Gαq and Gα11 contribute to the maintenance of cellular electrophysiology and Ca²⁺ handling in ventricular cardiomyocytes

Sara Pahlavan†, Martin Oberhofer*†, Benjamin Sauer, Sandra Ruppenthal, Qinghai Tian, Anke Scholz, Lars Kaestner, and Peter Lipp*

Institute for Molecular Cell Biology, Saarland University, Building 61, 66421 Homburg/Saar, Germany

Received 22 March 2012; revised 20 April 2012; accepted 2 May 2012, online publish-ahead-of-print 4 May 2012

Time for primary review: 20 days

Aims

Gαq and Gα11 signalling pathways contribute to cardiac diseases such as hypertrophy and arrhythmia, but their role in cardiac myocytes from healthy hearts has remained unclear. We aimed to investigate the contribution of Gαq and Gα11 signalling to the basal properties of ventricular myocytes.

Methods and results

We created a conditional Gαq knockout (KO) after tamoxifen injection into gnaqlox/lox gna11−/− α-MHC CreGq0 mice and found alterations in the electrophysiological and Ca²⁺ handling properties of ventricular myocytes using patch-clamp and Fura-2 video imaging. To reveal the genuine effects of protein KO, we investigated the individual contributions of (i) tamoxifen injection, (ii) Cre recombinase expression, (iii) Gα11 KO, and (iv) Gαq KO. Profound and persistent alterations in myocyte properties occurred following the tamoxifen injection alone. Consequently, we used the presence or absence of Cre recombinase expression as the determinant for the Gαq KO. Myocytes from the Gαq and/or Gα11 KO mice displayed genuine alterations in the action potentials, membrane capacitance, membrane currents, and Ca²⁺ handling (amplitude, post-rest behaviour, and Ca²⁺ removal processes).

Conclusions

We conclude that, in a transgenic model, the role of Gαq can be best studied using Cre recombinase expression as the molecular determinant for Gαq KO rather than tamoxifen/miglyol injection. While excessive hormonal stimulation of the Gαq/Gα11 signalling pathways plays an essential role in cardiac diseases, we propose that the persistent low-level stimulation of these pathways by Gαq/Gα11 activation is instrumental in the physiological behaviour of ventricular myocytes.

Keywords

Gαq/Gα11 • Ca²⁺ homoeostasis • Cellular electrophysiology • Tamoxifen • Cre recombinase

1. Introduction

Members of the heterotrimeric G-protein family mediate both acute and chronic cardiac responses. Within the G-protein family, the role of Gαq and Gα11 (Gαq/11) in the acute physiological response of cardiomyocytes is not fully understood. Moreover, an involvement of Gαq/11 in the regulation of myocyte contractility via cross talk to β-adrenergic Gαq signalling has been proposed. The role of Gαq/11 in chronic pathological responses, including the development of cardiac hypertrophy, has been established using genetically modified mouse models. Transgenic mice over-expressing Gαq showed an increased expression of hypertrophic marker genes. In contrast, the inhibition of Gαq/11 via the expression of a 54-amino acid Gαq11-inhibitory peptide diminished pressure-overload-induced cardiac hypertrophy. A heart-specific inactivation of Gαq/11 abolished the hypertrophic responses to pressure overload. The over-expression of the GTPase activating protein RGS4, which accelerates Gαq and Gα11 inactivation, reduced pressure-overload-induced cardiac hypertrophy. Previously, the knockout (KO) of Gαq and/or Gα11 was achieved by non-inducible approaches. Even though the KO might have been tissuespecific, the gene deletion occurred early in development enabling compensatory mechanisms to prevail and possibly obscure the KO effect.

1 The authors contribute equally to this work

† Corresponding authors. Tel: +49 6841 1626092; fax: +49 6841 1626104. Email: martin.oberhofer@ukss.eu (M.O.); peter.lipp@ukss.eu (P.L.)

Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2012. For permissions please email: journals.permissions@oup.com.
Surprisingly, few studies took into consideration that the modulation of Gaq or Gα11 levels itself might affect the physiology of cardiac myocytes, including Ca^{2+} handling and electrophysiological properties.17,18 Nevertheless, it appears imperative to understand such interactions to fully appreciate Gaq/11 KO in disease models. In the current study, we investigated the contribution of Gaq/11 proteins to the basic physiological properties of myocytes, such as cellular electrophysiology and Ca^{2+} transients. The combination of a tissue-specific and inducible Cre/loxP system19 offered the possibility for a tissue- or cell-type specific gene modulation at any developmental stage. Because Offermanns et al.20 reported overlapping effects of Gα11 and Gaq proteins, our approach used conditional Gaq KO mice and constitutive Gα11 KO mice to address the following questions: (i) what are the best combinations of genotypes/treatments to study the role of Gaq and Gα11? (ii) Are there cellular phenotypes following Gaq KO and/or Gα11 KO? And (iii) if so what are the contributions of Gaq and Gα11?

2. Methods

2.1 Generation of transgenic mice and isolation of ventricular myocytes

Animal care and isolation procedure were approved by the animal Ethics Committee of the Saarland University and were performed according to the European directive on Laboratory Animals (86/609/EEC) and the Guide for Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). For detailed information on the generation of the transgenic mice and the sequence information of the used primers, see Supplementary material online.

The transgenic mice, their genotype, and the abbreviations used in this study are listed in Table 1.

<table>
<thead>
<tr>
<th>Table 1 Transgenic mice used in this study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Gaq^G11 Cre^Tam^</td>
</tr>
<tr>
<td>Gaq^G11 Cre^Tam^</td>
</tr>
<tr>
<td>Ga^G11 Cre^Tam^</td>
</tr>
</tbody>
</table>

wt, wild-type; tg, transgenic (Cre expression); 0, no Cre expression; colour-code in figures is identical.
2.4 Electrophysiological measurements

Action potentials (APs) and a transient outward current were recorded in the whole-cell configuration by using an EPC10 patch-clamp amplifier. For details, see Supplementary material online.

2.5 Ca2+ transient measurements

Ca2+ transient measurements were performed on a video imaging setup after loading the cells with Fura-2 AM. A description of the stimulation protocol is provided in Supplementary material online, Figure S2. For more details, see Supplementary material online.

2.6 Statistical analysis

Bar graphs display the mean ± SEM for the Gaussian distributed data. Box plots show the median and the 25/75 percentiles (lower/upper end of the boxes) for non-Gaussian distributions. For details, see Supplementary material online.

3 Results

3.1 Gαq KO modulates the electrophysiological properties and Ca2+ handling in ventricular myocytes

We used the Cre mouse described in the method section (see also Supplementary material online, Figure S1) to generate a cardiac-specific Gαq KO. We performed the Gαq KO on a Gα11-deficient background because Gαq and Gα11 might have overlapping functions.23 We accomplished this using GqG11-Cre mice (for abbreviations see Table 1) and compared animals that were injected with tamoxifen (GqflG11 double knockout, DKO) to those without tamoxifen induction (Gαq KO). Ventricular myocytes were characterised by measuring basic electrophysiological properties with patch-clamp techniques and their global Ca2+ handling with an established post-rest protocol (Figure 1 and Supplementary material online Figure S2).

When analysing APs, we found that in the Gαq11 DKO, the resting membrane potential (Vp) was unchanged (Figure 1A) while the amplitude of the APs (Figure 1C) was significantly increased, and cells displayed a lower membrane capacitance (Cm, Figure 1A). Figure 1D describes two exemplified APs from each population and indicates that, in addition to the amplitude, the time course of repolarisation appeared prolonged in the GqG11 Cre Tam+ cells. This observation was obtained by measuring and analysing APD10 (early phase of repolarisation) and APD70 (late phase of repolarisation). Figure 1D illustrates the significant prolongation of APD70. The repolarisation of the AP is determined by a multitude of potassium currents of which a few might reportedly be under the control of Gα11-dependent signalling.22,23 It was indicated recently that the Gαq11 protein might be essential in the regulation of the transient outward potassium current (Ito).17 We therefore investigated Ito (Figure 1E). Due to our experimental approach, Ito might be contaminated with L-type Ca2+ current (IcL), therefore we refer to it as Iloc (see Supplementary material online). Because Iloc was significantly reduced in the Gαq11 DKO cells, we concluded that Gαq KO altered the electrophysiological properties of Gα11-deficient cardiomyocytes.

