsules named “Lift”, “Sub Coca Dragon”,  “High Spirit” or “Neo Dove 2” [2,10]. 

Fig. 2 shows pictures of “Charge+” and “Lift”, two recreational drugs whose main agent is 3-

FMC. 

 

 

 

 

 

 

 
 
Figure 2.  Seized “Charge+“ (left) and online bought capsules called “Lift“ (right); both containing 
3-FMC 
	
  

 

3.3	
  Former	
  publications	
  on	
  3-­‐BMC	
  and	
  3-­‐FMC	
  

As mentioned above, 3-BMC was already object of research in a study showing 3-BMC’s 

ability to inhibit the reuptake of serotonin and norepinephrine by Foley and Cozzi [5, 6]. 

Archer published GC-MS and NMR data on the three fluoromethcathinone isomers 2-FMC, 

3-FMC and 4-FMC.  He identified 3-FMC as the agent of “Lift”, “Sub Coca Dragon”,  “High 

Spirit” and “Neo Dove 2” by using the NMR technique which is able to distinguish between 

the three isomers because of differences in the values in the aromatic region of the 1H NMR 

spectra whereas the GC-MS technique was not able to differentiate the isomers due to similar 

fragmentation and retention times [2].    

Westpfahl et al. presented GC-MS data of 3-FMC and some of its derivatives as well as NMR 
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data by analyzing and identifying 3-FMC as main agent of an in 2009 in Baden Württemberg 

(Germany) seized compound named “Charge+” [10]. 

A Phase I metabolism study was operated by Pawlik et al. using rabbit liver slices, indicating 

N-demethylation and ring-hydroxylation as the first metabolic steps [11]. 

 

3.4	
  Aim	
  of	
  the	
  present	
  work	
  

In clinical and forensic toxicology, screening for and determination of drugs (of abuse) is an 

important task. Sophisticated general screening procedures allow detection of a series of drug 

classes in one step [12,13].  

The aim of this study was to identify the phase I and phase II metabolites of 3-BMC and 3-

FMC in rat urine as well as in human liver microsomes by GC-MS and LC-HRMS.  

Additionally, the aim of the work was to identify the human CYP isoenzymes responsible for 

the main metabolic steps of these compounds.  

Finally, targets for detectability and identification of 3-BMC and 3-FMC in urine by the 

standard systematic toxicological analysis (STA) using GC-MS or LC-MSn should be defined 

to detect an intake of 3-BMC and 3-FMC. 
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4	
  EXPERIMENTAL	
  PROCEDURES	
  /	
  MATERIAL	
  AND	
  METHODS	
  

4.1	
  Chemicals	
  and	
  reagents	
  

3-BMC and 3-FMC were provided by the analytical laboratory oft he DIFS Israel Police for 

research purposes. Isolute HCX cartridges (130 mg, 3 mL) were obtained from Biotage 

(Uppsala, Sweden). NADP+ was obtained from Biomol (Hamburg, Germany), and isocitrate 

and isocitrate dehydrogenase from Sigma (Taufkirchen, Germany). All other chemicals and 

reagents were obtained from E. Merck, Darmstadt (Germany) and were of analytical grade. 

The following microsomes were from Gentest and delivered by NatuTec (Frankfurt/Main, 

Germany): baculovirus-infected insect cell microsomes (Supersomes), containing 1 nmol/mL 

of human cDNA-expressed CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, 

CYP2D6, CYP2E1 (2 nmol/mL), CYP3A4, or CYP3A5 and pooled human liver microsomes 

(pHLM, 20 mg microsomal protein/mL, 400 pmol total CYP/mg protein). After delivery, the 

microsomes were thawed at 37°C, aliquoted, snap-frozen in liquid nitrogen, and stored at -

80°C until use. 

 

4.2	
  Urine	
  samples	
  

The investigations were performed using urine of male rats (Wistar, Charles River, Sulzfleck, 

Germany) for toxicological diagnostic reasons according to the corresponding German law 

(http://www.gesetze-im-internet.de/tierschg/). They were administered in an aqueous 

suspension by gastric intubation of a single 20mg/kg body mass dose of 3-BMC or 3-FMC for 

identification oft the metabolites and a single 1 mg/kg body mass dose each for toxicological 

analysis. The rats were housed in metabolism cages for 24 h, having water ad libitum. Urine 

was collected separately from the faeces over a 24-h period. All samples were directly 

analyzed and then stored at -20°C. Blank urine samples were collected before drug 

administration to check whether the samples were free of interfering compounds.  

