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Abstract 

Alzheimer’s disease (AD) is characterized by extracellular deposition of amyloid β peptide 

(Aβ) in the brain and intracellular accumulation of tau filaments (Liu Y et al., 2005). 

Microglial activation, triggered by Aβ, acts as a double-edged sword in the pathogenesis of 

AD: on the one hand it damages neurons by releasing neurotoxic inflammatory mediators 

while on the other hand it reduces Aβ-induced neuronal injury by internalizing Aβ (Walter 

Lisa et al., 2009; Hao et al., 2011). The innate immune receptors, e.g. Toll-like receptors 

(TLRs), have been shown to be associated with Aβ-induced microglial inflammatory 

activation and Aβ internalization (Fassbender et al., 2004; Liu Y et al., 2005; Tahara et al., 

2006; Jana et al., 2008; Richard et al., 2008; Reed-Geaghan et al., 2009; Reed-Geaghan et al., 

2010; Hao et al., 2011), but the mechanisms of how TLRs recognize Aβ and initiate cellular 

responses remain unclear.  

In this thesis study, it was shown that Aβ-induced inflammatory cytokine secretion in 

primary cultured tlr2-deficient microglia and bone marrow derived macrophages (BMDMs) 

was much less than that in wild type (WT) cells. Further, the co-localization of TLR2 and 

Aβ42 in microglia was demonstrated through confocal microscopy. Additionally, by utilizing 

real-time surface plasmon resonance spectroscopy and conventional biochemical pull-down 

assay, this study showed direct binding between TLR2 and aggregated Aβ42. Finally, 

expression of TLR2 in endogeneously TLR2-deficient human embryo kidney (HEK-293) 

cells conferred their inflammatory response to an Aβ challenge. Combined, these data show 

that TLR2 is a primary receptor of Aβ42 in microglial and macrophage inflammation. 

TLR2 is known to co-operate with TLR1 and TLR6 in ligand recognition (Medzhitov et 

al., 1997a; Farhat et al., 2008; Jin et al., 2008a). In this study, in order to tell whether TLR1 

or TLR6 is the selective co-receptor for TLR2 in the Aβ42 response,  TLR2 was co-expressed 

with TLR1 or TLR6 in HEK-293 cells. It was found that TLR1 co-expression enhances, while 

TLR6 co-expression decreases the inflammatory response upon Aβ42 triggering. Meanwhile, 

in TLRs endogenously expressing RAW264.7 macrophages, knocking down TLR1 via RNA 

interference was observed to decrease, while knocking down TLR6 was observed to increase 

Aβ-induced inflammatory response. These data suggest that TLR1 is a selective co-receptor 

of TLR2 for Aβ42 recognition.  

Furthermore, in order to uncover the detailed TLR2/TLR1 signaling mechanisms, 

genetically mutated TLR2 and TLR1 were generated and they were either expressed alone or 
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co-expressed in HEK-293 cells. An EKKA (741-744) motif in TLR2 was identified as a 

critical cytoplasmic region to transduce inflammatory signals. Interestingly, the signaling 

dysfunction of TLR2 due to EKKA (741-744)→PQNS motif mutation can be restored by co-

expressing WT TLR1 in a TLR1 tyrosine737 dependent way. The key amino acid residue in 

the TLR2EKKA motif was localized to the lysine at the position of 742. 

More interestingly, even though TLR2-deficiency reduces the Aβ42-induced 

inflammation, the internalization of Aβ42 in tlr2-deficient primary macrophages was 

observed to be increased, which suggests that Aβ42-triggered inflammation and phagocytosis 

are mediated through relatively independent pathways.  

By constructing bone marrow chimeric Alzheimer’s disease amyloid precursor protein 

transgenic mice, it was confirmed that tlr2-deficiency in microglia attenuated 

neuroinflammation in vivo, and that the attenuated neuroinflammation was associated with 

improved neuronal function. This study demonstrates that TLR2 is a primary receptor for Aβ 

to trigger neuroinflammatory activation and suggests that inhibition of TLR2 in microglia 

could be beneficial in AD pathogenesis. 

