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Zusammenfassung 

 

Das Herz ist ein Muskel, der das Blut durch den Körper pumpt um die Zellen mit 

Sauerstoff und Nährstoffen zu versorgen. Diese Pumpfunktion wird durch zwei 

besondere Charakteristiken der Herzzellen ermöglicht: (i) elektrische Erregbarkeit und 

(ii) Kontraktilität. Das Aktionspotenzial (AP) der Kardiomyozyten wird durch eine Welle 

von koordiniertem Öffnen und Schließen verschiedener Ionenkanäle geformt. Das 

Öffnen kardialer Ca2+-Kanäle induziert einen Ca2+-Einstrom, der zu einer massiven Ca2+ 

Ausschüttung aus dem Sarkoplasmatischen Retikulum führt. Der weit verbreitete, 

sekundäre Botenstoff Kalzium stellt hierbei die Verbindung zwischen der elektrischen 

Erregung und der mechanischen Kontraktion her, im folgenden elektro-mechanische  

Kopplung (EMK) genannt. Eine große Vielfalt intrazellulärer Signalkaskaden regulieren 

die physiologischen Eigenschaften von Kardiomyozyten. In dieser Arbeit habe ich 

solche Signalkaskaden und deren regulatorischen Prozesse untersucht, um deren 

Einfluss auf die Physiologie und Pathophysiologie des Herzen zu quantifizieren. Dabei 

konzentrierte ich mich auf  die folgenden Fragestellungen: (i) Modulieren  Gαq/11–

gekoppelte Signalwege die elektrophysiologischen Eigenschaften von ventrikulären 

Myozyten aus dem Mäuseherz? (ii) Sind Gαq/11–gekoppelte Signalwege an durch 

Hyperaldosteronismus (HA) induzierten Veränderungen der elektrophysiologischen 

Eigenschaften von Maus-Kardiomyozyten beteiligt? (iii) Welche Wirkung hat die 

Veränderung der Calmodulin-Bindung von Cav1.2 auf die EMK? iv) Hat die GTPase 

Rac1 einen Einfluss auf die EMK?	
  v) Kann Cytochalasin D die elektrophysiologischen 

Eigenschaften von ventrikulären Myozyten aus der Ratte in Langzeitkulturen 

konservieren? 

Gαq/11 gekoppelte Rezeptoren werden in vivo durch Hormone wie Endothelin-1, 

Angiotensin-II und Epinephrine stimuliert. Durch akute Stimulation kommt es unter 

anderem zu einem Anstieg der intrazellulären Ca2+ Konzentration und in Folge dessen 

zu einer Aktivierung Ca2+-abhängiger Proteine wie z.B. die konventionelle Protein 

Kinase C oder Calmodulin. Beides, direkter Kalziumanstieg wie auch Aktivierung 
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Kalzium-abhängiger Prozesse, moduliert die kontraktile Antwort der Kardiomyozyten. 

Demgegenüber führt eine chronische Stimulation von Gαq/11 Signalkaskaden zu 

pathologischen Antworten, z.B. Herzrhythmusstörungen, Hypertrophie oder 

Herzversagen. Trotz zahlreicher Untersuchungen der pathologischen Rolle von Gαq/11 

gekoppelten Signalwegen, ist über deren physiologische Funktion in Kardiomyozyten 

wenig bekannt. In dieser Arbeit habe ich die Effekte der Deaktivierung der Gene gnaq 

und/oder gna11 auf die elektrophysiologischen Eigenschaften ventrikulärer Myozyten 

untersucht und dabei Veränderungen der Membrankapazität, dem 

Ruhemembranpotenzial und der Aktionspotenzial (AP) Amplitude gefunden. Die Dauer 

des AP blieb hierbei unverändert. Daraus schloss ich, dass eine niedrige 

(physiologische) Stimulation sowohl von Gαq- wie auch Gα11–gekoppelten Signalwegen 

von großer Bedeutung für die grundsätzlichen Eigenschaften der Kardiomyozyten wie 

z.B. deren elektrophysiologischen Eigenschaften sind.   

Das natürliche Hormon Aldosteron beeinflusst das Blutvolumen und damit den 

Blutdruck. Neben diesen hämodynamischen Effekten führt ein Überschuss von 

Aldosteron (Hyperaldosteronismus, HA) beim Menschen zu Erkrankungen des 

gesamten Organismus wie z.B. Hypertronie. Chronische Hypertronie wiederum führt zu 

Herzerkrankungen. Vor kurzem wurde interessanterweise berichtet, dass HA auch 

unabhängig vom Blutdruck zu Hyperthrophie und Herzversagen führen kann. Der genau 

Mechanismus hierbei und besonders dessen Signalkaskade in Kardiomyozyten ist 

jedoch weitestgehend unbekannt. Ich habe in dieser Arbeit die Effekte von HA auf die 

elektrophysiologischen Eigenschaften von Kardiomyozyten untersucht und dabei eine 

wesentliche Abnahme der Dauer des AP sowie eine Erhöhung des transienten 

Auswärtsstroms, Itoc, festgestellt. Weiterhin konnte ich durch Induzierung einer HA in 

Gαq/Gα11 Doppelknockout Mäusen eine mögliche Beteiligung der Gαq/11-gekoppelten 

Signalwege bei den HA-induzierten Veränderungen der elektrophysiologischen 

Eigenschaften der Kardiomyozyten nachweisen. Daraus folgerte ich, dass HA zu einer 

zellulären elektrophysiologischen Remodellierung beiträgt, und dass dieser Effekt durch 

Zielproteine innerhalb von Gαq/11–gekoppelten Signalwegen gesteuert wird. 
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Die Eigenschaften des kardialen Ca2+ Kanals Cav1.2 werden durch verschiedene 

Mechanismen reguliert, wie etwa der Ca2+- und spannungsabhängigen Inaktivierung. 

Das Ca2+ bindende Protein Calmodulin (CaM) vermittelt hierbei die Ca2+-abhängige 

Inaktivierung (CDI). Ca2+ gesättigtes CaM interagiert mit dem sogenannten IQ Motiv im 

C-Terminus des Cav1.2-Proteins, um die Kalzium-abhängige Inaktivierung zu 

induzieren. Zur weiteren Untersuchung der Effekte der IQ-CaM Interaktion in der 

Cav1.2 Regulation wurde eine I/E Mutation (Ile1624 zu Glu) in der IQ Sequenz 

generiert. In dieser Arbeit habe ich die Effekte einer I/E Mutation des IQ Motivs auf die 

(i) Cav1.2 Funktion (ii) und die EMK untersucht. Dabei zeigte sich interessanterweise, 

dass die I/E Mutation eine wesentliche Reduzierung der ICa,L Dichte verursacht. Trotz 

dieser niedrigen Dichte war die Amplitude von globalen Ca2+ Transienten in den 

ventrikulären Zellen der I/E Mäuse gesteigert. Ich konnte aufzeigen, dass diesem 

Phänomen eine Zunahme der Verstärkungsfunktion in der EMK zugrund lag. Diese 

übersteigerte Verstärkung des Kalziumeinstroms in der EMK war letztendlich die 

Ursache für kardiale Dysfunktion  in den Mäusen mit der I/E Mutation.  

Rac1 ist ein monomeres G-Protein, das durch einen Integrin-gekoppelten Signalweg 

aktiviert werden kann. Es stimuliert verschiedene zelluläre Prozesse, wie z.B. die 

Organisation des Zytoskeletts und die Produktion von reaktiven Sauerstoffradikalen 

(ROS). Bei einer Vielzahl von kardialen Pathologien, wie Kardiomyopathien und 

Herzrhythmusstörungen, kommt es zu einer Aktivitäts- und Expressionssteigerung von 

Rac1. Dennoch sind die hierbei auftretenden zellulären Mechanismen weitestgehend 

unerforscht. In dieser Arbeit habe ich die Effekte der Expression eines konstitutiv 

aktiven Rac1 (V12Rac1), in sogenannten RacET Mäusen, auf die EMK in ventrikulären 

Myozyten untersucht. Trotz einer erheblichen Abnahme des ICa,L, war die Amplitude der 

global Ca2+ Transienten in den ventrikulären Zellen von RacET Mäuse erhöht. Ähnlich 

wie bei den I/E-Mäusen liegt dieser Amplitudensteigerung eine erhöhte 

Verstärkungsfunktion in der EMK zugrunde.  

Die Möglichkeit der Kultivierung von Kardiomyozyten ist deswegen von so Bedeutung, 

weil isolierte adulte Kardiomyozyten innerhalb weniger Stunden einem Remodellierung 

Prozess unterliegen, der zu einer De-Differenzierung der Herzmuskelzellen führt. Für 
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viele experimentelle Ansätze, wie z.B. chronische Hormongaben in vitro oder 

heterologe Expression von Proteinen, wäre eine Kultivierungskmöglichkeit von 

mehreren Tagen ohne De-Differenzierung der Zellen von großem Vorteil. Deswegen 

haben sich in der Forschung verschiedene Methoden etabliert, die versucht haben die 

Zellkulturkonditionen verbessern. Cytochalasin D (CytoD), ein Pilzmetabolit, ist bekannt 

für seine positiven Effekte auf die Kardiomyozytenkultivierung, da es deren Morphologie 

konserviert. Ich habe in dieser Arbeit zudem untersucht, ob CytoD auch die Funktion 

der Kardiomyozyten erhalten kann. Bei den Untersuchungen des AP konnte ich 

feststellen, dass 0.5 µM CytoD die elektrophysiologischen Eigenschaften adulte 

ventrikulärer Myozyten der Ratte über eine Dauer von 3 Tagen in der Kultur 

konservieren kann. Der Einsatz von CytoD bei der routinemäßigen Kultivierung von 

Kardiomyozyten ist folglich dann empfehlenswert, wenn es darum geht sowohl die 

morphologischen als auch elektrophysiologischen Eigenschaften der Zellen zu erhalten. 
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Summary  
 

The heart is a muscular organ that pumps the blood throughout the entire body, 

supplying the cells with O2 and nutrients. The pumping property originates from two 

important inherent characteristics of cardiac cells: excitability and contractility. 

Cardiomyocyte’s action potential (AP) comprises a wave of coordinated openings and 

closings of multiple ion channels. The opening of cardiac Ca2+ channels results in Ca2+ 

influx that triggers a much larger Ca2+ release from sarcoplasmic reticulum, which is 

required for contraction. Therefore, the ubiquitous second-messenger Ca2+ links the 

electrical excitation to the mechanical contraction, a process called excitation-

contraction (EC) coupling. Various intracellular signaling cascades regulate the 

physiological properties of cardiomyocytes including excitability and contractility. In this 

thesis, I studied these signaling pathways and regulatory processes and their 

contribution into the physiology and pathophysiology of cardiac cells. In particular, I 

addressed the following questions: (i) do Gαq/11 signaling pathways modulate the 

electrophysiological properties of mouse ventricular myocytes? (ii) are Gαq/11 pathways 

involved in hyperaldosteronism (HA)-induced alterations of cardiomyocytes’ 

electrophysiological properties? (iii) what is the effect of altering calmodulin-binding of 

Cav1.2 on EC coupling gain? (iv) does the small GTPase Rac1 influence the EC 

coupling gain? (v) can Cytochalasin D preserve the electrophysiological properties of rat 

ventricular myocytes in long-term culture? 

Gαq/11 signaling is activated following binding of hormones such as endothelin-1, 

angiotensin-II or epinephrine to G-protein coupled receptors. Acute activation of these 

signaling pathways lead to non-genomic responses such as an increase in intracellular 

Ca2+ levels and activation of various PKC isoforms which both modulate 

cardiomyocyte’s contractility. In contrast, chronic stimulation of Gαq/11 signaling 

pathways results in pathological responses such as hypertrophy and heart failure, so 

called genomic effects. In cardiomyocytes, despite the increasing number of 

investigations on the pathological effects of Gαq/11 signaling, its physiological function is 
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not well understood. In this thesis I studied the effects of Gαq/Gα11-protein knockout on 

the electrophysiological characteristics of mouse ventricular myocytes and found 

alterations of membrane capacitance, resting membrane potential and AP amplitude, 

but not AP duration. Therefore, I concluded that both Gαq and Gα11 are instrumental to 

the electrophysiological properties of cardiomyocytes by mediating the continuance of a 

basic rate of gene expression. 

Aldosterone is a hormone that causes water retention in the kidney and consequently 

increases the blood volume and thus helps to maintain the blood pressure. Besides its 

homeostatic effect, aldosterone excess leads to pathological responses; one of the best 

known is hypertension. Persistent hypertension in turn results in various cardiac 

diseases. Previously, aldosterone was proposed to induce cardiac pathological 

responses independent of its effects on blood pressure. However the mechanism of 

aldosterone function and especially the signaling cascades involved in the responses of 

the cells, have not been well understood. In this thesis, I investigated the effects of HA 

on the cardiomyocyte’s electrophysiology and found a substantial reduction of AP 

duration and Itoc up-regulation. Moreover, by inducing HA in Gαq/Gα11 knockout mice I 

found a possible contribution of Gαq/11 signaling in the aldosterone-induced alteration of 

cardiomyocyte’s electrophysiology. Thus, I concluded that aldosterone induces 

remodeling of cellular electrophysiology and Gαq/11 signaling cascades are essentially 

involved in these genomic responses. 

Following voltage-dependent activation, Cav1.2-channels can undergo voltage and/or 

Ca2+-dependent inactivation. The Ca2+-binding protein calmodulin (CaM) mediates the 

latter inactivation (CDI). Ca2+-saturated CaM interacts with the IQ motif in the C 

terminus of Cav1.2 to accomplish this. To further investigate the impact of IQ-CaM 

interaction in Cav1.2 regulation, I/E mutation (Ile1624 to Glu) was generated in IQ 

sequence. Here I studied the effects of I/E mutation of IQ motif on the (i) Cav1.2 

function and (ii) EC coupling gain. Interestingly, I/E mutation caused a substantial 

decrease of ICa,L density. Despite ICa,L reduction, the amplitude of global Ca2+ transients 

were increased in the ventricular myocytes from I/E mice, as a result of an enhanced 



	
   x	
  

EC coupling gain. This increase in intracellular Ca2+ levels due to higher EC coupling 

gain was ultimately the cause of cardiac dysfunction in mice with the I/E mutation. 

Rac1 is a monomeric G-protein that is activated downstream to integrin signaling and 

stimulates various cellular processes including cytoskeletal reorganization and ROS 

production. Rac1 has been shown to contribute to the development of cardiac 

pathological responses such as cardiomyopathy and atrial fibrillations. However the 

underlying mechanisms are not well understood. In this thesis, I studied the effects of 

expression of a constitutively active Rac1 (V12Rac1) on the EC coupling gain in 

ventricular myocytes. Despite a substantial decrease in steady-state ICa,L, the amplitude 

of global Ca2+ transients were increased in ventricular myocytes expressing 

constitutively active Rac1, as a result of an enhanced EC coupling gain. The higher 

intracellular Ca2+ levels, similar to I/E mutation, were the primary cause of cardiac 

dysfunction. 

The potential to culture cardiomyocytes is highly important due to the fact that isolated 

adult cardiomyocytes initiate the process of remodeling in a few hours which leads to 

de-differentiation of cardiac cells. However, some biological studies such as chronic 

hormone treatment in vitro or expression of exogenous proteins by adenoviral gene 

transfer needs culturing of cardiomyoctes for longer time periods even days. Therefore 

different approaches were employed to prevent this remodeling process. Cytochalasin 

D (CytoD), a fungi metabolite, has been reported to have beneficial effect in the culture 

of cardiac cells since it could preserve the cardiomyocyte’s morphology. In this thesis I 

investigated whether CytoD can preserve the cardiomyocyte’s function, too. Studying 

the action potential, I found that CytoD at 0.5 µM can preserve the electrophysiological 

properties of ventricular myocytes along with morphology over a culturing period of 

three days. Thus, CytoD (0.5 µM) can be used as a routine culture supplement in 

primary culture of cardiomyocytes to preserve both morphology and function. 
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1. Introduction  
1.1. The heart anatomy 

The heart is a muscular organ, which pumps the blood throughout the entire body. The 

blood provides O2 and nutrients and removes excretory products in the vicinity of every 

single cell, thus ensures the cell survival. The pumping property originates from the 

intrinsic characteristics of the heart muscle. This muscle builds the walls of 4 heart 

chambers: right and left atria, right and left ventricles. The right atrium is separated from 

the right ventricle by the tricuspid valve whereas the left chambers (the left atrium and 

ventricle) are separated by the mitral valve (Figure 1.1).  

 

 

	
  

Figure 2.1: The graphical illustration of the anatomy of the heart. The heart chambers and valves as well as the 
blood circulation in the heart are shown. For detailed explanation see 1.1. Image taken from www.en.wikibooks.org 
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The atria have a thin wall and develop relatively low pressure. While the thicker 

muscular walls of the ventricles provide enough force for pumping of the blood to the 

arteries. A wave of contraction, which starts in the atria (atrial systole) and continues in 

the ventricles (ventricular systole), generate a heartbeat. Each heartbeat results in the 

ejection of blood to the arteries. The percentage of blood volume that is pumped out of 

a filled ventricle with each heartbeat, is called ejection fraction (EF) 65. The beating 

frequency and EF are normally regulated in response to the body needs. For instance 

both heart rate and ventricular ejection are enhanced during exercise. After the 

contraction phase, all four chambers are relaxed (diastole). 

 

1.2. The conduction system of the heart 

In the previous section, the heartbeat was introduced as the driving force for blood 

ejection. But what is the trigger for the heartbeat? Does the cardiac muscle contract 

spontaneously or does it need a stimulus? The regular sequence of contraction of heart 

muscle contraction shows the necessity for a stimulus. The initial trigger for the 

heartbeat appears to be the electrical impulses, which originate from a group of 

specialized myocardial cells called the sinoatrial (SA) node. The electrical impulses 

initiated in the SA node propagate through the entire atrial muscle via the intermodal 

atrial pathways. After a delay in the atrioventricular (AV) node, the electrical excitation 

enters the ventricles via the bundle of His. The bundle of His has two branches: right 

and left bundle branches that enter the right and left ventricles, respectively. The wave 

of depolarization propagates into the ventricular muscle via the Purkinje fibers. The 

Purkinje network ensures the synchronized activation of both ventricles. Thus, the 

heartbeat is based on the function of the heart’s conduction system (Figure 1.2).  

 

 

	
  
Label 

gnaq gna11 Cre 
status Tamoxifen 

Gqfl G11wt Cre- Tam+ 

flox/flox wt/wt 0/0 + 

Gqfl G11wt Cre+ Tam+ 

flox/flox wt/wt tg/0 + 

flox/flox -/- 0/0 + 

flox/flox -/- tg/0 + 
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Figure 1.2: The graphical illustration of the heart conduction system. For detailed explanation see 1.2. Image taken 
from www.scienceart.com  

 

1.3. Structure of a working cardiomyocyte  

The cardiomyocytes are the working units of the heart. They have two important 

functional properties: (i) excitability and (ii) contractility. Both properties originate from 

their specialized structures.  

The plasma membrane of the cardiomyocyte contains numerous ion channels and 

transporters that mediate ion influx and efflux and lead to the various ionic distribution 

across the membrane. These ionic movements are the basis for the cardiomyocytes’ 

excitability, which will be explained in 1.4.  

The other feature of the cardiomyocyte, are the invaginations of the plasma membrane 

that create the transverse tubular (t-tubular) system (Figure 1.3). This system is formed 

and stabilized by the cytoskeleton 108 and ensures the rapid and synchronous 

contraction of the cardiomyocyte 31. Similar to the surface membrane, t-tubules contain 

different ion channels and transporters that facilitate the propagation of the electrical 

impulse into the cell interior. This process leads to the activation of a large number of 
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Ca2+ channels in the t-tubules 99. The resulting Ca2+ influx is the main trigger for the 

increase in the intracellular Ca2+ concentration ([Ca2+]i), which is the primary 

requirement for the activation of contraction. The sarcoplasmic reticulum (SR) is the 

main Ca2+ store of the cell and SR Ca2+ release is triggered by the Ca2+ influx across 

the membrane. As a result of the t-tubular system, the plasma membrane is located in 

the close proximity of the SR membrane, building the dyadic space that is about 15 nm 

wide 156 to facilitate the Ca2+ induced Ca2+ release from the SR. Therefore, the t-tubules 

play an important role in the coupling of electrical excitation to the contraction, a 

phenomena called excitation-contraction (EC) coupling. A large number of cardiac 

diseases such as heart failure are associated with t-tubular disarray 207. 

 

	
  

Figure 1.3: 	
  Schematic representation of cardiomyocyte’s subcellular architecture. T-tubules are the invaginations of 
plasma membrane that proximate sarcolemmal Cav1.2 channels to SR Ca2+ release channels on the sarcoplasmic 
reticulum. The contractile filaments that are structured as sarcomeres are responsible for contractility in response to 
Ca2+release from the sarcoplasmic reticulum. Taken from Smyth and Shaw, 2010 180. 
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In addition to the specialized features of the cell membrane, the cardiac myocyte 

contains thick (or myosin) and thin (or actin) filaments as well as associated contractile 

and skeletal components, which together build the contractile machinery of the cell. The 

special alignment of contractile filaments results in a cross-striated pattern in the cardiac 

cells (Figure 1.3). The remaining volume of cardiomyocyte is mostly occupied by the 

mitochondria, which are the energy supplies of the cell. 
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1.4. The electrophysiological properties of a cardiomyocyte  

1.4.1. Resting membrane potential (VR)  

The membrane potential results from different distributions (Table 1.1) and 

conductances of ions across the membrane. 

 

Table 4.1: Different distributions of Na+, K+, Ca2+ and Cl- across the membrane and their Nernst potential 23.   

Ion (x)	
   [x]o (mM)	
   [x]i (mM)	
   Ex (mV)	
  

Na+	
   135-145	
   10	
   +70	
  

K+	
   3.5-5	
   155	
   -89	
  

Ca2+	
   2	
   10-4	
   +125	
  

Cl-	
   95-110	
   10-20	
   -55	
  

 

In cardiomyocytes, the plasma membrane is preferentially permeable to K+ and the 

resting potential is mainly determined by the equilibrium potential of this ion. The 

equilibrium potential is the potential at which the chemical gradient of an ion is balanced 

by the electrical gradient across the membrane (net current flow=0) and can be 

described by the Nernst equation:  

Em=!"
!"
  ln  ! ! !

! ! !
                      Nernst equation 

Where Em is the membrane potential, R the gas constant, T the absolute temperature, Z 

the valence of the ion, F the Faraday constant, P the permeability to the ion, [x]o and [x]i 

extracellular and intracellular ion concentrations, respectively. 

Despite the lower permeability of the membrane to other ions such as Na+ and Ca2+, 

they also contribute to the resting membrane potential (VR). The resulting potential 

across the membrane can be quantified by the Goldman-Hodgkin-Katz (GHK) equation: 

Em=!"
!"
  ln (PK  

! o
! !

+ PNa  
!" !
!" !

+ PCl  
!" !
!" !

)            GHK Equation  
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How are the resting concentration gradients of Na+ and K+ maintained across the 

membrane? The Na+/K+-ATPase consumes one ATP to actively transport 3 Na+ out of 

and 2 K+ into the cell, which maintains the electrochemical gradients for Na+ and K+, 

thus contributes to the VR. 

