Detektion hypervaskularisierter Leberläsionen mittels Magnetresonanztomographie – Intraindividueller Vergleich der beiden leberspezifischen Kontrastmittel Gadobenat Dimeglumin und Ferucarbotran

DISSERTATION ZUR ERLANGUNG DES GRADES EINES DOKTORS DER MEDIZIN

der medizinischen Fakultät der Universität des Saarlandes

2011

vorgelegt von
Wolfgang Heinrich Loytved
geb. 20.04.1971 in Saarbrücken
Meinen lieben Eltern in Dankbarkeit gewidmet
Inhaltsverzeichnis

1. Inhaltsverzeichnis ... 3
2. Abkürzungen .. 5
3. Zusammenfassung .. 8
4. Abstract .. 10
5. Einleitung ... 11
 5.1. Sonographie ... 11
 5.2. Computertomographie ... 12
 5.3. Nuklearmedizinische Verfahren .. 13
 5.4. Magnetresonanztomographie ... 13
 5.4.1. T1-Relaxationszeit ... 15
 5.4.2. T2-Relaxationszeit ... 15
 5.4.3. Kontrastmittel in der MRT .. 16
5.5. Histologische Einteilung der Tumoren der Leber .. 18
 5.5.1. Primärtumoren der Leber .. 18
 5.5.2. Sekundärtumoren der Leber .. 18
5.6. Blutversorgung der Leber und Kontrastmittelverteilung/-kinetik 19
 5.6.1. Differentialdiagnosen hypervaskularisierter Leberläsionen 20
5.7. Fragestellung ... 21
6. Material und Methodik .. 22
 6.1. MRT-Bildgebung ... 23
 6.2. MR-Sequenzen ... 23
 6.2.1. Nicht kontrastmittelverstärkte (native) MR-Sequenzen 23
 6.2.2. Kontrastmittelverstärkte Sequenzen .. 24
6.3. Zeitlicher Ablauf der Untersuchungen ... 27
 6.3.1. Zeitlicher Ablauf der MR-Untersuchungen beim Einsatz von Gd-BOPTA 28
 6.3.2. Zeitlicher Ablauf der MR-Untersuchungen beim Einsatz von Ferucarbotran 28
6.4. Kontrastmittel ... 29
 6.4.1. Gd-BOPTA ... 29
 6.4.1.1. Relaxivität ... 29
 6.4.1.2. Läsionserkennung .. 30
 6.4.1.3. Leberspezifische Phase .. 30
 6.4.2. Ferucarbotran .. 30
 6.4.2.1. Relaxivität ... 31
 6.4.2.2. Läsionserkennung .. 31
 6.4.2.3. Leberspezifische Phase .. 31
6.5. Verarbeitung der Bilddaten .. 31
6.6. Bildanalyse ... 32
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>Statistische Auswertung</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>Ergebnisse</td>
<td>34</td>
</tr>
<tr>
<td>7.1</td>
<td>Bildqualität</td>
<td>34</td>
</tr>
<tr>
<td>7.2</td>
<td>Gesamtanzahl der vorliegenden Läsionen</td>
<td>35</td>
</tr>
<tr>
<td>7.3</td>
<td>Gesamtanzahl der detektierten Läsionen in der KM-Dynamik</td>
<td>36</td>
</tr>
<tr>
<td>7.4</td>
<td>Gesamtanzahl der detektierten Läsionen in der KM-Dynamik und der hepatospezifischen Phase</td>
<td>37</td>
</tr>
<tr>
<td>7.5</td>
<td>Einfluss der hepatospezifischen Phase auf die Anzahl der detektierten Läsionen</td>
<td>38</td>
</tr>
<tr>
<td>7.6</td>
<td>Eigenschaften der beiden Kontrastmittel zur Diagnose des HCC</td>
<td>38</td>
</tr>
<tr>
<td>7.7</td>
<td>Bildbeispiele</td>
<td>40</td>
</tr>
<tr>
<td>7.7.1</td>
<td>Noduläre regenerative Hyperplasie</td>
<td>40</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Leberzelladenomatose</td>
<td>43</td>
</tr>
<tr>
<td>7.7.3</td>
<td>Fokal noduläre Hyperplasie</td>
<td>46</td>
</tr>
<tr>
<td>7.7.4</td>
<td>Metastase eines Aderhautmelanoms</td>
<td>49</td>
</tr>
<tr>
<td>7.7.5</td>
<td>Diffuses HCC</td>
<td>52</td>
</tr>
<tr>
<td>7.7.6</td>
<td>HCC mit Hämosiderinablagerungen</td>
<td>55</td>
</tr>
<tr>
<td>8</td>
<td>Diskussion</td>
<td>58</td>
</tr>
<tr>
<td>8.1</td>
<td>Schlussfolgerung</td>
<td>65</td>
</tr>
<tr>
<td>9</td>
<td>Literaturverzeichnis</td>
<td>66</td>
</tr>
<tr>
<td>10</td>
<td>Aus der Arbeit hervorgegangene Publikationen</td>
<td>76</td>
</tr>
<tr>
<td>11</td>
<td>Danksagung</td>
<td>77</td>
</tr>
<tr>
<td>12</td>
<td>Lebenslauf</td>
<td>78</td>
</tr>
<tr>
<td>13</td>
<td>Anhang</td>
<td>79</td>
</tr>
</tbody>
</table>
2. Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>zweidimensional</td>
</tr>
<tr>
<td>3D</td>
<td>dreidimensional</td>
</tr>
<tr>
<td>Abb</td>
<td>Abbildung</td>
</tr>
<tr>
<td>AMI 25</td>
<td>Kontrastmittel aus SPIO-Gruppe, Handelsname Endorem</td>
</tr>
<tr>
<td>art</td>
<td>arteriell</td>
</tr>
<tr>
<td>Ca</td>
<td>Karzinom</td>
</tr>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>cm</td>
<td>Zentimeter</td>
</tr>
<tr>
<td>CT</td>
<td>Computertomographie</td>
</tr>
<tr>
<td>CTAP</td>
<td>CT-Arteriographie</td>
</tr>
<tr>
<td>EKG</td>
<td>Elektrokardiogramm</td>
</tr>
<tr>
<td>equil</td>
<td>Äquilibriumphase</td>
</tr>
<tr>
<td>FAD</td>
<td>focal attenuation difference</td>
</tr>
<tr>
<td>FLASH</td>
<td>Fast Low Angle Shot Imaging</td>
</tr>
<tr>
<td>FLC</td>
<td>fibrolamelläres Karzinom</td>
</tr>
<tr>
<td>FLL</td>
<td>fokale Leberläsion</td>
</tr>
<tr>
<td>FNH</td>
<td>fokale noduläre Hyperplasie</td>
</tr>
<tr>
<td>FSE</td>
<td>Fast Spin Echo</td>
</tr>
<tr>
<td>Gd-EOB-DTPA</td>
<td>Gadolinium-Ethoxybenzyl-Diethylenetriamin-Pentaessigsäure</td>
</tr>
<tr>
<td>Gd-DTPA</td>
<td>Gadolinium-Diethylenetriamin-Pentaessigsäure</td>
</tr>
<tr>
<td>Gd-BOPTA</td>
<td>Gadobenat Dimeglumin</td>
</tr>
<tr>
<td>GRE</td>
<td>Gradientenecho</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HASTE</td>
<td>Half Fourier Acquired Single shot Turbo spin Echo</td>
</tr>
</tbody>
</table>
2. Abkürzungen

hb hepatobiliär
HCC Hepatozelluläres Karzinom
HF Hochfrequenz
i.v. intravenös
kg Kilogramm
KG Körpergewicht
KM Kontrastmittel
l Liter
µmol Mikromol
mg Milligramm
MHz Megahertz
min Minute
ml Milliliter
mmol Millimol
Mn-DPDP Mangafodipir Trisodium
MR Magnetresonanz
MRT Magnetresonanztomographie
ms Millisekunde
MS-CT Multidetektor-Spiral-Computertomographie
NaCl Natriumchlorid
NASH nichtalkoholische Steatohepatitis
NRH noduläre regenerative Hyperplasie
post KM nach Kontrastmittelgabe
PTT Plasmathrombinzeit
pv portalvenös
R1 T1-Relaxivität
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>T2-Relaxivität</td>
</tr>
<tr>
<td>RARE</td>
<td>rapid acquisition relaxation enhanced</td>
</tr>
<tr>
<td>RES</td>
<td>retikuloendotheliales System</td>
</tr>
<tr>
<td>s</td>
<td>Sekunde</td>
</tr>
<tr>
<td>SNR</td>
<td>signal-to-noise ratio</td>
</tr>
<tr>
<td>SPIO</td>
<td>superparamagnetische Eisenoxidpartikel</td>
</tr>
<tr>
<td>T</td>
<td>Tesla</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TE</td>
<td>Echozeit</td>
</tr>
<tr>
<td>T₁w</td>
<td>T₁-gewichtet</td>
</tr>
<tr>
<td>T₂w</td>
<td>T₂-gewichtet</td>
</tr>
<tr>
<td>TR</td>
<td>Repetitionszeit</td>
</tr>
<tr>
<td>TSE</td>
<td>Turbo Spin Echo</td>
</tr>
<tr>
<td>USPIO</td>
<td>ultrakleine superparamagnetische Eisenoxidpartikel</td>
</tr>
<tr>
<td>VIBE</td>
<td>volume interpolated breath-hold</td>
</tr>
</tbody>
</table>
3. Zusammenfassung

Ziel dieser Arbeit war der intraindividuelle Vergleich des Gd-basierten Kontrastmittels (KM) Gadobenat Dimeglumin (Gd-BOPTA, MultiHance®) und dem superparamagnetischen Eisenoxidpartikel-basierten Ferucarbotran (Resovist®) an Patienten mit hypervaskularisierten Leberläsionen bei der dynami
cischen und hepatospezifischen KM-verstärkten MRT der Leber.

43 Patienten mit insgesamt 211 gesicherten Leberläsionen, die entweder mittels Biopsie, postoperativer Histologie oder durch Verlaufskontrollen bestätigt wurden, sind mittels Gd-BOPTA und in einer zweiten Sitzung 3-7 Tage später mittels Ferucarbotran MR-tomographisch untersucht worden. Es wurden jeweils identische T1- und T2-gewichtete Sequenzen nativ, T1-gewichtete für die KM-Dynamik und sowohl T1- als auch T2-gewichtete Sequenzen in der hepatospezifischen Phase nach KM-Gabe (Gd-BOPTA: 45–120 min / Ferucarbotran: 20 min nach Injektion) akquiriert. Gd-BOPTA wurde in einer Dosis von 0,05 mmol / kg KG und Ferucarbotran in einer Dosis von 486 mg (< 60 kg KG) bzw. 765 mg (> 60 kg KG) appliziert. Alle Bilddatensätze wurden verblindet, randomisiert und in vier verschiedenen Sitzungen ausgewertet. Dabei wurden die Anzahl der detektierten Läsionen, die Lokalisation, die Größe und die endgültige Diagnose erfasst. Ein Student t-Test wurde zur Untersuchung statistisch signifikanter Unterschiede (p < 0,05) der beiden Modalitäten durchgeführt.