There are epidemiological studies that suggest that diets enriched with omega-3 

polyunsaturated fatty acids (PUFAs), e.g. docosahexaenoic acid (DHA), reduce risk for AD 

(Barberger-Gateau et al., 2002; Morris et al., 2003; Schaefer et al., 2006). However, the 

underlying mechanism remains unclear. In another part of this thesis study, the role of PUFAs 

in Aβ-triggered macrophage-dominated inflammation and phagocytosis was investigated. It 

was found that, in cultured BMDMs, DHA inhibits Aβ42 aggregate-induced production of 

pro- (e.g. TNF-α and IL-6) but not of anti- (e.g. IL-10) inflammatory cytokines. In order to 

elucidate the mechanisms mediating the anti-inflammatory effects of omega-3 PUFAs, the 

effect of DHA on TLR2, TLR3, TLR4 and TLR9 ligands, as well as interferon-γ-induced 

inflammatory activation was investigated and it was found that DHA supresses all of these 

ligands triggered inflammation in protein level. Interestingly, DHA does not reduce the 

uptake of Aβ aggregates by macrophages.  

In summary, thhis study demonstrates that TLR2 is a primary receptor in Aβ42-triggered 

inflammation. TLR1 enhances, while TLR6 suppresses, Aβ42-induced TLR2 activation. An 

intracellular EKKA motif, especially lysine742 of TLR2, is essential for TLR2 signaling; the 

dysfunction of which can be restored by TLR1. Microglial tlr2-deficiency decreases the Aβ 

pathology and improves cognitive function in AD mice. These findings provide new insight 

into the regulation of Aβ-triggered activation of TLR2 signaling and provide fundamental 

knowledge about AD pathogenesis. Furthermore, the finding that Omega-3 PUFAs reduce 
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Aβ-initiated inflammation (but not reducing phagocytosis in macrophages) provides new 

evidence on the beneficial role of omega-3 PUFA for the prevention of AD.  
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Zusammenfassung 

Die Alzheimer-Krankheit (AK, lat. Morbus Alzheimer) wird durch extrazelluläre Ablagerung 

des Amyloid-beta-Peptids (Aβ) im Gehirn sowie intrazelluläre Akkumulation von Tau-

Filamenten charakterisiert (Liu Y et al., 2005). Die durch Aβ-eingeleitete Aktivierung von 

Mikroglia fungiert als ein zweischneidiges Schwert in der Pathogenese von AK: auf der einen 

Seite schädigt sie Neuronen, indem neurotoxische Mediatoren der Inflammation freigesetzt 

werden, während sie auf der anderen Seite die Aβ-induzierten neuronalen Schäden durch 

Internalisierung des Aβ vermindert (Walter Lisa et al., 2009; Hao et al., 2011). Die 

Rezeptoren der angeborenen Immunität, z.B. Toll-like Rezeptoren (TLRs), wurden in 

Verbindung mit der durch Aβ-eingeleitete inflammatorische Aktivierung der Mikroglia und 

Aβ-Internalisierung gebracht (Fassbender et al., 2004; Liu Y et al., 2005; Tahara et al., 2006; 

Jana et al., 2008; Richard et al., 2008; Reed-Geaghan et al., 2009; Reed-Geaghan et al., 2010; 

Hao et al., 2011), wobei die Mechanismen, auf welche Art und Weise TLRs Aβ erkennen und 

entsprechende zelluläre Antworten einleiten, noch ungeklärt bleiben.  

In dieser Studie wurde festgestellt, dass die Aβ-induzierte Sekretion von 

inflammatorischen  Zytokinen in Primärkulturen von tlr2-defizienten Mikroglia und 

Makrophagen aus dem Knochenmark (BMDMs, eng. bone marrow derived macrophages) 

gegenüber Wildtyp (WT)-Zellen deutlich reduziert ist. Weiterhin konnte die Ko-lokalisation 

von TLR2 und Aβ in Mikroglia mittels konfokaler Mikroskopie gezeigt werden. Zusätzlich  

wurde die direkte Bindung zwischen TLR2 und Aβ42-Aggregaten mit Hilfe der 

Oberflächenplasmonresonanzspektroskopie und des konventionellen pull-down Assays 

nachgewiesen. Schließlich verleiht die Expression von TLR2 menschlichen embryonalen 

Nierenzellen (HEK-293, eng. human embryonic kidney), die endogen TLR2-defizient sind, 

die Fähigkeit, eine inflammatorische Antwort nach Aβ-Stimulation einzuleiten. 

Zusammengefasst zeigen diese Ergebnisse, dass TLR2 ein primärer Rezeptor von Aβ in der 

Immunantwort von Mikroglia und Makrophagen ist.  