In a second set of experiments, we analysed the global Ca2+ transients to study the properties of global Ca2+ homoeostasis (Figure 1F). We decided to use a post-rest protocol (see Supplementary material online, Figure S2) because such a stimulation regime allows for the simultaneous investigation of many parameters involved in Ca2+ handling. The amplitude of the Ca2+ transients was significantly increased in GqG11 Cre Tam+ myocytes directly after rest (A10) and during steady-state (Aust, Figure 1Fb), post-rest behaviour was unaltered (PRB in Figure 1Fb). As a global indicator for the alterations in the apparent activity of the Ca2+ removal mechanisms, we compared the duration of the Ca2+ transient at 80% recovery (CTD80, Figure 1Fc) and found a slight (13%) but significant prolongation of the Ca2+ transient under steady-state conditions.

Despite these results, we were concerned whether all the effects were genuinely caused by Gαq KO or whether tamoxifen injection, a lack of Gα11 and/or Cre expression per se might contribute to the observed phenotypes. Therefore, we designed experiments that specifically addressed: (i) the impact of tamoxifen, (ii) the effects of Cre expression, (iii) the effects of Gα11 KO, and (iv) which genotypes are the best for studying the effect of Gαq KO?

3.2 Tamoxifen and Gα11 KO alter the properties of myocytes

Cerebroside-induced changes in the protein expression profiles of transgenic animals have become an invaluable tool in many areas of research,24 but the possible interactions with the tamoxifen injection were rarely taken into account. This appeared surprising because changes in gene expression have already been described for chronic treatments in small rodents.25 We used injections of tamoxifen on five consecutive days followed by 30 days without tamoxifen treatment (the Gαq protein was virtually absent after 25 days as probed by western blot analysis, see Supplementary material online, Figure S1). All experiments were carried out in the absence of the drug. Therefore, we studied the putative effects of our standard tamoxifen injection regime on a Gα11 wild-type (wt) background (GqG11 Cre−). To further investigate whether the tamoxifen effects might depend on the genetic background, we also included GqG11 Cre+ animals in our study (Figure 2). In control experiments, we found no alterations caused by the insertion of the loxP sites for all parameters we studied (data not shown). Therefore, there was no difference between the Gq+ and Gq− animals, which allowed us to directly compare the two groups.

While in Gαq KO animals, G11 was reduced (Figure 2A), Vp and AP amplitude were unaltered (Figure 2B and C, respectively). When we analysed the time course of cellular APs, the findings became rather complex (Figure 2D). In wt animals (GqG11 Cre−), tamoxifen injection did not change the AP properties (compare the brown and grey APs/bars in Figure 2D). In contrast, following tamoxifen injection in the Gα11 KO myocytes (GqG11 Cre−), AP repolarisation was significantly prolonged both in the early and later phases (APD10 and APD70, compare the violet and green APs/bars in Figure 2D). Moreover, the KO of the Gα11 protein resulted in a shortening of the AP repolarisation (compare the brown and violet APs/bars in Figure 2D). We also investigated Iloc (Figure 2E) and found alterations among the experimental conditions. These changes were in agreement with the time course of the AP repolarisation. The observed AP shortening following the Gα11 KO (the brown vs. violet) and the AP prolongation after tamoxifen injection in GqG11 Cre− mice (the violet vs. green) were accompanied by an increase and decreased in the Iloc activity, respectively (Figure 2E).

Ca2+ signalling also underwent complex changes (Figure 2F). Tamoxifen injection into wt animals (GqG11 Cre−) increased
the first amplitude after rest (A^{1st} in Figure 2Fb, compare the brown and grey boxes), while the steady-state amplitudes and post-rest behaviour were unaffected. Tamoxifen injection into Gq0G11−Cre− mice did not change the amplitude of the Ca2+ transients. The duration of the Ca2+ signals was significantly reduced after tamoxifen injection into Gq0G11−Cre− but not in Gq0G11−Cre− myocytes (Figure 2Fc; compare the brown vs. grey and the violet vs. green). The duration of steady-state Ca2+ transients was also dependent on the genotype: in the Gx11 KO animals (Gq0G11−Cre−), it was reduced, while tamoxifen injection resulted in a prolongation (see the grey and green bars in Figure 2Fc).