 

1.4.2. Action potential (AP) 

The cardiac action potential (AP) comprises a wave of finely tuned coordinated 

openings and closings of multiple ion channels 181. Voltage-gated ion channels e.g. Na+, 

K+, and Ca2+ channels contribute to the cardiac AP in a particular way. The shape and 

duration of the cardiac APs vary greatly among different regions of the heart (Figure 

1.4) as well as specific areas within those regions (epicardium vs. endocardium) 17.  

 

	
  
Figure 1.4: APs in different regions of the heart. The schematic illustration of different shapes and durations of APs in 
atria, ventricle and heart conduction system. The temporal sequence of AP propagation throughout the heart is 
reflected in the figure. Taken from Barry & Nerbonne, 1996 17. 
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Figure 1.5: Cardiac AP and the major underlying ion currents. Different phases of cardiac AP (A) and the contribution 
of each current for shaping every phase (B), are displayed. The amplitudes of the depolarizing (downward) and 
repolarizing (upward) currents are not on the same scales. For abbreviations: see text. Modified from Snyders, 1999 
181. 
 

Figure. 1.5 illustrates a human ventricular AP and its underlying currents. As shown, the 

ventricular AP can be subdivided into 5 different phases. The initial upstroke (phase 0) 

results from the activation of the fast inward Na+ current (INa). The transient rapid 

repolarization (phase 1) is a result of the activation of transient outward K+ current (Ito1) 

and ultrarapid delayed rectifier K+ current (IKur) along with the rapid voltage-dependent 

inactivation of INa. The size of this early repolarization (notch) greatly influences the time 

course of the other voltage-gated currents and, consequently controls the AP duration 

indirectly. Phase 2 results from a fine balance of inward depolarizing current (ICa,L
*) and 

outward currents through delayed rectifier K+ channels (IKur, IKr
† and IKs

*) 181. The last 
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phase of repolarization (phase 3) is the product of the increase in the conductance of 

the IKr, IKs and IK1 188. The resting membrane potential (phase 4) is maintained by 

inwardly rectifying K+ currents including IK1, IK(ATP)
†

 and IK(Ach)
‡

. The ventricular AP differs 

in shape and duration among different species 200. While the AP in guinea pig cells 

displays a long-lasting plateau, the AP of mouse cells lacks phase 2 (Figure 1.6). In the 

following, the ionic currents shaping (underlying) the different phases of the AP will be 

described. 

 

	
  
Figure 1.6: Guinea pig (A) and Mouse (B) ventricular AP. For description see 1.4.2. 

 

1.4.3. Na+ current 

INa which generates the fast upstroke (phase 0) of cardiac AP was the focus of studies 

for more than half a century 62. It has been shown that voltage-gated Na+ channels 

underlie these currents and therefore are responsible for the AP upstroke as well as the 

rapid impulse conduction through cardiac tissue 16.  

These channels were the first voltage-gated ion channels to be cloned and sequenced 

in the 1980s 140. Voltage-gated Na+ channels are composed of a principal large pore 
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forming α-subunit and small accessory β-subunits. By today, at least 6 separate genes 

encoding homologous α-subunit isoforms in human (Nav1.1- Nav1.6) have been 

cloned. These isoforms expressed in the brain, heart and skeletal muscle 8,67. The heart 

isoform, Nav1.5, which is encoded by the SCN5A gene, is the predominant α-subunit of 

the cardiac Na channels 66. Mutations in the SCN5A gene lead to various pathological 

phenotypes, such as long QT (LQT) syndrome type 3, Brugada syndrome, and the 

diseases of the heart conduction system 226. Accessory β-subunits appeared to have a 

primary role in regulating the subcellular localization of the α-subunits 89.  

The α-subunit is composed of four homologous domains (DI-DIV), each containing 6 

transmembrane segments (S1-S6) and a pore loop (Figure 1.7). The pore through 

which Na+ ions permeate, is formed by the S5-S6 segments along with their cytoplasmic 

linkers called pore loops (P-loop). Mutations in P-loop can completely disrupt the ion-

channel function 161. The fourth transmembrane segment (S4) in each of the 4 domains, 

which contains regularly arranged positive charges, works as a “voltage sensor” and 

responds to the membrane depolarization by a conformational change that results in 

channel pore opening and subsequent inward current 16. In domain III, a lysine critically 

selects for Na+ over Ca2+ and constructs the selectivity filter region 145. 

Voltage-gated Na+ channels inactivate rapidly after a very brief channel opening. A 

group of 3 hydrophobic amino acids in the linker between domains III and IV are 

proposed to be important for the channel inactivation 80 although other structures (S6 in 

domain IV and S4-S5 linkers) have also been suggested 127,189. Recovery form 

inactivation occurs when the membrane potential changes back to resting levels 

(negative Em) 23. 
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Figure 1.7: Structure of Nav1.5. Each of the four Na+ channel domains (DI–DIV) consists of six transmembrane α-
helices. The fourth segment (S4) contains regularly arranged positive charges that function as the voltage sensor. 
The intracellular loop between DIII and DIV forms the inactivation gate. The proximal C terminus is composed of six 
helices forming an EF-hand domain (EF) and a downstream calmodulin binding motif (IQ motif). Black regions (E6, 
E17, E18, E24, E28) are channel regions affected by alternative splicing. Taken from Schroeter et al, 2010 174. 
 

Unlike other voltage-gated Na+ channels, the cardiac Na+ channels are rather 

tetrodotoxin (TTX)-insensitive and can only be blocked by high concentrations (in mM 

range) of TTX. The Cys401 in the p-loop of the domain I of the cardiac Na+ channels, 

which is different from Phe or Tyr of the non-cardiac voltage-gated Na+ channels, has 

been proposed to underlie this low TTX sensitivity 14. The type I antiarrhythmic agents 

such as quinidine, procainamide, lidocaine can also block cardiac INa. The PKA-

dependent phosphorylation of the cardiac Na+ channels leads to a marked increase of 

INa by enhancing the maximal Na+ conductance 173. 

 

1.4.4. L-type Ca2+ current 

There are 2 types of Ca2+ currents in cardiac cells: T- and L-type Ca2+ currents. The 

channels responsible for these currents differ in their biophysical properties as well as 

drug sensitivity. L-type Ca2+ channels have a high conductance (~25 pS in 110 mM 

Ba2+), long openings, activation at larger depolarizations and sensitivity to 1,4-

dihydropyridines (DHP). In contrast, T-type Ca2+ channels display a tiny conductance 
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(~8 pS in 110 mM Ba2+), transient openings, activation at more negative Em and 

resistance to DHP 23.  

Moreover they have different functions in cardiac myocytes. The L-type Ca2+ current 

(ICa,L) which is a depolarizing current does not play a considerable role in the rapid 

upstroke phase of AP in atria, ventricle and His-Purkinje system, but it balances the 

outward K+ currents which leads to a plateau during the early repolarization phase. On 

the other hand, ICa,L triggers SR Ca2+ release and contributes to the refilling of the SR 

Ca2+ stores. In addition to its role in working myocytes, ICa,L is responsible for the 

relatively slow depolarization phase of AP in SA and AV nodes. 

Although T-type Ca2+ current (ICa,T) activation has the same Em-dependency as INa 

(activation at –50 mV), it does not play an important role in the AP depolarization. A tiny 

channel conductance and transient openings cause only a very small inward current 

compared to the large Na+ influx. Moreover, they do not contribute to EC Coupling for 

two reasons: (i) ICa,T is very small and (ii) T-type channels are not located in close 

proximity to the Ca2+ release channels of the SR 98. Some studies suggest that ICa,T has 

a role in atrial pacemaking 76.     

The L-type voltage-dependent Ca2+ channels (LVDCC) are composed of 4 subunits: the 

α1, α2/δ, β, and, in some tissues, γ  28 (Figure 1.8). The cardiac isoform lacks the γ  

subunit 110. While α1c builds the core of the cardiac LVDCCs (Cav1.2), the accessory 

(β2, α2/δ) subunits modulate the biophysical properties as well as trafficking of the α1c to 

the membrane 28.  

Similar to the α-subunit of other voltage-gated ion channels, α1c consists of 4 

homologous domains (I–IV), each composed of 6 transmembrane α-helices (S1 to S6). 

Various biophysical properties of the LVDCC such as channel pore (S5, S6 and their 

cytoplasmic linker), voltage sensor (S4), inactivation-related sequences (cytoplasmic C-

termini) and the binding sites of the channel modulators 38 are all determined by the α1c 

subunit. A congenital cardiac disease called Timothy Syndrome has been related to a 

mutation in the α1c subunit and specifically in the exon 8 of the Cav1.2 gene 183. 
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Figure 1.8: Structure of Cav1.2. The proposed membrane topology of the core subunit and interactions with auxiliary 
subunits are displayed. The pore-forming α-subunit consists of homologous domains (I–IV), each composed of 6 
transmembrane α-helices (S1 to S6). The numbers indicate the following regions: 1- Voltage-dependent activation 
kinetics 2- Interaction with β-subunit (I-II cytoplasmic linker) AID 3- BID 4- Voltage-dependent inactivation (IS6 and 
flanking regions) 5- Ion selectivity (pore-forming S5-S6 linker regions) 6- Voltage sensor (IS4, IIS5, IIIS4, IVS4) 7- 
Binding sites for DHP 8- EC coupling (II-III linker) 9- Role in use-dependent block 10- Binding sites for BTZ, DHP, and 
PAA 11- Ca2+–dependent inactivation (C terminal) 12- Phosphorylation site for CaMK-II (Ca2+/calmodulin dependent 
protein kinase) 13- Phosphorylation site for PKA. Taken from Bodi et al, 2005 28. 
 

The cardiac β2 subunit, which consists of a single cytosolic domain (Figure 1.8), 

interacts with α1c through a special sequence called the β-interaction domain (BID). It 

has been shown that the binding partner of BID on the α1c is a highly conserved 

sequence in the cytoplasmic linker between domains I and II, called the α-interaction 

domain (AID) 154. While α1c  dictates the biophysical characteristic of the channel, β2 is 

much more involved in the regulation of these properties 178. For instance, β2 has been 

postulated to be important for the expression, assembly 190 and trafficking of the α1c to 

the membrane 217. Moreover, the pore opening is augmented 217 and the DHP affinity is 

enhanced 133 by β2. The ICa,L increase in response to β-adrenergic stimulation is also 
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mediated by the β2 subunit 133. PKA-dependent phosphorylation of β2 subunit at 

positions Ser478 and Ser479 resulted in an increase of peak ICa,L 34. 

The α2/δ subunits are the products of one gene and are separated posttranslationally 48. 

The α2 is extracellular and is bound to the monomeric transmembrane δ subunit 

 through a disulfid bridge 28. The α2/δ are supposed to participate in the regulation of the 

biophysical properties of the channel with β2  23. These subunits increased the DHP 

sensitivity of the channel by 4-fold and accelerated the channel opening and closing 
208,59. 

ICa,L inactivates in a biphasic manner. Several studies proposed 2 different mechanisms 

for LVDCC inactivation: (i) Ca2+-dependent inactivation (CDI) and (ii) voltage-dependent 

inactivation (VDI) 109. CDI is a regulatory mechanism with which Ca2+ limits its own influx 

via LVDCC. This helps to reduce the risk of Ca2+ overload in the cell. CDI is primarily 

dependent on the Ca2+ release from the Ca2+ release channels of SR (RyR) 49 and is 

the predominant mechanism for LVDCC inactivation on the time scale of an AP 32. VDI 

On the other hand prevents a premature activation of the channel when CDI terminates 
159. 

CDI is mediated by a Ca2+ binding protein called calmodulin (CaM) 227,229. CaM has 

binding sites on the carboxy terminus of the α1c subunit, one of them is called IQ motif 2. 

CaM binds to these binding sites with a very high affinity, even at rest and in 

unsaturated state (when less than 4 Ca2+ ions are bound to CaM) 149. Em depolarization 

and intracellular Ca2+ increase lead to the binding of 4 Ca2+ ions to CaM. Ca2+-saturated 

CaM changes its conformation along with α1c, which leads to the closure of the channel 

pore 195. 

LVDCCs appeared to be regulated by different types of protein kinases such as PKA 

and PKC. PKA which is activated downstream to β-adrenergic stimulation, enhances 

the ICa,L by increasing the open probability as well as the open time of the channel 195. 

α1C has been shown to be the target for PKA-dependent phosphorylation 
47. However, in 

vitro experiments showed a PKA-mediated phosphorylation of auxiliary β subunits, too 
68. A source of readily usable PKA is provided by mAKAP or AKAP15 in the vicinity of 
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LVDCCs 94. Activation of PKC downstream to various types of Gαq/11 protein-coupled 

receptors may also lead to channel phosphorylation 94. Although, this effect on the ICa,L 

can either be increasing 11 or decreasing 221. One possible explanation for this 

controversial effect is the GPCR-dependent production of IP3 along with PKC activation. 

IP3 could induce Ca2+ release from the SR which would induce CDI and counterbalance 

the ICa,L increase by PKC phosphorylation 101. Various pharmacological tools such as 

most of DHPs, phenylalkylamines (PAAs), and benzothiazepines (BTZs) can inhibit ICa,L 
28. On the other hand, some DHPs such as Bay K 8644 and CGP 28392 are Ca2+ 

channel agonists and enhance ICa,L 23.   

 

1.4.5. K+ currents 

Different types of K+ currents have been described in cardiomyocytes. Cardiac K+ 

currents have different biophysical properties such as various time- and voltage-

dependence and/or drug sensitivity. This variety results in their different physiological 

functions. The K+ currents shape the cardiac AP, drive Em toward EK, and regulate the 

heart rate. Furthermore, many hormones, neurotransmitters and drugs modulate the 

cardiac function by regulation of K+ channels 136,181. 

To simplify the study of K+ channels, different types of classifications were introduced. 

According to Tamargo, K+ channels can be classified as voltage-gated (Kv) and ligand-

gated K+ channels 188. The Kv channels were further categorized: (a) 4-AP sensitive, 

rapidly activating and inactivating currents, referred to as Ito (transient outward) and (b) 

TEA sensitive, slowly activating and inactivating outward currents referred to as delayed 

rectifier K+ currents 17. Table 1.2 shows members of each category and genes encoding 

for each channel. 

Kv channels are formed by coassembly of four pore-forming α subunits and ancillary β 

subunits. The α subunit consists of six transmembrane-spanning segments (S1–S6) 

with cytoplasmic N- and C-termini and a pore loop between S5 and S6 carrying the K+ 

selectivity filter signature TxGYG 181. The voltage sensor resides in the S4 segment. 
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Accessory β subunits modulate membrane trafficking, gating properties and drug 

sensitivity of the channel 79,123. Most Kv channels experience an inactivated state 

between open and close state and need a recovery phase for reactivation 188. 

 

Table 1.2: genes encoding for the α and β subunits of potassium channels. Taken from Tamargo et al, 2004 188. 

Current 

α-Subunit  β-Subunit  

 
 

Name 

 
 

Gene 

 
 

Name 

 
 

Gene 

IKs Kv7.1 (KVLQT1) KCNQ1 Mink KCNE1 

IKr Kv11.1 (HERG) KCNH2 Mink KCNE1 

IKur Kv1.5 (HK2) KCNA5 Kvβ1 (Kvβ3) KCNAB1 

IK1 Kir2.1 (IRK1) KCNJ2   

 Kir2.2 (IRK2) KCNJ12   

IK(Ach) Kir3.1 (GIRK1) KCNJ3   

 Kir3.4 (GIRK4) KCNJ5   

IK(ATP) Kir6.2 (BIR) KCNJ11 SUR2A ABCC9 

Ito1 Kv4.3 KCND3 KChIP2 KCNIP2 

 Kv1.4 KCNA4   

 Kv4.1 KCND1 KChIP1 KCNIP1 

 Kv4.2 KCND2 KChIP2 KCNIP2 

 

In cardiomyocytes inwardly rectifying K+ currents have also been described, which 

include the members of ligand-gated K+ currents. The channels responsible for these K+ 

currents (Kirs) also contain α and β subunits, however the α subunit is different from 

those of Kv channels. Each Kirs’ α subunit consists of two transmembrane segments 

(M1 and M2) and a cytoplasmic linker 181.  
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1.4.5.1. Transient outward K+ current (Ito)  

The early rapid repolarization (phase 1) is mediated by 2 repolarizing currents: Ito1 and 

Ito2. The Ito1 conducts K+, can be blocked by 4-AP and is Ca2+-insensitive 70. In contrast, 

iIto2 conducts Cl- more than K+, is 4-AP insensitive and Ca2+-dependent 230,231. The Ito1 

and Ito2 modulate the gating of other repolarizing currents such as delayed rectifier K+ 

currents, by defining the height of the AP plateau (phase 2), thus determine the AP 

duration. The AP prolongation seen in heart failure, myocardial ischemia and infarction 

has been attributed to alterations of Ito such as reduced channel density 141. Moreover, 

Ito currents indirectly contribute to EC coupling by modulating the AP duration 141.  

In addition to the human heart, Ito1 has been also characterized in other species such as 

mouse 21 and rat 13. The Ito1 density differs between different regions of the heart. For 

instance, in human, rat, rabbit and dog the epicardium has a higher Ito density compared 

to the endocardium 144. The gene encoding for Ito1 was proposed to be Kv4.3 in human 
92 and Kv4.2 in rat 51 and mouse 20. 

PKC and PKA are candidates for Ito1 channel’s phosphorylation and regulation 188. While 

α-adrenergic stimulation showed a down-regulation of Ito1 in rat 12, β-adrenergic agonist 

had no effects on the current density 188. 

 

1.4.5.2. Delayed rectifier K+ currents (IKur, IKr, IKs) 

The members of delayed rectifier K+ currents contribute to the AP repolarization. They 

are classified as ultrarapid (IKur), rapid (IKr) and slow (IKs) currents based on their gating 

properties. Mutations of delayed rectifier K+ channels are involved in different types of 

human LQT syndrome 23.  

Among delayed rectifier currents, IKur activates the fastest, does not inactivate and is 

blocked by 4-AP 30. The IKur channels are encoded by KCNA5 60.  

Activation of IKr is faster than IKs, however they are both activated after Ito in the time 

course of an AP (Ito < IKur < IKr < IKs) (Figure 1.3). At positive potentials, IKr conducts an 
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inward current 218. Kr channels are also called HERG channels since the α-subunit of 

the channel is encoded by human ether-a-go-go related gene (KCNH2) 1. In HERG 

channels, the α-subunit is associated with accessory β-subunits such as mink and 

mirP1. The channel is highly expressed in human ventricular myocytes. Moreover 

higher IKr density has been also reported in rat atrial cells 151. Mutations in the HERG 

gene have been related to different types of LQT syndrome (See the Inherited 

Arrhythmia Database sponsored by Cardiovascular Genetics, New York University). For 

instance, cLQT syndrome, which is a complex disease described by massive QT 

interval prolongation and polymorphic ventricular tachycardia *  is attributed to the 

mutations of KCNH2 96,160. β-adrenergic stimulation regulates HERG channels by 2 

different mechanisms: (i) PKA-dependent phosphorylation and (ii) direct channel 

activation 205. Moreover, PIP2 modulates the biophysical properties of the channel that 

results in more hyperpolarized Em-dependent channel activation as well as IKr up-

regulation 24. Lanthanum and several members of class III antiarrhythmic drugs, 

including dofetilide, E-4031, and sotalol block IKr 167,168.  

IKs is composed of a pore forming α-subunit encoded by KCNQ1 and two accessory β-

subunits 39. The channel activation is very slow so that it never gets fully activated 

during a normal AP 23. Therefore it does not markedly contribute to AP repolarization. 

However, [Ca2+]i increase enhances IKs, and results in AP shortening that limits 

intracellular Ca2+ overload 194.  

 

1.4.5.3. Inwardly rectifying K+ currents (IK1, IK(Ach), IK(ATP)) 

In cardiomyocytes, inwardly rectifying K+ currents (IK1, IK(Ach), IK(ATP)) contribute to the 

resting membrane potential (VR) 17.  

In addition to the resting membrane potential, IK1 also contributes to the phase 3 of 

repolarization. It activates at negative membrane potentials and closes very fast upon 
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Em depolarization 188. Ba2+ is a strong IK1 blocker 213. In human ventricular myocytes, IK1 

can be stimulated by PIP2 and inhibited by isoproterenol and forskolin 117,170. 

In contrast to Kv channels, the gating of K(ATP) and K(Ach) channels are Em-independent. 

The gating of ATP-sensitive K+ channels is controlled by the [ATP]i. IK(ATP) is inhibited at 

physiological levels of [ATP]i 219 and stimulated in situations of massive [ATP]i drops. 

For instance during myocardial ischemia in which [ATP]i decreases, IK(ATP) becomes 

activated 137. The resulting K+ influx counterbalances the repolarizing currents and leads 

to AP shortening 137. This helps the cell to reduce its ATP expenditure by limiting 

excitation and subsequent contraction. This increases cell survival 73. 

Acetylcholine activated K+ currents (IK(Ach)) are preferentially expressed in cells of the 

SA and the AV node where they hyperpolarize Em and decelerate the heart rate. Some 

studies showed the presence of IK(Ach) in atrial cells 122. The acetylcholine effect is 

mediated by the βγ-subunits of members of the Gαi/o protein families 42. 

  

1.5. Action potential propagation in cardiac tissue 

The heart is a functional syncytium in which electrical impulses can propagate between 

the cells.	
   In heart tissue, the electrical impulse is transmitted from one cell to the other 

via a special type of nonselective ion channels in the gap junction region of intercalated 

discs 98 (Figure 1.3). These channels are called connexons and consist of six connexin 

subunits, each of which has four transmembrane α-helices. Two connexons from 

neighboring cells build the gap junction that allows the longitudinal ion flow between 

cells. [Ca2+]i increase as well as acidosis lead to the closure of gap junction channels 

which is a safety mechanism to limit the distribution of toxic components to the 

neighbors.  

The velocity of AP propagation is ~ 0.5 m/s in human atrial and ventricular muscle. The 

complete activation of atria takes ~ 90 ms, while all the ventricular mass is activated by 

~ 230 ms 103. 
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1.6. Excitation-Contraction (EC) Coupling 

The electrical impulse that is initiated in the SA node transmits to the ventricular 

myocytes and results in membrane depolarizations and APs. This AP in turn leads to 

cardiomyocyte’s contraction. But how does this membrane depolarization cause 

activation of the contractile machinery? In cardiac cells, electrical excitation is coupled 

to contraction by the ubiquitous second messenger Ca2+, a process called EC coupling.  

 

	
  

Figure 1.9: EC coupling in a cardiomyocyte. Several different ion channels, transporters, exchangers and contractile 
proteins contribute to this process. For description: see text. Taken from Bers 2002 22. 

 

The AP which is initiated in the surface membrane propagates along the surface and 

the t-tubules. The membrane depolarization causes the activation of LVDCCs, which 

results in Ca2+ influx. The LVDCC density is higher in t-tubules compared to surface 

membrane 99, which leads to the Ca2+ entry into the dyadic space. Therefore, the Ca2+ 

increases in the vicinity of RyRs and activates the Ca2+ release from the SR. This 

process is called Ca2+-induced Ca2+ release (CICR) 88 and amplifies the Ca2+ influx to a 

degree required for the activation of the contractile filaments 50 and subsequent 

contraction. The contraction is followed by a relaxation period that requires Ca2+ 

removal from cytosol. This is achieved by members of the Ca2+ removal machinery 
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including: (i) SR Ca2+-ATPase, (ii) sarcolemmal Na+/Ca2+ exchange, (iii) sarcolemmal 

Ca2+-ATPase, (iv) mitochondrial Ca2+ uniport 22 (Figure 1.9).  