Bekannte Interaktionspartner von TLR2 in der Erkennung von Liganden sind TLR1 und 

TLR6 (Medzhitov et al., 1997a; Farhat et al., 2008; Jin et al., 2008a). Um nachzuweisen, 

welcher der beiden der selektive Ko-Rezeptor für TLR2 in der Aβ-induzierten Immunantwort 

ist, wurde TLR2 zusammen mit TLR1 oder TLR6 in HEK-293 exprimiert. Es wurde 

festgestellt, dass die Ko-Expression von TLR1 die Immunantwort auf Aβ verstärkt während 

die Ko-Expression von TLR6 sie abschwächt. Außerdem wurde mit Hilfe von RNA-

Interferenz-Experimenten beobachtet, dass ein Knock-Down von TLR1 die Aβ-induzierte 
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Immunantwort in RAW264.7-Makrophagen vermindert, während ein Knock-Down von 

TLR6 zu einer Erhöhung führt. Diese Daten deuten darauf hin, dass TLR1 der ausgewählte 

Co-Rezeptor für TLR2 in der Erkennung von Aβ ist. 

Zur Entschlüsselung des detaillierten Mechanismus des Signalweges von TLR2/TLR1, 

wurden genetisch mutierte TLR2/TLR1 generiert und entweder TLRs alleine oder gemeinsam 

in HEK-293-Zellen exprimiert. Die EKKA (741-744)-Region des TLR2 wurde als eine 

kritische cytoplasmatische Domäne für die Transduktion des Signals in der Immunantwort 

identifiziert. Interessanterweise wurde herausgefunden, dass eine durch EKKA (741-744) 

PQNS Mutation bedingte Fehlfunktion des TLR2 durch Ko-Expression von WT-TLR1 auf 

einer TLR1 Tyrosin737 abhängige Art und Weise wiederhergestellt werden kann. Die 

Schlüsselaminosäure in der TLR2EKKA Domäne ist auf dem Lysin an der Position 742 

lokalisiert. 

Noch interessanter war die Beobachtung, dass die Internalisierung von Aβ in TLR2-

defizienten primären Makrophagen erhöht ist, obwohl TLR2-Defizienz die Aβ-induzierte 

Immunantwort reduziert ist. Dies deutet darauf hin, dass die Aβ-induzierte Immunantwort und 

Phagozytose über unterschiedliche Signalwege vermittelt werden. 

Mit APP-transgenen Knochenmarkchimären konnte bestätigt werden, dass eine TLR2-

Defizienz in murinen Mikroglia die Neuroinflammation in vivo vermindert und dass diese 

Reduktion der Neuroinflammation von verbesserter neuronaler Funktion begleitet wird. Diese 

Studie weist nach, dass TLR2 ein primärer Rezeptor für Aβ ist, wodurch 

neuroinflammatorische Aktivierung eingeleitet wird und legt nahe, dass eine Inhibition von 

TLR2 in Mikroglia sich positiv auf den Krankheitsverlauf der AK auswirken kann.  

Epidemiologische Studien weisen darauf hin, dass eine Diät reich an Omega-3-

ungesättigten Fettsäuren (PUFAs, eng. polyunsaturated fatty acids), z. B. Docosahexaensäure 

(DHA), das Risiko für AK vermindert (Barberger-Gateau et al., 2002; Morris et al., 2003; 

Schaefer et al., 2006). Jedoch ist der grundlegende pathophysiologische Mechanismus 

weiterhin unklar. In einem anderen Teil diese Studie wurde die Rolle von PUFAs in der Aβ-

induzierten Immunantwort von Makrophagen und Phagozytose untersucht. Es wurde 

herausgefunden, dass DHA die Aβ-induzierte Produktion von pro- (z. B. TNF-α und IL-6), 

jedoch nicht anti-inflammatorischen Zytokinen (z. B. IL-10) in BMDMs inhibiert. Um den 

Mechanismus der anti-inflammatorischen Effekte durch Omega-3-PUFAs aufzuklären, wurde 

nachgewiesen, dass DHA eine durch TLR2, TLR3, TLR4, TLR9 sowie Interferon-γ 

eingeleitete Immunantwort unterdrückt. Interessanterweise reduziert DHA die Aufnahme von 

Aβ-Aggregaten in Makrophagen nicht.  
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Zusammengefasst wurde gezeigt, dass TLR2 ein primärer Rezeptor in der Aβ-induzierten 

Immunantwort ist. TLR1 verstärkt und TLR6 vermindert die Aβ-induzierte TLR2-

Aktivierung. Eine intrazelluläre EKKA Domäne, besonders das Lysin742 des TLR2, ist 

essentiell für die Signalübertragung von TLR2; die Fehlfunktion von TLR2 kann durch TLR1 

wiederhergestellt werden. Mikrogliale Defizienz von TLR2 schwächt die Aβ-Pathologie ab 

und verbessert die kognitive Funktion in AK-Modellmäusen. Diese Ergebnisse liefern neue 

Einblicke in die Regulation der Aβ-eingeleitete Aktivierung des TLR2-Signalweges und 

bieten fundamentale Erkenntnisse über die AK-Pathogenese. Weiterhin zeigten die 

Ergebnisse, dass Omega-3-PUFAs die Aβ-induzierte Immunantwort vermindern und stellen 

einen neuen Anhaltspunkt für die günstige Rolle der Omega-3-PUFAs bei der Prävention von 

AK dar.  