 

4.3	
  Sample	
  preparation	
  

4.3.1	
  Sample	
  preparation	
  for	
  identification	
  of	
  phase	
  I	
  metabolites	
  by	
  GC-­‐MS	
  and	
  LC-­‐HRMS	
  

A 2.5 mL portion of urine was adjusted to pH 5.2 with acetic acid (1 M, approximately 50 µl) 

and incubated at 56°C for 1.5 h with 50 µl of a mixture (100 000 Fishman units/mL) of 

glucuronidase (EC No. 3.2.1.31, E. Merck, Darmstadt, Germany) and arylsulfatase (EC No. 
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3.1.6.1, E. Merck, Darmstadt, Germany), from Helix Pomatia L. The urine sample was then 

diluted with 2.5 mL of water and loaded on a HCX cartridge, previously conditioned with 

1 mL of methanol and 1 mL of water. After passage of the sample, the cartridge was washed 

with 1 mL of water, 1 mL of 0.01 M hydrochloric acid, and again with 1 mL of water. The 

retained non-basic compounds were first eluted into a 1.5 mL reaction vial with 1 mL of 

methanol (fraction 1), whereas the basic compounds were eluted in a second step into a 

different vial with 1 mL of a freshly prepared mixture of methanol/aqueous ammonia 32% 

(98:2 v/v, fraction 2). The eluates were gently evaporated to dryness under a stream of 

nitrogen at 56°C and reconstituted in 50 µL of acetonitrile for LC-HRMS. A 10 µL aliquot 

was injected into the LC (only underivatized) or 1 µL into GC. 

 

4.3.2	
  Sample	
  preparation	
  for	
  identification	
  of	
  phase	
  II	
  metabolites	
  by	
  HR-­‐ESI-­‐MS	
  

For elucidating the formation of glucuronides and sulfates, 200 µL of urine was mixed with 

200 µL of acetonitrile for protein precipitation, centrifuged at 14.000g for 5 min and the 

supernatant was transferred into an autosampler vial. A 10 µL aliquot of this solution was 

injected into the LC system. 

 

4.3.3	
  Sample	
  preparation	
  for	
  systematic	
  toxicological	
  analysis	
  (STA)	
  by	
  GC-­‐MS	
  

Systematic toxicological analysis procedure (hydrolysis, extraction and microwave-assisted 

acetylation) for urine was used according to published procedures [12,14]. Briefly, the samples 

(5 mL) were divided into two aliquots, and one part was submitted to acid hydrolysis. 

Thereafter, the sample was adjusted to pH 8-9 and the other aliquot of untreated urine was 

added. This mixture was extracted with a dichloromethane-isopropanol-ethyl acetate mixture 

(1:1:3 v/v/v) and the organic layer was evaporated to dryness. The residue was acetylated 

with an acetic anhydride-pyridine mixture under microwave irradiation. After evaporation of 

the derivatization mixture, the residue was dissolved in 100 µL of methanol, and 2 µL was 

injected into the GC-MS system. 
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4.4	
  Enzymatic	
  Part	
  

4.4.1	
  Microsomal	
  Incubations	
  

Microsomal incubations were performed at 37°C with 250 µM 3-BMC/3-FMC with 

CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, 

or CYP3A5 for 30 min. Besides enzymes and substrate, incubation mixtures (final volume: 50 

µL) consisted of 90 mM phosphate buffer (pH 7.4), 5 mM Mg2+, 5 mM isocitrate, 1.2 mM 

NADP+, 0.5 U/mL isocitrate dehydrogenase, and 200 U/mL superoxide dismutase. For 

incubations with CYP2A6 or CYP2C9, phosphate buffer was replaced with 45 mM and 90 

mM Tris-buffer, respectively, according to the Gentest manual. Reactions were started by 

addition of the ice-cold microsomes and stopped with 50 µL of an ice-cold mixture of 

acetonitrile with 0.1% formic acid, containing the internal standard (metamfepramone, 10 

µM). The solution was centrifuged for 2 min at 14000 g, 50 µL oft he supernatant phase was 

transferred to an autosampler vial and injected into the LC-HRMS apparatus for analysis, and 

LC-HRMS conditions were chosen as described below. 

 

4.4.2	
  Initial	
  screening	
  studies	
  

Incubations were performed with 250 µM of 3-BMC or 3-FMC and 50 pmol/mL of CYP1A2, 

CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, or 

CYP3A5 for 60 min. 

 

4.4.3	
  Kinetic	
  studies	
  

Kinetic constants of N-demethylation were derived from incubations with an incubation time 

of 10 min 30 pmol/mL (P450s) protein concentration. Incubation time and enzyme 

concentration were chosen to be within a linear range of metabolite formation. The substrate 

concentrations were used as provided in Table 1. 

 

Enzyme kinetic constants were estimated by non-linear curve-fitting using GraphPad Prism 

5.00 software (San Diego, CA). The Michaelis-Menten equation (Eqn (1)) was used to 

calculate apparent Km and Vmax values for single-enzyme systems. 