β-adrenergic stimulation accelerates the contraction velocity by PKA-mediated 

phosphorylation of several proteins involved in EC Coupling such as LVDCC, RyR, 

phospholamban, troponin I and myosin binding protein C 22. 

Phospholamban is a protein that binds the SR Ca2+-ATPase and inhibits its activity. The 

phosphorylation of phospholamban results in its dissociation from the SR Ca2+-ATPase 

and the relief of inhibition 98. Troponin I as well as myosin binding protein C are the 

members of cardiomyocyte’s contractile machinery, thus contribute in contraction. 

 

1.6.1. SR Ca2+ release channels (RyR) 

CICR is mediated by the SR Ca2+ release channels. These channels have high affinity 

to a neutral plant alkaloid, ryanodine, thus also called ryanodine receptors (RyR). A 

group of 6-20 RyRs are normally activated synchronously in response to a unitary Ca2+ 

influx, leading to a local Ca2+ increase called Ca2+ spark 40. Ca2+ sparks are the 

elementary units of SR Ca2+ release during EC coupling. Tens of thousands of Ca2+ 

sparks are temporally synchronized by the AP to generate the global Ca2+ transient. In 

addition to their role as Ca2+ release channels, RyRs function as scaffolding proteins for 

other regulatory proteins involved in the CICR process. This helps to localize all 

important proteins for CICR at the sarcolemmal–SR junctions. For instance FKBP and 

calmodulin, which modulate the RyR gating properties and function respectively, are 

coupled to RyRs 64. The SR Ca2+ buffer, calsequestrin, is also coupled to RyR on its SR 

luminal side 223.  

 

1.6.2. Sarco/endoplasmic reticulum Ca2+-ATPase 

The Ca2+, which is released into the cytosol during systole, should be removed from the 

cytosol and/or taken up by the internal stores for the next EC coupling cycle. This is 
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majorly mediated by the sarco/endoplasmic reticulum Ca2+-ATPase type 2a 

(SERCA2a), the cardiac isoform of the SR Ca2+ pump 23. A small membrane protein 

called phospholamban regulates SERCA2a 98. Phospholamban inhibits the Ca2+ pump 

unless it is phosphorylated. Phosphorylation of phospholamban by either cAMP-

dependent protein kinase (PKA) or calmodulin-dependent protein kinase (CaMK-II) 

terminates the inhibition, speeds up the Ca2+ reuptake 22. The Ca2+ binding proteins in 

the SR lumen immediately buffer the pumped Ca2+ to maintain the normal SR Ca2+ 

concentration and avoid SERCA inhibition by Ca2+-sensitive SERCA regulators. 

Calsequestrin, the major Ca2+ buffer of the SR, has been shown to have 18 to 50 Ca2+ 

binding sites 98.   

 

1.6.3. Na+/Ca2+ exchange 

Sarcolemmal Na+/Ca2+ exchange is the most important pathway for Ca2+ removal from 

the cardiac cell. This ion exchange is achieved by means of a plasma membrane 

antiporter called Na+/ Ca2+ exchanger (NCX), which catalyzes the electrogenic transport 

of one Ca2+ for three Na+ 55. The Na+ gradient across the membrane (which is 

maintained by Na+/K+ ATPase), is used as a driving force for Ca2+ efflux (forward 

mode). However NCX might also work in the reverse mode (Ca2+ influx) during high 

[Na+]i or positive Em 50. KB-R7943, an isothiourea derivative, can selectively block NCX 
90. NCX1 was cloned in cardiac cells and is the cardiac isoform 139. 
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1.7. Signal transduction in cardiomyocytes 

At the cellular level, the communication with the environment is made possible by 

employing signal transduction. These signaling systems help the cell to sense the 

external stimuli and respond appropriately by modulating its function. In multicellular 

organisms or tissues, these responses are very important for the function of the whole 

system.  

How do these systems work? An external stimulus, which could be a hormone or 

neurotransmitter, activates a receptor on the cell membrane. The ligand-receptor 

binding leads to the generation of different intracellular second messengers that 

stimulate a biological response either by activating or blocking cellular functions.  

The heart is also finely regulated in response to the body needs. The cardiac cells 

employ many different signaling systems to fulfill this regulatory function 98. These 

signaling cascades integrate information from many sources, thus enabling the heart to 

switch on or off appropriate responses when needed.  

The signaling-induced responses can be divided into two types. Non-genomic 

responses are developed rapidly in response to physiological stimuli such as exercise 

or blood loss. Whereas genomic responses are activated in response to chronic 

sustained stimuli such as cardiac overload induced by chronic hypertension. The latter 

is achieved by changes in gene expression and protein synthesis that results in 

structural and functional remodeling 98.  

Thus, knowledge about these signaling systems helps us to understand the cardiac 

function. However it is not so easy to study these signaling cascades due to the fact that 

they are not linear pathways, in which each step activates a single downstream 

molecule, but instead they branch and interconnect with other pathways forming 

complex signaling networks.  
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Figure 1.10: A model illustrating some signaling cascades in cardiomyocytes. Stimulation of β-adrenergic receptor (β-
AR) activates Gαs, which leads to the activation of PKA and subsequent phosphorylation of different members of EC 
coupling such as Cav1.2, RyR2 and PLN (phospholamban). The wave of phosphorylation enhances the [Ca2+]i and 
contractility. Intracellular Ca2+ increase activates CN/NFAT (calcineurin/nuclear factor of activated T-cells) and CaMK-
II signaling that contribute in myocyte hypertrophic response. Transcription factors, such as MEF2 (myocyte-
enhancer factor 2) and GATA4 (cardiac zinc finger transcription factor) are located in the nucleus and serve as 
endpoints for hypertrophic-signaling pathways. Stimulation of α-AR activates Gαq signaling, for description: see text. 
Image taken from Bodi et al, 2005 28. 
 

1.7.1. Gαq/11 signaling pathway 

G-protein mediated signaling contributes to various important physiological responses 

of cardiomyocytes. G-proteins are heterotrimeric GTP-binding proteins composed of α, 

β and γ subunits. Gα contains a bound guanine nucleotide. G-proteins are classified into 

4 groups (Gαs, Gαi/o, Gαq/11, Gα12/13) depending on the type of their α subunit 270. While 

in cardiomyocytes the role of most of these G-protein mediated signaling are well 

understood, Gαq/11 signaling is still not investigated in great details. When ligands such 

as epinephrine, endothelin-1 or angiotensin-II bind to GPCRs, induce a conformational 

change in the receptor that allows the GPCR to function as a guanine nucleotide 
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exchange factor (GEF). Activated receptor exchanges the GDP bound to Gαq for GTP 

that leads to Gαq activation and dissociation from βγ subunits 98. Activated Gαq 

stimulates PLCβ, an enzyme that hydrolyzes PIP2 to IP3 and DAG. IP3 induces SR Ca2+ 

release and DAG activates cPKCs and nPKCs. Both effects, i.e. intracellular Ca2+ 

increase and PKC-mediated phosphorylations, modulate the cardiomyocyte’s 

contractility (Figure 1.10).  

The Gαq/11 signaling scheme described above results in a non-genomic response to the 

body needs. However the physiological importance of this non-genomic response 

compared to Gαs signaling has not been well described in cardiomyocyte 192. In 

contrast, many studies proposed an important role for the Gαq/11 signaling cascade in 

pathological responses such as hypertrophy and heart failure 83. In humans, cardiac 

diseases develop over a long period of time, often years. Thus, the pathological 

responses of the Gαq/11 signaling are genomic responses associated with structural and 

functional remodeling 6,128. The impact of Gαq/11 signaling on the development of cardiac 

diseases has been the focus of study for many years and various biological tools were 

employed in these investigations. The overexpression of Gαq proteins in the heart 

resulted in hypertrophic response followed by heart failure 6,44. Inhibition of this signaling 

pathway by either expressing a Gαq/Gα11-inhibitory peptide or Gαq/Gα11 protein 

knockout abolished the pressure-overload induced hypertrophy 10,211. RGS is a 

GTPase-activating protein that can inhibit Gαq/11 signaling by inducing GTP hydrolysis. 

The overexpression of RGS4 in cardiac cells also reduced the hypertrophic response 
163.  

Besides the genomic responses, Gαq/11 signaling appeared to cause non-genomic 

pathological responses, too 120. Activation of the IP3 receptor type 2 (IP3-R2) 

downstream to Gαq/11 signaling results in the SR Ca2+ release 112. Such a secondary 

mechanism modulating Ca2+ signals, could interfere with the highly orchestrated Ca2+ 

responses mediated by the SR Ca2+ release channels, RyR, and might thereby 

predispose the cell to arrhythmogenic events 216. IP3-R2 can also initiate ectopic Ca2+ 
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transients 112, a potential source of ectopic beats*. It has also been suggested that any 

IP3-R2 located close to the sarcolemma, by causing local Ca2+ signals, could interfere 

with voltage-regulated Ca2+ channels to shorten AP duration. Local Ca2+ could also 

activate NCX to enhance Na+ entry 162. Slow release of Ca2+ by IP3-gated Ca2+ release 

channels is suitable for mediating the proliferative signals that regulate cellular 

processes such as protein synthesis, cell cycling and apoptosis 83. Unlike the short 

bursts of contraction and relaxation induced by CICR, IP3-mediated Ca2+ signaling 

results in a sustained Ca2+ release that allows for the activation of genes related to the 

hypertrophic response 53.  

These studies and many others focused on the relationship between cardiac diseases 

and Gαq/11 signaling cascade. While the basic physiological impact of such a signaling 

in cardiac cells remained unexplored. In this thesis I investigated the impact of Gαq/11 

signaling on cardiac electrophysiology. 

	
  

1.7.2. Rac signaling pathway 

Rac1 belongs to the Rho family of small G-proteins. Rac1 and the other members of the 

Rho family (Rho and Ras) are activated downstream to integrin signaling (Figure 1.11). 

Integrin signaling contributes to protein synthesis and cell growth responses 105. 

Integrins are cell adhesion molecules that link the cytoskeleton to the extracellular 

matrix. Integrins activate members of the Rho family and many other signaling 

molecules such as various protein kinases (Akt, Raf, MEK and ERK) 69 in response to 

mechanical stress. The activation of these molecules initiates signaling pathways that 

modulate the interaction between integrins and the extracellular matrix 98. The integrin-

extracellular matrix interactions are specifically modified during the hypertrophic 

response of the heart to overload. Thus, as part of hypertrophic response activation of 

Rho family members and their downstream signaling participate in the responses to 

mechanical stress. 
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Activation of small G-proteins of the Rho family including Rac1 leads to the activation of 

different kinases such as PAK, MAPK, JNK family members 9,222 and PKA 121,209, which 

in turn modify protein phosphorylation. MAPK and JNK signaling contribute to various 

cellular responses such as cell growth 83. In cardiomyocytes, activation of these kinases 

has been linked to hypertrophic responses 204. Moreover, activation of PAK downstream 

to Rac1 signaling mediates the cytoskeletal reorganization at focal adhesion sites 184. 

 

	
  
Figure 1.11: integrin signaling. Integrins activate the members of Rho family and many other signaling molecules 
such as various protein kinases (AKt, Raf, MEK, ERK) in response to the mechanical stress.  Activation of Rho family 
members stimulates MAPK and JNK signaling which leads to cell growth and apoptotic responces.  
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The involvement of Rac1 in cardiac hypertrophic responses has been shown in both, in 

vitro and in vivo experiments 184. However, the underlying mechanisms for such 

structural and functional remodeling remained to be explored. 

Furthermore, Rac1 signaling leads to the activation of the NADPH oxidases (NOXes) 

that contribute to production of the reactive oxygen species (ROS). ROS are second 

messengers that induce both cellular physiological and pathological responses 85.  

Rac1 via ROS production activates downstream signaling molecules that modulate 

different cellular activities such as growth, differentiation and apoptosis. Moreover, ROS 

production has been linked to a plethora of cardiovascular diseases such as 

hypertension, inflammation and atherosclerosis 85. Thus, Rac1 signaling has high 

importance in the cells of the cardiovascular system.   
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1.8. Cardiac diseases 

Heart diseases are the most common diseases in the world and known to be the 

number one cause of death in western countries 95. Cardiac diseases were the focus of 

studies for many years. To date, it is obvious that most of the pathological conditions 

are associated with the remodeling of cardiac cells. This remodeling presumably alters 

the cellular function and reflects in cardiac dysfunction in the context of the whole heart. 

Although the knowledge about heart diseases is growing rapidly, there are still several 

uncertainties, which need to be investigated. Especially studies on the cellular level 

would support clinical approaches in their effort to prevent and treat heart diseases.  

  

1.8.1. Aldosterone  

Aldosterone is a hormone that is produced by the adrenal gland in response to 

physiological stimuli such as a drop in blood pressure. Aldosterone secretion is 

stimulated via the activation of the renin-angiotensin-aldosterone system 65 (Figure 

1.12). Renin is a peptide, which is secreted from the juxtaglomerular apparatus of the 

kidney and activates the enzymatic conversion of angiotensinogen to angiotensin-I. 

Angiotensin-I is then converted to angiotensin-II	
  by the angiotensin-converting enzyme 

found in the lungs. Angiotensin-II, in turn, stimulates the aldosterone secretion from the 

adrenal gland. In a compensatory response, aldosterone increases the blood volume 

and therefore the blood pressure by enhancing the renal reabsorption of Na+ and water 

and the release of K+ in the kidney's nephral tubes. When aldosterone is released in 

excess, a condition referred to as hyperaldosteronism in humans, it can cause 

hypertension. Sustained hypertension, in turn, increases cardiac workload and causes 

cardiac hypertrophy 125.  

In addition to hypertension-induced cardiac injury, aldosterone has been proposed to 

have direct insulting effects on the heart. Several studies suggested an important role 

for aldosterone in the development of cardiac diseases such as human congestive heart 

failure 212. Moreover, hypertrophy which developed in the hypertensive rat model with 

higher levels of angiotensin-II and/or aldosterone, could be suppressed by 
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mineralocorticoid receptor (MR) antagonists at doses lacking antihypertensive effects 
33,138, suggesting a direct role for aldosterone in cardiovascular diseases 212. Clinical 

studies showed a close relationship between plasma aldosterone level and the left 

ventricular hypertrophy 212. MR antagonism could greatly rescue this phenotype.  

Although angiotensin-II and its downstream signaling have been studied extensively in 

the heart 83, little is known about aldosterone-mediated functions, and therefore it 

opened a new horizon in the field of cardiac research. 

 
 
 

 

Figure 1.12: The schematic illustration of the Renin-Angiotensin-Aldosterone system. A drop in blood pressure (BP) 
stimulates the secretion of Renin from kidney which acts on Angiotensinogen and leads to the production of 
Angiotensin I. Angotesin converting enzyme (ACE) catalyzes the conversion of Angiotensin-I to Angiotensin-II that 
stimulates Aldosterone secretion from Adrenal gland. Aldosterone functions on three different target organs: (i) on 
Kidney it increases the reabsorption of sodium and water which results in the increased BP, (ii) on Arteries it induces 
vasoconstriction which leads to increased BP, (iii) on Heart its physiological impact is not well understood. Image 
taken from www.renalflow.blogspot.de  
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2. Materials & Methods 
2.1. Chemicals and solutions 

All chemicals used in this work were purchased, unless otherwise stated, from SIGMA-

ALDRICH, Invitrogen or VWR.  

All solutions used for preparation of ventricular myocytes and electrophysiological 

experiments are described in tables 2.1 and 2.2. 

 

Table2.1: Composition of the solutions used for preparation of ventricular myocytes. 

Chemicals MW 
Concentration (mM) 

CFS LCS CCS 

NaCl 58.44 134 134 134 

Glucose 180.16 11 11 11 

KCl 74.55 4 4 4 

MgSO4 120.37 1.2 1.2 1.2 

Na2HPO4 141.96 1.2 1.2 1.2 

HEPES 238.31 10 10 10 

DNase   0.045 0.09 

CaCl2 147.02  1 2 

pH  7.3 (NaOH) 7.3 (NaOH) 7.3 (NaOH) 

Osmolarity  300±10 300±10 300±10 
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Table 2.2: Composition of the solutions used for electrophysiological experiments. 

Chemicals MW 
Concentration (mM) 

Tyrode1 Tyrode3 IC1 IC2 

NaCl 58.44 135 135 10 10 

Glucose 180.16 10 10   

KCl 74.55 5.4  135  

HEPES 238.31 10 10 10 10 

CaCl2 147.02 1.8 1.8   

MgCl2 95.22 1 1 2 2 

CsCl 168.35  5.4  115 

4-AP 95.12  5   

TEA 165.7  5  20 

EGTA 380.35   0.1 0.1 

MgATP 507.18   3 3 

pH  7.3 
(NaOH) 

7.3 
(HCL) 

7.3 
(KOH) 

7.3 
(CsOH) 

Osmolarity  300±10 300±10 300±10 300±10 

 

2.2. Preparation of rat ventricular myocytes 

Rat ventricular myocyte’s isolation and culture were performed according to a standard 

method established in our lab 191. Adult male Wistar rats (6 - 12 week old, 200 - 400 g) 

were anesthetized by an intraperitoneal injection (i.p.) of a mixture of 137 mg/kg 

ketamine hydrochloride (Ursotamin®, Serumwerk, Germany) and 6.6 mg/kg xylazine 

hydrochloride (Rompun®, Bayer Health Care, Germany). To prevent blood agglutination 

in the heart vessels, 20 mg/kg sodium citrate dihydrate was injected (i.p.) 10 min prior to 

surgery. After achieving deep anesthesia to suppress spinal cord reflexes, the animal 
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was killed by decapitation. The chest was opened; the heart was flushed with 10 ml of 

ice-cold Ca2+-free solution (CFS) (for chemicals see Table 2.1). Thereafter, the aorta 

was pinched off, the heart was removed, attached to a Langendorff apparatus and 

perfused retrogradely for 5 min with O2 saturated CFS containing 200 µM EGTA at 

room temperature. The perfusate was then changed to O2 saturated CFS containing 

0.17 mg/ml Liberase TM (Roche, Germany) for 20-25 min at 37 °C. After enzyme 

perfusion, the heart was removed from the apparatus. The ventricles were cleaned off 

of atria and vessels, cut to pieces and washed in O2 saturated CFS. In the next step, 

the ventricular tissue was incubated in 20-25 ml of O2 saturated CSF at 37 °C with 

gentle shaking for 5 min. Then the solution was discarded and the tissue was incubated 

in 20-25 ml of a low Ca2+-solution (LCS). The last incubation and washing step was 

done by 20-25 ml of O2 saturated Ca2+-containing solution (CCS). After this, a gentle 

trituration was applied to release the ventricular myocytes. The cell suspension was 

plated on the cover slips of a 12-well plate, which were coated with extracellular matrix 

proteins (ECM gel from Engelbreth-Holm-Swarm murine sarcoma, diluted to 12.5% with 

M199 medium). The cells were allowed to settle down for approximately 1 h in medium 

M199* containing 100 µg/ml Penicillin*, 100 µg/ml Streptomycin* and 50 µg/ml 

Kanamycin* (* PAA laboratories, Austria). The medium was supplemented with 870 nM 

insulin, 65 nM transferrin and 29 nM Na+-selenite (ITS supplemented medium). One 

hour after plating, the medium was changed for fresh medium supplemented with ITS. 

The myocytes were cultured in an incubator at 37 °C with a 5% CO2 atmosphere. 

Animal care was approved by the Animal Ethics Committee of the Saarland University 

and was performed according to the European directive on Laboratory Animals 

(86/609/EEC) and the Guide for Care and Use of Laboratory Animals published by the 

US National Institute of Health (NIH Publication No. 85-23, revised 1996). 
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2.3. Generation of transgenic mice 

2.3.1. Heart-specific inducible Gαq/Gα11 knockout 

The heart-specific inducible Cretg/0 mice and the Gαq/Gα11 mutant mice were provided 

by Prof. Dr. Stefan Offermanns (Max-Planck-Institute for Heart and Lung Research, Bad 

Nauheim, Germany). Transgenic Gαq/Gα11 KO mice were generated according to the 

method described in paper by Pahlavan et al 143. Mice carrying the gnaqflox/flox and 

gna11-/- alleles 211 were crossbred with the Cretg/0 mice to obtain gnaqflox/floxgna11-/-

Cretg/0 mice. Cretg/0 mouse was a novel mouse line in which Cre was flanked by mutated 

estrogen receptor binding domain (Cre-ER) and controlled by the α-myosin heavy chain 

(α-MHC) promoter. Gαq knockout was induced by 5-day consecutive tamoxifen injection 

(50 mg/kg body weight, i.p.) and accomplished 21 days after injection.  

 

2.3.2. Heart-specific inducible Cav1.2 I1624E mutation 

Mice carrying Cav1.2 I1624E mutation (I/E mice) were provided by Prof. Dr. Frank 

Hofmann (Institut für Pharmakologie und Toxikologie, Technische Universität München, 

Germany).  

Transgenic I/E mice were generated according to the method described in paper by 

Poomvanicha et al 152. To generate these mice, the heterozygous Cav1.2+/I1624E mice 

were crossbred with Cav1.2flox/flox 176 and MerCreMer* mice 182. The resulting offspring 

included Cav1.2flox/flox x MerCreMer (identified as knockout), Cav1.2flox/I1624E x 

MerCreMer (I/E), Cav1.2+/flox x MerCreMer (control) and Cav1.2+/flox (wildtype). A 4-day 

tamoxifen injection regime (100 mg/kg body weight, i.p.) was employed to induce 

Cav1.2 KO. All experiments were performed 10 days after the first tamoxifen injection, 

which was proved to be sufficient for the Cav1.2 KO 27.   

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
* tamoxifen inducible Cre recombinase under the control of the α-MHC promoter 
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2.3.3. Heart-specific constitutively active Rac1 

Transgenic RacET mice (expressing constitutively active Rac1 under the control of the 

α-MHC promoter) were generated 184 and provided by Prof. Dr. Mark Sussman group 

(Heart institute, San Diego state university, CA). RacET mice were compared with age-

matched FVB-N mice (genetic background for RacET mice, designated as WT) in all 

experiments. 

 

2.4. Aldosterone Pump implantation 

Pump implantation was performed by Dr. Kathrina Wiesen (Institute for Molecular Cell 

Biology, Saarland University Homburg). Osmotic mini-pumps (Alzet®, DURECT 

corporation, model 2002) were filled with 200 µL of aldosterone (2 mg/mL; 25 mg 

aldosterone diluted in 10.875 ml propylenglycol, 1.175 ml ethanol and 0.5 ml distilled 

water) and were implanted subcutaneously in 8-week old mice in order to provide a 

constant release rate of 7.2 µg/day for 42 days. In control mice, empty pumps (dummy) 

were implanted. In the end of 42-day hormone infusion period, plasma aldosterone level 

was assessed using ELISA test (DRG instruments, Germany). 