From these findings we concluded: (i) tamoxifen injection resulted in a rather complex, genotype-dependent alteration of electrophysiological properties and Ca2+ handling even though its injection had been terminated at least 30 days prior to the actual experiment; and (ii) Gx11 KO altered the electrophysiological properties of ventricular myocytes and their Ca2+ handling.
Figure 2 Effect of tamoxifen application on electrophysiological characteristics and Ca\(^{2+}\) homoeostasis of ventricular myocytes. (A–C) Membrane capacitance (C\(_{M}\)), resting membrane potential (V\(_{R}\)), and action potential amplitude (AP Amplitude). (D) Representative APs (Da) and action potential duration (Db) after 30 and 70% repolarisation (APD\(_{30}\) and APD\(_{70}\), respectively). (E) Typical traces acquired for I\(_{\text{calc}}\) recordings (Ea) and corresponding IV relationships (Eb). (F) Representative Ca\(^{2+}\) transients (Fa), corresponding statistical analysis including first amplitude after rest (A\(_{1}\), Fb), steady-state amplitude (A\(_{\text{sst}}\), Fb), post-rest behaviour (PRB = A\(_{1}\)/A\(_{\text{sst}}\), Fb), and calcium transient duration at 80% decay (CTD\(_{80}\)) for A\(_{1}\) and A\(_{\text{sst}}\) (Fc). The numbers of animals and cells are shown in Supplementary material online, Table S2.
3.3 Cre recombinase expression causes only minor changes in myocyte properties

We then investigated whether the Cre expression exerted effects on properties of the wt (Gqfl\textsuperscript{G11wt}) and G\textsubscript{a11} KO (Gqfl\textsuperscript{G11K}) myocytes, since sole effects of Cre expression have been reported26. The results are summarised in Figure 3. It has to be mentioned that the boxes or bars with identical colours represent the same data set and were replotted if necessary (the brown and violet in Figures 2 and 3 and the red in Figures 7 and 4).

The only electrophysiological parameter that was affected by the Cre expression was the apparent magnitude of the APD\textsubscript{30} and APD\textsubscript{70} (Figure 3D). All other parameters did not change (Figure 4A–C, the black and red groups). The detailed analysis of Ca2+ handling in these genotypes revealed a rather complex picture (Figure 4F). All genetic interventions, G\textsubscript{a11} KO in the presence (Figure 4F, the green vs. red) and absence of G\textsubscript{a11} (Figure 4F, the black vs. blue) as well as the G\textsubscript{a11} KO alone (Figure 4F, the black vs. green) altered Ca2+ handling. For some parameters, the interventions even altered parameters in opposite directions. KO of both the G\textsubscript{a11} and the G\textsubscript{a11} proteins resulted in an increase in the amplitudes of the Ca2+ transients, but the steady-state parameter was affected much less than the post-rest values (Figure 4Fb). These responses resulted in a severe increase in post-rest potentiation (Figure 4Fb, right). The recovery of the Ca2+ transients (CTD\textsubscript{80} Fig 4Fc) displayed a speed-up after G\textsubscript{a11} was deleted in the presence of G\textsubscript{a11} (Figure 4Fc, the black vs. blue), but a slowdown or no changes were observed after G\textsubscript{a11} deletion in the absence of G\textsubscript{a11} (Figure 4Fc, the green vs. red).

From these results, we concluded that the Cre expression did not greatly alter the properties of ventricular myocytes.

3.4 Two sets of genotypes are sufficient to study the G\textsubscript{a11} KO in ventricular myocytes

The experimental series introduced in Figures 2 and 3 were conducted to evaluate the putative effects of tamoxifen injection, the G\textsubscript{a11} KO and Cre expression on the basic electrophysiological properties as well as the Ca2+ handling of ventricular myocytes. The major conclusions were that tamoxifen injection and G\textsubscript{a11} KO resulted in severe alterations in these properties, but Cre expression only demonstrated small changes. Additionally, in control experiments, we found that the insertion of the loxP sites did not alter the properties studied at all (data not shown). Therefore, we concluded that the tamoxifen/miglyol injection on a constant genetic background, similar to what we introduced in Figure 1, was not the best approach to study the effects of G\textsubscript{a11} KO on ventricular myocytes. Rather, Cre or loxP insertion would better serve that purpose.