 

 

 

][
][max

SK
SVV

m +

×
= (1) 
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Eadie-Hofstee plots were used to check for biphasic kinetics [15]. If the Eadie-Hofstee plot 

indicated biphasic kinetics, equation (1) and the alternative equation (2) for a two site binding 

model were applied to the respective data. If equation (2) was found to fit the data 

significantly better (F-test, p < 0.05), biphasic kinetics were assumed. 

 

 

 

 

 

Table 1. Substrate concentrations used for microsomal incubations [µM]            

3-FMC 
 

3-BMC 

CYP2B6 CYP2D6 CYP2C19 CYP2B6 CYP2D6 
25 1 1 75 1 
75 10 10 125 10 

125 25 75 250 25 
250 75 125 500 75 
500 125 250 750 125 
750 250 500 1000 250 

1000 500 750 1500 500 
1500 750 1000   

 1000    
 1500    

 
 

 

 

4.4.4	
   Calculation	
   of	
   relative	
   activity	
   factors,	
   contributions,	
   and	
   percentages	
   of	
   net	
  

clearance	
  

The relative activity factor (RAF) approach [16-18] was used to account for differences in 

functional levels of redox partners between the two enzyme sources. The turnover rates (TR) 

of CYP2C19 (probe substrate (PS) S-mephenytoin), CYP2D6 (PS bufuralol) and CYP2B6 

(PS 7-ethoxy-4-trifluoromethylcoumarin) in insect cell microsomes (ICM) and HLM were 

taken from the supplier's data sheets. The RAFs were calculated according to equation (3). 

 

 

 

][
][

][
][

2,

2max,

1,

1max,

SK
SV

SK
SV

V
mm +

×
+

+

×
=

RAFenzyme =
TRPS  in HLM 
TRPS  in ICM

(2) 

(3) 
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The enzyme velocities Venyzme (see equation (1)) for the respective metabolic reactions were 

calculated at different substrate concentrations and were then multiplied with the 

corresponding RAF leading to a value, which is defined as 'contribution'. The Vmax and the 

Km values (equation (1)) were obtained from the incubations with cDNA-expressed P450s. 

 

 

 

From these corrected activities (contributions) the percentages of net clearance by a particular 

P450 at a certain substrate concentration can be calculated according to equation (5): 

 

 

 

 

4.5	
  GC-­‐MS	
  /	
  LC-­‐HRMS	
  settings	
  

4.5.1	
  GC-­‐MS	
  apparatus	
  for	
  identification	
  oft	
  the	
  Phase	
  I	
  metabolites	
  

The extracts were analyzed using a Hewlett Packard (HP, Agilent, Waldbronn, Germany) 

5890 Series II GC combined with an HP 5972 MSD mass spectrometer and an HP MS 

ChemStation (DOS series) with HP G1034C software Version C03.00. The GC conditions 

were as follows: splitless injection mode; column, HP-1 capillary (12m x 0.2mm I.D.), cross-

linked methyl silicone, 330 nm film thickness; injection port temperature, 280 °C; carrier gas, 

helium; flow rate, 1 mL/min; column temperature, programmed from 100 °C to 310 °C at 15 

°/min, initial time 3 min, final time 8 min. The MS conditions were as follows: full-scan 

mode, m/z 50-550 u; EI mode, ionization energy, 70 eV; ion source temperature, 220 °C; 

capillary direct interface, heated at 280 °C. 

 

4.5.2	
  GC-­‐MS	
  apparatus	
  and	
  procedure	
  for	
  STA	
  

An HP 5890 Series II gas chromatograph combined with an HP 5972A MSD mass 

spectrometer was used. The GC conditions were the same as fort he metabolism studies with 

the exception of temperature, which was programmed from 100 °C to 310 °C at 30 °/min. The 

enzymeenzymeenzyme VRAFoncontributi ×=

100[%] ×=
∑ enzyme

enyzme
enyzme oncontributi

oncontributi
clearance

(4) 

(5) 
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MS conditions were as follows: full-scan mode, m/z 50-550 u; EI mode, ionization energy, 70 

eV; ion source temperature, 220 °C; capillary direct interface, heated at 260 °C. 

For toxicological detection of acetylated drugs and their metabolites, mass chromatography 

was used with the selected ions m/z 58, 86, and 183 for 3-BMC and m/z 58, 86, 95, and 123 

for 3-FMC. Generation of the mass chromatograms could be started by clicking the 

corresponding pull-down menu, which executes the user-defined macros [12,13,19]. The identity 

of the peaks in the mass chromatograms was confirmed by computerized comparison of the 

mass spectra underlying the peaks (after background subtraction) with reference spectra 

recorded during this study [20].  