Bei der dynamischen Kontrastmitteluntersuchung mittels Gd-BOPTA wurden signifikant mehr Läsionen (171/211) detektiert als mit Ferucarbotran (149/211, p=0,03). Analog wurden bei der Analyse der KM-Dynamik und der Bilddaten der leberspezifischen Phase signifikant mehr Leberläsionen mittels Gd-BOPTA (185/211) erkannt als mittels Ferucarbotran (159/211; p=0,02). Dabei war der Anstieg der detektierten Leberläsionen in der Zusammenschau der KM-Dynamik und der leberspezifischen Phase gegenüber der KM-Dynamik alleine für Gd-BOPTA (171 vs. 185; p=0,01) statistisch signifikant, jedoch nicht für Ferucarbotran (149 vs. 159; p=0,07).

Die Unterschiede der beiden Kontrastmittel waren insbesondere bei Patienten mit heptozellulären Karzinomen erkennbar. Dabei wurde die Diagnose bei der Anwendung von Gd-BOPTA hauptsächlich in der KM-Dynamik gestellt (60 von 76 detektierten HCC Herde) während Ferucarbotran nur 27 von 76 HCC Herde detektierte.

Zusammenfassend werden mit Gd-BOPTA signifikant mehr hypervaskularisierte...
Leberläsionen detektiert als mit Ferucarbotran. Dabei können unter Hinzuziehen der hepatospezifischen Phase nach Applikation von Gd-BOPTA signifikant mehr Läsionen als in der KM-Dynamik alleine detektiert werden, wobei mit Ferucarbotran in der leberspezifischen Phase kein weiterer diagnostischer Zugewinn verbunden ist.
4. Abstract

Intraindividual Comparison of Gadobenate Dimeglumine and Ferucarbotran-enhanced MR Imaging of Hypervascular Liver Lesions

The aim of this study was to intra-individually compare the gadolinium-based liver-specific contrast agent gadobenate dimeglumine (Gd-BOPTA) and the liver-specific superparamagnetic iron oxide (SPIO)-based agent Ferucarbotran for dynamic and delayed contrast-enhanced liver MRI in patients with hypervascular focal liver lesions.

43 patients with 211 confirmed (biopsy, post-operative histology or 12-month follow-up) malignant and/or benign focal liver lesions underwent a first study with Gd-BOPTA and a second, after 3–7 days, with ferucarbotran. Images were acquired pre-contrast (T1w and T2w sequences) and during the dynamic phase after bolus administration of Gd-BOPTA (0.05 mmol/kg) or Ferucarbotran (< 60 kg body weight: 486 mg; > 60 kg body weight: 756 mg) acquiring T1w sequences. In addition, images were acquired in the hepatospecific phase after Gd-BOPTA injection at 45–120 min and after Ferucarbotran injection at 20 min using T1w and T2w sequences. All images were evaluated by a blinded reader in 4 randomized reading sessions. The number, size, location and degree of vascularization and the final diagnosis of all detected focal liver lesions in each session were recorded for subsequent lesion tracking. Student t-test was used to assess the potential added value of delayed imaging with each agent and possible differences between Gd-BOPTA and Ferucarbotran for detection of focal liver lesions.

Significantly more focal liver lesions were detected on dynamic images after application of Gd-BOPTA (171/211 vs. 149/211; p=0.03). Likewise, more focal liver lesions were detected with Gd-BOPTA when both, dynamic and delayed images, were evaluated (185/211 vs. 159/211; p=0.02). The added value of delayed images was significant for Gd-BOPTA (171 vs. 185; p=0.01) but not for Ferucarbotran (149 vs. 159; p=0.07). Differences between the agents were noted particularly for HCC; herein the detection of HCCs was mainly based on dynamic contrast enhanced studies in which Gd-BOPTA (60 of 76 HCC detected) was superior to Ferucarbotran (27 of 76 HCC detected).

In conclusion, detection of focal liver lesions with Gd-BOPTA is superior compared to Ferucarbotran. Delayed imaging with Gd-BOPTA permits detection of more focal liver lesions than dynamic imaging alone whereas delayed imaging with Ferucarbotran provides no additional benefit over dynamic imaging alone.
5. Einleitung

Aufgrund der vermehrten Anwendung moderner, bildgebender Verfahren, wie der Sonographie, der Computertomographie (CT) und der Magnetresonanztomographie (MRT), stellen akzidentell diagnostizierte Leberherde im klinischen Alltag ein häufiges Problem dar. Hierbei sind sowohl die Ätiologie als auch die Dignität dieser Läsionen von besonderem Interesse, da eine genaue Charakterisierung zur Festlegung einer etwaigen Behandlung zwingend erforderlich ist. Das hepatozelluläre Karzinom als primärer Lebertumor und Lebermetastasen als sekundäre hepatische Tumoren sind die weltweit häufigsten Lebermalignome [Leen et al., 2009].

Zur diagnostischen Abklärung der Leber stehen sowohl bei einem Patienten mit bekannter Tumorerkrankung als auch bei einem Patienten mit einem zufällig entdeckten Leberherd verschiedene bildgebende Verfahren zur Verfügung [Layer et al., 2007].

5.1. Sonographie

Die transabdominelle Ultraschalluntersuchung wird als primäre diagnostische Modalität angesehen, da sie kostengünstig sowohl in Klinik als auch Praxis weit verbreitet verfügbar ist [Hohmann et al., 2004]. Durch Farbdopplerverfahren, dem kontrastverstärkten und dem intraoperativen Ultraschall, wird die konventionelle transabdominelle Sonographie fokaler Leberläsionen wesentlich ergänzt [Delorme et al., 2005, Dietrich et al., 2006, Ernst et al., 1996, Strobel et al., 2003]. Während die transabdominelle Ultraschalluntersuchung mit 3,5-MHz-Schallköpfen durchgeführt wird, kommen beim intraoperativen Ultraschall höherefrequente Schallköpfe von 5 bis 13 MHz zum Einsatz. Aufgrund der fehlenden Überlagerung durch die Abdominalwand und der geringeren Interferenzen durch Darmgasüberlagerungen ist dabei der intraoperative Ultraschall dem transabdominellen Ultraschall überlegen und wird als Goldstandard im Bereich der Lebersonographie angesehen [Sietses et al., 2010 und Sahani et al., 2004]. Dafür sollte die Leber idealerweise jedoch komplett frei präpariert sein, was das Verfahren sehr aufwendig macht, weshalb es nicht regelmäßig in allen Zentren durchgeführt wird [Layer et al., 2007].

Darüber hinaus beträgt die Sensitivität bei kleinen Herden mit einem Durchmesser kleiner 1 cm lediglich 20% [Albrecht et al., 2001]. Daher werden für das weitere Therapiekonzept des Patienten zusätzliche Informationen zur Entscheidungsfindung herangezogen. Die Forschungsgruppe von Layer empfiehlt bezüglich des diagnostischen Vorgehens die

5.2. Computertomographie

Ein anderer Ansatz der Leberkontrastierung besteht in der direkten Kontrastmittelinjektion in die Arteria hepatica oder über eine indirekte Portographie (CTAP), über eine Kontrastmittelinjektion in die Arteria mesenterica superior oder Arteria lienalis. Beide Verfahren erfordern jedoch einen invasiven Zugang in das arterielle Gefäßsystem [Ohnishi et al., 2010, Valls et al., 1998 und Kanematsu et al., 1997], sind mit einem relativ hohen technischen Aufwand verbunden und werden daher in der Regel nicht routinemäßig durchgeführt [Layer et al., 1999].

5.3. Nuklearmedizinische Verfahren

5.4. Magnetresonanztomographie

Der zu untersuchende Patient wird bei der Kernspintomographie in ein starkes statisches Magnetfeld gebracht. Dadurch richten sich die Magnetfeldvektoren \(M_0 \) der Wasserstoffprotonen entweder in Richtung des Magnetfeldes \(B_0 \), also parallel, oder in entgegengesetzter Richtung also antiparallel aus. Da die antiparallele Ausrichtung auf einem höheren Energieniveau liegt werden sich immer bedeutend mehr Protonen in paralleler Richtung zum externen Feld ausrichten. Diese parallele Ausrichtung wird Longitudinalmagnetisierung genannt.

Die parallel oder antiparallel ausgerichteten Protonen beschreiben eine torkelnde Kreiselbewegung in der jeweils gewählten Richtung, d.h. sie präzedieren. Die Präzessionsgeschwindigkeit bzw. -frequenz ist abhängig von der Stärke des magnetischen Feldes und wird mit der Larmorgleichung (siehe Gleichung 1) berechnet.

\[
\omega_0 = \gamma B_0
\]

\(\omega_0 \): Präzessionsfrequenz
\(\gamma \): gyromagnetisches Verhältnis
(für Protonen 42,5 MHz/T)
\(B_0 \): Stärke des externen Magnetfeldes

Gleichung 1: Larmor-Gleichung

Wenn man den Protonen einen Hochfrequenzimpuls in Form elektromagnetischer Wellen zuführt und dieser mit der Präzessionsfrequenz übereinstimmt, nehmen die Protonen wegen der bestehenden Resonanz einen Teil der Energie auf. Dies hat zur Folge, dass die Longitudinalmagnetisierung abnimmt und eine transversale Magnetisierung zunimmt und sich die Präzession der Protonen synchronisiert, d.h. sie gehen in Phase. Nach Beendigung

5.4.1. T1-Relaxationszeit

Die longitudinale Relaxationszeit, kurz T1 genannt, ist eine Zeitkonstante, welche abbildet, wann die Longitudinal-Magnetisierung wieder 63% ihres Ausgangswertes erreicht hat. Sie stellt damit einen Wert für die Fähigkeit der Protonen dar, freiwerdende Energie an das sie umgebende molekulare Gitter abzugeben. Es kommt hierbei auf die Art und Zusammensetzung des umgebenden Gewebes an. Wassermoleküle weisen eine sehr hohe Eigenbewegung auf und geben die aufgenommene Energie nur relativ langsam ab. Hieraus resultiert eine relativ lange T1-Relaxationszeit. Fettmoleküle hingegen weisen aufgrund ihrer Größe und ihres Aufbaus eine geringe Eigenbewegung auf, was eine schnellere Energieabgabe bedingt. Dementsprechend ist die T1-Relaxationszeit für Fettgewebe relativ kurz.

5.4.2. T2-Relaxationszeit

Die T2-Relaxationszeit steht für eine Zeitkonstante, die angibt, nach welcher Zeit die Transversalmagnetisierung auf 37% ihres ursprünglichen Wertes zurückgegangen ist. Sie ist abhängig von den außer Phase geratenen Protonen und erfolgt umso schneller, je inhomogener das umgebende Magnetfeld ist. Da Fett aufgrund der unterschiedlichen molekularen Zusammensetzung eine relativ große Inhomogenität besitzt, werden die Protonen in Fettgewebe schneller dephasiert als in Wasser, welches im Vergleich nur eine geringe Inhomogenität aufweist. Hieraus ergibt sich eine kürzere T2-Relaxationszeit für Fettgewebe als für Wasser.
5.4.3. Kontrastmittel in der MRT

5.5. Histologische Einteilung der Tumoren der Leber

5.5.1. Primärtumoren der Leber

Gesundes Lebergewebe besteht aus epithelialen und mesenchymalen Zellen. Durch Proliferation von Epithelgewebe der Hepatozyten oder der Gallengänge entstehen sowohl gutartige als auch bösartige herdförmige Leberveränderungen. Tabelle 1 gibt einen Überblick über die häufigsten benignen und malignen primären Tumorentitäten der Leber [Layer et al., 2007].