Therefore, we designed two genetic approaches to address the role of G\textsubscript{a11}; they are summarised in Tables 2 and 3. The basic idea behind Table 2 was to generate G\textsubscript{a11} KO by inserting the loxP sites, while Table 3 introduces the idea of Cre expression. While loxP insertion would require the breeding of four separate mouse lines with an increasing genetic distance over time, the genotypes introduced in Table 3 (Cre expression with tamoxifen injection) would require the breeding of only two mouse lines, enabling us to compare the G\textsubscript{a11} KO effects in litter mates. Therefore, we decided to perform the final set of experiments using the genotypes detailed in Table 3, which all included tamoxifen injection.

3.5 G\textsubscript{a11} KO results in altered properties of cardiomyocytes, but its consequences depend on G\textsubscript{a11} expression

When using the genotypes shown in Table 3, we found that a plethora of electrophysiological properties were changed (Figure 4A–E). In the presence of G\textsubscript{a11} (Figure 4A–C, the black and blue groups), G\textsubscript{a11} KO resulted in an increase in AP amplitude and more negative V\textsubscript{R}. Such changes could not be observed in the G\textsubscript{a11} KO-deficient myocytes (Figure 4A–C, the green and red groups).

In contrast to most of the interventions introduced so far, when investigating myocytes from our optimized genotype cohort, we did not notice any significant changes in the AP time course (Figure 4D) despite significant but minor alterations in I\textsubscript{loc} (Figure 4E). While G\textsubscript{a11} KO alone resulted in an increased I\textsubscript{loc} (Figure 4E, the black vs. green group), the additional KO of G\textsubscript{a11} shifted the activity of I\textsubscript{loc} back to ‘control’ levels, i.e. towards the currents found in the Gqfl\textsuperscript{G11K}Cre ‘Tam’ mice (Figure 4E, the red vs. black groups).

4. Discussion

4.1 A novel heat-specific Cre recombinase mouse line

The creation of transgenic mice expressing Cre recombinase under the control of the α-MHC promoter was a milestone in cardiac research27. The employed Cre/loxP technology allowed the control of defined genetic alterations in a temporal and tissue-specific manner. Recent publications emphasized the need of proper controls when using the Cre/loxP technology due to system-inherent pitfalls28-29. The most popular Cre mice in cardiac research studies was created by Sohal et al.28 But these Cre mice showed abnormalities such as a decreased fractional shortening, increased end-diastolic diameter, and decreased SERCA expression25.26

Here, we employed a novel Cre mouse (Takefuji et al., 2012, submitted for publication) to induce a conditional G\textsubscript{a11} KO. To induce G\textsubscript{a11} KO, we administered tamoxifen intraperitoneally for five consecutive days (40 mg/kg body weight). The expression of the G\textsubscript{a11} protein diminished after 25 days as verified by western blot analysis (Supplementary material online, Figure S1). Although Sohal et al.28 typically used lower tamoxifen doses (20 mg/kg body weight), Koitabashi et al. reported this to be inefficient for protein knockdown25. Considering that 50% of the initial tamoxifen concentration is eliminated from the mouse within around 5 days,30 we assume that at the end of our waiting period of at least 30 days the tamoxifen concentration was below 2% of its starting value.
Figure 3 Effect of Cre expression on electrophysiological characteristics and Ca2+ homoeostasis of ventricular myocytes. (A–C) Membrane capacitance (C_m), resting membrane potential (V_R), and action potential amplitude (AP Amplitude). (D) Representative APs (Da) and action potential duration (Db) after 30 and 70% repolarisation (APD\textsubscript{30} and APD\textsubscript{70}, respectively). (E) Typical traces acquired for I_{loc} recordings (Ea) and corresponding IV relationships (Eb). (F) Representative Ca2+ transients (Fa), corresponding statistical analysis including first amplitude after rest (A_1, Fb), steady-state amplitude (A_sst, Fb), post-rest behaviour (PRB = A_1/A_sst, Fb), and calcium transient duration at 80% decay (CTD\textsubscript{80}) for A_1 and A_sst (Fc). The numbers of animals and cells are shown in Supplementary material online, Table S2.
Figure 4 Effect of G\(_{aq}\) KO on electrophysiological characteristics and Ca\(_{2+}\) homoeostasis of ventricular myocytes. (A–C) Membrane capacitance (\(C_m\)), resting membrane potential (\(V_R\)), and action potential amplitude (AP Amplitude). (D) Representative APs (Da) and action potential duration (Db) after 30 and 70% repolarisation (APD\(_{30}\) and APD\(_{70}\), respectively). (E) Typical traces acquired for \(I_{toc}\) recordings (Ea) and corresponding IV relationships (Eb). (F) Representative Ca\(_{2+}\) transients (Fa), corresponding statistical analysis including first amplitude after rest (A\(_{1st}\), Fb), steady-state amplitude (A\(_{stst}\), Fb), post-rest behaviour (PRB = A\(_{1st}\)/A\(_{stst}\), Fb), and calcium transient duration at 80% decay (CTD\(_{80}\)) for A\(_{1st}\) and A\(_{stst}\) (Fc). The numbers of animals and cells are shown in Supplementary material online, Table S2.
4.2 The impact of tamoxifen treatment and Cre recombinase expression