In addition, the full-scan data files acquired by the GC-MS system were evaluated by 

automated mass spectral deconvolution and identification system (AMDIS) 

(http://chemdata.nist.gov/mass-spc/amdis/) in simple mode. The used target library was a 

modified version of the Maurer/Pfleger/Weber MPW_2011 library [20], from which all mass 

spectra of silylated and perfluoroacetylated compounds had been eliminated and the spectra of 

(acetylated) 3-BMC and 3-FMC and its metabolites were added using the “build one library” 

option contained in the AMDIS main program. According to Meyer et al. [19], the used 

deconvolution parameter settings were as follows: width 32, adjacent peak subtraction two, 

resolution high, sensitivity very high, and shape requirements low. The minimum match 

factor was set to 50. 

 

4.5.3	
   LC-­‐HRMS	
   apparatus	
   for	
   identification	
   of	
   Phase	
   I	
   and	
   II	
   metabolites	
   and	
   for	
  

microsomal	
  incubations	
  

3-BMC, 3-FMC and their metabolites were analyzed using a ThermoFisher Scientific (TF, 

Dreieich, Germany) Accela LC system consisting of a degasser, a quaternary pump and a 

HTC PAL autosampler (CTC Analytics AG, Zwingen, Switzerland), coupled to a TF 

Exactive system equipped with a heated electrospray ionization II source. The LC conditions 

were as follows: Grace Davis Discovery Science (Waukegan, Il) C18/cation exchange column 

(150mm x 4.6 mm, 5 µM ) and gradient elution with 50 mM aqueous ammonium formate 

buffer containing 0.1% (V/v) formic acid as Mobile Phase A and acetonitrile containing 0.1% 

(v/v) formic acid as mobile Phase B. The gradient and flow rate were programmed as follows: 

0-4 min 98% A to 40% A at 500 µL/min, 4-7 min hold 10% A at 1000 µL/min and 7-10 min 

hold 98% A at 750 µL/min. Injection volume was 10 µL. 

The MS conditions were as follows: positive scan mode from m/z 50 to 800 (MS [1], 

resolution 100 000 at 1 Hz) sheath gas, nitrogen at a flow rate of 18 AU; heater temperature, 
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350 °C; spray voltage, 4.00 kV; ion transfer capillary temperature, 250 °C; capillary voltage, 

25 V; tube lens voltage, 85 V; skimmer voltage, 22 V; maximum injection time, 250 ms; 

Higher-energy collision dissociation (HCD) at 25 eV (MS [2], positive scan mode from m/z 

50 to 1000, resolution 50 000 at 2 Hz). The instrument was mass calibrated prior to analysis 

infusing a Positive Mode Cal Mix provided by Supelco (Bellefonte, PA) at a flow rate of 5 

µL/min using a syringe pump. 

5	
  RESULTS	
  AND	
  DISCUSSION	
  

5.1	
  Identification	
  of	
  the	
  Phase	
  I	
  metabolites	
  by	
  GC-­‐MS	
  

The urinary metabolites of the substances were identified by full-scan EI MS after GC 

separation. The postulated structures of the metabolites were deduced from the fragments 

detected in the EI mode, which were interpreted in correlation to those of the parent 

compound according to the fragmentation rules described by, e.g. McLafferty and Turecek 

and Smith and Bush [21-23]. The gas chromatographic retention indices (RI) were determined 

according to de-Zeeuw et al [24]. Structures and predominant fragmentation patterns of 3-

BMC (Mass Spectrum 1) as well as of its acetylated metabolites are shown in Fig. 3; those of 

3-FMC (Mass Spectrum 1) are shown in Fig. 4(a) and 4(b).  

In the following, important fragmentation patterns of the EI mass Spectra of 3-BMC, 3-FMC 

and their derivatized metabolites will be discussed in relation to the postulated metabolite 

structures depicted in Fig. 3 for 3-BMC and Fig. 4(a) and 4(b) for 3-FMC. The numbers of 

the corresponding mass spectra are given in brackets. 

 

5.1.1	
  3-­‐Bromomethcathinone	
  

The underivatized and the acetylated spectra of 3-BMC and 3-FMC show several similarities, 

assumed due to their structural similarity illustrated in the introduction part of this work. 

Cleavage between Position 1 and 2 leads to the immonium ion m/z 58, represented by the base 

peak in the spectrum of 3-BMC (Fig. 3, no. 1). There was also a strong peak of m/z 56, which 

was described by Archer appearing also in a pyrolysis product upon injection [2]. The 

bromophenyl and the bromobenzyl-oxy ions are represented by the signals at m/z 155/157 and 

m/z 183/185, respectively. The benzyl ring is represented by the m/z 76 (Spectra 1, 2 and 3) or 

m/z 77 (Spectrum 4), depending on the moiety in the beta position. In the spectrum of 

acetylated 3-BMC, a base peak of m/z 58 and an abundant m/z 100 represent the imminium 
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part of the molecule, and the unchanged bromobenzyl-oxo moiety is represented by the ions 

at m/z 76, 155/157 and 183/185. 