 

2.5. Preparation of mouse ventricular myocytes 

The isolation of mouse ventricular myocytes was performed according to a standard 

method established in our lab 143. Mice (10 - 14 weeks old, 25 - 30 g) were anesthetized 

by injection of a mixture of 85 mg/kg ketamine hydrochloride and 15 mg/kg xylazine 

hydrochloride (i.p.). Sodium citrate dehydrate (10 mL/kg body weight) was used to 

prevent blood clot in the heart vessels. After achieving deep anesthesia to suppress 

spinal cord reflexes, the animal was killed by decapitation. The chest was opened and 

the lungs were removed. The remaining blood in the heart was washed out by flushing 2 

mL ice-cold CSF into the ventricles. Then the aorta was cut off; the heart was 

cannulated to allow retrograde Langendorff-perfusion. The heart was primarily perfused 
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with CFS (O2 saturated, containing 200 µM EGTA) at room temperature for 5 min and 

then with Liberase TM (0.085 mg/ml, diluted in O2 saturated CFS) at 37 °C for 12 min. 

After enzymatic digestion, the atria and vessels were removed; the ventricles were cut 

open and incubated in 10-20 mL O2 saturated CFS containing 0.09% DNase for 5 min 

at 37 °C. Then, the solution was discarded and the ventricles were incubated in 5 mL 

CFS containing 0.09% DNase for another 5 min. After these washing steps, ventricles 

were gently triturated and diluted with O2 saturated CCS gradually (10 x 150 µL CCS, 

every 5 min). The cell suspension was plated on ECM-coated coverslips of a 12-well 

plate and incubated for 1 hour at 37 °C, 5% CO2. After 1 hour, the supernatant was 

replaced by fresh medium M199. Animal care was performed according to the Guide for 

Care and Use of Laboratory Animals published by the US National Institute of Health 

(NIH Publication No. 85-23, revised 1996). 

 

2.6. Patch-clamp setup 

The patch-clamp setup was consisted of an inverted microscope (TE-2000, Nikon, 

Japan) resided on a vibration isolation table (CVI Melles Griot, Germany) inside a 

Faraday cage, an EPC 10 patch-clamp amplifier (HEKA Elektronik, Germany), a 

micromanipulator (Luigs & Neumann, Germany) holding the amplifier probe and a 

computer. The vibration isolation table was used to reduce vibrations beyond a few Hz, 

which is usually sufficient for the purpose of patch clamping. The patch-clamp 

preamplifier was surrounded by a Faraday cage to shield the sensitive amplifier probe 

from the electrical noise. 

EPC 10 system was consisted of the head stage (or probe) and the amplifier main unit. 

The probe, which was in a small enclosure, was mounted on the micromanipulator. The 

main unit was contained the signal processing electronics, the A/D and D/A converters 

and the connectors for analog and digital input/output. 

The micromanipulator was used to control the movements of the patch pipette (beyond 

submicrometer range) in order to finely position the patch pipette tip on the cell. 
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Data acquisition and analysis was performed using “Patchmaster” and “Fitmaster” 

softwares (HEKA), respectively. 

 

Figure 2.1: Patch-clamp setup. 

 

2.7. Patch-clamp technique 

The patch-clamp technique enables us to record macroscopic whole-cell or microscopic 

single-channel currents through the ion channels of biological membranes 165. In the 

patch-clamp technique, it is possible to experimentally control and modify the voltage of 

membrane patches or the whole cell (voltage-clamp), which allows us to investigate the 

voltage dependence of ion channels. Furthermore, the experimenter can monitor the 

changes of membrane potential in response to membrane currents (current-clamp). 

Therefore, the patch-clamp technique is a powerful tool to study cells 

electrophysiologically. 
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2.7.1. Electrophysiological experiments 

The electrophysiological experiments were performed using an EPC10 patch-clamp 

amplifier controlled by “Patchmaster” software (HEKA). 

The experiment was started by transferring the cells into the patch-clamp setup. To do 

so, the coverslip containing the ventricular myocytes were mounted into a custom-made 

chamber and transferred onto the stage of an inverted microscope. During the 

experiment, the cells were visualized using a CCD color camera (JVC professional 

products, USA). The cells were supplied by a bath solution, which had the ionic 

composition very similar to the interstitial fluid. This solution was permanently refreshed 

by a gravity-fed, valve-controlled perfusion system in combination with a custom-made 

suction system. Depending on the type of the experiment, different compositions of bath 

solution were used (see Table 2.2). Then the patch-pipette with the tip opening of 2-2.5 

µm was prepared by a pipette puller (DMZ Universal puller, Zeitz instruments, 

Germany) and filled with the pipette solution. Similar to the bath solution, various 

compositions of pipette solutions were used depending on the type of the experiment 

(see Table 2.2). The pipette was then connected to the preamplifier via a pipette holder 

and approached to the chamber by a micromanipulator. As soon as the pipette entered 

the bath solution, a current could be observed in the oscilloscope window (Figure 2.2) 

resulting from repetitive application of a -5 mV voltage pulse to the electrode by the 

amplifier. After entering the bath solution, a positive pressure was applied to get rid of 

cell debris and to avoid the occlusion of the pipette tip. Liquid junction potential i.e., 

potential differences between bath and intracellular solutions, was calculated for each 

pair of Tyrode and IC using a junction potential calculator and corrected from the 

voltage readings of the amplifier. The pipette was then approached to the cell. Then the 

pipette was positioned on the cell membrane and a gentle suction was applied to the 

pipette to form a gigaseal. 

The gigaseal was formed when the resistance between the pipette and the cell 

membrane increased to the values >109 Ω (Figure 2.2). Additional suction was applied 

to rupture the membrane patch under the pipette and to provide access to the cell 
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interior. By doing so, the “whole cell configuration” was obtained which could be 

identified by a current change in the oscilloscope window (Figure 2.2). This current had 

two components: (i) capacitive transients (Ic) and (ii) steady-state current (Iss) that the 

former should be omitted from the measurements. Capacitive transients could be 

estimated and cancelled by the amplifier. The cancellation was done by supplying the 

current needed to charge the capacitor (plasma membrane) 165. After establishing a 

successful whole cell configuration and before starting the measurements, a 2-4 min 

interval was considered for complete exchange of the intracellular solution with pipette 

solution. Then the AP and various ionic currents were recorded in the current-clamp and 

voltage-clamp mode, respectively. 

 

 

Figure 2.2: Sequence of pipette potentials (Vp) and pipette currents (Ip) during establishment of the whole cell 
configuration. Taken from the laboratory manual of the graduate school calcium signaling and cellular nanodomains, 
2009. 
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In the voltage-clamp experiments, the access resistance between the pipette and the 

cell interior should be considered, while it constitutes a resistance (Rs) in series with the 

membrane resistance (ion channels) that results in inaccurate membrane voltage 

readings. Therefore, in all voltage-clamp experiments, the Rs was compensated by the 

amplifier up to 70%. 

 

2.7.2. Action potential recording in ventricular myocytes 

The pipette solution and the bath solution for AP recording were IC1 and Tyrode1, 

respectively (Table 2.2). After establishing the whole cell configuration, the amplifier 

was switched to the current-clamp mode. AP was evoked by the repetitive injections of 

4-ms depolarizing currents, starting from I=100 pA with 100 pA increments at 1 Hz (RT) 

and 4 Hz (37 °C), until an overshoot > 5mV is reached. Signals were acquired at 50 kHz 

sampling frequency, filtered at 2.9 kHz and 10 kHz, and 3 consecutive APs were saved 

for further analysis.  

VR was determined by the voltage recorded at rest in the current-clamp mode (Figure 

2.3). AP amplitude was calculated as the voltage difference between VR and AP 

overshoot (Figure 2.3). Time to peak (TTP) was calculated as the time required for 

reaching the AP overshoot. Signal 4.02 (Cambridge electronic design Ltd, Cambridge, 

UK) was used for analysis of AP durations. AP durations at 30%, 50%, 70% and 90% of 

repolarization (APD30, APD50, APD70, APD90), were analyzed using a custom-made 

macro of Signal software. 
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Figure 2.3: Schematic illustration of AP amplitude and AP durations. 

 

2.7.3. Transient outward current (Itoc) measurement 

For Itoc measurements, the pipette was filled with IC1 and the cells were perfused with 

Tyrode1. Itoc was activated by a series of 500 ms test pulses ranging from -30 to +60 

mV with 10 mV increments from a holding potential of -120 mV (50 ms). Each test pulse 

was preceded by a depolarizing step to -40 mV (50 ms) to voltage inactivate INa 23 

(Figure 2.4).  

Data were recorded at 20 kHz sampling frequency and filtered at 2.9 kHz and 10 kHz.  

Itoc was obtained by subtraction of the end current from the peak current amplitude 

(Figure 2.4). The current amplitude was normalized to the CM in order to facilitate the 

comparison of the Itoc recorded in different cells with various sizes, and presented as 

current density (pA/pF). The current densities were plotted against the applied voltage 

pulses in Prism (GraphPad Software Inc., La Jolla, USA) and presented as current-

voltage (IV) relationships. 
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Figure 2.4: Itoc measurement. Illustration of protocol used for the Itoc recording (A), typical Itoc recording (B), and 
analysis of the Itoc amplitude (C). 

 

2.7.4. L-type Ca2+ current (ICa,L)  measurement 

To record L-type Ca2+ currents, IC2 was used as pipette solution (Table 2.2). Ventricular 

myocytes were perfused with Tyrode 3 (Table 2.2). In whole cell configuration and 

voltage-clamp, a series of 250 ms test pulses ranging from -50 to +50 mV with 10 mV 

increments were used to activate ICa,L. Each test pulse was preceded by a depolarizing 

step to -40 mV (150 ms) to voltage inactivate INa 23. To gain ICa,L, the end current was 

subtracted from the peak current (Figure 2.5 C). The resulting currents were normalized 

to the CM and plotted against the applied voltage pulses as IV relationships. To have 

more accurate ICa,L amplitude, leak current was measured prior to each ICa,L recording 

and subtracted from the Ca2+ current. Leak current was activated by application of a 

+30 mV test pulse in a voltage range where voltage-dependent channels are not active. 

Therefore, 4-time depolarizing pulses from -120 to -90 mV for 250 ms were applied; the 

resulting currents were averaged, scaled and subtracted from the current activated by 

the main test pulse.  ICa,L was obtained as the peak current amplitude, normalized to CM 

and plotted as IV relationships (IV curve).  
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Figure 2.5: ICa,L measurement. Illustration of pulse protocol used for the ICa,L recording (A), typical ICa,L recording (B), 
analysis of the ICa,L amplitude and ICa,L inactivation (C), and integration of ICa,L (D). For detailed description see 2.7.4. 

 

The time constants of ICa,L inactivation (τ1 and τ2) were obtained by a non-linear fit from 

the peak current to the end current (ICa,L at 0 mV test pulse) using a two-exponential 

function of “Patchmaster” software:  

𝑦 𝑥 = 𝐴𝑚𝑝! + 𝐴𝑚𝑝!!
!!! 𝑒

!!
!!      Equation 2.1 

The amount of charge entry via ICa,L was calculated by integration of ICa,L trace (ICa,L at 0 

mV test pulse). The integration has been done using the online analysis methods of 

“Fitmaster” software (HEKA). To define the range for integration, the left cursor (C1) was 

set at the beginning and the right cursor (C2) at the position where the current was 

completely inactivated (Figure 2.5 D). In figure 2.5 D, the integral is shown as the 

signed area bounded by ICa,L trace. 
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2.8. Photometry system 

The photometry system (TILL Photonics, Germany) consisted of a monochromator 

(polychrome IV), two Avalanche photodiode-based fluorescence detectors, the 

fluorescence detection unit (a microprocessor controller board) and a polychrome 

manual controller (PMC). For CICR gain measurements, this system was incorporated 

into the Patch-clamp setup and interfaced to the “Patchmaster” software. Indo-1, an 

emission ratiometric fluorescence dye, was used to measure [Ca2+]i. To excite this 

fluorescence probe, excitation light at 355 ± 7 was produced by a monochromator, 

reflected into the objective by dichroic mirror 1 (DM 380 LP) and focused on the dye-

loaded cell through an immersion objective (40x /1.30 oil, Plan Fluor, Nikon). The 

emission light was collected by the same objective and splitted into two channels by 

dichroic mirror 2 (DM 440 LP). The two emission wavelengths were detected by 

photodiodes (Figure 2.6), digitized at 0.5 KHz by the EPC10 amplifier and saved for 

further analysis. 

 

 

Figure 2.6: The excitation and emission spectra of Indo-1. Modified from Carlson and Campbell, 2009 37. 
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2.9. Excitation-contraction coupling gain measurements 

For EC coupling gain measurements, ventricular myocytes were perfused with Tyrode3. 

The pipette was filled with EGTA-free IC2 containing 0.1 mM Indo-1 pentapotassium 

salt (Indo-1). Indo-1 was dissolved in water and kept as 10 mM stock solutions at -20 °C. 

After establishing the whole cell configuration and before recording, a 7-min loading 

time was considered to ensure complete exchange of the intracellular solution with the 

pipette solution according to the test experiments. ICa,L and SR Ca2+ release were 

activated and recorded simultaneously using combination of patch-clamp and 

photometry system. ICa,L was activated by a pulse protocol similar to that explained in 

2.7.4. Additionally, each test pulse was preceded by 10 times 250-ms depolarizing 

pulses to 0 mV from a holding potential of -40 mV (Figure 2.7). In the gain 

measurements these prepulses were applied to obtain steady-state SR Ca2+ loading. 

During ICa,L recording, the Indo-1 was excited by photometry system and fluorescence 

was measured from a field slightly larger than the cell under study. The fluorescence 

signals were digitized at 0.5 KHz by an analog-to-digital converter of the EPC-10. Indo-1 

based Ca2+ signals were analyzed in Igor Pro 6.22 (WaveMetrics Inc., Oregon, USA) 

software. After background correction, two emitted wavelengths were ratioed and the 

amplitude of the resulting signal was calculated. EC coupling gain was calculated by 

ratioing of the Ca2+ signal amplitude over ICa,L density. The resulting Ca2+ current 

density, Ca2+ signal amplitude and EC coupling gain were plotted against the 

corresponding voltage pulses in Prism (Graphpad). 

 

 

Figure 2.7: Schematic presentation of the protocol used for EC coupling gain measurements. Ten times 
depolarization to 0 mV to induce steady-state SR Ca2+ loading and ICa,L recording after 20 s interval. Recording of the 
Intracellular Ca2+ transients was performed simultaneous with ICa,L measurements. 
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2.10. Data statistics 

Statistical analysis was performed in Prism (Graphpad) by using the appropriate tests 

(unpaired t-test, Mann-Whitney-Test, one-way ANOVA, Kruskal-Wallis-Test and two-

way ANOVA) chosen depending on the results of the normality test (D‘Agostino & 

Pearson omnibus normality test).  

Data are displayed as mean ± SEM for Gaussian distributed and median ± 25/75 

percentiles for non-Gaussian distributions. Asterisks indicate significant differences. 

p<0.05 (*), p<0.01 (**), p< 0.001 (***). 
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3. Results 
3.1. The effects of Gαq/Gα11 knockout on the basic 

electrophysiological properties of ventricular myocytes 

In cardiomyocytes, Gαq/11 signaling mediates the regulatory function of many hormones 

such as endothelin-1, angiotensin-II and epinephrine. Although its physiological 

relevance may not be as well established as Gαs signaling, Gαq/11 signaling has been 

shown to play an important role in the development of cardiac diseases such as 

hypertrophy and heart failure 130,166. Pathological Gαq/11 signaling has been investigated 

extensively using different biological tools, from in vitro assays to the generation of 

transgenic animals 83. However most of these studies did not consider the contribution 

of Gαq/11 signaling to basic physiology of a cardiomyocyte, including excitability and 

contractility. Here we used a novel transgenic mouse model with cardiac specific 

inducible Gαq/Gα11 KO (see 2.3.1) to study the possible contribution of these signaling 

cascades to the basic physiological properties of ventricular myocytes.  

 

3.1.1. Gαq knockout modulates the electrophysiological properties of 

ventricular myocytes 

Heart-specific Gαq KO mice were generated using the inducible Cre/LoxP system (see 

2.3.1). The Gαq KO was induced on Gα11 null-background mice, since Gαq and Gα11 

showed to have overlapping functions 5. To do so, mice with a GqflG11-Cre+
 genotype 

(abbreviations in Table 3.1), either received a tamoxifen injection (Gαq/Gα11 double KO 

[DKO], red) or were kept without any treatment (Gα11 KO, turquoise). Gαq KO effects 

were studied by comparing DKO with Gα11 KO.  
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Table 3.1: Transgenic animals used to study the physiological role of Gαq and/or Gα11 proteins. wt, wildtype; tg, 
transgenic; 0, no Cre expression. Color-code in figures is identical.  

Label gnaq gna11 Cre 
status Tamoxifen Miglyol 

Gqfl G11- Cre+ Tam- flox/flox -/- tg/0 - - 

Gqfl G11- Cre+ Tam+ flox/flox -/- tg/0 + - 

Gqwt G11wt Cre- Tam- wt/wt wt/wt 0/0 - - 

Gqwt G11wt Cre- Tam+ wt/wt wt/wt 0/0 + - 

Gqfl G11- Cre- Tam- flox/flox -/- 0/0 - - 

Gqfl G11- Cre- Tam+ flox/flox -/- 0/0 + - 

Gqwt G11wt Cre+ Tam- wt/wt wt/wt tg/0 - - 

Gqfl G11wt Cre- Tam+ flox/flox wt/wt 0/0 + - 

Gqfl G11wt Cre+ Tam+ flox/flox wt/wt tg/0 + - 

Gqwt G11wt Cre- Mig+ wt/wt wt/wt 0/0 - + 

Gqfl G11- Cre+ Mig+ flox/flox -/- tg/0 - + 

 

In electrophysiological experiments, AP was studied as an integrative parameter since 

its shape reflects the contribution of all voltage-gated ion currents. Therefore, AP can be 

used as in indicator for changes in ion channel contributions. Furthermore, plasma 

membrane capacitance (CM), which provides information about the cell membrane area 

including the surface membrane and the t-tubular system, was assessed. Deletion of 

the Gαq protein resulted in a 12% reduction of the cell membrane area (Figure 3.1A, 

red). One of the possible reasons underlying CM reduction might be t-tubular loss, which 

was observed in many cardiac diseases 207. T-tubular loss could affect functional 

properties of cardiac myocytes such as EC coupling. However, CM measurements alone 

are not sufficient to verify this but could motivate further experiments investigating this 

possibility.  

VR was determined in both DKO and Gα11 KO cells and the results showed no effect of 

Gαq KO on this particular parameter (Figure 3.1B).  

APs were evoked in ventricular myocytes of DKO and Gα11 KO mice. All AP 



	
   49	
  

measurements were performed at room temperature. The AP analysis showed a 10% 

reduction of the AP amplitude in DKO (Fig.3.1C, red). Figure 3.1Da demonstrates an 

exemplified AP from each group indicating AP prolongation in DKO cells. This 

observation was further confirmed by analyzing the time coarse of APs, quantitatively. 

APD30 and APD50 were used as indicators for studying the early repolarization while 

APD70 and APD90 served to characterize the late repolarization. The statistical analysis 

of early and late repolarization showed the prolongation of late repolarization, as 

depicted in figure 3.1Db and Dc, respectively.  

 

 

 

Figure 3.1: The effects of Gαq KO on the electrophysiological characteristics of ventricular myocytes. Membrane 
capacitance (CM), resting membrane potential (VR), and action potential amplitude (AP amplitude) (A–C). 
Representative APs (Da) and action potential durations after 30, 50, 70 and 90% repolarization, APD30 and APD50 
(Db), APD70 and APD90 (Dc). Number of animals and cells are shown in Supplementary table 1. Error bars represent 
mean ± SEM. The box plots show median (middle band) and 25/75 percentiles (lower/upper quartiles, respectively).  
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The repolarization of the AP is brought about by the activation of many different K+ 

currents of which a few might be under the control of Gαq/Gα11-protein signaling as 

suggested previously 25,131. Wagner et al. showed recently that the Gα11 protein might 

contribute to the regulation of Ito 202. Therefore I also investigated the effects of Gαq on 

Ito by recording this current in ventricular myocytes lacking this protein. 

 

	
  

Figure 3.2: The effect of Cd2+ on transient outward current (Itoc) density. Representative Itoc traces (A) and 
corresponding current-voltage (IV) relation curve of Itoc (B) in the presence and absence of Cd2+ in the bath solution to 
block ICa,L. Error bars represent mean ± SEM.  
 

Ito recording requires a special composition of bath and pipette solutions. These 

solutions are needed to block contaminating currents, in particular ICa,L. Consequently, 

AP and Ito recordings would require different sets of bath and pipette solutions. In order 

to optimize the throughput of measured cells, I decided to use the same solutions 

anyhow. Since ICa,L displayed an almost 5-fold lower current density, this approach 

appeared appropriate. Nevertheless, I performed control experiment with the ICa,L 

blocker, Cd2+ *  (0.1 mM)	
   to verify this (Figure 3.2) and indeed found very little 

contamination by ICa,L. I refer to this current as Itoc (transient outward current) throughout 

this thesis due to the possible minor contaminations.  
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Figure 3.3: The effect of Gαq KO on the transient outward current (Itoc) in ventricular myocytes. Typical Itoc traces (A), 
corresponding current-voltage (IV) relationships (B), and the Itoc density at +60 mV test potential (C). Number of 
animals and cells are shown in Supplementary table 1. Error bars represent mean ± SEM.  
 

Interestingly, Gαq KO reduced the Itoc density and altered its IV relationships (Figure 

3.3B, red). The maximum reduction of current density was at +60 mV, 16.6 ± 2 (pA/pF) 

in DKO compared to 23.8 ± 3 (pA/pF) in Gα11 KO (Figure 3.3C). 

In summary, heart-specific inducible Gαq KO modulated many of the investigated 

electrophysiological parameters (CM, AP amplitude, APD70, APD90 and Itoc). At this point, 

I was concerned whether all effects that I have seen were solely caused by the Gαq KO, 

or other experimental conditions such as tamoxifen injection, the Gα11 KO and/or Cre 

expression were contributing to the observed phenotype. Therefore, another set of 

experiments was designed to specifically address the following questions: (i) the impact 

of tamoxifen (ii) the effects of Cre expression (iii) the effects of Gα11 KO and (iv) the 

optimized set of genotypes to study Gαq KO effects. 
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3.1.2. Tamoxifen alters the electrophysiological properties of 

ventricular myocytes 

Tamoxifen is a selective estrogen receptor modulator (SERM) 65 and is widely used in 

the treatment of breast cancer 61. Previously, scientists developed an inducible knockout 

system based on tamoxifen for temporal control of gene knockout 81. In this technique, 

Cre is bound to a mutated form of the estrogen receptor that is no longer responsive to 

estrogen but is activated by tamoxifen. Tamoxifen activates Cre-ER* recombinase that 

removes genomic DNA between the two loxP sites 81. In our Cre/LoxP system, we used 

an injection regime comprising administration of tamoxifen on five consecutive days 

(see 2.3.1) to induce Gαq KO. All experiments were performed 28 days after the last 

injection. As suggested previously, tamoxifen’s half-life is supposed to be five days 

(t1/2=5 days) 115; therefore, its concentration should be reduced to below 2% after 28 

days (Figure 3.4). This remaining tamoxifen concentration was assumed to be 

inefficient. However, we checked this hypothesis by application of a similar tamoxifen 

injection regime in wildtype mice. As mentioned before, we performed our inducible Gαq 

KO on a Gα11-null background to avoid overlapping functions of these proteins. To 

further investigate the possible effects of tamoxifen in our system, the same strategy 

was used in Gα11 KO mice.  
 