<table>
<thead>
<tr>
<th>Histologie</th>
<th>Benigne</th>
<th>Maligne</th>
</tr>
</thead>
</table>
| hepatozellulär und cholangiozellulär | - fokale noduläre Hyperplasie
- Leberzellenadenom
- cholangiozelluläres Adenom
- biliäres Zystadenom
- biliäres Hamartom
(von Meyernberg-Komplex) | - hepatozelluläres Karzinom
- fibrolamelläres Karzinom
- cholangiozelluläres Karzinom
- Gallengangszystadenokarzinom |
| mesenchymal | - Hämangiom
- Leiomyom
- Lipom
- Myelolipom
- Angiomyolipom | - Hämangiosarkom
- epitheloides Hämangioendotheliom
- Sarkome verschiedener Ursprungs |
| Gemischte Tumoren und pseudotumoröse Läsionen | - inflammatorischer Pseudotumor
- solitärer fibröser Tumor
- noduläre Transformation
(nodulär regenerative Hyperplasie)
- fokale Steatose/ Non-Steatose | - Kaposi-Sarkom
- Karzinosarkom |

Tabelle 1: Histologische Einteilung der primären Tumoren der Leber (Layer et al., 2007)

5.5.2. Sekundärtumoren der Leber

Sekundäre Lebertumoren in Form von Metastasen sind die häufigsten hepatischen Tumoren und machen in Deutschland etwa 90% aller malignen herdförmigen
5. Einleitung

5.6. Blutversorgung der Leber und Kontrastmittelverteilung/-kinetik

Die Blutversorgung des Leberparenchymms erfolgt bis zu 80 Prozent über die Pfortader und zu 20 Prozent über die Arteria hepatica propria, die aus der Arteria hepatica communis entspringt [Greenway et al., 1971]. Die fokalen Leberläsionen beziehen ihre Blutversorgung im Gegensatz zum normalen Lebergewebe hauptsächlich aus der Arteria hepatica propria. Sie lassen sich durch ihre unterschiedlich hohe Anzahl an arteriellen Gefäßen in hyper- und hypovaskularisierte Läsionen einteilen.

Mit Hilfe der dynamischen, kontrastverstärkten, kernspintomographischen Leberdarstellung in der arteriellen, portalvenösen und Äquilibriumphase lassen sich drei verschiedene Gruppen von Leberläsionen unterscheiden [Schneider et al., 2003]:

- arteriell hypervaskularisierte Leberläsionen
- hypovaskularisierte Leberläsionen
- Leberläsionen mit einer verzögerten, persistierenden Kontrastmittelaufnahme.
Zu den hypervaskularisierten Leberläsionen zählen z.B. die fokal noduläre Hyperplasie, das Leberzelladenom, das hepatozelluläre Karzinom, sowie Metastasen von Hypernephromen, malignen Melanomen, neuroendokrinen Tumoren und Karzinoiden [Huang-Wei et al., 2006; Schneider et al., 2003].

Die größere Gruppe der hypovaskularisierten Herde umfasst das cholangiozelluläre Karzinom sowie Metastasen von kolorektalen Karzinomen, Mammakarzinomen und Plattenepithelkarzinomen. In der Äquilibriumphase kommt es zu einer verzögerten persistierenden Kontrastmittelverstärkung bei Hämagiomen und cholangiozellulären Karzinomen [Braga et al., 2001 und Schneider et al., 2003].

5.6.1. Differentialdiagnosen hypervaskularisierter Leberläsionen

Einteilung nach Schneider et al. (2005):

1. **Keine Leberzirrhose:**
 a) zentrale Narbe mit niedriger Signalintensität im T1- und T2- gewichteten Bild, keine späte Anreicherung der Narbe nach Kontrastmittelgabe = Fibrolamelläres Karzinom (FLC).
 b) zentrale Narbe mit niedriger Signalintensität im T1-gewichteten Bild und hoher Signalintensität in T2, spätes Enhancement der Narbe nach Kontrastmittelgabe = fokal noduläre Hyperplasie (FNH).
 c) keine zentrale Narbe, regressive Veränderungen, Einblutungen, Fett, weibliche Patienten im gebärfähigen Alter, Zusammenhang mit der Einnahme oraler Kontrazeptiva = hepatozelluläres Adenom.

2. **Leberzirrhose:**
 a) irreguläre interne Morphologie der Läsion; homogene oder inhomogene Hypervaskularisation; erhöhte Signalintensität im T2-gewichteten Bild = hepatozelluläres Karzinom (HCC).
 b) homogen niedrige Signalintensität im T2-gewichteten Bild durch Hämoglobindepots, homogene Vaskularisation = dysplastischer Knoten.

3. **Bekannter oder unbekannter Primärtumor:**
 a) homogene, typischerweise sehr hohe Signalintensität im T2-gewichteten Bild, ausgeprägte Vaskularisation = Metastasen neuroendokriner Tumoren (z.B. Insulinome, Gastrinome, Karzinoide).
b) inhomogen hohe Signalintensität im T2-gewichteten Bild, nekrotische Areale = Metastasen unterschiedlicher Primärtumore (z.B. Hypernephrome, Phäochromozytome, Melanome, Mamma-Ca. (auch hypovaskularisiert).

c) homogene Signalintensität im T2-gewichteten Bild, geringe aber homogene Hypervaskularisation, isointens in Aufnahmen 5 min nach Kontrastmittelgabe = Metastasen von Leiomyosarkomen.

4. **Inzidentelle regionale Hypervaskularisation** = focal attenuation difference (FAD).

5.7. **Fragestellung**

In der vorliegenden Arbeit sollen die beiden hepatospezifischen Kontrastmittel Gd-BOPTA und Ferucarbotran bei der Detektion und Differentialdiagnose hypervaskularisierter fokaler Leberläsionen in der kontrastmittelverstärkten MRT der Leber verglichen werden.

Da es sich bei beiden Substanzen um duale Kontrastmittel handelt, soll die Aussagekraft der Kontrastmittel sowohl in der dynamischen als auch der hepatospezifischen Phase analysiert werden. Ein spezielles Augenmerk soll zudem auf die Diagnose des hepatzellulären Karzinoms gelegt werden, da es sich hierbei um einen häufigen malignen Lebertumor handelt, der in einer zirrhotischen Leber relativ schwierig zu diagnostizieren ist.
6. Material und Methodik

Bei der vorliegenden Untersuchung handelt es sich um eine internationale Multizenterstudie, bei der insgesamt 43 Patienten (32 Frauen, 11 Männer) mit bekannten hypervaskularisierten Leberläsionen eingeschlossen wurden. Das Durchschnittsalter der Patienten betrug 49 Jahre bei einer Altersspanne von 18 bis 81 Jahren.

Das Einschlusskriterium für unsere Studie war das aus bereits unter klinischen Bedingungen durchgeführten Voruntersuchungen (CT, MRT, Ultraschall) bekannte Vorliegen von hypervaskularisierten Leberläsionen. Ausschlusskriterien beinhalteten fehlende Volljährigkeit, fehlende Möglichkeit zur persönlichen Einwilligung in die Studie, generelle Kontraindikationen zur Durchführung von MRT-Untersuchungen (Vorliegen von implantierten Biostimulatoren (z.B. Herzschiittmacher, Defibrillatoren, Cochlea-Implantate), Metallimplantaten, klausrophobische Beschwerden) sowie bekannte Unverträglichkeitsreaktionen bezüglich der verwendeten Kontrastmittel als auch erhöhte Kreatininwerte.

Die kernspintomographischen Untersuchungen wurden an einem Studienzentrum in Deutschland (Homburg, Universitätskliniken des Saarlandes, Klinik für Diagnostische und Interventionelle Radiologie) und an zwei Studienzentren in Italien (Brescia, Universitätsklinikum Brescia, Abteilung für Radiodiagnostik und Verona, Universitätsklinikum Verona, Abteilung für Radiodiagnostik) durchgeführt. An den jeweiligen Zentren lag das Einverständnis der Ethikkommission zur Durchführung der Studie vor und jeder Studienteilnehmer willigte schriftlich in die Teilnahme an der Studie ein.

Jeder Teilnehmer der Studie wurde zwei kernspintomographischen Untersuchungen unterzogen, wobei pro Untersuchung jeweils eines der beiden KM verwendet wurde.

Die histologische Abklärung der Läsionen erfolgte mittels Biopsie oder Resektion. Wenn es sich seitens der Bildgebung eindeutig um benigne Läsionen handelte, wurde zunächst eine Verlaufskontrolle in 6 Monaten durchgeführt. In Fällen, bei denen die bildmorphologische Diagnose nicht eindeutig zu stellen war, wurde ergänzend entweder eine Biopsie oder eine Verlaufskontrolle mittels MRT durchgeführt.
6. Material und Methodik

6.1. MRT-Bildgebung

Nach der Akquisition von Übersichtsaufnahmen des Oberbauches, sogenannten Scout-Sequenzen, wurden alle weiteren Sequenzen auf die Leber fokussiert. Hierbei wurden sowohl Turbospinecho- als auch Gradientenechosequenzen in verschiedenen Wichtungen in Atemanhaltetechnik, d.h. während eines Atemstillstandes des Patienten, akquiriert.

6.2. MR-Sequenzen

Zur magnetresonanztomographischen Untersuchung der Leber wurden sowohl T1-gewichtete als auch T2-gewichtete Sequenzen vor und nach Kontrastmittelgabe durchgeführt.

6.2.1. Nicht kontrastmittelverstärkte (native) MR-Sequenzen

Bei der T2-gewichteten Leberdarstellung kamen Turbospinecho-Sequenzen und RARE (Rapid Acquisition with Relaxation Enhancement) Sequenzen zur Anwendung. Die Zeit zur Erzeugung der Daten für einen MR-Bilddatensatz, die so genannte Akquisitionszeit, wurde so ausgewählt, dass die Aufnahme in einem Atemstillstand von 18-25 s durchgeführt werden konnte.

Da T2-gewichtete Sequenzen nicht für dynamische, kontrastmittelverstärkte Untersuchungen verwendet werden, wurde hier nicht versucht das komplette Leberparenchym in einem Atemstillstand abzubilden. Die hier eingesetzte Turbospinecho-Sequenz hatte ein TR von 4.000 ms, ein TE von 90-108 ms sowie einen Flipwinkel von 150° und eine Echozuglänge von 29. Die Schichtdicke betrug 6 mm mit einem Schichtabstand von 1,25 mm, hierbei wurden in einer Akquisitionszeit von 17 s 11 Schichten akquiriert.