However, most metabolite spectra contained an m/z 86 base peak, resulting from N-

demethylation and derivatization by acetylation. Spectra 4 and 5 show a shift of m/z 59 (m/z 

313/315 to 254/256 and m/z 371/373 to 312/314) as a result of a loss of acetic acid in beta 

position, which is in line with the fragmentation patterns. Spectrum 4 shows signals at m/z 77, 

155/157 and 183/185, indicating an unchanged bromophenyl moiety; hence, the loss of acetic 

acid can be explained by a reduced and acetylated beta-keto moiety.  

According to Spectrum 5, it can be deduced that these compounds contain, besides a reduced 

beta-keto moiety, a hydroxyl group in the aromatic ring system. Alpha cleavage leads to m/z 

285/287 and finally to m/z 201/203 and m/z 241/243 induced by a twice loss of an acetyl 

group bound to a hydroxyl moiety (shift of m/z 42). 
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Figure 3. EI mass spectra, gas chromatographic retention indices (RI), proposed structures and 
predominant fragmentation patterns of 3-BMC and its metabolites arranged according to their RI. 
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5.1.2	
  3-­‐Fluoromethcathinone	
  

The EI spectrum of the underivatized 3-FMC was identical to the spectrum recorded by 

Archer [2] (Fig. 4 (a), spectrum 1). Alpha cleavage between position 1 and 2 results in an 

immonium ion m/z 58 representing the base peak of the spectrum. As discussed for 3-BMC, 

an ion m/z 56 was also observed in the mass chromatogram of 3-FMC. Further prominent ions 

are the fluorophenyl cation at m/z 95 and the fluorobenzyloxy cation at m/z 123. After a 

phenyl bond cleavage, an ion at m/z 109 is formed [25]. In analogy to the underivatized 

compound, the spectrum of the acetylated 3-FMC (Fig. 4(a), no. 3) contains the ions m/z 75, 

95 and 123. The alpha cleavage between Position 1 and 2 forms an imminium ion m/z 100; 

this m/z 100 ion forms after loss of the acetyl moiety the imminium ion m/z 58, which also 

represents the base peak of the spectrum. Cleavage of the acetyl moiety forms the ion at m/z 

180, and fortunately the M+. ion m/z  223 is more dominant than in the spectrum of the parent 

compound. It can be concluded that the ions m/z 100 and 58 represent an unchanged acetyl 

immonium moiety, as presented in Spectra 3 (Fig. 4 (a)) and 6, 7, 8, 9 (Fig. 4 (b)). 

Spectra 7, 8 and 9 in Fig. 4(b) show signals at m/z 111 and 139. The shift of 16 units (m/z 95 

to 111 and m/z 123 to 139) indicates the introduction of a hydroxyl group in the fluorophenyl 

moiety. The exact position of the hydroxyl group cannot be deduced from the fragmentation 

patterns. According to RI and the fragmentation patterns, it can be concluded that the 

metabolite represented in Spectrum 7 (Fig. 4 (b)) contains a free hydroxyl group, whereas 

there is an acetylated hydroxyl group at the fluorophenyl moiety of spectrum 8 (Fig. 4 (b)), 

leading to a M+. of m/z 281 with a shift of 43 (m/z 281 to 238) in Spectrum 8 (Fig. 4 (b)). 

According to spectra 4, 5 (Fig. 4 (a)), 6 and 9 (Fig. 4 (b)) it can be deduced that the beta-keto 

group was reduced to a hydroxyl moiety, which has been derivatized by acetylation. This 

results in a shift of 59 (m/z 253 to 194 in spectra 4 and 5 (Fig. 4 (a)); to m/z 208 in spectrum 6 

(Fig. 4 (b))) and a shift of 101 (to m/z 224 in spectrum 9 (Fig. 4 (b))) caused by elimination of 

acetic acid (m/z 59 and an additional acetyl group (m/z 42). This metabolic reaction also 

introduces a further chiral center at the beta carbon, leading to diastereomers represented by 

two signals with spectra 4 and 5 (Fig. 4 (b)).  