Using this novel Cre mouse, we generated the basic genotype for studying the G\(_q\) KO, a G\(\alpha^q\)G11\(^{-}\)Cre\(^{+}\) mouse. For a comprehensive analysis, we decided to investigate two largely integrative cellular phenomena for isolated ventricular cardiomyocytes: the AP and electrically evoked global Ca\(^{2+}\) transients.

The shape of the AP reflects the integration of all ion currents; therefore, it served as an indicator for changes in ion channel contribution, which could be the result of altered protein expression or altered channel properties. Electrically evoked Ca\(^{2+}\) transients after a resting period enabled us to investigate individual Ca\(^{2+}\) transients and their post-rest behaviour as a valuable tool to screen alterations in global Ca\(^{2+}\) handling, including Ca\(^{2+}\) release and Ca\(^{2+}\) removal processes.

For both parameters, we initially found significant alterations (Figure 1), but we were concerned whether our results could be tempered by the possible genomic effects of tamoxifen injection and/or Cre expression.

We investigated these interventions and found that tamoxifen injection, besides its well-known acute effect, did cause long-lasting alterations in APs and Ca\(^{2+}\) handling (Figure 2).

Tamoxifen and its important metabolite 4-hydroxytamoxifen exert both the genomic and non-genomic effects. Alterations of numerous ionic currents as well as inhibition of sarcoplasmic reticulum (SR) Ca\(^{2+}\) uptake have been associated with acute (non-genomic) effects of tamoxifen application. Genomic tamoxifen effects result in long-lasting modulations of gene expression of ion channels, including potassium channels, e.g. \(I_{K1}\), the rapid delayed rectifier current (\(I_{K1}\) aka HERG), the steady-state potassium current (\(I_{KS}\)), and the inward rectifier current (\(I_{K1}\)). It has to be mentioned here that the latter report also demonstrated that changes in SERCA activity or exchanger (+/Ca\(^{2+}\)) removal extending to both their amplitude and recovery phase. Both parameters displayed a rather complex relationship with respect to G\(\alpha^q\)G11\(^{-}\)-KO. The KO of G\(\alpha^q\) resulted in an acceleration of recovery (decrease in CTD\(_{100}\)) in the presence of G11\(^{+}\) (Figure 4Fc), while the same KO displayed reversed effects in the absence of G11\(^{+}\) (Figure 4Fc). The major processes responsible for the Ca\(^{2+}\) removal are the sarcoplasmic/endoplasmic reticulum Ca\(^{2+}\)-ATPase (SERCA) pump and the Na\(^{+}/Ca\(^{2+}\)) exchanger (NCX). Since acute tamoxifen application inhibited SERCA, we might speculate that changes in SERCA activity or expression might underlie the alterations in CTD\(_{100}\). Therefore, we suggest that tamoxifen caused long-term changes in gene expression that also manifested in altered Ca\(^{2+}\) handling (Figure 2F). This requires additional studies to determine the underlying mechanism.

Although tamoxifen injection per se altered myocyte behaviour, its administration was obligatory for the generation of the conditional G\(\alpha^q\) KO. Other methods to bypass the tamoxifen treatment including siRNA or adenoviral transfections are no alternatives. In the in-vivo situation, the efficiency of the transfection and the resulting protein knockdown is limited. Despite the fact that single cell culture has majorly advanced recently, whole animal genetic approaches allow the investigation of the intervention in the context of the entire animal, an invaluable advantage.