Bei der RARE-Sequenz kam eine HASTE-Sequenz (Half Fourier Acquisition with Relaxation Enhancement, Firma Siemens, Erlangen, Germany) zum Einsatz mit einer TR von 4.400 ms, einer TE von 74 bis 90 ms, sowie einem Flipwinkel von 180-190°. Hierbei

Auf den zur Verfügung stehenden moderneren Kernspintomographen (z.B. Siemens Symphony) wurden als Alternative zu den oben genannten Flash-2D-Sequenzen T1-gewichtete VIBE-Sequenzen (TR=6,2 ms, TE=2,5 ms, 15° Flipwinkel, Akquisitionszeit 18 s) verwendet. Auch diese Sequenz ermöglicht es, die gesamte Leber in einem Atemstillstand mittels 3D-Technik mit einer primären Schichtdicke von 1-3 mm abzubilden.

6.2.2. Kontrastmittelverstärkte Sequenzen

Für die KM-verstärkten dynamischen Untersuchungen wurden sowohl nach Gabe von Gd-BOPTA als auch nach Ferucarbotrangabe intraindividuell jeweils die gleichen T1-gewichteten Sequenzen wie für die nicht-kontrastmittelverstärkte Bildgebung akquiriert, d.h. entweder Flash-2D-Sequenzen oder VIBE Sequenzen. Dabei wurden die entsprechenden Sequenzen in identischer Schichtposition wie die nativen Sequenzen durchgeführt.

In der leberspezifischen Phase wurden nach Gabe von Gd-BOPTA sowohl T1- als auch T1-gewichtete Sequenzen mit Fettsättigung durchgeführt, um beim möglichen Vorliegen

<table>
<thead>
<tr>
<th>Sequenz-Parameter</th>
<th>TR [ms]</th>
<th>TE [ms]</th>
<th>Flipwinkel α [°]</th>
<th>Anzahl der Schichten</th>
<th>Schichtdicke [cm] / Schichtlücke (Prozent der Schichtdicke)</th>
<th>Scandauer [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1-gewichtete GRE-Sequenz in-phase</td>
<td>140 - 175</td>
<td>4,1 – 4,7</td>
<td>70 – 80</td>
<td>23</td>
<td>6 / 10</td>
<td>19 - 23</td>
</tr>
<tr>
<td>T1-gewichtete GRE-Sequenz out-of-phase</td>
<td>140 - 175</td>
<td>2,0 – 2,6</td>
<td>70 – 80</td>
<td>16</td>
<td>6 / 10</td>
<td>19 - 23</td>
</tr>
<tr>
<td>VIBE-Sequenz (3D)</td>
<td>6,2</td>
<td>2,5</td>
<td>15</td>
<td>21</td>
<td>1-3 / 0</td>
<td>19 - 21</td>
</tr>
<tr>
<td>T1-gewichtete fettsupprimierte GRE-Sequenz</td>
<td>155</td>
<td>4,8</td>
<td>80</td>
<td>5</td>
<td>5 / 10</td>
<td>17-21</td>
</tr>
</tbody>
</table>

Tabelle 2: Übersicht der Sequenz-Parameter der verwendeten T1-gewichteten Sequenzen

deutlich weniger anfällig für Atemartefakte, wodurch sie insbesondere bei Patienten mit schlechter Compliance eingesetzt werden sollten [Kurokawa et al., 2001].

<table>
<thead>
<tr>
<th></th>
<th>TR [ms]</th>
<th>TE [ms]</th>
<th>Flipwinkel (\alpha) [°]</th>
<th>Anzahl der Schichten</th>
<th>Schichtdicke [cm] / Schichtlücke (Prozent der Schichtdicke)</th>
<th>Scandauer [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2-gewichtete TSE-Sequenz</td>
<td>4.000</td>
<td>90 - 108</td>
<td>150</td>
<td>11</td>
<td>6 / 10</td>
<td>17</td>
</tr>
<tr>
<td>T2-gewichtete HASTE-Sequenz</td>
<td>(\infty)</td>
<td>74 - 90</td>
<td>180 - 190</td>
<td>11</td>
<td>6 / 10</td>
<td>14</td>
</tr>
</tbody>
</table>

Tabelle 3: Übersicht der Sequenz-Parameter der verwendeten T2-gewichteten Sequenzen
6.3. **Zeitlicher Ablauf der Untersuchungen**

Nach Durchführung der Nativbildgebung beginnend mit einer HASTE-Sequenz, folgt von einer T2- und einer T1-gewichteten Sequenz, erfolgte die dynamische T1-gewichtete Bildgebung nach einer vorausgegangenen Bolusgabe von entweder 0,05 mmol Gd-BOPTA pro Kilogramm Körpergewicht bzw. 486 mg Ferucarbotran bei Patienten unter 60 kg Körpergewicht und 756 mg Ferucarbotran bei Patienten über 60 kg Körpergewicht mittels T1-gewichteten Gradientenechosequenzen. Zur Kontrastmittelapplikation wurden automatische Kontrastmittelpumpen verwendet, die es erlauben, die Kontrastmittel mit einer definierten Flussrate und damit mit einer definierten Dosis pro Zeiteinheit zu applizieren. In dieser Untersuchung wurden die entsprechenden Kontrastmittel mit einer Flussrate von 2,5 ml/s injiziert gefolgt von 20 ml einer 0,9%-igen NaCl-Lösung mit gleicher Flussrate. 15–25 Sekunden nach Beginn der Kontrastmittelapplikation wurde die arterielle Phase der T1-gewichteten dynamischen Bildgebung abgeleitet. Danach hatten die Patienten die Möglichkeit für ca. 8 Sekunden frei zu atmen, bevor dann die Bildgebung der portalvenösen Phase (ca. 50–70 s nach KM-Gabe) erfolgte. Circa 3–5 Minuten nach Kontrastmittelgabe erfolgte die Ableitung der Äquilibriumphase. Danach wurde die Untersuchung zunächst beendet. Die Patienten der Gd-BOPTA-Gruppe durften den Kernspintomographen für mindestens eine Stunde verlassen, die Patienten der Gruppe mit Ferucarbotranapplikation blieben im Gerät liegen.

Die Bildgebung in der hepatobiliären Phase bei Verwendung des Kontrastmittels Gd-BOPTA erfolgte 1 bis 3 Stunden nach Kontrastmittelgabe. Hierbei wurden sowohl T1-gewichtete als auch T1-gewichtete fettsupprimierte Sequenzen akquiriert.

Die Bildakquisition in der hepatospezifischen Phase nach Gabe von Ferucarbotran erfolgte 20 bis 30 Minuten nach Injektion.
6.3.1. Zeitlicher Ablauf der MR-Untersuchungen beim Einsatz von Gd-BOPTA

- T2-gewichtete native Bildgebung (HASTE, TSE)
- T1-gewichtete native Bildgebung (GRE)
- Kontrastmittelinjektion (0,05 mmol / kg KG Gd-BOPTA + 20 ml NaCl)
- T1-gewichtete Bildgebung (GRE) arterielle Phase (15 – 25 s post KM)
- T1-gewichtete Bildgebung (GRE) portalvenöse Phase (50 – 70 s post KM)
- T1-gewichtete Bildgebung (GRE) Äquilibriumphase (3 – 5 min post KM)
- Untersuchungspause
- T1-gewichtete Bildgebung (GRE) hepatobiliäre Phase (1 – 3 h post KM)
- T1w fettgesättigte Bildgebung (GRE) hepatobiliäre Phase (1 – 3 h post KM)

6.3.2. Zeitlicher Ablauf der MR-Untersuchungen beim Einsatz von Ferucarbotran

- T2-gewichtete native Bildgebung (HASTE, TSE)
- T1-gewichtete native Bildgebung (GRE)
- Kontrastmittelinjektion (Ferucarbotran + 20 ml NaCl)
- T1-gewichtete Bildgebung (GRE) arterielle Phase (15 – 25 s post KM)
- T1-gewichtete Bildgebung (GRE) portalvenöse Phase (50 – 70 s post KM)
- T1-gewichtete Bildgebung (GRE) Äquilibriumphase (3 – 5 min post KM)
- Untersuchungspause
- T2-gew. Bildgebung (HASTE) hepatospezifische Phase (20 min post KM)
- T2-gew. Bildgebung (TSE) hepatospezifische Phase (25 min post KM)
- T1-gew. Bildgebung (GRE) hepatospezifische Phase (30 min post KM)
6. Kontrastmittel

6.4. Gd-BOPTA

Bei Gd-BOPTA handelt es sich um ein paramagnetisches, in T1-gewichteter Bildgebung signalintensitäts erhöhendes Kontrastmittel. Es zeigt die typischen physikochemischen Eigenschaften von extrazellulären, gadoliniumhaltigen Kontrastmitteln, verfügt darüber hinaus über einige besondere Eigenheiten, wodurch es einer neuen Substanzklasse zuzuordnen ist. Gd-BOPTA enthält im Molekülkomplex eine lipophile Seitenkette, welche zum einen die hepatozytäre Aufnahme bedingt und zum anderen zu einer hochreversiblen Interaktion mit Serumproteinen führt, wodurch die Molekülorientation des Chelats verlangsamt wird. Dies erlaubt eine vermehrte Interaktion mit den Wasserstoffprotonen, was die Relaxivität erhöht.

6.4.1. Relaxivität

Die Relaxivität eines Kontrastmittels ist definiert als die Fähigkeit dieser Substanz, die Relaxationsrate von Wasserstoffprotonenspins zu erhöhen [Taupitz et al., 2003]. Bei Gd-BOPTA bewirkt eine lipophile Seitenkette die reversible Interaktion mit Serumproteinen, wodurch die Eigenrotation des Moleküls abnimmt, die Interaktion mit Wasserstoffprotonen...
verbessert und die Relaxivität angehoben wird. In Humanplasma ist die Relaxivität von Gd-BOPTA bei 1,5 T (R1=8,1 l×mmol⁻¹×s⁻¹) im Vergleich zu dem konventionellen, extrazellulären Kontrastmittel Gd-DTPA (R1=3,9 l×mmol⁻¹×s⁻¹) mehr als verdoppelt [Pintaske et al., 2006].

6.4.1.2. Läsionserkennung
Durch seine hohe Relaxivität führt Gd-BOPTA bereits bei einer Dosierung von 0,05 mmol/kg zu einem vergleichbaren Signalintensitätsanstieg wie Gd-DPTA bei einer Dosierung von 0,1 mmol/kg. Die in der dynamischen Untersuchung erfolgende Darstellung der Perfusionsverhältnisse verbessert die Detektion von Leberläsionen und liefert über die Darstellung der Vaskularisation differentialdiagnostische Erkenntnisse bezüglich der Charakterisierung der Läsion.