Metabolites represented by spectra 6 and 9 (Fig. 4 (b)) were only detected once probably due 

to their very low abundance or insufficient separation. However, it is not possible to 

determine which diastereomer belongs to which spectrum according to the fragmentation 

patterns. Alpha cleavage between position 1 and 2 leads to an ion of m/z 166 in spectra 4, 5 

(Fig. 4 (a)) and 6 (Fig. 4 (b)), and the abundant m/z 86 in spectra 2,4 and 5 (Fig. 4 (a)) is a 

consequence of N-demethylation and acetylation. The ion at m/z 152 is also a consequence of 
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this N-acetyl moiety, as recognized in spectrum 2 (Fig. 4 (a)) and in a combination with the 

loss of acetic acid in spectra 4 and 5 (Fig. 4 (a)). 
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Figure 4 (a). EI mass spectra, gas chromatographic retention indices (RI), proposed structures and 
predominant fragmentation patterns of 3-FMC and its metabolites arranged according to their RI. 
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Figure 4 (b). EI mass spectra, gas chromatographic retention indices (RI), proposed structures and 
predominant fragmentation patterns of 3-FMC and its metabolites arranged according to their RI. 
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5.2	
  HR-­‐ESI-­‐MS	
  Results	
  

5.2.1	
  Confirmation	
  of	
  the	
  Phase	
  I	
  metabolites	
  by	
  HR-­‐ESI-­‐MS	
  

The calculated and measured molecular weights of the underivatized metabolites are shown in 

Table 2. 

The elemental composition of all metabolites of 3-BMC and 3-FMC identified by GC-MS 

should be verified using the HR-ESI-MS. In addition, N-oxides that can be considered as 

precursors of the respective N-dealkyl compounds were detected and confirmed by 

characteristic fragments after HCD fragmentation, corresponding to the unchanged parent 

compound. It is obvious that this N-oxide was not detectable by GC-MS due to its thermal 

degradation when introduced into the GC. The calculated and measured molecular weights as 

well as the mass error can be found in Table 2. 

 

 

Table 2. Calculated and measured exact masses and their delta values in ppm of the phase I metabolites 
of 3-BMC and 3-FMC using HR-ESI-MS (MS [1] scan without HCD fragmentation) 
Metabolite Modus Calculated Mass Measured Mass delta (ppm) 

3-79BMC MS [1] 242.0175 242.0174 -0.302 

3-81BMC MS [1] 244.0154 244.0153 -0.642 

3-79BMC-M (N-demethyl-) MS [1] 228.0018 228.0018 -0.014 

3-81BMC-M (N-demethyl-) MS [1] 229.9998 229.9996 -0.507 

3-79BMC-M (N-demethyl-dihydro-) MS [1] 230.0175 230.0175 0.204 

3-81BMC-M (N-demethyl-dihydro-) MS [1] 232.0154 232.0152 -0.718 

3-79BMC-M (N-demethyl-dihydro-HO-) MS [1] 246.0124 246.0123 -0.479 

3-81BMC-M (N-demethyl-dihydro-HO-) MS [1] 248.0103 248.0101 -0.771 

3-FMC MS [1] 182.0975 182.0978 +1.489 

3-FMC-M (N-demethyl-) MS [1] 168.0819 168.0819 -0.052 

3-FMC-M (N-demethyl-dihydro-) MS [1] 170.0975 170.0977 0.889 

3-FMC-M (dihydro-) MS [1] 184.1132 184.1130 -0.754 

3-FMC-M (HO-) MS [1] 198.0924 198.0924 -0.068 

3-FMC-M (dihydro-HO-) MS [1] 200.1081 200.1081 0.183 

 

 

5.2.2	
  Identification	
  of	
  the	
  Phase	
  II	
  metabolites	
  by	
  HR-­‐ESI-­‐MS	
  

Phase II metabolites (glucuronides or sulfates) were identified using reconstructed ion 

chromatograms of the calculated HR protonated molecular ions of conjugates of the identified 
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Phase I metabolites. The formation of the aglyca could be confirmed by comparing the 

corresponding MS spectra after HCD fragmentation with the MS spectra of the Phase I 

metabolites. Using this approach, 3-BMC-M (N-demethyl-dihydro-) glucuronide and 3-FMC-

M (dihydro-) glucuronide could be detected at concentrations much lower than those of the 

unconjugated phase I metabolites. This was confirmed by comparison of the signals of the 

Phase I metabolites with and without conjugate cleavage. No sulfate conjugates were detected 

in the rat urine samples, although they are expected to be formed in humans. This will be 

referred to below. 

 

5.3	
  Proposed	
  metabolic	
  pathways	
  

From the metabolites earlier described, the following metabolic pathways can be deduced: 

 

5.3.1	
  3-­‐Bromomethcathinone	
  

As depicted in Fig. 5, 3-BMC N-demethylation was observed (No. 2, 4 and 5) followed by 

reduction of the ketone moiety (4, 5) and adjacent ring hydroxylation (5). Metabolite 4 was 

also excreted as glucuronic acid conjugate (4G).  

As contrast to 3-FMC, 3-BMC could not be detected in rat urine. 