	
  
Figure 3.4: Tamoxifen pharmacokinetics. T1/2 shows the half-life of tamoxifen and T=28 indicates the start of 
electrophysiological experiments. 
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Tamoxifen injection in wildtype mice did not affect CM, VR, AP amplitude and AP shape 

(Figure 3.5, brown vs. grey). Although APD30 and APD50 were not altered, Itoc showed a 

significant increase in tamoxifen treated wildtype mice (Figure 3.6A, brown vs. grey), 

which is reflected in IV curve, too (Figure 3.6B, brown vs. grey).  

 

	
  

Figure 3.5: The effects of tamoxifen application on the electrophysiological characteristics of ventricular myocytes 
from wildtype and Gα11 KO animals. Membrane capacitance (CM), resting membrane potential (VR), and action 
potential amplitude (AP amplitude) (A–C). Representative APs (Da) and action potential durations after 30, 50, 70 
and 90% repolarization, APD30 and APD50 (Db), APD70 and APD90 (Dc). Number of animals and cells are shown in 
Supplementary table 1. Error bars represent mean ± SEM. The box plots show median (middle band) and 25/75 
percentiles (lower/upper quartiles, respectively). 
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Figure 3.6:	
   The effect of tamoxifen application on the transient outward current (Itoc) of ventricular myocytes from 
wildtype and Gα11 KO animals. Typical Itoc traces (A), corresponding current-voltage (IV) relationships (B), and the Itoc 
density at +60 mV test potential (C). Number of animals and cells are shown in Supplementary table 1. Error bars 
represent mean ± SEM.  
 
The results of electrophysiological characterization in Gα11 KO mice were rather 

unexpected since they showed some discrepancies to the results found in wildtype 

mice. While, the tamoxifen treatment did not alter CM, VR and AP amplitude (Figure 

3.5A-C, violet vs. green), AP was prolonged in Gα11 KO mice (Figure 3.5Da, violet vs. 

green). This was further confirmed by analyzing the time course of AP repolarization 

(APDs). Both early and late repolarization periods were significantly slowed down in 

cells from tamoxifen-injected mice (Figure 3.5Db & Dc, violet vs. green). Itoc was 

significantly reduced in tamoxifen treated-Gα11 KO mice (Figure 3.6A, violet vs. green), 

which was in agreement with the results of early repolarization (Figure 3.5Db, violet vs. 
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green). While the current-voltage relationships were significantly different in tamoxifen-

injected wildtype mice  (Figure 3.6B, brown vs. grey), the Itoc density at +60 mV was not 

(Figure 3.6C, brown vs. grey). A possible explanation for this apparent discrepancy 

could be that the sample size at +60 mV might be the limiting factor for statistical 

analysis.  

I also investigated the impact of miglyol, the tamoxifen solvent, on the 

electrophysiological characteristics of ventricular myocytes. Similar to tamoxifen 

experiments, miglyol effects were studied in both wildtype and Gα11 KO mice following 

the same injection regime.  

Miglyol injection into wildtype mice (2.5 ml/kg body weight) resulted in a significant 

decrease of CM compared to tamoxifen treatment (Figure 3.7A, sapphire vs. grey). 

Similar to tamoxifen, VR, AP amplitude (Figure 3.7B & C, sapphire vs. brown) and AP 

shape (Figure 3.8, sapphire vs. brown) were not altered by the miglyol treatment in 

wildtype mice. Furthermore, miglyol injection did not modulate the electrophysiological 

properties of Gα11 KO cardiomyocytes (Figure 3.9 and 3.10). 

Moreover, these sets of experiments enabled us to obtain information about the 

electrophysiological effects of Gα11 KO in ventricular myocytes. Gα11 KO resulted in a 

substantial decrease in CM (28%) (Figure 3.5A, brown vs. violet). While VR and AP 

amplitude remained unchanged, the repolarization phase of the AP was significantly 

faster in Gα11 KO cells (Figure 3.5B-D, brown vs. violet). One of the potential reasons 

for this faster repolarization phase appeared to be Itoc up-regulation (~2-fold) in Gα11 KO 

cells (Figure 3.6, brown vs. violet).  
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Figure 3.7:	
  The effects of miglyol application on the electrophysiological characteristics of ventricular myocytes from 
wildtype animals. Membrane capacitance (CM), resting membrane potential (VR), and action potential amplitude (AP 
amplitude) (A–C). Number of animals and cells are shown in Supplementary table 1. Error bars represent mean ± 
SEM. The box plots show median (middle band) and 25/75 percentiles (lower/upper quartiles, respectively). 

 

 

Figure 3.8: The effects of miglyol application on the AP duration of ventricular myocytes from wildtype animals. AP 
durations after 30, 50, 70 and 90% repolarization, APD30 (A), APD50 (B), APD70 (C), and APD90 (D), respectively. 
Number of animals and cells are shown in Supplementary table 1. Error bars represent mean ± SEM. 	
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Figure 3.9:	
  The effects of miglyol application on the electrophysiological characteristics of ventricular myocytes from 
Gα11 KO animals. Membrane capacitance (CM), resting membrane potential (VR), and action potential amplitude (AP 
amplitude) (A–C). Number of animals and cells are shown in Supplementary table 1. Error bars represent mean ± 
SEM. The box plots show median (middle band) and 25/75 percentiles (lower/upper quartiles, respectively). 
 

	
  
 

Figure 3.10:	
  The effects of miglyol application on the AP duration of ventricular myocytes from Gα11 KO animals. AP 
durations after 30, 50, 70 and 90% repolarization, APD30 (A), APD50 (B), APD70 (C), and APD90 (D), respectively. 
Number of animals and cells are shown in Supplementary table 1. The box plots show median (middle band) and 
25/75 percentiles (lower/upper quartiles, respectively). 
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In summary,  

1. Tamoxifen injection resulted in a rather complex, genotype-dependent alteration 

of electrophysiological properties (Itoc up-regulation in wildtype, AP prolongation 

and Itoc down-regulation in Gα11 KO) even though its injection had been 

terminated at least 28 days prior to the actual experiment  

2. Miglyol injection did not modify the electrophysiological properties of ventricular 

myocytes, nor in wildtype neither in Gα11 KO 

3. Gα11 KO resulted in substantial CM reduction, AP shortening and Itoc up-

regulation in ventricular myocytes  

 

3.1.3. Cre recombinase expression causes only minor changes in 

myocyte properties 

Nowadays, Cre/LoxP system is widely used in gene targeting. Improvements in this 

system enabled us to restrict the gene manipulation down to a specific cell type. For 

instance, to generate a cardiomyocyte-specific gene knockout, the Cre expression was 

accomplished under the control of a cardiomyocyte-specific promoter e.g. α-MHC. 

Despite this great power, high levels of Cre expression reported to have toxic effects in 

cardiomyocytes 7. Therefore, we investigated the effects of Cre expression on the AP 

characteristics and Itoc of ventricular myocytes in our Cre/LoxP system. Similar to 

tamoxifen experiments, the effects of Cre expression were studied in wildtype mice and 

mice with Gα11 null-background.  

As shown in figure 3.11 and 3.12 the only electrophysiological parameter that was 

affected by the Cre expression was the magnitude of Itoc in the Gα11-deficient mice 

(Figure 3.12, turquoise vs. violet). Interestingly, this Cre-induced decrease in Itoc did not 

change the APD30 and APD50 (Figure 3.11Db, turquoise vs. violet). It has to be noted 

that the boxes or bars with the same colors as figures 3.5 and 3.6 represent the same 

dataset. 

In summary, Cre expression did not greatly alter the electrophysiological properties of 

ventricular myocytes.  
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Figure 3.11:	
  The effects of Cre expression on the electrophysiological characteristics of ventricular myocytes from 
wildtype and Gα11 KO animals. Membrane capacitance (CM), resting membrane potential (VR), and action potential 
amplitude (AP amplitude) (A–C). Representative APs (Da) and action potential durations after 30, 50, 70 and 90% 
repolarization, APD30 and APD50 (Db), APD70 and APD90 (Dc). The boxes or bars with the same colors as figure 3.5 
represent the same dataset. Number of animals and cells are shown in Supplementary table 1. Error bars represent 
mean ± SEM. The box plots show median (middle band) and 25/75 percentiles (lower/upper quartiles, respectively). 
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Figure 3.12:	
  The effect of Cre expression on the transient outward current (Itoc) of ventricular myocytes from wildtype 
and Gα11 KO animals. Typical Itoc traces (A), corresponding current-voltage (IV) relationships (B), and the Itoc density 
at +60 mV test potential (C). The boxes or bars with the same colors as figure 3.6 represent the same dataset. 
Number of animals and cells are shown in Supplementary table 1. Error bars represent mean ± SEM. 
 

3.1.4. Two sets of genotypes are sufficient to study the effects of 

Gαq/Gα11 knockout in ventricular myocytes 

I performed two sets of experiments to study the effects of tamoxifen and Cre 

expression on the AP characteristics and Itoc of ventricular myocytes. The results 

showed a modulatory effect of tamoxifen in most of the investigated parameters, which 

was surprisingly dependent on the genetic background (Figure 3.5 and 3.6). In contrast, 

Cre expression did not induce severe changes in most of the electrophysiological 
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parameters (Figure 3.11 and 3.12). Therefore, we concluded that the tamoxifen injection 

on a constant genetic background, similar to what I introduced in figures 3.1 and 3.2, is 

not the best approach to study the effects of Gαq KO. Rather, Cre or loxP insertion 

would better serve this purpose. 

Therefore we designed two genetic approaches to address the role of Gαq; they are 

summarized in tables 3.2 and 3.3. The basic idea behind the set of genotypes 

presented in table 3.2 was to generate Gαq KO by inserting the loxP sites, while table 

3.3 introduces the idea of employing Cre expression. While loxP insertion would require 

the breeding of four separate mouse lines with an increasing genetic distance over time, 

the genotypes introduced in table 3.3 (Cre expression with tamoxifen injection) would 

require the breeding of only two mouse lines, enabling us to compare the Gαq KO 

effects in litter-mates. Therefore, we decided to perform the final set of experiments 

using the genotypes detailed in table 3.3, which all included tamoxifen injection. 
 

Table 3.2: Gαq KO by insertion of LoxP sites. wt, wildtype; tg, transgenic; 0, no Cre expression. 

Label	
   gnaq	
   gna11	
   Cre status 	
   Tamoxifen	
  

Gqwt G11wt Cre+ Tam+	
   wt/wt	
   wt/wt	
   tg/0	
   +	
  

Gqfl G11wt Cre+ Tam+	
   flox/flox	
   wt/wt	
   tg/0	
   +	
  

Gqwt G11- Cre+ Tam+	
   wt/wt	
   -/-	
   tg/0	
   +	
  

Gqfl G11- Cre+ Tam+	
   flox/flox	
   -/-	
   tg/0	
   +	
  
 

Table 3.3: Gαq KO by employing Cre expression. wt, wildtype; tg, transgenic; 0, no Cre expression. 

Label	
   gnaq	
   gna11	
   Cre status 	
   Tamoxifen	
  

 Gqfl G11wt Cre- Tam+	
   flox/flox	
   wt/wt	
   0/0	
   +	
  

 Gqfl G11wt Cre+ Tam+	
   flox/flox	
   wt/wt	
   tg/0	
   +	
  

 Gqfl G11- Cre- Tam+	
   flox/flox	
   -/-	
   0/0	
   +	
  

 Gqfl G11- Cre+ Tam+	
   flox/flox	
   -/-	
   tg/0	
   +	
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3.1.5. Gαq knockout modifies the electrical properties of 

cardiomyocytes, but its effects depend on Gα11 expression 

Using the genotypes introduced in table 3.3, I studied the impact of Gαq and/or Gα11 KO 

on the AP and Itoc in ventricular myocytes. While Gαq and Gα11 KO alone did not 

significantly change the cell membrane capacitance (Figure 3.13A, blue and green vs. 

black), Gαq/Gα11 DKO resulted in a 15% reduction of CM (Figure 3.13A, red vs. black). 

This CM alteration might be to a great extent due to the Gα11 rather than Gαq KO 

(compare blue & green and blue & red in Figure 3.13A). Gαq KO resulted in a more 

hyperpolarized VR (Figure 3.13B, blue vs. black) and significantly larger AP amplitudes 

(Figure 3.13C, blue vs. black). The AP amplitudes were significantly enhanced in 

Gαq/Gα11 DKO, too (Figure 3.13C, red vs. black) that could be attributed to Gαq KO 

effect rather than Gα11-deficiency (Figure 3.13C, green vs. black and blue vs. black).  

In contrast to most of the alterations of AP shape introduced so far (Fig 3.5 and 3.11), I 

did not find any significant changes in the repolarization phase of AP while investigating 

myocytes from our optimized genotypes (Figure 3.13D), despite significant but minor 

alterations in the Itoc–voltage relationships (Figure 3.14, green vs. red and black). 
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Figure 3.13:	
  The effects of Gαq and/or Gα11 KO on the electrophysiological characteristics of ventricular myocytes. 
Membrane capacitance (CM), resting membrane potential (VR), and action potential amplitude (AP amplitude) (A–C). 
Representative APs (Da) and action potential durations after 30, 50, 70 and 90% repolarization, APD30 and APD50 
(Db), APD70 and APD90 (Dc). The boxes or bars with the same colors as figures 3.1 and 3.5 represent the same 
dataset. Number of animals and cells are shown in Supplementary table 1. Error bars represent mean ± SEM. The 
box plots show median (middle band) and 25/75 percentiles (lower/upper quartiles, respectively). 
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Figure 3.14: The effect of Gαq and/or Gα11 KO on the transient outward current (Itoc) in ventricular myocytes. Typical 
Itoc traces (A), corresponding current-voltage (IV) relationships (B), and the Itoc density at +60 mV test potential (C). 
The boxes or bars with the same colors as figures 3.3 and 3.6 represent the same dataset. Number of animals and 
cells are shown in Supplementary table 1. Error bars represent mean ± SEM.  
 

In summary,  

1. Gαq/Gα11 DKO resulted in CM reduction.  

2. Gαq KO resulted in significantly more negative VR.  

3. Gαq KO as well as Gαq/Gα11 DKO resulted in significantly higher AP amplitudes. 

4. The repolarization phase of AP remained unchanged in all genotypes.  

5. Gα11 KO altered the Itoc-voltage relationships. 
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3.2. Hyperaldosteronism-induced electrical remodeling in 

ventricular myocytes of wildtype and Gαq/Gα11 KO mice 

Hyperaldosteronism is a risk factor for cardiac diseases because it induces 

hypertension 220. It was recently reported that aldosterone induces cardiac remodeling 

independent of the effects on the arterial blood pressure 46. Since then many studies 

investigated the physiological and pathological effects of aldosterone on the heart 212. 

Recently our group in a collaborative work with Neuberger group, reported an important 

role for aldosterone in the development of atrial fibrillation 158. In the current study, we 

aimed to investigate the putative role of Gαq/11 coupled signaling pathways in 

aldosterone-induced on the heart. We also studied cellular remodeling process in 

response to hyperaldosteronism.  

To address the possible involvement of Gαq/11 signaling in the aldosterone effects, I 

took the advantage of our four optimized genotypes described in table 3.3. 

Hyperaldosteronism (HA) was induced in mice (see 2.4) and was confirmed by ELISA 

tests indicating a 8-fold increase in the plasma aldosterone level (from 292.5 pg/ml to 

2400 pg/ml). We studied remodeling on the level of the heart as well as on the isolated 

ventricular myocytes. Various morphological and functional properties of the heart were 

assessed using echocardiography. On the cellular level, the electrophysiological 

properties and Ca2+ handling were investigated. In this thesis I will present the results of 

electrophysiological studies. The effects of HA on the AP characteristics and Itoc were 

assessed in ventricular myocytes from Gαq and/or Gα11 KO mice.  

 

3.2.1. Aldosterone effects on CM and VR is mediated by Gαq/Gα11 

proteins  

The sustained increase in the plasma aldosterone level has shown to enhance the risk 

of human left ventricular hypertrophy 212. In a rat model of induced HA, the hypertrophic 

response was associated with larger cardiomyocyte size 186. I also investigated this in 
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the mouse model of induced HA by measuring CM. While chronic HA did not affect CM in 

wildtype cells, Gα11 KO and Gαq/Gα11 DKO resulted in ~  15% HA-mediated decrease of 

the CM (Figure 3.15A, red & green). Since CM remained unchanged in Gαq KO following 

HA (Figure 3.15A, Blue), thus the effects seen in Gαq/Gα11 DKO might be attributed to 

the aldosterone-Gα11 KO interaction.  

The chronic HA induced minor changes on VR. While following HA, VR shifted to more 

negative potentials in wildtype cells, the absence of either Gαq or Gα11 abolished this 

hyperpolarization (Figure 3.15B).  

In summary, 

1- HA resulted in CM reduction in Gα11 and Gαq/Gα11 DKO ventricular myocytes. 

2- HA resulted in more negative VR in wildtype cells and this effect was abolished 

by deletion of either Gαq and/or Gα11 proteins. 
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Figure 3.15: The effects of HA on the electrophysiological characteristics of ventricular myocytes. Membrane capacitance (CM), resting membrane potential (VR), and action 
potential amplitude (AP amplitude) and time to peak (TTP) (A–D). Number of animals and cells are shown in Supplementary table 2. The box plots show median (middle 
band) and 25/75 percentiles (lower/upper quartiles, respectively). 
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3.2.2. Cardiac action potential is greatly altered by 

hyperaldosteronism 

Many cardiac diseases are accompanied by cellular electrophysiological remodeling 

that is often manifested in alterations of APs 43. In our study we aimed to investigate the 

putative role of HA in electrophysiological remodeling of cardiac cells and the AP was 

chosen as a parameter integrating many electrical characteristics of the cell. Similar to 

3.2.1, the putative HA-induced alterations of AP were investigated in various genotypes 

to study the contribution of Gαq and Gα11 signaling. 

All AP measurements were performed in steady-state at 4 Hz and 37 ˚C. The 

depolarization phase of the AP was studied by analyzing two important parameters: (i) 

AP amplitude and (ii) time to peak (TTP). The AP amplitude was significantly enhanced 

(~13%) by HA in ventricular myocytes of wildtype mice (Figure 3.15C, black). Similar 

result was obtained in the Gαq-deficient myocytes (Figure 3.15C, blue). In contrast, 

deletion of either Gα11 or Gαq/Gα11 proteins abolished this HA-mediated effect on the 

AP amplitude (Figure 3.15C, green & red, respectively).  

The TTP was not affected by HA in wildtype cells (Figure 3.15D, black). Gαq and/or 

Gα11 KO did not alter this AP parameter, too (Figure 3.15D, green & red). 

HA-induced hypertrophic responses were shown to be associated with AP prolongation 

in cardiac myocytes 18,142. In contrast, I found that APD30, APD50 and APD70 were 

significantly shortened in wildtype cells following HA as reflected in exemplified APs, too 

(Figure 3.16, black). While this effect was completely blunted by either Gαq or Gα11 

protein deletion, removal of both proteins (Gαq/Gα11 DKO) reversed that (Figure 3.16, 

blue, green & red). AP durations were substantially prolonged in ventricular myocytes of 

Gαq/Gα11 DKO cells following HA (Figure 3.17B-D red).  
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Figure 3.16: The effect of HA on AP shape of ventricular myocytes.  Representative APs in wildtype, Gαq KO, Gα11 
KO, and Gαq/Gα11 DKO in control (left column) and following HA (right column). Number of animals and cells are 
shown in Supplementary table 2. 
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Figure 3.17: The effects of HA on the AP durations of ventricular myocytes. Representative APs (A) and statistical analysis of AP durations at 30, 50, 70 and 90% 
repolarization, APD30 (B), APD50 (C), APD70 (D), and APD90 (E), respectively. Number of animals and cells are shown in Supplementary table 2. The box plots show median 
(middle band) and 25/75 percentiles (lower/upper quartiles, respectively). 
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In summary, 

1. HA caused larger AP amplitudes in wildtype and Gαq KO cells but no effects in 

cells from Gα11 or Gαq/Gα11 DKO. 

2. HA did not alter time to peak of depolarization phase of AP in all genotypes 

studied. 

3. HA resulted in a shortened AP repolarization when investigating wildtype cells, 

an unchanged AP in single KOs but a prolonged AP repolarization in DKO. 

  

3.2.3. Itoc is the target of aldosterone effects in ventricular myocytes 

In the following, I investigated putative ionic currents contributing to these AP 

alterations. Changes in the Ito density as well as alterations in mRNA expression of 

Kv4.2 and KV4.3 have been attributed to HA 18,46. Thus, I studied Itoc to investigate their 

putative contribution to changes in APD30.  

Itoc was greatly altered in wildtype cells following HA (Figure 3.18A). Interestingly, HA 

caused an increased Itoc density that was absent in single KO animals (Figure 3.18A & 

B & C and 3.19 black, blue and green). Unexpectedly, the density of Itoc was reduced 

following HA in the cells from animals with Gαq/Gα11 DKO (Figure 3.18D and 3.19 red). 

This was in agreement with the behavior of APD30 in these genotypes (Figure 3.17A & 

B, blue and green). While the current-voltage relationships were significantly different in 

Gα11 following HA (Figure 3.18Cb), the Itoc density at +60 mV was not (Figure 3.19, 

green). A possible explanation for this apparent discrepancy could be that the sample 

size at +60 mV might be the limiting factor for statistical analysis. 
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Figure 3.18:	
  The effect of HA on the Itoc-voltage relationships. Typical Itoc traces and corresponding current-voltage 
(IV) relationships in wildtype (Aa-b), Gαq KO (Ba-b), Gα11 KO (Ca-b) and Gαq/Gα11 KO (Da-b). Number of animals 
and cells are shown in Supplementary table 2. Error bars represent mean ± SEM.  
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Figure 3.19:	
  The effect of HA on the Itoc density in ventricular myocytes. Itoc density at +60 mV test potential. Number 
of animals and cells are shown in Supplementary table 2. Error bars represent mean ± SEM.  
 

In summary : 

1- HA altered the Itoc density and current-voltage relationships in ventricular 

myocytes from wildtype and Gαq/Gα11 DKO mice. 

2- In wildtype cells, Itoc density was enhanced and the Itoc-voltage relationships were 

altered. 

3- In Gαq/Gα11 cells, the Itoc density was decreased and current-voltage 

relationships were modulated. 

4- While HA altered the Itoc-voltage relationship, it did not induce significant changes 

in current densities in Gα11 KO cells. 

5- The results of Itoc measurements were in great agreement with the results of 

early repolarization (APD30) in all genotypes studied. 
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3.3. I1624E mutation in the IQ motif of Cav1.2 and the effects on 

the ICa,L and EC Coupling gain 

In contrast to the skeletal muscle, contraction of cardiomyocyte is majorly dependent on 

the extracellular Ca2+. LVDCCs mediate the Ca2+ influx and provide the initial trigger for 

further Ca2+ release from SR. The LVDCC is regulated precisely to control the 

contractility of cardiomyocyte. One regulatory mechanism that originates from the 

intrinsic properties of the channel is the Ca2+-dependent inactivation (CDI), which is 

mediated by CaM. There are growing body of evidences showing that CaM binds to the 

IQ motif of Cav1.2 which is located at amino acids 1624–1635 77,227,229. Ile-1624 was 

especially characterized as the determinant of CaM binding to Cav1.2 152. Mutation of 

Ile-1624 to Glu (I/E mutation) decreased the affinity of IQ sequence for CaM by ~100-

fold 49 and abolished CDI of ICa,L expressed in Xenopus oocytes 228. However the 

physiological relevance of the IQ motif in the channel regulation has not been clarified in 

the hearts of living animals. To address this question, transgenic I/E mice were 

generated (see 2.3.2). To study the physiological and pathological impacts of I/E 

mutation, the morphological and functional properties of the heart as well as single 

ventricular myocytes were assessed. In this thesis I will present the results of ICa,L and 

EC coupling gain measurements.  