6.4.1.3. Leberspezifische Phase

6.4.2. Ferucarbotran
Bei Ferucarbotran handelt es sich um ein Kontrastmittel aus der Gruppe der Eisenoxidpartikel (ultrasmall superparamagnetic iron oxide, USPIO). Es besteht aus carboxy-dextranumhüllten superparamagnetischen Maghemite- (γ-Fe₂O₃) und in geringerer Anzahl Magnetitekristallen (Fe₃O₄). Seine Konzentration als wässrige i.v.-Lösung beträgt 0,5 mol/l. Der pH-Wert liegt zwischen 5,0 und 7,0. Die Osmolalität beträgt 0,324 osmol/kg Wasser. Ferucarbotran kann als Bolus appliziert werden und ist daher für die dynamische, kontrastmittelverstärkte Leberbildgebung geeignet. Patienten unter 60 kg Körpergewicht erhalten 0,9 ml und Patienten über 60 kg KG erhalten 1,4 ml der Substanz entsprechend 486 und 756 mg Ferucarbotran Gesamtdosis. Die Belastung des Körpers mit Eisen beträgt dabei 6-11 μmol Eisen/kg. Ferucarbotran wird nach i.v.-Applikation von den Makrophagen des RES phagozytiert. Dabei erfolgt die Elimination aus dem Gefäßsystem biexponentiell in einer ersten schnellen Phase mit einer Halbwertszeit von 3,9 - 5,8 min und einer zweiten langsameren Phase zwischen 2,4 und 3,6 h [Müller et al., 1998 und Hamm et al., 1994].
6.4.2.1. Relaxivität

Ferucarbotran besitzt aufgrund einer 10-fach höheren T2-Relaxivität (R2=190 l × mmol\(^{-1}\) × s\(^{-1}\)) gegenüber der T1-Relaxivität (R1=20 l × mmol\(^{-1}\) × s\(^{-1}\)) einen überwiegenden T2-Effekt. Nach Aufnahme der Substanz durch das retikuloendotheliale System (RES) der Leber kommt es in T2-gewichteten Sequenzen zu einem starken und lang andauernden Signalabfall. Aufgrund der zusätzlich relativ hohen T1-Relaxivität führt Ferucarbotran vorübergehend zu einem Signalintensitätsanstieg auf T1-gewichteten Sequenzen und kann daher auch für die Kontrastmitteldynamik eingesetzt werden.

6.4.2.2. Läsionserkennung

Durch die passagere Signalintensitätserhöhung in der KM-Dynamik mittels T1-gewichteten Sequenzen verbessert Ferucarbotran die Detektion von Leberläsionen und erlaubt eine Aussage bezüglich des Vaskularisationsgrades, was eine weitere Charakterisierung der Läsionen ermöglicht. Wichtiger zur Läsionsdetektion ist jedoch die Signalintensitätsminderung in T2-gewichteten Sequenzen.

6.4.2.3. Leberspezifische Phase

6.5. Verarbeitung der Bilddaten

konnten mit dieser Software auch Größenmessungen und Vergrößerungen der Bilddaten durchgeführt werden.

Es wurden insgesamt vier verschiedene Datensätze (Readings) randomisiert. Zur Vermeidung von systematischen Fehlern oder Einflüssen durch Wiedererkennen der Bilddaten wurden die Reihenfolge der Patientenpräsentation für jedes Reading randomisiert sowie ein Zeintervall von mindestens einer Woche zwischen den verschiedenen Auswertungen eingehalten.

Dabei wurden in Reading 1 native T1- und T2-gewichtete Bilder und Bilder der dynamischen Phase nach Gabe von Gd-BOPTA ausgewertet. In Reading 2 wurden native T1- und T2-gewichtete Bilder und Bilder der dynamischen Phase nach Gabe von Ferucarbotran analysiert. Reading 3 beinhaltete die Analyse der nativen T1- und T2-gewichteten Bildgebung, der Bilder der dynamischen Phase nach Gabe von Gd-BOPTA sowie der hepatospezifischen Phase nach KM. In Reading 4 erfolgte die Auswertung der nativen T1- und T2-gewichteten Sequenzen sowie der Bilder der dynamischen und hepatospezifischen Phase nach Gabe von Ferucarbotran.

6.6. Bildanalyse

6.7. Statistische Auswertung

Zur Analyse der statistischen Unterschiede hinsichtlich der Anzahl der mit den verschiedenen Untersuchungstechniken detektierten Läsionen wurde ein Student t-Test durchgeführt. Hinsichtlich der diagnostischen Aussagekraft der unterschiedlichen Untersuchungstechniken zur Detektion des hepatozellulären Karzinoms wurde ein Chi-Quadrat-Test (exakter Test nach Fisher) durchgeführt. Für die statistische Auswertung wurde dabei ein kommerziell erhältliches Computerprogramm (GraphPad Prism version 5.00, GraphPad Software, San Diego, California, USA) verwendet. Für jede Auswertung wurde ein p-Wert kleiner 0,05 als statistisch signifikant angesehen.
7. Ergebnisse

7.1. Bildqualität

Bei der Beurteilung der Bildqualität wurden in Reading 1, bei dem neben den nativen Aufnahmen auch die Kontrastmitteldynamik nach Gabe von Gd-BOPTA ausgewertet wurde, acht Studien als „excellent“, 34 als „good“ und eine Studie als „sufficient“ bewertet.

In Reading 2, in welchem die nativen Bilddaten und die dynamische Untersuchung nach Gabe von Ferucarbotran untersucht wurden, wurde die Bildqualität in 33 Studien als „good“ und in 10 Fällen als „sufficient“ eingestuft. Keine Studie wurde als „excellent“ bewertet.

Bezüglich Reading 3, bei dem neben den nativen Sequenzen auch die dynamischen Untersuchungen und die Sequenzen in der hepatobiliären Phase nach Gabe von Gd-BOPTA ausgewertet wurden, ergab die Bewertung der Bildqualität in 11 Fällen „excellent“, in 31 Fällen „good“ und in einem Fall „sufficient“.

In Reading 4, bei dem es sich um die Auswertung der nativen Sequenzen, der Kontrastmitteldynamik und der hepatospezifischen Phase nach Gabe von Ferucarbotran handelte, wurde die Bildqualität viermal als „excellent“, 31 Mal als „good“ und achtmal als „sufficient“ bewertet. In keiner Auswertung wurde die Bildqualität als „poor“ bewertet, somit wurden alle Studien in die weitere Evaluation eingeschlossen (siehe Diagramm 1).

![Diagramm 1: Bildqualität](image-url)
7.2. Gesamtanzahl der vorliegenden Läsionen

![Diagramm 2: Diagnosen](image-url)
7.3. Gesamtanzahl der detektierten Läsionen in der KM-Dynamik

Die Auswertung der Bilddatensätze, in denen die nativen Bildsequenzen und die dynamischen Kontrastmittelserien nach Applikation von Gd-BOPTA bewertet wurden, (Reading 1) ergab eine maximale Anzahl von 171 der insgesamt 211 definierten Läsionen, entsprechend einer Detektionsrate von 81%.

Demgegenüber ergab die Auswertung der Bilddatensätze, in denen die Nativsequenzen und die dynamischen KM-verstärkten Sequenzen nach Gabe von Ferucarbotran (Reading 2) gezeigt wurden, eine Gesamtanzahl von 149 von insgesamt 211 Läsionen, entsprechend einer Detektionsrate von 71%. (siehe Diagramm 3).

Diagramm 3: Anzahl der detektierten Läsionen pro Reading.

In direktem, intraindividuellem Vergleich der beiden unterschiedlichen dynamischen KM-verstärkten Untersuchungstechniken bezüglich der Gesamtanzahl der detektierten Läsionen ergibt sich nach statistischer Analyse mittels gepaartem t-Test ein signifikanter Unterschied mit einem p-Wert von 0,03.
7. Ergebnisse

7.4. Gesamtanzahl der detektierten Läsionen in der KM-Dynamik und der hepatospezifischen Phase

Die Auswertung der Bilddatensätze, bei denen sowohl die Nativsequenzen als auch die KM-verstärkten Sequenzen der KM-Dynamik und der leberspezifischen Phase nach Gabe von Gd-BOPTA (Reading 3) demonstriert wurden, ergab eine Gesamtanzahl an detektierten Läsionen von 185 von insgesamt 211 Herden. Dies entspricht einer Detektionsrate von 88%.

Die Analyse der entsprechenden Bilddatensätze bei denen native und KM-verstärkte Sequenzen inklusive der KM-Dynamik und der leberspezifischen Phase nach Gabe von Ferucarbotran (Reading 4) gezeigt wurden, ergab eine Gesamtzahl von 159 detektierten Läsionen, entsprechend einer Detektionsrate von 75%.

Im intraindividuellen Vergleich der beiden KM-verstärkten Untersuchungstechniken unter Einbeziehung der hepatospezifischen Phase ergibt sich nach statistischer Analyse mittels gepaartem t-Test ein signifikanter Unterschied mit einem p-Wert von 0,016 (siehe Diagramm 4).

Diagramm 4: Anzahl der detektierten Läsionen pro Reading.
7. Ergebnisse

7.5. Einfluss der hepatospezifischen Phase auf die Anzahl der detektierten Läsionen

Der intraindividuelle Vergleich der nativen Untersuchungstechnik und der KM-Dynamik nach Gabe von Gd-BOPTA (Reading 1) mit der Untersuchungstechnik, die neben der nativen Sequenzen und der KM-Dynamik auch die hepatospezifische Phase nach Gabe von Gd-BOPTA beinhaltet (Reading 3) ergab nach gepaartem t-Test mit einem p-Wert von 0,01 einen statistisch signifikanten Unterschied hinsichtlich der Anzahl der detektierten Läsionen (Reading 1: 171 / Reading 3: 185).

Demgegenüber zeigte der intraindividuelle Vergleich der nativen und dynamischen KM-Serie (Reading 2) mit der nativen, dynamischen und hepatospezifischen Phase nach Gabe von Ferucarbotran (Reading 4) gemäß gepaartem t-Test mit einem p-Wert von 0,07 keinen statistisch signifikanten Unterschied hinsichtlich der Anzahl der detektierten Läsionen (Reading 2: 149 / Reading 4: 159).

7.6. Eigenschaften der beiden Kontrastmittel zur Diagnose des HCC

Bei dem vorliegenden Patientengut wurden in der Zusammenschau aller zur Verfügung stehenden Informationen im Sinne von bildgebenden Verfahren, Klinik und Laborparametern insgesamt 76 hepatozelluläre Karzinome diagnostiziert. Hinsichtlich der Detektion der HCC-Herde ergaben sich für die verschiedenen KM-verstärkten Untersuchungsmethoden folgende Ergebnisse:

Bei der Auswertung der nativen und KM-verstärkten Bilddaten nach Gabe von Gd-BOPTA wurden 60 der vorhandenen 76 HCC-Herde richtig positiv detektiert. 128 Läsionen wurden dabei als richtig negativ eingestuft. Mit dieser Untersuchungstechnik ergaben sich eine Sensitivität von 0,79 und eine Spezifität von 0,95 bei einem positiven prädiktiven Wert von 0,90 und einem negativen prädiktiven Wert von 0,89.