 

 
 

Figure 5. Proposed scheme for the Phase I and II metabolism of 3-BMC in rats (metabolite numbers 
correspond to the spectra numbers in Fig. 3) 
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5.3.2	
  3-­‐Fluoromethcathinone	
  

Concerning 3-FMC, ring hydroxylation (Fig. 6, Nos. 7, 8, 9), reduction of the beta-keto 

moiety (4, 5, 6, 9), N-demethylation (2, 4, 5) and combinations of them (4, 5, 9) were 

observed. In addition, the parent compound was excreted unchanged (1). Metabolite 6 was 

also excreted as glucuronic acid conjugate (6G). 

 

 

 
 

Figure 6. Proposed scheme for the Phase I and II metabolism of 3-FMC in rats (metabolite numbers 
correspond to the spectra numbers in Fig. 4 (a) and 4 (b)) 
 

 

5.4	
  Toxicological	
  detection	
  of	
  3-­‐BMC	
  and	
  3-­‐FMC	
  by	
  GC-­‐MS	
  or	
  LC-­‐MSn	
  

3-BMC, 3-FMC and their metabolites were separated and identified by GC full scan EI MS 

after fast acidic hydrolysis, liquid-liquid-extraction and acetylation (STA) of human urine 

[12,14]. Mass chromatography with the following ions was used to detect the presence of 3-
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BMC metabolites: m/z 58, 86 and 183. For detection of 3-FMC, the following ions were used: 

m/z 58, 86, 95 and 123. The most abundant metabolites of 3-BMC and 3-FMC in rat urine 

samples were the respective dihydro-metabolites. The identity of the peaks indicated by the 

selected mass chromatogram was confirmed by computerized comparison of the underlying 

full-scan mass spectrum with reference spectra recorded during this study. In addition, the 

full-scan data files acquired by the GC-MS system were evaluated by AMDIS, allowing the 

detection of 3-BMC and 3-FMC in prepared urine samples using the previously described 

procedure [19]. Also, using the previously described LC-MSn procedure, 3-BMC and 3-FMC 

metabolites and the parent compound 3-FMC were detectable [26]. 

 

5.5	
  Enzymatic	
  part	
  

5.5.1	
  Initial	
  CYP	
  screening	
  	
  

The initial screening studies with the ten most abundant human hepatic CYPs were used to 

identify their ability for catalyzing the formation of the main metabolite in vitro. According to 

the supplier’s advice, the incubation conditions chosen were adequate to make a statement on 

the general involvement of a particular CYP enzyme. The main metabolic step observed in in 

vitro incubations with recombinant CYPs was the N-demethylation of both 3-BMC and 3-

FMC.  

As shown in Fig. 7, CYP2D6, CYP2B6, CYP2C19, CYP1A2, CYP2E1 and CYP3A4 

catalyzed the formation of N-demethyl-3-BMC, whereas CYP2B6, CYP2D6, CYP2C19, 

CYP2E1 and CYP3A4 were mainly capable to catalyze the demethylation of 3-FMC 

metabolite formation. 
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Figure 7. Relative amount of N-demethyl-3-FMC (upper part) and N-demethyl-3-BMC (lower part) 
formed after incubation of 250 µM each (37°C, 30 min) using the ten most important recombinant 
CYP isoenzymes (50 pmol/mL, each) as enzyme source. 
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5.5.2	
  Kinetic	
  studies	
  

The kinetic parameters could not be determined for all P450s capable of catalyzing the 

monitored N-demethylation of both substances. 

Concerning 3-BMC, the kinetic profiles of CYP2D6, CYP2B6, and HLM best fit into 

Michaelis-Menten kinetics, as shown in Fig. 8. 

 

 
Figure 8. Enzyme kinetic plots for N-demethyl 3-BMC formation catalyzed by CYP2B6 (left) and 
CYP2D6 (right). Data points represent means and ranges (error bars) of duplicate measurements. 
 

 

For 3-FMC, CYP2D6 and CYP2C19 revealed classic hyperbolic Michaelis-Menten kinetics 

as shown in Fig. 9, whereas CYP2B6 and HLM fitted statistically better into a biphasic 

kinetic model. 

 

 

 

 

 

 

 

 

Figure 9. Enzyme kinetic plots for N-demethyl 3-FMC formation catalyzed by CYP2B6 (left), 
CYP2C19 (middle) and CYP2D6 (right). Data points represent means and ranges (error bars) of 
duplicate measurements. 
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For 3-FMC, CYP2E1 and CYP3A4, and for 3-BMC, CYP2C19, CYP1A2, CYP2E1 and 

CYP3A4 activities were too low for calculation of kinetic parameters. The Km values, 

representing the in vitro affinity of the particular P450s substrates that showed sufficient 

activity, are listed in Table 3. 