 

3.3.1. Mutation in IQ motif of Cav1.2 modifies the channel function  

To study the physiological relevance of the I/E mutation in the Cav1.2 function and 

regulation, ICa,L was recorded in ventricular myocytes of I/E and control (Ctr) mice (for 

genotypes see 2.3.2). The IV relationships showed a substantial reduction of the current 

density in I/E cells (Figure 3.20 B), which is evident in the representative current traces, 

too (Figure 3.20Aa & Ab). The peak current amplitude was reduced by 33% in I/E cells 

at 0 mV. The I/E mutation did not cause any alterations of the membrane area (CM) 

(Figure 3.21B). Since the Western blot analysis showed reduced Cav1.2 levels in the 

ventricles of I/E mice compared to Ctr mice 152, there might be some alterations of the 

channel assembly due to this mutation. 
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Figure 3.20:	
  The effect of I/E mutation on the L-type Ca2+ current (ICa,L) in ventricular myocytes. Typical ICa,L traces in 
control (Ctr) (Aa) and I/E (Ab), and corresponding current-voltage (IV) relationships (B). Number of animals and cells 
are shown in Supplementary table 3. Error bars represent mean ± SEM.  

 

	
  

	
  

	
  
Figure 3.21: The effect of I/E mutation on the plasma membrane capacitance (CM). Representative transmission 
images of ventricular cells from Ctr (Aa) and I/E (Ab) mice, scale bar=100 µm. Statistical analysis of CM 
measurements (B). Number of animals and cells are shown in Supplementary table 3. Error bars represent mean ± 
SEM.  
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3.3.2. The I/E mutation results in alterations of EC coupling gain 

EC coupling links the electrical excitation of the cell membrane to the mechanical 

contractile machinery of the cardiomyocyte. ICa,L is a major mediator of this process. 

Since the KO mouse only expressing Cav1.2 I1624E in the heart, displayed a much 

smaller ICa,L but unaltered global Ca2+ transients and single cell contractility 27, I 

wondered whether in a compensatory fashion, the EC coupling gain was altered. To 

study this, I performed simultaneous ICa,L and Ca2+ measurements. Indo-1 was used to 

monitor cellular Ca2+ transients. Briefly, cardiomyocytes were voltage clamped and 

repetitively depolarized (10 times at 0.5 Hz) to obtain steady-state conditions (see 2.9). 

This prepulse was followed by a series of test pulses (from -50 mV to +50 mV with 10 

mV increments) to activate ICa,L. The resulting Ca2+ transients (CICR) were recorded 

simultaneously. Figure 3.22Aa shows the typical bell-shaped Vm dependence of ICa,L 

and the resulting Ca2+ transients. The steady-state ICa,L was reduced over the entire 

voltage range (Figure 3.22Aa). Unexpectedly, under voltage-clamp conditions, the Ca2+ 

transient amplitudes were substantially increased in cells from I/E mice (Figure 3.22Aa), 

which is also evident in the representative Ca2+ signals (Figure 3.22Ad). 
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Figure 3.22: The effects of I/E mutation on EC coupling. Vm-dependencies of ICa,L and global Ca2+ transients (Aa), 
schematic illustration of the protocol used for the measurements (Ab), representative examples for ICa,L (Ac), and 
Ca2+ transients (Ad) in ventricular myocytes from Ctr and I/E mice. Vm-dependence of EC coupling gain calculated 
from the data in Aa (B). Number of animals and cells are shown in Supplementary table 4. Error bars represent mean 
± SEM. 

 

In order to further quantify EC coupling, I calculated the ratio of Ca2+ transient amplitude 

over ICa,L amplitude, the so called EC coupling gain (see 2.9). The results of such an 

analysis are depicted in figure 3.22B and strongly indicated a substantially augmented 

EC coupling gain, particularly for lower membrane potentials. 

Under control conditions, there was a left shift in the voltage-dependence of the whole 

cell Ca2+ transient compared to ICa,L. While the IV relationships for ICa,L peaked at 

around 0 mV, the cellular Ca2+ transients displayed the largest amplitude 10 mV more 

negative, at -10 mV (Figure 3.22Aa). This discrepancy originates from the fact that the 

whole cell ICa,L is the sum of single channel currents (iCa) through thousands of 

individual open channels (ICa = iCa x NP0). On the other hand, individual Ca2+ channels 
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trigger local Ca2+ release events so called Ca2+ sparks from the SR. Thus, locally, the 

Ca2+ release probability to a large degree critically depends on the single channel 

current (iCa) rather than global ICa,L. Due to a large driving force for Ca2+ influx at 

negative membrane voltages, iCa is higher at more negative potentials. As a 

consequence, the probability that iCa could trigger a Ca2+ spark increases at these 

voltages. Therefore the EC Coupling gain is higher at more negative Vm 36,169. 

In the native Ca2+ channel, the IQ motif was reported to be the site for CaM binding and 

this supposed to mediate CDI. The I/E mutation introduced here prevents CaM binding. 

I thus analyzed the inactivation properties of ICa,L in the ventricular myocytes of I/E mice. 

Time constants of ICa,L inactivation (τ1, τ2) were calculated according to the formula 

described in 2.6.4. While τ1 characterizes the fast inactivation, which can be attributed to 

the CDI, τ2 describes the slow component of inactivation resulting from VDI. Both, CDI 

and VDI remained unchanged in I/E mutated cardiomyocytes compared to Ctr cells at 0 

mV test pulse (Figure 3.23A & B). However further studies using Ba2+ as the charge 

carrier showed that the I/E mutation resulted in Ca2+ channels permanently locked in 

CDI 152. Interestingly, although the ICa,L density was decreased in I/E cells, the amount 

of Ca2+ charge (current integral) remained unchanged (Figure 3.23C).  

 

 
Figure 3.23: The effects of I/E mutation on ICa,L inactivation. Time constant of Ca2+-dependent inactivation (τ1) (A), 
time constant of voltage-dependent inactivation (τ2) (B), and the amount of charge entry (∫ ICa,L) (C) at 0 mV. Number 
of animals and cells are shown in Supplementary table 3. Error bars represent mean ± SEM. 

 

In summary, 

1. I/E mutation resulted in enhanced EC coupling gain. 

2. I/E mutation caused the Ca2+ channel to be permanently locked in CDI. 
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3.4. ICa,L and EC coupling gain in the ventricular myocytes 

expressing RacET 

Rac is a small GTPase of the Rho-family and contributes to various cellular functions 

such as transcriptional regulation and cytoskeleton organization in nonmuscle cells 198. 

Increases in Rac expression and activity have been associated with human cardiac 

pathologies such as dilated and ischemic cardiomyopathies 119 as well as atrial 

fibrillation 4. Using an animal model with cardiac specific increases in Rac activity, the 

RacET mouse 184, my group recently described impaired ventricular function 157 

(Oberhoffer, 2012 submitted paper). I thus investigated the relationship between ICa,L 

and Ca2+ release by analyzing the EC coupling gain. 

Since SR Ca2+ release is triggered by Ca2+ influx through LVDCCs, Changes in ICa,L 

might be a substrate for subsequent alterations of Ca2+ handling. ICa,L was measured in 

ventricular myocytes of RacET mice according to the protocol for ICa,L activation 

described in 2.7.4. ICa,L was unchanged in the cells from RacET mice (Figure 3.24Aa & 

Ab), as reflected in the overlapping IV relationships (Figure 3.24B). 

 

 
Figure 3.24: The effect of expression of a constitutively active Rac1 on the L-type Ca2+ current (ICa,L) in ventricular 
myocytes. Typical ICa,L traces in control (Ctr) (Aa) and I/E (Ab), and corresponding current-voltage (IV) relationships 
(B). Number of animals and cells are shown in Supplementary table 4. Error bars represent mean ± SEM. 
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To study EC coupling gain, I performed simultaneous ICa,L and Ca2+ transients 

measurements (see 2.9). Interestingly, the peak steady-state ICa,L was substantially 

reduced in myocytes from RacET mice compared to WT (Figure 3.25 Aa). Despite this 

decrease, the Ca2+ transient amplitude was enhanced by 2.5-fold (Figure 3.25Aa). 

Consequently, the EC coupling gain was significantly enhanced in the ventricular 

myocytes from RacET mice (Figure 3.25B). 

 

	
  
Figure 3.25:	
  The effect of expression of a constitutively active Rac1 on EC coupling. Vm-dependencies of ICa,L and 
global Ca2+ transients (Aa), schematic illustration of the protocol used for the measurements (Ab), representative 
examples for ICa,L (Ac), and Ca2+ transients (Ad) in ventricular myocytes from WT and RacET mice. Vm-dependence 
of EC coupling gain calculated from the data in Aa (B). Number of animals and cells are shown in Supplementary 
table 4. Error bars represent mean ± SEM.  
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The inactivation properties of ICa,L were also investigated. τ1 was ~ 1.5 times larger in 

RacET (Figure 3.26A) at 0 mV test pulse, indicating an altered CDI. Since CDI is 

believed to be a local process, one could speculate that the local control of CDI might 

have been altered in RacET myocytes, possibly brought about by an altered Ca2+ 

channel↔ RyR interaction. Despite a significant larger τ1, the time constant of VDI (τ2) 

appeared to be similar in both genotypes (Figure 3.26B). As expected, the amount of 

charge entering the cell by Ca2+ influx at 0 mV test pulse, was significantly reduced in 

RacET (Figure 3.26C). 

 

 
Figure	
   3.26:	
   The effects of expression of a constitutively active Rac1 on ICa,L inactivation. Time constant of Ca2+-
dependent inactivation (τ1) (A), time constant of voltage-dependent inactivation (τ2) (B), and the amount of charge 
entry (∫ ICa,L) (C) at 0 mV. Number of animals and cells are shown in Supplementary table 4. Error bars represent 
mean ± SEM.	
  

 

In summary,  

1. Expression of a constitutively active Rac1 resulted in the reduction of steady-

state ICa,L in ventricular myocytes. 

2. Expression of a constitutively active Rac1 caused higher EC coupling gains. 

3. Expression of a constitutively active Rac1 resulted in CDI prolongation. 
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3.5. The effect of CytoD supplement on AP characteristics of 

cultured cardiomyocytes  

Cytochalasin D (CytoD) is a fungal metabolite that inhibits cytokinesis. Cytoskeletal 
microfilaments are the targets of CytoD function. In cardiomyocytes, CytoD is supposed 

to function as a F-actin disruptor 26,35. However, some studies suggested a role for 

CytoD in stabilizing the actin filaments 41,106. These studies showed that CytoD could 

preserve the morphology of cardiomyocytes when used as a culture supplement at 40 

µM. T-tubular disarray/loss accompanies short-term culture of adult ventricular 

myocytes, possibly mediated by cytoskeletal rearrangement 78 and CytoD could blunt 

this process. Since t-tubular disarray is a concomitant process to many cardiac 

diseases such as the development of heart failure, investigations toward the relation 

between cytoskeleton and t-tubular system would be of particular interest. The aim of 

this study was to investigate whether CytoD affects the morphology and function of 

adult cardiomyocytes in culture and whether and how it can be used as a routine 

supplement in primary culture of cardiomyocytes.  

As reported previously 41, we also applied CytoD at the suggested concentration of 40 

µM to our optimized primary culture 78,201 and evaluated its effects on the morphology 

and function of cultured adult rat ventricular myocytes. Recently our group reported that 

a 3-day culturing period was associated with significant t-tubular loss in cardiomyocytes 
78. This was also reflected in a significant reduction of CM (~26%) in control cells at 

DIV3 compared to DIV0 (Figure 3.27, black). As stated before, CM is a measure of 

membrane area. When 40 µM CytoD was used as the culture supplement, CM was 

preserved at DIV3 (Figure 3.27B, red). This finding was in agreement with 

morphological studies of the t-tubular system 191 and indicated that a t-tubular loss was 

absent in the cultures supplemented with 40 µM CytoD. Nevertheless, a detailed study 

of the cells’ plasma membrane system using confocal microscopy revealed significant 

rearrangements of the t-tubules, referred to as “t-tubular crowding” 191. 
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When analyzing the AP characteristics in naïve cells, I found a significant depolarization 

of VR at DIV3 compared to DIV0 (Figure 3.28A, black). In contrast, application of 40 µM 

CytoD induced VR hyperpolarization during culturing (Figure 3.28A, red). Three days 

culturing did not result in significant changes of the AP amplitude regardless of the 

presence or absence of 40 µM CytoD (Figure 3.28B).  
 

 
Figure 3.28:	
   The effects of 40 µM CytoD on the electrophysiological characteristics of cultured adult ventricular 
myocytes. Resting membrane potential (VR), and action potential amplitude (AP amplitude) (A–B) in cultured cells 
with or without 40 µM CytoD supplement. Number of animals and cells are shown in Supplementary table 5. Error 
bars represent mean ± SEM. 	
  

Figure 3.27: The effect of 40 µM CytoD on the 
plasma membrane capacitance (CM) of adult 
cultured cardiomyocytes. Representative images 
of cultured ventricular myocytes at DIV0 and DIV3 
with or without CytoD supplement, scale=100 µm 
(A), Analysis of 40 µM CytoD effect on CM (B). 
Number of animals and cells are shown in 
Supplementary table 5. Error bars represent mean 
± SEM.  
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Figure 3.29:	
  The effects of 40 µM CytoD on AP duration of cultured adult ventricular myocytes. AP durations after 30, 
50, 70 and 90% repolarization, APD30 (A), APD50 (B), APD70 (C), and APD90 (D), respectively. Number of animals and 
cells are shown in Supplementary table 5. Error bars represent mean ± SEM. 	
  
 

Chronic CytoD application at 40 µM, as a culture supplement, resulted in large 

alterations of the AP duration (Figure 3.29A). While at DIV3 AP duration was not altered 

in the absence of CytoD (Figure 3.29A, black), CytoD supplement evoked an AP 

prolongation (Figure 3.29A & B, red). CytoD had a considerable effect on the both early 

and late repolarization, however the impact on the late phase was more prominent. 

While at DIV3, APD30 was prolonged ~2-fold, a 5-fold increase in APD90 was 

observed with 40 µM CytoD in the culture medium (Figure 3.29Ba & Bd, red). Therefore, 

CytoD appeared to have unfavorable effects on the AP properties at this concentration. 
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Figure 3.30: The effect of 0.5 µM CytoD on the 
plasma membrane capacitance (CM) of cultured 
adult cardiomyocytes. Representative images of 
cultured ventricular myocytes at DIV0 and DIV3 with 
or without CytoD supplement, scale=100 µm (A), 
Analysis of 0.5 µM CytoD effect on CM (B). Number 
of animals and cells are shown in Supplementary 
table 6. Error bars represent mean ± SEM.  

	
  

We therefore searched for an optimal concentration at which CytoD would preserve 

both, the morphology and function. We performed dose-response experiments and 

investigated the amplitude of electrically induced Ca2+ transients as the readout of initial 

screening (dose-response experiment was performed by Dr. Tian). As a result, 0.5 µM 

CytoD appeared to be the optimal CytoD concentration which best preserved DIV0 

properties at DIV3 191. 

Thereafter, we investigated whether additional important functional characteristics of 

cultured cells were also preserved at this CytoD concentration.  

0.5 µM CytoD had beneficial effect on the morphological properties of the cultured 

cardiomyocytes as indicated by the CM measurements. While CM was significantly 

altered at DIV3 compared to DIV0 (Figure 3.30B, black), 0.5 µM CytoD could diminish 

such changes (Figure 3.30B, white). 

 

 

  
 



	
   86	
  

0.5 µM CytoD did not display unfavorable effects on VR (Figure 3.31A). Furthermore, 

the AP amplitude was well preserved by application of 0.5 µM CytoD supplement 

(Figure 3.31B). While the AP amplitude showed a 20% decrease at DIV3 in the absence 

of CytoD, 0.5 µM CytoD in the culture medium suppressed this alteration. 
 

	
  
Figure 3.31:	
   The effects of 0.5 µM CytoD on the electrophysiological characteristics of cultured adult ventricular 
myocytes. Resting membrane potential (VR) (A), and action potential amplitude (AP amplitude) (B) in cultured cells 
with or without 0.5 µM CytoD supplement. Number of animals and cells are shown in Supplementary table 6. Error 
bars represent mean ± SEM.  

 

In addition to beneficial effects on the morphology, this CytoD concentration did not alter 

AP durations (Figure 3.32A & B). 

In summary, 

1. Application of 40 µM CytoD in culture medium resulted in the preservation of CM 

at DIV3, but alteration of electrophysiological properties such as more 

hyperpolarized VR and AP prolongation. 

2. Application of 0.5 µM CytoD in culture medium resulted in the preservation of 

both CM and electrophysiological properties including VR and AP characteristics. 
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Figure 3.32:	
  The effects of 0.5 µM CytoD on AP duration of cultured adult ventricular myocytes. AP durations at 30, 
50, 70 and 90% repolarization, APD30 (A), APD50 (B), APD70 (C), and APD90 (D), respectively. Number of animals and 
cells are shown in Supplementary table 6. Error bars represent mean ± SEM.	
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4. Discussion 
4.1. Heart-specific inducible Gαq/Gα11 knockout 

Different hormones and neurotransmitters regulate cardiomyocyte’s function by 

activation of intracellular signaling cascades 98. These signaling molecules mainly 

function to maintain or to modulate cellular homeostasis 98. However, chronic 

unbalanced stimulation leads to pathological responses. In the first chapter of my thesis, 

I aimed to investigate the possible contribution of Gαq/11 signaling to the physiology of 

cardiac mocytes. To study the function of a protein in cardiac cells, different 

experimental tools can be employed. In earlier studies, primary culture of cardiac 

myocytes or “myocyte like” cell lines were the most common approaches to accomplish 

this aim 134. However many physiological aspects such as paracrine interactions and 

cellular growth as a chronic response could not be investigated in these two-

dimensional environments (in vitro). Inhibition of a protein was the classical approach 

but often accomplished by blockers lacking proper sensitivity and specificity. Thus, 

protein down-regulation by gene knockout or siRNA have also been employed on the 

cellular level. The generation of transgenic animals was a major step forward since it 

enabled such investigations including cellular signaling. To generate transgenic 

animals, different techniques have been developed and employed over the last 

decades. In the cardiac research field, the power to target gene manipulations to the 

heart was always a desire. The creation of transgenic mice expressing Cre 

recombinase under the control of the α-MHC promoter fulfilled this request 7. The 

further improvements of the Cre/LoxP system using Cre-ER, allowed defined genetic 

alterations in a temporal and tissue-specific manner (Figure 4.1). The most common 

Cre mice (MerCreMer) in cardiac research field was introduced by Sohal and co-

workers 182. However these Cre mice showed cardiac dysfunction such as a decreased 

fractional shortening and increased end diastolic diameter 104,134. Thus, recent 

publications emphasized the necessity for proper controls when using the Cre/LoxP 

technology due to these system-inherent deficiencies 104,134,172. 
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Figure 4.1: Cre-ER/LoxP system. Cre-ER is under the control of a cell type-specific promoter. The Cre mouse is 
crossbred to a mouse carrying the LoxP flanked-target gene. The resulting offspring contains both, the tissue-specific 
promoter-Cre-ER and LoxP flanked-target gene. Cre is only expressed in those cell types in which the promoter is 
active. However Cre is inactive unless tamoxifen (ER agonist) is injected to the mice. Tamoxifen injection activates 
Cre recombinase which leads to the excision of the target gene (i) in a specific cell type and (ii) to a given time. Taken 
from www. ics-mci.fr 

 

In this study, we used a novel Cre mouse 187 to accomplish the heart-specific Gαq KO. 

For temporal control of Cre recombinase activation, we employed tamoxifen injection 

(50 mg/kg body weight, 5 consecutive days). Western blot analysis confirmed the 

functionality of the Cre/LoxP system as the expression of the Gαq protein diminished 

over the time course of 25 days following the 1st tamoxifen injection 143. The literature 

describes a variety of tamoxifen concentrations for Cre activation. Clearly, the lower the 

concentration, the lesser unwanted side effects of tamoxifen are to be expected. Sohal 

and co-workers typically used low tamoxifen doses (20 mg/kg body weight) for long time 

periods 182 and revealed this to be insufficient for gene knockout later 104. Considering 

the fact that 50% of the initial tamoxifen concentration is expelled from the blood within 

around 5 days (t1/2=5 days) (Figure 3.4) 116 we assume that at the end of our waiting 

period of at least 28 days, the tamoxifen concentration is too low to cause any effects. 

Nevertheless, this was addressed in a thorough experimental series. 
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4.1.1. The impact of tamoxifen treatment and Cre recombinase 

expression 

As stated before, a novel Cre mouse was used to knock-down Gαq KO. Gαq KO effects 

have been evaluated on the whole heart as well as on the cellular level. On the cellular 

level, we decided to study two largely integrative cellular phenomena for isolated 

ventricular myocytes i.e. APs and electrically induced global Ca2+ transients. The results 

of the electrophysiological experiments will be discussed here. 

Analysis of the AP parameters revealed significant alterations of the AP amplitude and 

the AP duration in cardiomyocytes from Gαq KO mice (Fig. 3.1). For my experiments I 

initially followed the classic approach, i.e. I compared tamoxifen-injected animals with 

those not injected with tamoxifen. However, when we carefully considered such an 

approach we wondered how valid this might have been. The KO group was different 

from control in two aspects; (i) the desired cardiomyocyte-specific Gαq KO and (ii) the 

unavoidable tamoxifen treatment. Furthermore since we were the first group employing 

this novel Cre mouse line, inherent genomic effects of such a system had to be 

evaluated. Thus, we were wondering whether these two factors i.e. (i) tamoxifen and (ii) 

Cre expression had any inherent effects and whether these could interfere with Gαq-KO 

results.  