Die Evaluation der nativen Sequenzen und der KM-Dynamik nach Gabe von Ferucarbotran ergab eine richtig positive Detektion von 27 der 76 vorhandenen HCC-Herde mit 130 richtig negativ eingestuften Herden. Daraus ergeben sich eine Sensitivität von 0,36 und eine Spezifität von 0,96 bei einem positiven prädiktiven Wert von 0,84 und einem negativen prädiktiven Wert von 0,73.

Die Evaluation der nativen Sequenzen und der KM-Dynamik nach Gabe von Ferucarbotran ergab eine richtig positive Detektion von 27 der 76 vorhandenen HCC-Herde mit 130 richtig negativ eingestuften Herden. Daraus ergeben sich eine Sensitivität von 0,36 und eine Spezifität von 0,96 bei einem positiven prädiktiven Wert von 0,84 und einem negativen prädiktiven Wert von 0,73.

Bei der Auswertung der nativen und KM-verstärkten Bilddaten nach Gabe von Gd-BOPTA wurden 60 der vorhandenen 76 HCC-Herde richtig positiv detektiert. 128 Läsionen wurden dabei als richtig negativ eingestuft. Mit dieser Untersuchungstechnik ergaben sich eine Sensitivität von 0,79 und eine Spezifität von 0,95 bei einem positiven prädiktiven Wert von 0,90 und einem negativen prädiktiven Wert von 0,89.

Die Evaluation der nativen Sequenzen und der KM-Dynamik nach Gabe von Ferucarbotran ergab eine richtig positive Detektion von 27 der 76 vorhandenen HCC-Herde mit 130 richtig negativ eingestuften Herden. Daraus ergeben sich eine Sensitivität von 0,36 und eine Spezifität von 0,96 bei einem positiven prädiktiven Wert von 0,84 und einem negativen prädiktiven Wert von 0,73.

Die Evaluation der nativen Sequenzen und der KM-Dynamik nach Gabe von Ferucarbotran ergab eine richtig positive Detektion von 27 der 76 vorhandenen HCC-Herde mit 130 richtig negativ eingestuften Herden. Daraus ergeben sich eine Sensitivität von 0,36 und eine Spezifität von 0,96 bei einem positiven prädiktiven Wert von 0,84 und einem negativen prädiktiven Wert von 0,73.

Mittels nativer Sequenzen, der KM-Dynamik und den Sequenzen in der hepatospezifischen Phase nach Gabe von Gd-BOPTA (Reading 3) wurden 63 der 76 HCC-Herde richtig positiv diagnostiziert. 116 Läsionen wurden als richtig negativ bezüglich eines HCC
eingestuft. Für diese Untersuchungstechnik ergeben sich dadurch eine Sensitivität von 0,83 und eine Spezifität von 0,86 bei einem positiven prädiktiven Wert von 0,77 und einem negativen prädiktiven Wert von 0,90.

Bei der Auswertung der nativen Sequenzen in Kombination mit der KM-Dynamik und den Sequenzen in der hepatospezifischen Phase nach Gabe von Ferucarbotran wurden 36 der 76 HCC-Herde richtig positiv detektiert. 113 Läsionen wurden richtig negativ nicht als HCC gewertet. Für diese Untersuchungstechnik ergeben sich somit eine Sensitivität von 0,47 und eine Spezifität von 0,84 bei einem positiven prädiktiven Wert von 0,62 und einem negativen prädiktiven Wert von 0,74. Eine Übersicht der Ergebnisse ist in Tab. 4 zu finden.

<table>
<thead>
<tr>
<th></th>
<th>Sensitivität</th>
<th>Spezifität</th>
<th>pos. präd. Wert</th>
<th>neg. präd. Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading 1</td>
<td>0,79</td>
<td>0,95</td>
<td>0,90</td>
<td>0,89</td>
</tr>
<tr>
<td>Reading 2</td>
<td>0,36</td>
<td>0,96</td>
<td>0,84</td>
<td>0,73</td>
</tr>
<tr>
<td>Reading 3</td>
<td>0,83</td>
<td>0,86</td>
<td>0,77</td>
<td>0,90</td>
</tr>
<tr>
<td>Reading 4</td>
<td>0,47</td>
<td>0,84</td>
<td>0,62</td>
<td>0,74</td>
</tr>
</tbody>
</table>

Tabelle 4: Übersicht der Ergebnisse
7.7. Bildbeispiele

7.7.1. Noduläre regenerative Hyperplasie

32-jährige weibliche Patientin mit Adipositas und Steatosis hepatis sowie abgelaufener Hepatitis im Rahmen einer NASH. Sonographisch unklare Raumforderung im Bereich des rechten Leberlappens.

Native Bildgebung

![T2 Bildgebung](image1)

![T1 Bildgebung](image2)

![T1 fs Bildgebung](image3)

![Opposed-phase Bildgebung](image4)

In der nativen T2-gewichteten Sequenz zeigt sich eine scharf berandete Raumforderung in Segment 7 subkapsulär mit flau hyperintensen Anteilen. In der korrespondierenden T1-gewichteten Sequenz stellt sich die Raumforderung homogen hypointens dar.

In der T1-gewichteten Sequenz mit Fettsättigung sowie der opposed-phase kommt es zu einem Signalintensitätsabfall des Lebergewebes aufgrund einer ausgeprägten diffusen Verfettung. Dadurch zeigt die Läsion eine flau hyperintense Signalintensität zum umgebenden verfetteten Lebergewebe.
7. Ergebnisse

KM-Dynamik

Gd-BOPTA

In der arteriellen Phase nach Gabe von Gd-BOPTA zeigt die Läsion eine deutliche und homogene Anreicherung des Kontrastmittels. In der portalvenösen Phase weist die Läsion weiterhin eine vermehrte Kontrastmittelanreicherung im Vergleich zum umgebenden Lebergewebe auf.

Ferucarbotran

Hepatospezifische Phase

Gd-BOPTA

In den T1-gewichteten und T1-gewichteten fettgesättigten Aufnahmen nach Gabe von Gd-BOPTA stellt sich die Läsion betont in der Peripherie hyperintens dar. Dies basiert auf einer vermehrten Kontrastmittelaufnahme in der Raumforderung, die aus differenzierten Hepatozysten besteht und somit als benigner lebereigener Tumor, wie beispielsweise eine noduläre regenerative Hyperplasie, identifiziert werden kann.

Ferucarbotran

Auch nach Gabe von Ferucarbotran ist in den T2-gewichteten und T1-gewichteten Sequenzen eine vermehrte Kontrastmittelanreicherung nachweisbar, die sich in diesem Fall als Signalintensitätabfall erkennen lässt. Aufgrund der fehlenden Darstellung der Hypervaskularisation in der Kontrastmitteldynamik nach Ferucarbotran-Gabe lässt sich die Läsion mit diesem Kontrastmittel nur schwer differentialdiagnostisch einordnen.
7.7.2. Leberzelladenomatose

Native Bildgebung

![Native Bildgebung](image)

In der nativen T2-gewichteten HASTE- und TSE-Sequenz sind in Segment 5 und 6 des rechten Leberlappens zwei ca. 1 cm messende und zwei mehrere Zentimeter messende Raumforderungen mit hyperintensem Signal abgrenzbar. Auf den korrespondierenden T1-gewichteten Sequenzen stellen sich die Läsionen isointens bis hypointens zum umgebenden Lebergewebe dar.

Kontrastmitteldynamik

Gd-BOPTA

![Kontrastmitteldynamik](image)

In der arteriellen Phase nach Gabe von Gd-BOPTA weisen die Läsionen eine deutliche z.T. etwas irreguläre Kontrastmittelaffinität auf. In der portalvenösen Phase zeigen die Herde ein zunehmend homogen hyperintenses Signal vereinbar mit einer persistierenden Kontrastmittelaufnahme. In der Äquilibriumphase stellen sich die Herde zunehmend
7. Ergebnisse

isoointens zum umgebenden Lebergewebe dar. Die Läsionen selbst weisen eine relativ homogene Binnenstruktur auf. Ein Auswaschen des Kontrastmittels ist nicht zu erkennen.

Ferucarbotran

Hepatospezifische Phase

Gd-BOPTA

Auf den T1-gewichteten und T1-gewichteten Sequenzen mit Fettsättigung in der hepatobiliären Phase kommen die Raumforderungen diffus hypointens zum umgebenden Lebergewebe zur Darstellung. Dies könnte prinzipiell ein Hinweis darauf sein, dass die Raumforderungen nicht aus nativem Lebergewebe aufgebaut sind. Wichtig ist es in diesem

Ferucarbotran

![T1 Kupfferzell-Phase](image1) ![HASTE Kupfferzell-Phase](image2) ![T2-TSE Kupfferzell-Phase](image3)

7.7.3. Fokal noduläre Hyperplasie

Native Bildgebung

![T2 nativ](image1) ![T1 nativ](image2)

KM-Dynamik

Gd-BOPTA

![T1 art](image3) ![T1 pv](image4) ![T1 equil](image5)

In der arteriellen Phase nach Gabe von Gd-BOPTA zeigen beide Raumforderungen eine deutliche und im Wesentlichen homogene Kontrastmittelaneicherung. Lediglich die zentralen Tumoranteile stellen sich weiterhin hypointens dar. Bereits in der portalvenösen Phase hat sich die Kontrastmittelaffinität zunehmend der des normalen Lebergewebes

Ferucarbotran

![T1 art](image1) ![T1 pv](image2) ![T1 equil](image3)

In der arteriellen Phase nach Gabe von Ferucarbotran lässt sich die Hypervaskularisation der Raumforderungen nicht in dem Maße erkennen wie mit Gd-BOPTA. Bereits in der portalvenösen Phase und ausgeprägter noch in der Äquilibriumphase zeigt sich ein Signalintensitätsabfall der Läsionen im Sinne einer vermehrten KM-Anreicherung in den Kupffer-Zellen.

Hepatospezifische Phase

Gd-BOPTA

![T1 hb](image4) ![T1 fs hb](image5)

In der hepatobiliären Phase nach Gabe von Gd-BOPTA ist auf den T1-gewichteten und T1-gewichteten fettgesättigten Sequenzen in der Peripherie eine vermehrte Signalintensität gegenüber den nativen T1-gewichteten Sequenzen zu erkennen. Die vermehrte KM-Anreicherung in den Spätaufnahmen erklärt sich durch die feingewebliche Zusammensetzung der FNH. Im Gegensatz zu Leberzelladenomen enthalten fokal noduläre Hyperplasien primitive Gallenwege, die jedoch keinen Anschluss an die großen...
ableitenden Gallenwege aufweisen. Das heißt, das von den Leberzellen sezernierte Gd-BOPTA ist verlängert in den primitiven Gallenwegen nachweisbar, was die hohe Signalintensität in den Spätaufnahmen begründet und darüber hinaus ein wesentliches Merkmal für die Diagnosestellung mit diesem Kontrastmittel ist.