 

 

Table 3. Calculated Km values (µM) 

Enzyme KM for N-demethyl-3-FMC 
formation 

KM for N-demethyl-3-BMC 
formation 

CYP2B6 283a 350 
CYP2D6 12 18 

CYP2C19 76 not determined 
aKm1 

 

 

The net clearances for particular P450s at the two substrates concentrations 1 µM and 10 µM 

were calculated to be, for 3-BMC, 60% / 70% and 40% / 30% for CYP2B6 and CYP2D6, 

respectively, and for 3-FMC, 92% / 96%, 6% / 3% and 2% / 1% for CYP2B6, CYP2D6 and 

CYP2C19, respectively. In conclusion, the net clearance data indicated that CYP2B6 was 

responsible for the main part of the total 3-BMC and 3-FMC CYP-dependent clearance, 

becoming even more important at higher substrate concentrations. 

Comparing 3-BMC and 3-FMC kinetics, it turns out that 3-FMC metabolism underlies a 

partly biphasic kinetic by HLM and CYP2B6, whereas the 3-BMC data entirely showed 

classic Michaelis-Menten kinetics. 

 

6.1	
  In	
  vivo	
  vs.	
  in	
  vitro	
  Phase	
  I	
  metabolism	
  –	
  the	
  role	
  of	
  ADH	
  

Concerning 3-FMC, we can compare the Phase I metabolism in rats and the CYP-incubation 

data of human CYP enzymes to the phase I metabolism deduced from rabbit liver slice 

incubations by Pawlik et al. [11]. In both cases, N-demethylation and ring hydroxylation were 

initial steps.  

Comparing our in vivo to our in vitro Phase I metabolism data is pointing out an interesting 

difference: 

The results of the incubations with recombinant CYPs showed the N-demethylation of both 3-

BMC and 3-FMC as the initial metabolic step in vitro whereas rat urine analysis revealed N-

demethyl-dihydro-3-BMC and hydroxyl-3-FMC followed by N-demethyl-dihydro-3-FMC as 

the main metabolites in vivo. However, it should be considered that in vivo the alcohol 
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dehydrogenase should have a large impact on 3-BMC and 3-FMC reduction, which of course 

is not analyzed in the described in vitro experiments. Co-consumption of ethanol and 3-BMC 

or 3-FMC may lead to a prolonged half-life of these drugs of abuse and to increased plasma 

concentrations due to a competitive inhibition of the alcohol dehydrogenases by ethanol. The 

role of the ADH concerning 3-BMC and 3-BMC should be clarified by further investigations. 

 

6.2	
  Phase	
  II	
  metabolism	
  

For the Phase II metabolism, 3-BMC-M (dihydro-) glucuronide and 3-FMC-M (dihydro-) 

glucuronide could be detected. No sulfate conjugates were detected in the rat urine samples, 

although they are expected to be formed in humans. Concerning our screening procedures, 

such a difference does not really influence the detectability of both compounds. Using GC-

MS, conjugates are cleaved prior to analysis, and under LC/MSn STA conditions, the MS3 

and MS2 spectra of glucuronides and sulfates are expected to be similar.  

 

6.3	
  Possible	
  CYP	
  interactions	
  

Concerning the kinetic studies, CYP2B6 turned out to be responsible for the main CYP-

dependent clearance for both substances; becoming more important from lower to higher 3-

BMC / 3-FMC concentrations. This is in line with previously published data of N-

demethylation of amphetamine-derived compounds such as 3,4-

methylenedioxymethamphetamine, MDMA and methylbenzodioxoylbutanamine, MBDB 

[27,28]. Therefore, it should be taken into account that interaction may be possible between 

strong CYP2B6 inhibitors, such as ticlopidine, and the investigated cathinone derivates 

leading to increased plasma concentrations and therefore severe side effects after a common 

dose. Additionally, genetic polymorphisms might be of relevance in some cases and should be 

taken into account in interpreting plasma and urine concentration of the drugs. This question 

should be target of further studies.  

 

6.4	
  Prove	
  of	
  intake	
  

The standard toxicological analysis procedure should be suitable to prove an intake of 3-BMC 

as well as 3-FMC. 
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  ABBREVIATIONS	
  

 

 

 

3-BMC   3-bromomethcathinone 

 

3-FMC    3-fluoromethcathinone 

 

GC-MS   gas chromatography- mass spectrometry 

 

LC-MS   liquid chromatography- mass spectrometry 

 

LC-HRMS   liquid chromatography- high resolution- mass spectrometry 

 

STA    systematic toxicological analysis 

 

IUPAC   International Union of Pure and Applied Chemistry 

 

NMR    nuclear magnetic resonance spectroscopy 

 

Da    Dalton 
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