Unexpectedly, in those studies I found substantial alterations of the AP characteristics 

(Figure 3.5 and 3.6). In cardiomyocytes, the acute effects of tamoxifen are quite well 

known 57,82. Following acute tamoxifen (3 µM) application, He and co-workers found an 

AP prolongation and significant reduction of K+ currents (Ito, Isus, IK1) in rat ventricular 

myocytes. In addition to the repolarization phase of AP, acute tamoxifen application also 

decreased the maximal rate of depolarization and VR. Moreover, the fast Na+ current 

was depressed in ventricular myocytes exposed to 3 µM tamoxifen 82. In contrast, in 

rabbit ventricular myocytes Liu and colleagues reported unaltered AP, Ito and IK1 

following acute application of tamoxifen (3.3 µM). However, they observed a significant 

reduction of ICa at tamoxifen concentrations greater than 1µM and almost complete 

inhibition at 10 µM 113. Moreover, the major tamoxifen metabolite i.e. 4-
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hydroxytamoxifen (1 µM) diminished the density of Ito, IKur and IK1 when applied acutely 

to mouse ventricular myocytes 56. In my experiments when injected into Gα11 KO mice, 

tamoxifen caused AP prolongation and a substantial reduction of Itoc (Figure 3.5 and 

3.6). Chronic tamoxifen treatment was also reported to modulate various K+ currents in 

mouse ventricular myocytes 57. K+ currents contributing to both the early and the late 

repolarization of the AP (Ito, IKur, Iss, IK1), were increased following 60 days constant 

tamoxifen administration. This effect was genomic and resulted from the alterations of 

K+ channels’ gene expression i.e. higher Kv4.3 (Ito), Kv1.5 (IKur), Kv2.1 (Iss) and Kir2.1 

(IK1) 57. However 60 days tamoxifen treatment does not reflect the usual tamoxifen 

injection regime for inducible KO systems, including our own. The AP alterations 

depicted here resulted from a brief period of tamoxifen administration (5-day injection) 

followed by more than 4 weeks without tamoxifen before recording started. Thus, we 

assume that the tamoxifen concentration was already very low after this time period 

(see Figure 3.4). Moreover, the tamoxifen treatment also caused opposite effects 

depending on the particular genetic background (e.g. APDs in Figure 3.5). When it was 

injected to wildtype mice (GqwtG11wtCre-), the AP and Itoc density remained unchanged 

(Figure 3.5, brown vs. grey). In Gα11 KO it caused alterations that were similar to the 

reported effects of an acute tamoxifen application rather than a chronic one, i.e. AP 

prolongation (Figure 3.5, violet vs. green) and Itoc reduction (Figure 3.6, violet vs. 

green).  

Although tamoxifen treatment altered the electrophysiological properties of cardiac cells, 

its application is mandatory to induce Gαq KO when using the Cre/LoxP system. 

However other methods including primary culture of cardiomyocytes have been majorly 

advanced 78,201. Nevertheless, transgenic animals enable us to study protein functions 

in the context of the whole animal. Especially, research on the cardiac pathology 

benefitted from these improvements since they can often not be modeled in culture 134. 

Raloxifen was also proposed as an alternative for tamoxifen in inducible Cre/LoxP 

systems, however raloxifen had to be applied three times longer than tamoxifen to 

achieve similar Cre activity 104. Thus we decided to use tamoxifen for the activation of 

the Cre recombinase. Tamoxifen was administered to every group including our 

controls. Instead we used another determinant for gene KO. 



	
   92	
  

Today, the Cre/LoxP system has been extended to perform tissue-, sometimes even 

cell type-specific gene excision. To generate a cardiac-specific gene knockout, the Cre 

expression was restricted under the control of a cardiomyocyte-specific promoter, α-

MHC. However, high levels of α-MHC mediated Cre expression have been reported to 

cause a lethal cardiomyopathy between 8 and 12 months of age 134. Moreover, 

Koitabashi and co-workers found a severe transient dilated cardiomyopathy in the 

tamoxifen-inducible MerCreMer* mouse line even without loxP transgenes 104. Despite 

the great alterations of cardiac function in the MerCreMer mice, in our novel Cre mouse 

line the cardiomyocyte characteristics including electrophysiology were not altered 

greatly (Figure 3.11 and 3.12), thus eliminating the need for additional controls. 

 

4.1.2. The optimized genetic combinations to study Gαq knockout 

In studies using tamoxifen inducible Cre/LoxP system, controls are normally chosen 

from the same genetic backgrounds but not injected with tamoxifen (Figure 3.1 and 3.3). 

However, we believe that it is necessary to include tamoxifen injection in control groups 

as well for any possible genomic interventions. Therefore, we decided not to follow the 

conventional approach of comparing animals in which KO was primarily induced by 

tamoxifen injection (Tamoxifen vs. miglyol/-). But instead we employed a different 

molecular determinant (Cre recombinase) for the induction of KO while maintaining the 

tamoxifen injections in all genotypes. We suggested two sets of genetic combinations 

that could provide us with the required transgenic animals for investigating Gαq and 

Gα11 function (Table 3.2 and 3.3). 

Both approaches followed different strategies to knockout Gαq. The gene excision could 

either be dependent on the presence of Cre recombinase (Table 3.3) or on the 

presence of the LoxP sites in the gnaq gene (Table 3.2), while always maintaining the 

tamoxifen injections. We chose the genetic combinations introduced in table 3.3 in 

which Cre expression is the molecular determinant for Gαq KO. While generation of 
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animals described in table 3.2 would have required breeding of 4 separate mouse lines, 

using Cre expression as the determinant for the KO required only breeding of 2 

separate mouse lines and most importantly allowed us to utilize litter-mates (black vs. 

blue and red vs. green, Table 3.3). Moreover, breeding of 4 separate mouse lines would 

increase the genetic distance which might results in unfavorable genetic differences. 

Using the genetic combinations shown in table 3.3, we generated 4 optimized 

genotypes to address our initial question about the physiological importance of basic 

Gαq/11 signaling (Figure 3.13 and 3.14). 

 

4.1.3. Physiological relevance of Gαq in ventricular myocytes 

The pathological role of Gαq/11 signaling has been extensively studied in the heart. 

These studies benefitted from various kinds of Gαq gene knock-out and knock-in 
10,44,163,211. To date, there is a general agreement about the contribution of Gαq/11 

signaling to the development of hypertrophy; Gαq/Gα11 KO can decrease a hypertrophic 

response 10,211. In general, the hypertrophic responses are accompanied not only by 

structural and electrophysiological remodeling of the cardiac tissue but also by structural 

remodeling of individual myocytes. In electrophysiological experiments, the plasma 

membrane structure of the myocytes can be assessed by determining the plasma 

membrane capacitance. In Gαq/Gα11 KO, the substantial reduction of CM (Figure 3.13A, 

red) might suggest alterations of gene expression and/or the t-tubular disarray. Although 

we did not investigate this further, Gαq/11 signaling pathway is known to be involved in 

cell growth responses 83. 

Another finding was unexpected increase of CM in Gαq KO (Figure 3.13A, blue). While 

deletion of both Gαq and Gα11 caused substantial reduction of membrane capacitance, 

Gαq single KO showed opposite effect. These results suggest that the relationship 

between Gαq and Gα11 is not only compensatory behavior but they might have much 

more complex interrelations.  
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Different intracellular signaling cascades modulate the expression and regulation of 

cardiac ion channels. IK(ATP) and ICa,L for instance are known to be regulated by G-

protein-coupled signaling cascades 185. The PKA-mediated phosphorylation of Cav1.2 

downstream of Gαs activation regulates the channel function. Since the AP is the 

product of multiple ionic currents, its properties are modulated by many intracellular 

signaling cascades. The effect of Gαq signaling on the cardiac AP is not very well 

studied. While Gαq overexpression resulted in markedly prolonged APs 131, the 

knockout of this protein diminished this effect (Figure 3.13Db, blue). Thus, Gαq signaling 

might be important in the regulation of the AP properties and more precisely its 

underlying repolarizing currents such as different IK. Wagner and his co-workers 

showed that Gα11 signaling has a tonic inhibitory effect on Ito which results from 

alterations in the expression of the Kv4.2 protein 202. Moreover, calcinuerin/NFAT 

signaling which is an important regulator of Ito, is activated downstream to Gαq/11 

signaling 83,146,153.  

The membrane potential results from different concentrations and conductances of ions 

across the plasma membrane. In cardiac cells IK1 contributes to the physiological resting 

potential 188. The changes of VR seen in cardiomyocytes from Gαq KO mice might be 

due to alterations of the inwardly rectifying K+ current (IK1) either by changing its 

expression or function. Regulation of IK1 by Gαq was suggested previously 131,193. 

In addition to Gαq, my experiments (Figure 3.5 and 3.6) strongly suggest a role of Gα11 

in regulating K+ currents. In Gα11 KO animals, I observed a large reduction of the AP 

duration and a concomitant augmentation of Itoc. 

How do Gαq and Gα11 proteins mediate changes in gene expression resulting in the 

alterations of electrophysiological characteristics? We believe that the changes were not 

induced by the proteins per se, but instead, our results strongly indicate the importance 

of a constant, possibly low-level stimulation of the upstream G-protein coupled 

receptors with agonists such as endothelin-1 or angiotensin-II 270. When stimulated 

chronically at high levels, G-proteins contribute to the development of cardiac diseases 

and associated changes in gene expression 52,74. In contrast, with sustained stimulation 
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at a much lower hormone level, Gαq and Gα11-coupled signaling pathways appear to be 

important in the maintenance of the myocyte’s homeostasis. 

We thus conclude that both Gαq and Gα11 are instrumental to the physiological 

properties of cardiac myocytes by mediating the continuance of a basic rate of gene 

expression.  

Further studies on the effects of Gαq/11 signaling in gene expression and regulation of 

K+ channels that contribute to the cardiac AP would answer a lot of remaining 

questions. Particularly, the regulatory function of Gαq and/or Gα11 on Ito would help to 

understand the alterations of early repolarization. Moreover, detailed studies on the 

downstream molecules of Gαq/11 signaling such as PLCβ, PIP2, DAG and IP3 are 

necessary to better understand the physiological function of this signaling pathway. 
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4.2. The relationship between aldosterone and Gαq/11 signaling in 

cardiac pathology 

The renin-angiotensin-aldosterone system’s (RAAS) primary function is to maintain 

homeostasis in response to stress such as a drop in blood pressure 72. Activation of 

RAAS results in retention of the intravascular volume and thus blood pressure. In 

contrast to its protective effects in acute stress responses, chronic stimulation of RAAS 

leads to deleterious effects on the cardiovascular system such as sustained 

hypertension. Hypertension in turn increases the cardiac workload which leads to the 

development of hypertrophy and heart failure 87. The role of aldosterone in 

hypertension-induced cardiac injury is well established. However, recent findings 

showed that aldosterone increases the risk of cardiac diseases independent of 

hypertension 212. Various experimental approaches were employed to investigate the 

direct effect of aldosterone on the heart as well as single cardiomyocytes 63,147,155. On 

the cellular level, one of the major goals was to find the second messengers mediating 

the aldosterone function. In cardiomyocytes, Gαq/11 signaling is one of the intracellular 

cascades that mediates the effects of many hormonal agonists. The genomic effects of 

Gαq/11 signaling are known to be involved to the development of cardiac diseases such 

as hypertrophy and heart failure 83. While both, aldosterone excess and high chronic 

stimulation of Gαq/11 signaling, result in pathological responses of the heart, we were 

wondering whether they are somehow connected. Therefore, we induced 

hyperaldosteronism (see 2.4) in our 4 optimized genotypes (Table 3.3) and studied the 

possible contribution of the Gαq/11 signaling in the aldosterone-mediated cardiac effects. 

In vivo studies showed significantly larger LVID* in aldosterone-treated Gαq/Gα11 DKO 

at both systole and diastole. Moreover, the LV mass† and volume appeared to be 

significantly higher in these animals (studies on the heart were done by Ms. Kathrina 

Wiesen). Single cell measurements showed substantial alterations of AP characteristics 

and Ca2+ handling in both wildtype and Gαq/Gα11 DKO mice following HA. In particular, 
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HA caused significant reduction of the AP duration in wildtype mice, while the AP 

duration was unexpectedly increased when both, Gαq and Gα11 were knocked out 

(Figure 3.17). In the following I will discuss the results of my electrophysiological 

measurements in ventricular myocytes from wildtype and transgenic mice following HA.  

 

4.2.1. The effect of hyperaldosteronism on CM and VR 

Patients with primary hyperaldosteronism, a condition caused by overproduction of 

aldosterone in the adrenal gland, develop left ventricular hypertrophy 212. As explained 

before, the hypertrophic response can also be studied by evaluating the structural 

remodeling of cardiac cells. I observed a significant CM reduction in Gα11- and Gαq/Gα11 

KO following HA, which might suggest an interference of Gαq/11 signaling with HA-

mediated genomic effects (Fig. 3.15A).  

VR was decreased in wildtype mice following HA (Figure 3.15B, black). Dartsch and co-

workers found a significant down-regulation of mRNA levels for Kir2.1 and Kir2.3 

following a 4-week aldosterone administration using osmotic mini-pumps (1 µg/h) 46. 

Thus, the more hyperpolarized VR in wiltype mice following HA (Figure 3.15B black) 

might have resulted from the altered expression and/or current properties of K1 

channels. Interestingly, the knockout of Gαq and/or Gα11 diminished the aldosterone 

effect on VR (Figure 3.15B, black). This result might be another evidence for the 

contribution of Gαq/11 signaling to HA-mediated genomic effects. 

 

4.2.2. The role of Gαq/11 signaling in HA-induced AP alterations 

HA-mediated cellular electrophysiological remodeling has been reported in atria 158 and 

ventricles 142 of small rodents. I also observed HA-mediated alterations of AP 

characteristics in mouse ventricular myocytes (Figure 3.15 and 3.17, black). In HA, AP 

amplitudes were markedly increased in ventricular myocytes from wildtype mice (Figure 

3.15C, black). Boixel and co-workers found a substantial increase of INa in mouse 
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ventricular myocytes incubated with 1 µM aldosterone for 24 h. However, they did not 

find any alterations in the protein level of Nav1.5 29. We suggest that the larger AP 

amplitudes in wildtype mice following HA, are due to alterations in gene expression or 

function of the Na+ channels. Interestingly, Gα11 KO or Gαq/Gα11 DKO diminished the 

HA evoked changes of the AP amplitude (Figure 3.15C, green & red).  

While Benitah and co-workers showed AP prolongation in aldosterone-treated 

ventricular myocytes 18, I found a substantial reduction of AP duration in the ventricular 

cells from wildtype mice (Figure 3.17, black). However, this controversy might be to a 

large extent due to different experimental settings. While in the former study they 

incubated rat ventricular myocytes with aldosterone for 48 h 18, we used chronic (42 

days) HA in mice (see 2.4). We believe that 42 days are long enough for proliferating 

(genomic) effects of aldosterone. In another study by Ouvrard-Pascaud and co-workers, 

HA was mimicked in a mouse model by overexpression of the hMR* in the heart. They 

observed substantial prolongation of the repolarization phase of the AP in ventricular 

myocytes overexpressing hMR 142. Although our results were not in agreement with this 

AP prolongation, they might suggest different genomic effects induced through other 

intracellular signaling pathways. 

Aldosterone has been shown to modulate the expression and function of various 

cardiac ion channels 18,19,46,147, which might contribute to the AP alterations. Two 

important repolarizing currents, Ito and ICa,L, were shown to be altered by aldosterone 
18,19,147. ICa,L up-regulation and AP prolongation were found in ventricular myocytes from 

transgenic mice with renal salt loss resulting in HA 147. Ito down-regulation has been 

attributed to the genomic effects of aldosterone in cardiac cells 18. However, my results 

of Itoc measurements did not reproduce those findings; they were in good agreement 

with alterations of the early phase of AP repolarization (Figure 3.18).  

Unexpectedly, deletion of Gαq and Gα11 proteins in the heart resulted in AP 

prolongation and Itoc down-regulation following HA (Figure 3.16 and 3.17, red). Both 

effects were opposite to the aldosterone-mediated effects on AP and Itoc seen in 
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wildtype mice. Considering these results, we suggest that Gαq/11 signaling might 

contribute to HA-mediated genomic effects in cardiomyocytes. 

There is a growing body of evidence showing that the pathological effects of 

aldosterone on the heart are indeed independent of changes in blood pressure 212. 

Although, MR and 11β-hydroxysteroid dehydrogenase have been characterized in 

cardiomyocytes 100,114,179, the cellular mediators of the aldosterone effects remained 

unexplored. In the present study, the aldosterone-induced alterations of AP and Itoc 

were described. However, further experiments are crucial to resolve the underlying 

reasons for this AP alterations such as INa, ICa,L and IK measurements. Moreover, 

additional analysis of gene expression of ion channels would help to better interpret the 

results. Furthermore, the intracellular second messengers mediating these aldosterone 

effects should be explored. Our findings support the likelihood for contribution of Gαq/11 

signaling in the aldosterone-induced electrophysiological remodeling of cardiomyocytes.  
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4.3. Mutation in the IQ motif of Cav1.2 and the impact on EC 

coupling gain 

The contraction of cardiomyocytes is majorly dependent on Ca2+ influx through voltage-

gated Ca2+ channels 23. These channels are regulated by different mechanisms among 

which CDI and VDI are well studied 75,97,109. These regulatory mechanisms require the 

contribution of several molecules that are mainly associated with Cav1.2 15,45. Among 

these molecules, Calmodulin (CaM) is permanently bound to Cav1.2 and functions as a 

Ca2+ sensor 135,149. Ca2+-saturated CaM contributes to the fast CDI 77. It has been 

shown that the IQ sequence in the C-terminal cytoplasmic tail of Cav1.2 (amino acids 

1624-1635) is the major binding site for CaM 77,148. Mutations in the IQ motif inhibited 

CaM binding to the Cav1.2, thus diminished CDI 228. Amino acid exchange in the IQ 

motif (Ilu-1624 with Glu; I/E mutation) resulted in 100-fold reduction of the CaM binding 

affinity and subsequent alteration of CDI in the Xenopus oocyte expression system 228. 

However, the impact of mutations of the IQ motif on the Cav1.2 function in in vivo 

situations remained to be explored. 

 

4.3.1. Generation of the murine cardiac Cav1.2I1624E 

To study the relationship between CaM and IQ motif and the possible role in the 

regulation of Cav1.2, the I/E mutation was primarily generated in a heterologous 

expression system (Xenopus oocyte) and resulted in the alteration of CDI 228. But what 

happens if this mutation is in the cardiac cells and the in vivo situation?  

To address this question, Ile-1624 was exchanged with Glu in the murine cardiac 

Cav1.2 152. Homozygous mice (Cav1.2I1624E/I1624E) were not viable. Therefore, 

Heterozygous Cav1.2+/I1624E mice were crossbred with Cav1.2flox/flox and MerCreMer 
176,182 to generate the basic genotype (Cav1.2flox/I1624E x MerCreMer) to study the I/E 

mutation (see 2.3.2). The excision of the floxed gene (Cav1.2-/I1624E) was induced by 

daily injections of tamoxifen at 4 consecutive days. Although this approach was 

successful, the I/E mice had a reduced life span and died within 3 weeks after the first 

tamoxifen injection (Figure 4.2).  
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Figure 4.2: Survival curve of I/E and Ctr mice. T=0 reflects the start of tamoxifen injection. The survival rate of I/E 
mice reduced to 0% within 3 weeks after tamoxifen injection. Taken from Poomvanicha et al, 2011 134  
 

Different morphological and functional properties of the whole heart as well as single 

cardiomyocytes were assessed. The hearts from I/E mice showed markedly reduced 

fractional shortening and developed a phenotype similar to dilated cardiomyopathy 152. 

Single cell measurements displayed a significant reduction of ICa,L in I/E mice (Figure 

3.20). Despite ICa,L attenuation, global Ca2+ transients and cellular contractility remained 

unchanged 27. To find out the reasons for this contradiction, I studied the coupling 

efficiency of ICa,L and Ca2+ release in single cardiomyocytes and revealed an enhanced 

EC coupling gain in I/E mice (Figure 3.22C).  

 

4.3.2. The impact of I/E mutation on the ICa,L 

The IQ motif is supposed to contribute in Cav1.2 inactivation, but also resulted in a 

significant reduced ICa,L density (Figure 3.20). Since CaM binding to Cav1.2 is disrupted 

by the I/E mutation, we assume that this interference might reduce trafficking of the 

channel to the membrane during biosynthesis and thus diminishes ICa,L, as shown for 

cultured neurons 203. Western blot analysis showed significantly lower Cav1.2 protein in 

the hearts of I/E mice 27. Thus ICa down-regulation was not only caused by a change in 

channel kinetic per se, but also by reduced expression of the Cav1.2I1624E.  
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Cardiac dysfunction results in various adaptive responses such as the stimulation of the 

sympathetic or the renin-angiotensin system leading to the activation of several different 

intracellular signaling molecules including CaMK-II 83. A recent publication suggested a 

suppressive role for CaMK-II on cardiac Cav1.2 gene transcription 164. CaMK-II 

phosphorylation was increased in the myocytes carrying I/E mutation 27, which might 

itself regulate the transcription of Cav1.2 gene, leading to ICa,L down-regulation. 

 

4.3.3. The impact of the I/E mutation on global Ca2+ transients 

Although ICa,L is the primary trigger for SR Ca2+ release, it is not the only determinant of 

the EC Coupling gain. In line with this, the I1624E mutation enhanced the gain of Ca2+ 

release despite a ICa,L reduction. This finding strongly suggests an altered EC coupling 

(Figure 3.22C). EC coupling is mainly dependent on the amplitude and kinetics of the 

Ca2+ signal in the dyadic space 107. Besides the Cav1.2 channel, the RyR2 and the NCX 

all contribute to the Ca2+ signal in this microdomain. While there is no direct data on the 

[Ca2+]i in these domains, a recent paper by Assai and colleagues estimated that during 

EC coupling, Ca2+ in the dyadic space might increase to 10-15 µM within miliseconds 3. 

Nevertheless, our results from simultaneous ICa,L and Ca2+ transient measurements 

suggested significant alterations of signaling in this coupling space (Figure 3.22A).  

My results showed significantly higher EC coupling gain in I/E mice (Figure 3.22C). 

What could be the reason for such a high gain in these cardiomyocytes? Presumably 

the inadequate cardiac performance in I/E mice stimulates the neuroendocrine system. 

β-AR stimulation is one of the major mechanisms to initially compensate such cardiac 

dysfunctions. However, high-level chronic stimulation causes cardiac insults and results 

in cardiac diseases. Activation of PKA downstream to β-AR initiates a wave of 

phosphorylation including the RyR2. PKA was shown to phosphorylate Ser2809 214,215 

which augments the RyR2 function via two mechanisms; (i) increase in the open 

probability of the channel and (ii) decrease in the binding affinity of a channel inhibitor, 

calstabin2. Furthermore, Marks and co-workers showed that phosphorylation of RYR2 

by PKA results in the dissociation of FKBP12.6 from the channel 124. This uncoupling in 
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turn enhances the single-channel open probability. Valdivia et al. showed that PKA 

phosphorylation increases the RyR2 sensitivity to Ca2+ 197. Thus, the phosphorylation 

enhances Ca2+ release activity of the channel in response to a rapid increase of local 

Ca2+, as may be expected near L-type Ca2+ channels 206. Therefore, neurohormonal 

stimulation increases the RyR2 activity resulting in an enhanced EC coupling gain.  

CaMK-II is another regulatory protein of RyR2. CaMK-II phosphorylation modulates the 

channel gating in a way that a given Ca2+ transient can be induced by smaller ICa,L influx 
111,224. CaMK-II can be activated downstream to angiotensin/Gαq signaling, which in turn 

results in the phosphorylation of RyR2 and the sensitization of EC coupling 206. CaMK-II 

phosphorylation increased in the myocytes carrying I/E mutation 27. 

Moreover, Blaich and co-workers showed a substantial reduction of NCX activity in 

cardiomycytes from I/E mice 27, which might in turn increase dyadic Ca2+ signals and 

EC coupling gain.  

In conclusion, we suggest that the I/E mutation leads to cardiac dysfunction by reducing 

ICa,L and subsequent intracellular Ca2+ transients. This cardiac dysfunction initiates a 

series of compensatory responses including neurohormonal stimulation to maintain 

cardiac function. Neurohormonal stimulation increases the EC coupling efficiency by 

modulating the RyR2 phosphorylation, which helps to preserve the myocyte contractility. 