Ferucarbotran

In den T2- und T1-gewichteten Sequenzen in der heptospezifischen Phase nach Gabe von Ferucarbotran lässt sich ebenfalls eine vermehrte Anreicherung in den Läsionen erkennen, die sich jedoch bei diesem Kontrastmittel als Hypointensität widerspiegelt. Die Läsionen lassen sich also ebenfalls als benigne lebereigene Tumoren diagnostizieren. Die deutlich schlechter erkennbare Hypervaskularisation der Läsion erschwert jedoch die Diagnosestellung, die vermutlich im Wesentlichen auf der Morphologie mit der typischen zentralen Narbe beruht.
7.7.4. Metastase eines Aderhautmelanoms

71-jährige Patientin mit bekanntem Aderhautmelanom. Im Verlauf neu aufgetreten Anstieg der Transaminasen und Schmerzen im rechten Oberbauch.

Native Bildgebung

In den nativen T2-gewichteten HASTE- und TSE-Sequenzen zeigt sich eine große, segmentüberschreitende Raumforderung im rechten Leberlappen mit irregulär hyperintensem Signal. Auf den korrespondierenden T1-gewichteten Aufnahmen zeigt die Läsion eine irregulär iso- bis hypointense Signalintensität im Vergleich zum umgebenden Lebergewebe.

KM-Dynamik

Gd-BOPTA

In der arteriellen Phase nach Gabe von Gd-BOPTA weist die Raumforderung eine deutliche, jedoch inhomogene Kontrastmittelaffinität auf, die sich auch in der portalvenösen Phase nachweisen lässt. In der Äquilibriumphase zeigen einige Tumoranteile bereits ein Auswaschen des Kontrastmittels, was als Hinweis für eine Malignität gewertet werden kann.
Nach Gabe von Ferucarbotran lässt sich erneut die Kontrastmittelaufnahme in der arteriellen und portalvenösen Phase deutlich schlechter erkennen als mit den Sequenzen nach Gabe von Gd-BOPTA. Auch in der Äquilibriumphase stellt sich die Raumforderung persistierend mit irregulärem Signal dar.

Hepatospezifische Phase

Gd-BOPTA

Ferucarbotran

T1 Kupfferzell-Phase T2 Kupfferzell-Phase

Auch nach Gabe von Ferucarbotran lässt sich eine unzureichende Anreicherung des Kontrastmittels in der Raumforderung, typischerweise in den T2-gewichteten Sequenzen erkennen, sodass auch hier die Diagnose einer Metastase gelang.
7.7.5. Diffuses HCC

Native Bildgebung

In den nativen T2-gewichteten Sequenzen zeigen sich multiple kleine, sich flau hyperintens zum umgebenden Lebergewebe darstellende Herde innerhalb beider Leberlappen. Diese zeigen in den nativen T1-gewichteten Aufnahmen ein homogen hypointenses Signalverhalten.

Kontrastmitteldynamik

Gd-BOPTA

In der arteriellen Phase nach intravenöser Gabe von Gd-BOPTA zeigen die Herde eine deutliche Signalintensitätssteigerung, gefolgt von einem frühen Auswaschen des Kontrastmittels bereits in der portalvenösen Phase. In der Äquilibriumphase ist bei einigen größeren Herden eine verstärkte Anreicherung in der Peripherie zu erkennen, ein sogenanntes „Pseudokapsel-Phänomen“, ein typisches Kennzeichen eines HCC.
7. Ergebnisse

Ferucarbotran

Nach Gabe von Ferucarbotran ist in der arteriellen Ableitung der Kontrastmitteldynamik die Hypervaskularisation der Herde und das anschließende Auswaschen des Kontrastmittels nicht in dem Maße sichtbar wie mit Gd-BOPTA.

Leberspezifische Spätphase

Gd-BOPTA

In der hepatospezifischen Phase zeigt das normale Lebergewebe nach Gabe von Gd-BOPTA in den T1-gewichteten Sequenzen eine homogene Signalintensitätssteigerung aufgrund der spezifischen Aufnahme des Kontrastmittels in die Hepatozyten und seine Ausscheidung in die Gallenwege. Nicht lebereigenes Gewebe, wie in diesem Fall die multiplen, diffus verteilten HCC-Herde, stellt sich im Gegensatz dazu hypointens dar, da es das hepatozytenspezifische Kontrastmittel nicht selektiv aufnimmt.
Ferucarbotran

T2 Kupfferzell-Phase

7.7.6. HCC mit Hämosiderinablagerungen

Native Bildgebung

In den nativen T2-gewichteten Sequenzen (HASTE, T2w) ist ventral subkapsulär in Segment 4b unmittelbar angrenzend an das Ligamentum falciforme eine inhomogen hypointense Raumforderung zu erkennen, die in der korrespondierenden nativen T1-gewichteten Sequenz ein deutlich hyperintenses Signal im Vergleich zum umgebenden Lebergewebe aufweist. Dieses hohe Signal in den nativen T1-gewichteten Sequenzen beruht auf einer vermehrten Hämosiderinablagerung in diesem histologisch gesicherten HCC.

KM-Dynamik
Gd-BOPTA

Trotz des erhöhten Signals der Läsion in den nativen T1-gewichteten Sequenzen lässt sich in der Kontrastmittel dynamik nach Gabe von Gd-BOPTA dennoch eine deutliche früharterielle Mehranreicherung der Läsion nachweisen. In der portalvenösen Phase weist die Läsion bereits wieder eine verringerte Signalintensität aufgrund eines Auswaschens des Kontrastmittels auf. In der Äquilibriumphase zeigt sich in der Peripherie der Raumforderung eine Mehranreicherung von Gd-BOPTA im Sinne eines Pseudokapsel-Phänomens, was die Diagnose eines HCC erlaubt.
Ferucarbotran

In der Kontrastmittelgabe nach Gabe von Ferucarbotran lässt sich weder die Hypervaskularisation der Läsion, noch das frühe Auswaschen des KM oder die periphere Mehranreicherung nachweisen. Die Diagnostik aufgrund der Kontrastmitteldynamik mittels Ferucarbotran ist in diesem Fall insbesondere durch die Überlagerung durch das hohe Signal der Läsion in den nativen T1-gewichteten Bildern erschwert.

Hepatospezifische Phase

Gd-BOPTA

In der hepatospezifischen Phase nach Gabe von Gd-BOPTA lässt sich keine suffiziente Aussage hinsichtlich der Kontrastmittelaffinität und dadurch über die gewebliche Zusammensetzung der Läsion machen, da auch hier wiederum der hohe Hämosideringehalt der Läsion potenzielle Signalintensitätsänderungen maskiert.
Ferucarbotran

Auch in diesem Fall basiert die Diagnosestellung im Wesentlichen auf der Kontrastmitteldynamik, wobei in der Untersuchung mittels Gd-BOPTA HCC-typische Charakteristika der Läsion nachweisbar waren, in der Untersuchung mit Ferucarbotran diese jedoch nicht eindeutig erkennbar waren. So wurde in der verblindeten Auswertung der Datensätze mit Ferucarbotran die Läsion nicht als HCC sondern fälschlicherweise als hämosiderotischer Knoten bewertet.
8. Diskussion

Der Einsatz von Kontrastmitteln in der MRT zur Detektion und Charakterisierung fokaler Leberläsionen ist eine etablierte Untersuchungsmethode [Elsayes et al., 2005 und Semelka et al., 2001]. Dabei sind für die Diagnosestellung in der kontrastmittelverstärkten MRT zwei Faktoren von besonderer Bedeutung, die Vaskularisation der Läsion und der Gehalt an vitalem, natürlichem Lebergewebe, wobei hier insbesondere der Gehalt an vitalen Hepatozyten und Zellen des retikuloendothelialen Systems von Interesse ist.

Bei Gd-DTPA kommt es jedoch zu keiner selektiven Aufnahme in den Intrazellularraum, sodass dieses Kontrastmittel nicht spezifisch zur Markierung bestimmter Zelltypen oder Pathologien eingesetzt werden kann.

Zur Detektion pathologischer Läsionen ist es notwendig, einen unterschiedlichen Kontrast gegenüber dem normalen umgebenden Gewebe zu erreichen. Das heißt, je größer der
8. Diskussion

Ein weiteres hepatospezifisches Kontrastmittel ist beispielsweise Mn-DPDP [Reimer et al., 2004]. Dieses hat den entscheidenden Nachteil, dass es langsam infundiert und nicht als Bolus schnell appliziert werden kann. Daher eignet sich dieser Komplex nicht für die dynamische Leberbildgebung.

Ziel dieser Studie war der Vergleich der beiden leberspezifischen Kontrastmittel Gd-BOPTA und Ferucarbotran hinsichtlich der Detektion hypervaskularisierter Leberläsionen. Dabei wurden in der dynamischen Kontrastmitteluntersuchung nach Gabe von Gd-BOPTA insgesamt 171 der insgesamt 211 vorhandenen Läsionen detektiert. Mit Ferucarbotran wurden lediglich 149 der 211 vorhandenen Läsionen detektiert, was gemäß in dieser Studie einem signifikanten Unterschied entspricht ($p < 0,05$).

Betrachtet man diese Ergebnisse in Zusammenhang mit den Relaxivitäten der beiden Komplexe, so ist dies kontrovers zu den in vitro ermittelten Eigenschaften der Kontrastmittel. In humanem Serum ist die T1-Relaxivität von Ferucarbotran ungefähr um den Faktor 4,5 größer als Gd-BOPTA. Man sollte daher erwarten, dass sich daraus eine bessere Detektion von fokalen Leberläsionen ergeben sollte. Reimer et al. (1998) zeigten jedoch, dass die T1-Relaxivitäten von Ferucarbotran deutlich abhängig sind von der verwendeten Feldstärke des Magnetfeldes. Während Gd-DTPA bei verschiedenen Feldstärken mit einer Larmorfrequenz zw. 0,02 und 300 MHz eine nahezu konstante T1-Relaxivität aufweist nimmt die T1-Relaxivität von Ferucarbotran deutlich ab und nähert sich ab einer Feldstärke von 1 T zunehmend der des Gadoliniumkomplexes an.

Desweiteren zeigten Reimer et al., dass bei T1-gewichteten Gradientenechosequenzen normales Lebergewebe nur innerhalb der ersten 30 Sekunden einen Signalintensitätsanstieg zeigt und im weiteren Verlauf zunehmend hypointens zur Darstellung kommt. Dies bedeutet, dass der typische signalintensitätsverstärkende Effekt des Eisenkomplexes in der KM-Dynamik nur in der arteriellen Phase nach Applikation sichtbar ist und bereits in der portalvenösen und Äquilibrium-Phase nicht mehr in dem Maße erkennbar ist wie bei einem Gd-Komplex.

Ebenso konnte für Metastasen nur in den ersten 30 Sekunden eine geringe Signalsteigerung detektiert werden, die im Verlauf keine weitere Zunahme nach Gabe der Eisenoxidpartikel erkennen ließ. Insgesamt bleibt daher die Frage offen, ob nach Gabe von Ferucarbotran die Detektion der Vaskularisation und damit die Charakterisierung der
Läsion auf der zunehmenden Signalintensitätsabnahme des normalen Lebergewebes oder auf der tatsächlichen Signalintensitätsänderung der Läsion selbst beruhen.