4.3 Sets of genetic combinations

We decided not to compare animals in which KO was primarily induced by tamoxifen injection, but instead used a different molecular determinant for the induction of the conditional G\(\alpha^q\) KO. Other methods to bypass the tamoxifen treatment including siRNA or adenoviral transfections are no alternatives. In the in-vivo situation, the efficiency of the transfection and the resulting protein knockdown is limited. Despite the fact that single cell culture has majorly advanced recently, whole animal genetic approaches allow the investigation of the intervention in the context of the entire animal, an invaluable advantage.

Table 2 G\(\alpha^q\) KO by insertion of loxP sites

<table>
<thead>
<tr>
<th>Label</th>
<th>gnaq</th>
<th>gna11</th>
<th>Cre status</th>
<th>Tamoxifen</th>
</tr>
</thead>
<tbody>
<tr>
<td>G(\alpha^q)G11(^{+}) Cre(^{+}) Tam(^{+})</td>
<td>wt/wt</td>
<td>wt/wt</td>
<td>tg/0</td>
<td>+</td>
</tr>
<tr>
<td>G(\alpha^q)G11(^{-}) Cre(^{+}) Tam(^{+})</td>
<td>flox/flox</td>
<td>wt/wt</td>
<td>tg/0</td>
<td>+</td>
</tr>
<tr>
<td>G(\alpha^q)G11(^{+}) Cre(^{-}) Tam(^{+})</td>
<td>wt/wt</td>
<td>+/-</td>
<td>tg/0</td>
<td>+</td>
</tr>
<tr>
<td>G(\alpha^q)G11(^{-}) Cre(^{-}) Tam(^{+})</td>
<td>flox/flox</td>
<td>+/-</td>
<td>tg/0</td>
<td>+</td>
</tr>
</tbody>
</table>

Wt, wild-type; tg, transgenic (Cre expression); 0, no Cre expression.

Table 3 G\(\alpha^q\) KO by insertion of Cre

<table>
<thead>
<tr>
<th>Label</th>
<th>gnaq</th>
<th>gna11</th>
<th>Cre status</th>
<th>Tamoxifen</th>
</tr>
</thead>
<tbody>
<tr>
<td>G(\alpha^q)G11(^{+}) Cre(^{+}) Tam(^{+})</td>
<td>flox/flox</td>
<td>wt/wt</td>
<td>0/0</td>
<td>+</td>
</tr>
<tr>
<td>G(\alpha^q)G11(^{+}) Cre(^{+}) Tam(^{+})</td>
<td>flox/flox</td>
<td>wt/wt</td>
<td>tg/0</td>
<td>+</td>
</tr>
<tr>
<td>G(\alpha^q)G11(^{+}) Cre(^{-}) Tam(^{+})</td>
<td>flox/flox</td>
<td>+/-</td>
<td>0/0</td>
<td>+</td>
</tr>
<tr>
<td>G(\alpha^q)G11(^{+}) Cre(^{-}) Tam(^{+})</td>
<td>flox/flox</td>
<td>+/-</td>
<td>tg/0</td>
<td>+</td>
</tr>
</tbody>
</table>

Wt, wild-type; tg, transgenic (Cre expression); 0, no Cre expression.
Gαq and Gα11 (Tables 2 and 3). From those studies, we conclude that basic signalling of Gαq and Gα11 has to be considered when studying their pathological significance.

The effects of a Gαq-KO could either be studied using Cre− and Cre+ animals on a gnaqfloxfloxFlox background or by employing gnaqfloxfloxFlox and gnaqwtwt animals while maintaining the tamoxifen injections (Tables 2 and 3). Although the insertion of the loxP sites did not alter the myocytes’ behaviour (data not shown), we decided to employ the Cre expression as the genetic determinant. Using the former approach would have required breeding of four separate mouse lines. In contrast, Cre expression requires only two separate mouse lines and, most importantly, allowed us to utilise litter-mates (the black vs. blue and the red vs. green, Table 3). Regular back-crossing of two mouse lines could be performed with greater ease when compared with four separate mouse lines.