The chronic high-level neurohormonal stimulation as well as sustained [Ca2+]i increase 

stimulates signaling molecules which contribute to genomic responses. These genomic 

effects include cell growth and apoptotic responses that push the cardiac cell in a 

vicious cycle and quickly resulted in dilated cardiomyopathy and death (Figure 4.3). 
 

	
  
Figure 4.3: Schematic illustration of I/E mutation effects in the heart. For detailed explanation see 4.3.3. 
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Further studies on the stimulatory hormones such as norepinephrine or angiotensin-II 

would help to better understand the development of cardiac dysfunction in the I/E mice. 

One necessary step would be the evaluation of plasma level of these hormones. 

Moreover, further investigations on the expression and/or regulation of SR Ca2+ release 

channels (including RyR and IP3-R), on the expression of actin and myosin, on the Ca2+ 

sensitivity of troponinC would answer a lot of remaining questions.  
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4.4. EC coupling gain in cardiomyocytes expressing RacET 

Rac1 has been proposed to play an important role in the cardiac pathological responses 

by increasing ROS production 119,171. Cardiomyocytes from DCM* patients showed 

higher levels of ROS production associated with increased Rac1 activity 119. Transgenic 

mice expressing cardiac-specific constitutively active Rac1 (RacET) developed transient 

hypertrophy in the early postnatal stage, which diminished a few weeks after birth 184. 

Atrial arrhythmias have been also reported in RacET mice 158. Previously, our group 

studied the hearts of RacET mice and showed a markedly reduced fractional 

shortening. Accordingly, a decrease in cellular contractility along with alterations of 

cellular Ca2+ handling was found in ventricular myocytes expressing RacET (Oberhofer 

et al., submitted manuscript). Because there appeared to be no effect of Rac1 on the 

functional properties of different molecules contributing to Ca2+ handling such as 

SERCA and NCX (Oberhofer et al., submitted manuscript), we were wondering whether 

EC coupling was altered. Therefore, EC coupling gain was assessed and showed 

substantially higher gains in RacET mice (Figure 3.25C).  

RyR2 is one of the well-known redox-sensitive ion channels in the heart. ROS 

modulates the RyR2 sensitivity to Ca2+, thus influencing SR Ca2+ release 225. Moreover, 

ROS has been shown to activate CaMK-II in cardiac myocytes 86, which in turn 

phosphorylates RyR2 and enhances SR Ca2+ release. Therefore Rac1 might increase 

SR Ca2+ release by activating ROS production.  

The pore-forming subunit (α1c) of the cardiac L-type Ca2+ channel contains more than 

10 cystein residues 129, which can be potentially subjected to redox modification. I found 

a significant decrease in steady-state Ca2+ current of RacET mice (Figure 3.25A), which 

was in agreement with a previous report by Goldhaber showing ROS-mediated ICa,L 

down-regulation 71.  

In addition to ROS production, Rac1 mediates the cytoskeletal reorganization at focal 

adhesion sites 184. Our group showed t-tubular loss in the ventricular myocytes 

expressing RacET (Oberhofer et al., submitted manuscript) that could be linked to the 
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alterations of cytoskeletal organization. The t-tubular disarray might lead to the 

impairment of EC coupling and subsequent reduction of cardiomyocyte’s contractility. 

The resulting cardiac dysfunction initiates a series of compensatory responses including 

neurohormonal stimulation to maintain cardiac function. As stated in 4.3.3, activation of 

cellular signaling cascades in response to neurohormonal stimulation leads to an 

increase in SR Ca2+ release and thus higher EC coupling gains. 

Moreover, CDI of ICa,L was prolonged in ventricular myocytes expressing RacET (Figure 

3.26). Since CDI is believed to be a local process, we speculate that the local control of 

CDI might have been altered possibly by an altered Ca2+ channel-RyR interaction. This 

impaired coupling most probably resulted from the effects of Rac1 on the cytoskeletal 

reorganization and t-tubular loss. 

Further studies on the expression and regulation of Cav1.2 and RyR are necessary to 

better explain the EC coupling alterations in RacET mice.  
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4.5. Cytochalasin D as a culture supplement 

The potential to culture cardiac cells is extremely important since the process of 

remodeling starts within a few hours in isolated adult cardiomyocytes. However, various 

biological studies such as expression of exogenous proteins by adenoviral gene transfer 

are critically dependent on maintaining cardiomyocytes in culture for days 102,171. 

Cardiomyocytes undergo profound alterations during long-term culture. Such alterations 

resulted in 50-70% reduction of cell density during the first week of culture 54,175. Among 

morphological and functional changes identified; internalization of intercalated discs 91, 

decreased t-tubular density 132, altered calcium handling 150 and reduced contractility as 

well as decreased VR and ICa,L 58,106, were reported in the cultured adult rat 

cardiomyocytes. Therefore, several groups tried to design culture conditions in which 

cardiomyocyte’s phenotype and function are preserved 78,201. To improve culture 

conditions, we took the advantage of a substance called CytoD, which was reported to 

be useful for long-term culture of adult cardiac myocytes 41,106. To verify the efficiency of 

this substance, we performed a general screening of cardiomyocyte’s morphology and 

functional properties over long-term culture. As a part of the functional studies, I 

investigated the electrophysiological properties of cardiomyocytes over 3-day culture. 

Application of 40 µM CytoD supplement in culture medium resulted in preservation of 

the morphology, whereas AP characteristics were greatly altered during the culturing 

period. In contrast 0.5 µM CytoD could preserve both structure and function including 

AP characteristics. 

 

4.5.1. CM was reduced in long-term culture  

Several studies showed that cardiomyocytes undergo t-tubular loss over long-term 

culture 106,118,132,201. We also assessed the cardiomyocyte’s morphology using different 

approaches. In one approach the plasma membrane was stained using di-8-ANNEPS, 

which allowed visualizing t-tubular loss after 3 days culture 191. Furthermore, CM was 

also evaluated as a part of these studies since it provides information about plasma 

membrane area including both surface membrane and t-tubular system. The results of 
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CM reduction were in great agreement with the membrane staining and provided 

additional independent support for t-tubular loss (Figure 3.27 and 3.30, black). 

Cardiac t-tubules are regulated by different mechanisms: (i) special proteins such as 

Bin1 84 have been suggested to mediate t-tubular formation and ion channel 

organization in these membrane invaginations (ii) biomechanically sensitive regulatory 

proteins (e.g. JP-1/2) induce appropriate t-tubule/SR interaction 199. 

All kinds of these regulatory molecules might be influenced by long-term culture 

resulting in observed t-tubular loss and CM reduction. 

 

4.5.2. Preservation of AP shape in long-term culture 

The idea to use CytoD came from studies indicating beneficial effects of this substance 

in preserving cardiomyocytes’ morphology 41,106. The reported concentration of 40 µM 

appeared to diminish t-tubular loss in cultured cells that was also reflected in the CM 

measurements (Figure 3.27B).  

While previous studies focused on the t-tubular preservation, in the present study 

different functional properties of the cultured cells were also investigated. Besides 

improvements in the morphological properties, APs were significantly prolonged after 3 

days culture with 40 µM CytoD supplement (Figure 3.29). Moreover, further 

investigation of t-tubular structure showed alterations of the t-tubular arrangement after 

3 days culturing with 40 µM CytoD supplement, a phenomena called “t-tubular 

crowding” 191. Therefore, we decided to explore the potential of CytoD as a culture 

supplement by performing a dose-response assay. We employed an important 

physiological parameter i.e. the amplitude of electrically evoked Ca2+ transients, as the 

readout in these experiments. We found that with respect to global Ca2+ transients 

CytoD at sub-micromolar concentrations (0.5 µM) preserve DIV0 conditions at DIV3 

extremely well 191. 

To further investigate the beneficial effect of the 0.5 µM CytoD supplement on functional 

properties of myocytes, APs were recorded in cultured cardiomyocytes. The AP shape 
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remained unchanged after 3 days in culture with 0.5 µM CytoD (Figure 3.32) together 

with morphological preservation (Figure 3.30, white). Therefore, AP recordings provided 

additional support for 0.5 µM CytoD as an appropriate culture supplement. 

The effects of CytoD on cardiac AP and ion currents are rather unexplored. There are a 

few reports studying the acute effects of CytoD on cardiac ion currents 126,196. 

Undrovinas et al. showed a significant reduction of INa after acute application of 20-40 

µM CytoD 196. CytoD (10 µM) was shown to influence the gating of inwardly rectifying K+ 

channels 126. Alterations in both Na+ and K+ currents would induce changes in the 

amplitude and shape of APs. However we did not find any changes in the shape of APs 

in the presence of 0.5 µM CytoD, but our results can not be compared with previous 

reports of acute CytoD application. Since in our experiments CytoD was only present in 

the culture medium and washed out prior to the experiments. If there had been changes 

of the AP in the presence of CytoD, this effect would have been diminished immediately 

after washout. Furthermore, the discrepancy between our results and previous findings 

can be explained by different concentrations of CytoD used for each study. While 

previous studies mainly used 10 to 80 µM CytoD 126,196 our primary culture benefitted 

from 0.5 µM CytoD supplement. 

Taken together, we conclude that 0.5 µM is the optimal concentration to maximally 

preserve cellular electrophysiology over a culture period of 3 days. This time is sufficient 

for the expression of fusion proteins and genetically encoded biosensors 78,93,201. 

Therefore primary culture of cardiomyocytes with 0.5 µM CytoD supplement can be 

used as an advanced cellular model for genetic as well as pharmacological 

manipulations in vitro.  
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Supplementary table 1: The electrophysiological results of transgenic mice used in 3.1. In the first row of each genotype 
either the results are shown as median with corresponding 25/75 percentiles or as mean ± SEM. In the second row the first 
number shows the animal number, the second number shows the amount of cells. 

 

Genotype CM (pF) VR (mV) 
AP 

Amplitude 
(mV) 

APD30 
(ms) APD50 (ms) APD70 (ms) APD90 (ms) Itoc (pA/pF) 

Gqfl G11- Cre+ Tam- 

145.4 
(128.8/166.4) -73.2 ± 0.7 101.1 ± 4.0 1.5 

(1.2/1.9) 
2.4 

(2.0/3.3) 
4.1 

(3.3/5.6) 
7.9 

(6.4/15.2) 23.8 ± 2.6 

(3/22) (3/16) (3/16) (3/16) (3/16) (3/16) (3/16) (3/20) 

Gqfl G11- Cre+ Tam+ 

128.2 
(96.9/155.1) -73.4 ± 0.5 114.5 ± 1.6 2.0 

(1.2/3.3) 
4.5 

(2.1/7.7) 
8.1 

(3.8/14.3) 
28.1 

(8.8/53.6) 16.6 ± 2.2 

(5/45) (5/31) (5/31) (5/31) (5/31) (5/31) (5/31) (5/24) 

Gqwt G11wt Cre- Tam- 

177.1 
(149.6/219.5) -73.0 ± 0.5 115.2 ± 1.7 1.9 

(1.4/3.6) 
3.9 

(2.7/9.3) 
7.2 

(5.0/15.2) 
19.4 

(12.9/43.1) 19.3 ± 2.0 

(4/33) (4/28) (4/27) (4/27) (4/27) (4/27) (4/27) (4/23) 

Gqwt G11wt Cre- Tam+ 

195.0 
(166.5/297.4) -73.7 ± 0.7 115.0 ± 1.3 1.7 

(1.1/2.3) 
3.9 

(2.02/5.6) 
6.8 

(3.6/9.6) 
40.2 

(10.2/58.5) 25.0 ± 3.5 

(3/25) (3/21) (3/19) (3/19) (3/19) (3/19) (3/19) (3/20) 

Gqfl G11- Cre- Tam- 

128.3 
(102.3/166.3) -73.7 ± 0.5 110.2 ± 2.7 1.1 

(1.0/1.2) 
1.8 

(1.5/2.2) 
3.0 

(2.6/3.5) 
6.0 

(5.2/7.3) 36.3 ± 3.0 

(3/27) (3/22) (3/21) (3/20) (3/20) (3/20) (3/20) (3/21) 

Gqfl G11- Cre- Tam+ 

123.0 
(110.1/195.8) -72.8 ± 0.6 110.4 ± 2.5 1.8 

(1.4/2.8) 
3.0 

(2.4/7.3) 
5.5 

(4.2/10.7) 
18.0 

(8.7/33.6) 23.2 ± 3.5 

(3/22) (3/19) (3/19) (3/18) (3/18) (3/18) (3/18) (3/19) 

Gqwt G11wt Cre+ Tam- 

176.9 
(138.7/192.4) -71.8 ± 0.4 111.2 ± 1.9 2.1 

(1.6/2.4) 
3.8 

(3.0/5.2) 
6.8 

(5.4/9.7) 
16.2 

(11.3/25.6) 16.5 ± 1.8 

(4/30) (4/23) (4/23) (4/22) (4/22) (4/22) (4/22) (4/21) 

Gqfl G11wt Cre- Tam+ 

170.9 
(140.7/215.6) -72.0 ± 0.5 103.4 ± 2.3 2.4 

(1.4/4.0) 
4.4 

(2.6/7.7) 
7.0 

(4.3/12.4) 
24.2 

(9.9/64.4) 16.7 ± 2.0 

(4/32) (4/24) (4/23) (4/23) (4/23) (4/23) (4/23) (4/20) 

Gqfl G11wt Cre+ Tam+ 

183.8 
(168.5/239.8) -75.6 ± 0.5 118.1 ± 2.5 2.6 

(1.2/3.6) 
5 

(2/6.8) 
9.7 

(3.9/16.5) 
41.5 

(21.1/85.8) 20.8 ± 3.5 

(3/22) (3/22) (3/19) (3/19) (3/19) (3/19) (3/19) (3/17) 

Gqwt G11wt Cre- Mig+ 
162.2 

(143.3/184.7) -72.6 ± 1.4 117.2 
(92.1/125.6) 1.9 ± 0.3 3.9 ± 1 7.2 ± 1.7 27.6 ± 8.3 26.1 ± 4 

17/2 9/2 8/2 8/2 8/2 8/2 8/2 11/2 

Gqfl G11- Cre+ Mig+ 
140.3 

(123.7/164.3) 
-72.3 

(-74.5/-70.8) 108.8 ± 2.5 1.5 
(1.2/1.9) 

2.9 
(2.2/3.9) 

5.05 
(3.7/6.9) 

11.8 
(7.3/20.2) 25.5 ± 2.8 

42/4 33/4 33/4 34/4 34/4 34/4 34/4 17/4 
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Supplementary table 2: The electrophysiological results of hyperaldosteronism described in 3.2. In the first row of each genotype the 
results are shown either as median with corresponding 25/75 percentiles or as mean ± SEM. In the second row the first number shows 
the animal number and the second number shows the cell number. 

 

Genotype Cm VR AP 
amplitude TTP APD30 APD50 APD70 APD90 Itoc 

Gqfl G11wt Cre- Tam+ 

207.7 
(164.9/252) 

-74.5 
(-75.5/-71.2) 

107.5 
(96.1/121.9) 

7.2 
(5.7/12.2) 

2. 
(1.2/7.6) 

5.7 
(2.8/15.3) 

14 
(8.1/80.7) 

116.1 
(55.7/168.9) 20.3 ± 1.9 

41/4 36/4 16/4 29/4 15/4 15/4 15/4 15/4 29/4 

Gqfl G11wt Cre- Tam+ 
(Aldo) 

192.7 
(161.6/229.2) 

-76.2 
(-77.7/-74.7) 

123.3 
(115.5/127.7) 

5.7 
(5.1/6.2) 

0.9 
(0.7/2.3) 

2.2 
(1.5/7.2) 

5.1 
(3.2/15.8) 

75.8 
(44.8/110.4) 30.4 ± 2.9 

55/6 54/6 16/6 36/6 15/6 15/6 15/6 15/6 36/6 

Gqfl G11wt Cre+ Tam+ 

188.2 
(155.1/227.3) 

 

-75.9 
(-77.7/-73.5) 

111 
(107.9/124.5) 

6.1 
(5.9/6.4) 

1.5 
(1.2/3.9) 

5.8 
(3.4/15.4) 

13.5 
(7.6/42.3) 

100.5 
(76.9/125.7) 21.4 ± 3 

38/4 41/4 15/4 22/4 22/4 22/4 22/4 22/4 22/4 

Gqfl G11wt Cre+ Tam+ 
(Aldo) 

192.1 
(158.6/235) 

-75.4 
(-77.6/-73.2) 

101.3 
(69.3/130.8) 

6.1 
(5.2/8.1) 

2.6 
(2.1/12.4) 

7.8 
(4.9/22.8) 

23.1 
(16.0/51.4) 

93 
(64.8/151.8) 25.7 ± 2.1 

57/4 50/4 13/4 28/4 28/4 28/4 28/4 28/4 28/4 

Gqfl G11- Cre- Tam+ 

205.9 
(176.3/287) 

-73.4 
(-76.3/-71.1) 

105.7 
(90.3/113.3) 

8.4 
(6.7/9.2) 

1.0 
(0.7/1.4) 

1.9 
(1.4/3.6) 

3.6 
(2.8/8.6) 

66.9 
(33.5/103.8) 42.8 ± 3.6 

33/3 22/3 18/3 24/3 24/3 24/3 24/3 24/3 24/3 

Gqfl G11- Cre- Tam+ 
(Aldo) 

172.8 
(147.1/205.9) 

-75.6 
(-77.3/-73.8) 

103.7 
(88.2/118.7) 

5.9 
(4.9/6.9) 

1.1 
(0.6/6.9) 

3.2 
(1.3/17.4) 

9.7 
(2.9/59.2) 

84.2 
(39.3/137.9) 33.6 ± 4.3 

24/4 23/4 15/4 16/4 14/4 14/4 14/4 14/4 16/4 

Gqfl G11- Cre+ Tam+ 

190.3 
(132.1/238) 

-75.8 
(-77.5/-73.7) 

109.8 
(91.9/116.2) 

6.4 
(5.5/7.3) 

0.7 
(0.5/1) 

1.4 
(1/1.9) 

2.7 
(1.8/3.9) 

28.7 
(16.0/94) 46.5 ± 5.2 

38/3 20/3 14/3 15/3 14/3 14/3 14/3 14/3 15/3 

Gqfl G11- Cre+ Tam+ 
(Aldo) 

134.5 
(111.7/167.1) 

-75.9 
(-78.9/-73.3) 

115.1 
(99/126.2) 

5.2 
(4.8/6.3) 

1.4 
(0.7/4.3) 

3.6 
(1.5/10.7) 

8.2 
(3.1/30.3) 

95 
(32.8/146.4) 28.4 ± 5.1 

23/4 22/4 18/4 16/4 18/4 18/4 18/4 18/4 16/4 
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Supplementary table 3: The results of ICa,L and gain measurements in I/E mice described in 3.3. In the first row of each parameter the 
results are shown either as mean ± SEM or as median with corresponding 25/75 percentiles at 0 mV test potential. In the second row the 
first number shows the animal number and the second number shows the cell number. 

 
 

Parameter  Ctr I/E 

ICa,L 
-2.73 -1.84 

18/3 23/3 

CM 
185.1 ± 11.6 194.1 ± 12.0 

20/3 24/3 

Gain 
0.10 ± 0.02 0.43 ± 0.11 

18/3 19/3 

τ1 
22.6 ± 2.3 17.2 ± 3.8 

17/3 14/3 

τ2 

72.8 
(57.9/84.5) 

86.9 
(61.5/104.1) 

13/3 16/3 

∫ICa,L 
0.088 ± 0.008 0.073 ± 0.007 

17/3 18/3 
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Supplementary table 4: The results of ICa,L and gain measurements in RacET mice described in 3.4. In the first 
row of each parameter the results are shown either as mean ± SEM or as median with corresponding 25/75 
percentiles at 0 mV test potential. In the second row the first number shows the animal number and the second 
number shows the cell number. 
 

Parameter WT RacET 

ICa,L 
-4.41 -5.25 

13/3 8/3 

Gain 
0.08 ± 0.02 0.28 ± 0.1 

14/3 17/3 

τ1 
20.9 ± 1.2 28.4 ± 2 

14/3 21/3 

τ2 

73.9 
(61.3/109.1) 

117.8 
(78.3/260.7) 

14/3 18/3 

∫ ICa,L 
23.2 ± 1.5 13.6 ± 1.6 

12/3 20/3 
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Supplementary table 5: The electrophysiological results of application of 40 µM CytoD culture supplement 
described in 3.5. In the first row of each parameter the results are shown as mean ± SEM. In the second row the 
first number shows the animal number and the second number shows the cell number. 

 

Parameter DIV0 DIV0 DIV3 DIV3 

Cm 
137.9 ± 3.2 139.5 ± 9.6 102.2 ± 6.6 134.4 ± 8.2 

9/3 17/3 14/3 21/3 

VR 
-74.5 ± 0.8 -72.0 ± 0.8 -71.4 ± 0.6 -73.9 ± 0.5 

9/3 16/3 16/3 23/3 

AP amplitude 
99.6 ± 6.5 101.0 ± 4.9 91.3 ± 4.3 106.1 ± 2.5 

8/3 14/3 10/3 21/3 

APD30 
9.3 ± 2.3 8.6 ± 1.7 12.2 ± 4.6 22.3 ± 5.0 

8/3 12/3 12/3 9/3 

APD50 
11.2 ± 1.8 8.9 ± 1.2 12 ± 2.2 39.8 ± 9.4 

8/3 12/3 12/3 9/3 

APD70 
26.3 ± 6.4 20.7 ± 4.0 32.7 ± 10.5 103.4 ± 24.9 

8/3 12/3 12/3 9/3 

APD90 
33.4 ± 5.5 37.1 ± 5.7 40.6 ± 6.7 198.6 ± 51.1 

8/3 12/3 12/3 9/3 
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Supplementary table 6: The electrophysiological results of application of 0.5 µM CytoD culture supplement 
described in 3.5. In the first row of each parameter the results are shown as mean ± SEM. In the second row the 
first number shows the animal number and the second number shows the cell number. 
 

Parameter DIV0 DIV0 DIV3 DIV3 

Cm 
202.8 ± 17.8 199.0 ± 14.5 117.2 ± 6.1 169.5 ± 11.7 

10/3 10/3 11/3 25/3 

VR 
-74.0 ± 0.6 -71.7 ± 0.9 -72.2 ± 1.0 -74.6 ± 0.6 

20/3 10/3 10/3 10/3 

AP amplitude 
103.1 ± 4.2 102.6 ± 4.1 80.2 ± 1.8 100.3 ± 3.5 

18/3 12/3 14/3 10/3 

APD30 
10.5 ± 1.8 9.6 ± 1.6 14.2 ± 4.6 11.0 ± 3.5 

13/3 14/3 7/3 7/3 

APD50 
20.4 ± 3.4 30.6 ± 8.8 18.4 ± 2.9 18.5 ± 5.3 

13/3 14/3 7/3 7/3 

APD70 
30.5 ± 4.9 27.8 ± 4.6 41.2 ± 12.7 26.1 ± 6.7 

13/3 14/3 7/3 7/3 

APD90 
61.8 ± 9.5 149.6 ± 28.2 47.9 ± 8.3 70.2 ± 18.3 

13/3 14/3 7/3 7/3 
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