Eine weitere mögliche Erklärung für die schlechtere Detektion hypervaskularisierter Leberläsionen in der Kontrastmittel dynamik kann in dem relativ geringen Gesamtvolumen des applizierten Ferucarbotran begründet sein. Gd-BOPTA wurde in dieser Studie wie auch in der klinischen Routine genau gewichtsadaptiert dosiert, d.h. bei Körpergewichten der Patienten zwischen 50 und 100 kg kommen dabei Gesamtvolumina an appliziertem Gd-BOPTA zwischen 5 und 10 ml zum Einsatz. Demgegenüber wurde Ferucarbotran in dieser Studie analog zur klinischen Routine mit einem Gesamtvolumen von 0,9 bzw. 1,4 ml appliziert. Das bedeutet, dass auch analog zum Körpergewicht das applizierte Ferucarbotran in einem sehr unterschiedlichen und unter Umständen sehr großen Verteilungsvolumen anreicht, was insbesondere bei sehr schweren Patienten mit vermehrtem Blutvolumen von Nachteil sein kann.

Des weiteren resultiert das geringe Volumen der applizierten Kontrastmittel dosis in einem sehr kurzen Bolus, d.h. dass die Zeitspanne, in der dieses Kontrastmittel sich in einem bestimmten Gefäßareal, wie beispielsweise dem arteriellen oder portalvenösen Gefäßsystem der Leber aufhält, kürzer ist, als bei einem längeren Bolus. Dies bedeutet, dass der Einsatz dieses Kontrastmittels auch anfällig für eine fehlerhafte Akquisition der
Kontrastmitteldynamik ist, ein weiterer möglicher Faktor für ein schlechteres Abschneiden der Läsionsdetektion in der Kontrastmitteldynamik mit Ferucarbotran.

Bei Gd-BOPTA war die Anzahl der detektierten HCCs in der Zusammenschau von Kontrastmitteldynamik und der hepatospezifischen Phase sogar geringer, was jedoch nicht signifikant war. Dies korreliert mit den Untersuchungen von Grazioli et al. (2000), die zeigten, dass die Detektion von HCC-Herden zum Einen stark von der Zusammensetzung und Differenzierung der HCC-Herde selbst, zum Anderen auch von der Schädigung des umgebenden zirrhotischen Lebergewebe bedingt ist. Bei HCC-Herden kann es in unterschiedlichem Ausmaß zu intraläsionalen fettigen Metaplasien kommen, was die Signalintensitäten in den nativen T1-gewichteten und T1-gewichteten fettgesättigten Sequenzen beeinflusst. Zudem wird umso mehr Gd-BOPTA in HCC-Herden aufgenommen, je besser die Differenzierung ist. Dies resultiert jedoch in einem geringeren
Kontrast-zu-Rausch-Verhältnis zu dem umgebenden normal differenzierten Lebergewebe und damit in einer schlechteren Detektierbarkeit [Manfredi et al., 1999].

sind als für die Detektion von Lebermetastasen [Kim et al., 2006, Kim et al., 2002 und Mori, 2002].
Ein weiterer möglicher Faktor für die lediglich nicht signifikante Zunahme an detektierten Leberläsionen in der hepatospezifischen Phase mittels Ferucarbotran im Vergleich zu Gd-BOPTA kann durch den Zeitpunkt der Akquisition der leberspezifischen Phase nach Gabe des USPIOs bedingt sein. Saito et al. zeigten, dass das Kontrast-zu-Rausch Verhältnis von HCC-Herden in Sequenzen, die 30 Minuten nach KM-Gabe akquiriert wurden, signifikant höher war als in Sequenzen, die 10 Minuten nach Kontrastmittelgabe durchgeführt wurden. In dieser Studie wurden die Sequenzen in der leberspezifischen Phase nach Gabe von Ferucarbotran nach 20 Minuten durchgeführt, was unter Umständen ein geringeres Kontrast-zu-Rausch-Verhältnis für die Läsionen bedingt haben kann.

8.1. Schlussfolgerung
9. Literaturverzeichnis

8. de Haën C, La Ferla R, Maggioni F. Gadobenate dimeglumine 0.5 M solution for injection (MultiHance) as contrast agent for magnetic resonance imaging of the liver: mechanistic studies in animals. J Comput Assist Tomogr. 1999 Nov;23 Suppl 1:S169-79

51. Pintaske J, Martirosian P, Graf H, Erb G, Lodemann KP, Claussen CD, Schick F. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol. 2006 Mar;41(3):213-21

74. Taupitz M, Schmitz S, Hamm B. Superparamagnetische Eisenoxidpartikel: Aktueller Stand und zukünftige Entwicklungen. RöFo. 2003; 175: 752-765

10. Aus der Arbeit hervorgegangene Publikationen

P. Fries, W. Loytved, A. Bücker, L. Grazioli, R. Semelka, G. Schneider.
Intraindividueller Vergleich von Gadobenat Dimeglumin (Gd-BOPTA) und Ferucarbotran
bei der kontrastmittelverstärkten MRT von hepatozellulären Karzinomen.

P. Fries, W. Loytved, L. Grazioli, R. Semelka, M. Kirchin, A. Bücker, G. Schneider.
Intraindividual comparison of gadobenate dimeglumine and Ferucarbotran-enhanced MR
imaging of hepatocellular carcinoma.

Intraindividual comparison of gadobenate dimeglumine and Ferucarbotran-enhanced MR
imaging of hypervascular liver lesions.
Scientific abstract RSNA 2009, Chicago.

Intraindividual comparison of gadobenate dimeglumine (Multihance®) and Ferucarbotran
(Resovist®) enhanced MR imaging of hypervascular liver lesions.
Scientific Abstract ISMRM 2009 Hawaii.
11. Danksagung

Herrn PD Dr. Dr. Günther Schneider danke ich für die Vergabe des Themas und für die Möglichkeit unter seiner Leitung die vorliegende Arbeit durchzuführen.

Herrn Prof. Dr. Arno Bücker danke ich für die Möglichkeit, in seiner Klinik die vorliegende Arbeit durchführen zu können.

Herrn Dr. Peter Fries danke ich für die gute Betreuung der Doktorarbeit, seine motivierende Unterstützung und Freundschaft.

Den Mitarbeitern des kernspintomographischen Instituts der Unikliniken Homburg, besonders Frau Tatjana Siemer, Frau Diana Mitric und Herrn Khalil Handal danke ich für die nette und kollegiale Atmosphäre und Unterstützung bei der Datenakquisition.

Ein besonderes Dankeschön geht an meine Frau Maike für ihr Verständnis und ihre Rücksichtnahme bei der Durchführung und Erstellung der Arbeit.
12. Lebenslauf
Case Report Form
Reading I

Randomization Number:

<table>
<thead>
<tr>
<th>POOR</th>
<th>SUFFICIENT</th>
<th>GOOD</th>
<th>EXCELLENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation of image quality for radiological diagnosis:

Was any lesion detected on the MR image set?

Yes [] No []

How many lesions are detected?

[] []
Please complete the following table (for the 8 biggest lesions if >8 lesions are detected):

<table>
<thead>
<tr>
<th>Lesion Number</th>
<th>Liver segment</th>
<th>Size</th>
<th>T1 hypo</th>
<th>T1 iso</th>
<th>T1 hyper</th>
<th>T2 hypo</th>
<th>T2 iso</th>
<th>T2 hyper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram of liver segments:

Reading I (Seite 2 von 3)
<table>
<thead>
<tr>
<th>Presence of enhancement</th>
<th>hypovascular</th>
<th>hypervascular</th>
<th>delayed persistent enhancement</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reading I (Seite 3 von 3)
Case Report Form
Reading II

Randomization Number: □□

Evaluation of image quality for radiological diagnosis:

POOR SUFFICIENT GOOD EXCELLENT
□□□□

Was any lesion detected on the MR image set?

Yes □□ No □□

How many lesions are detected?

□□
Please complete the following table (for the 8 biggest lesions if > 8 lesions are detected):

<table>
<thead>
<tr>
<th>Lesion Number</th>
<th>Liver segment</th>
<th>Size (mm)</th>
<th>T1 hypo</th>
<th>T1 iso</th>
<th>T1 hyper</th>
<th>T2 hypo</th>
<th>T2 iso</th>
<th>T2 hyper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Please mark the appropriate boxes for each lesion's characteristics in T1 and T2 sequences.
<table>
<thead>
<tr>
<th>Presence of enhancement</th>
<th>hypovascular</th>
<th>hypervascular</th>
<th>delayed persistent enhancement</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reading II (Seite 3 von 3)
Case Report Form
Reading III

Randomization Number: []

Evaluation of image quality for radiological diagnosis:

- POOR - SUFFICIENT - GOOD - EXCELLENT
 [] [] [] []

Was any lesion detected on the MR image set?

- Yes - No
 [] []

How many lesions are detected?

[] []
Please complete the following table (for the 8 biggest lesions if > 8 lesions are detected):

<table>
<thead>
<tr>
<th>Lesion Number</th>
<th>Liver segment</th>
<th>Size (mm)</th>
<th>T1 hypo</th>
<th>T1 iso</th>
<th>T1 hyper</th>
<th>T2 hypo</th>
<th>T2 iso</th>
<th>T2 hyper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Enhancement pattern (dynamic imaging)

<table>
<thead>
<tr>
<th>Presence of enhancement</th>
<th>hypovascular</th>
<th>hypervascular</th>
<th>delayed persistent enhancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reading III (Seite 3 von 5)
<table>
<thead>
<tr>
<th>T1</th>
<th>T1fs (if available)</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>hypo</td>
<td>iso</td>
<td>hyper</td>
</tr>
</tbody>
</table>

Comment
Case Report Form
Reading IV

Randomization Number:

Evaluation of image quality for radiological diagnosis:

POOR SUFFICIENT GOOD EXCELLENT

Was any lesion detected on the MR image set?

Yes No

How many lesions are detected?

Please complete the following table (for the 8 biggest lesions if > 8 lesions are detected):

<table>
<thead>
<tr>
<th>Lesion Number</th>
<th>Liver segment</th>
<th>Size (mm)</th>
<th>T1 hypo</th>
<th>T1 iso</th>
<th>T1 hyper</th>
<th>T2 hypo</th>
<th>T2 iso</th>
<th>T2 hyper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Liver segmentation diagrams]

Reading IV (Seite 2 von 5)
Enhancement pattern (dynamic imaging)

<table>
<thead>
<tr>
<th>Presence of enhancement</th>
<th>hypo-vascular</th>
<th>hyper-vascular</th>
<th>delayed persistent enhancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reading IV (Seite 3 von 5)
<table>
<thead>
<tr>
<th>Presence of enhancement</th>
<th>RES uptake</th>
</tr>
</thead>
<tbody>
<tr>
<td>homogenous</td>
<td>No</td>
</tr>
<tr>
<td>inhomogeneous</td>
<td>No</td>
</tr>
<tr>
<td>peripheral wash-out</td>
<td>No</td>
</tr>
<tr>
<td>no uptake</td>
<td>No</td>
</tr>
</tbody>
</table>

Reading IV (Seite 4 von 5)