Utilizing the combination of mouse genotypes shown in Table 3, we re-visited our initial question of the possible contributions of normal Gαq/Gα11 signalling to the physiological behaviour of ventricular myocytes (Figure 4).

4.4 Physiological relevance of Gαq in ventricular myocytes

Transgenic mouse models employing gene KO or knockin of Gαq strongly underpinned its role for cardiac diseases.13–16 The hypertrophic response of the heart is accompanied by the growth of the individual myocyte. The size of the myocytes can be estimated by evaluating their cross-sectional dimension in histological samples, by measuring their cell area in wide field microscopy or by assessing their plasma membrane capacitance in electrophysiological experiments. Various papers have reported that the hypertrophic response of the heart is under the control of Gαq/Gα11-coupled signalling pathways.13–15,18 Our results of the cellular capacitance were in agreement with such studies even without any treatment and interventions. The KO of Gαq and Gα11 resulted in a reduced capacitance, whereby Gαq-deficient myocytes displayed the largest effect (Figure 4A).

Furthermore, we report that basic Gαq and Gα11 signalling are important contributors to the basic physiological properties of cardiac myocytes (Figure 4). Additionally, we also demonstrated that Gα11 KO resulted in altered APs and Ca2+ handling (Figures 2 and 3).

Sah et al.19 described that prolonged AP repolarisation leads to decreased ICa and decreased cellular Ca2+ transients. Using slightly different approaches, the same authors also reported opposite effects.30 This might indicate that the relationship between AP repolarisation duration, ICa and SR Ca2+ release is rather complex, which is supported by our results: in Figures 2 and 3, APD30 was decreased but the amplitude of steady-state Ca2+ transients remained unchanged (Figure 2Db vs. Fb and Figure 3Db vs. Fb). In Figure 4, APD30 was unchanged for all phenotypes but the amplitude of Ca2+ transients was greatly increased (Figure 4Db vs. Fb). By analysing ICa in future studies, we might be able to shed light on possible underlying contributors.

How do Gαq and Gα11 proteins mediate changes in gene expression and regulation resulting in altered electrophysiology and Ca2+ homeostasis? We believe that the changes were not brought about by the proteins per se, but instead, the results reflect the importance of a constant, possibly low-level stimulation of the upstream G-protein-coupled receptors with agonists coupling to Gαq and/or Gα11 such as endothelin-1 or angiotensin-II.81 When stimulated chronically at high levels, G-proteins contribute to cardiac diseases and associated changes in gene expression.42,43 In contrast, with persistent stimulation at a much lower hormone level, Gαq- and Gα11-coupled signalling pathways appear to be an important contributor to the maintenance of the myocyte’s homeostasis.

One of the best known signalling pathway coupled to Gαq-proteins involves Gαq-induced phospholipase Cβ (PLCβ) activation. This leads to a breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (a major activator of PKCβ)23 and inositol 1,4,5-trisphosphate (InsP3; a major activator of InsP3 receptors)45. InsP3 itself is discussed as an important mediator of cardiac pathologies.4,5,7 In cardiac myocytes, the plasma membrane levels of PIP2 itself are potent modulators of ion channels or transporters, such as KATP channels and NCX46 (for a recent review see 47). Taking this into account, we hypothesise that the reduced metabolism of PIP2 in Gαq-deficient myocyte might lead to PIP2-dependent deregulation of NCX and thus might contribute to the altered Ca2+ handling described here.

The identification of important homeostatic hormones and their downstream signalling appears important but lies well outside of the scope of these reports. Further studies will provide such information that is vital for our understanding of processes that are essential for maintaining a ‘physiological’ gene expression pattern.

We thus conclude that both Gαq and Gα11 are instrumental to the physiological properties of cardiac myocytes by mediating the continuance of a basic rate of gene expression.

Supplementary material

Supplementary material is available at Cardiovascular Research online.

Acknowledgements

We are grateful to Stefan Offermanns and Nina Wettchusereck (Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany) for providing the novel cardiomyocyte-specific inducible Cre transgenic mouse line and the basic Gnaq/Gna11 mutant mouse line.

Conflict of interest: none declared.

Funding

This work was funded by the German Research Foundation (DFG, KFo 196, GnaKo 1326), Saarland University and the Medical Faculty (HOMFOR).

References