(Thank Mr. Kan Xie and Miss Manuela Gries for translating the English abstract to German) 
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Part I. Toll-Like Receptor 2 is a primary receptor for A ββββ to trigger 

Alzheimer’s inflammatory pathology 
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1 Introduction 

1.1 Alzheimer’s disease: overview  

Alzheimer’s disease (AD) is an irreversible, progressive, brain degenerative disease 

characterized by the insidious onset of dementia. Impairment of memory, judgement, 

attention span and problem solving skills is followed by severe apraxias and a global loss of 

cognitive abilities (Adams et al., 1997). AD primarily occurs after age 60, and is marked 

pathologically by severe cortical atrophy and the triad of senile plaques, neurofibrillary 

tangles and neuropil threads (Adams et al., 1997). This disease is named after German 

psychiatrist and neuropathologist Dr. Alois Alzheimer, who for the first time on November 

3rd, 1906 reported in his lecture “Über eine eigenartige Erkrankung der Hirnrinde (A peculiar 

disease of the cerebral cortex)” at a meeting of psychiatrists in Tübingen (O'Brien, 1996). In 

that lecture, Alzheimer reported the histopathological findings of many abnormal clumps 

(amyloid plaques) and tangled bundles of fibers (neurofibrillary tangles) in the brain of one of 

his female patients named Auguste Deter, who had died of an unusual mental illness (O'Brien, 

1996; Maurer et al., 1997; Goedert et al., 2006) (Figure 1.1). 

 

Figure 1.1. Alzheimer’s disease history. Upper left, a portrait of Dr. Alois Alzheimer (1864-1915) (Goedert et 
al., 2006); upper right, A 1902 photograph shows Dr.Alzheimer’s patient Auguste D’s helplessness (O'Brien, 
1996; Maurer et al., 1997); middle right, Auguste D’s handwriting. She was attempting to write her own name, 
showing “amnestic writing disorder” (Maurer et al., 1997); lower left, extracts from Alzheimer’s notes file of 
Auguste Deter on Nov 29, 1901. When she was chewing meat and was asked what she was doing, she answered 
“potatoes and horseradish”, suggesting loss of recognition (Maurer et al., 1997); lower right, neurofibrillary 
tangles drawn by Alzheimer (Alzheimer, 1911; Maurer et al., 1997). 
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More than a century has passed since Alzheimer’s first report of AD. Currently, 

approximately 10% of people over 65 years old are demented, and about 70% of the 

demented patients suffer from AD. It is estimated that 13.5 million US citizens and 80 million 

people worldwide older than 65 years will develop AD in 2050 (about 4% of the whole 

population) (Szekely et al., 2007; The Lancet, 2010). The rate of AD in those aged 85 and 

older might reach 50% (Evans et al., 1989; Szekely et al., 2007). 

The mortality rate due to AD is also increasing rapidly. The recent WHO data show that 

AD is the 6th leading cause of death in high-income countries (Figure 1.2.) (Table 1.1).  

 

 
Figure 1.2. Age-adjusted death rates for selected leading causes of death: United States, 1958-2007 (Xu JQ 
et al., 2010).  Notes: ICD is the International Classification of Diseases. Circled numbers indicate ranking of 
conditions as leading causes of death in 2007. Source: CDC/NCHS, National Vital Statistics System, Mortality. 

Table 1.1. The 10 leading causes of death in high-income countries (2004) 
High-income countries Deaths in millions  % of deaths  

Coronary heart disease 1.33 16.3 
Stroke and other cerebrovascular diseases 0.76 9.3 
Trachea, bronchus, lung cancers 0.48 5.9 
Lower respiratory infections 0.31 3.8 
Chronic obstructive pulmonary disease 0.29 3.5 
Alzheimer and other dementias 0.28 3.4 
Colon and rectum cancers 0.27 3.3 
Diabetes mellitus 0.22 2.8 
Breast cancer 0.16 2.0 
Stomach cancer 0.14 1.8 

(Source: World Health Organization (WHO) http://www.who.int/mediacentre/factsheets/fs310/en/index.html) 
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However, as yet, no single “magic bullet” is able to prevent or cure AD. On average, 

patients survive from 8 to 10 years after diagnosis. Current AD medications primarily aim to 

support mental functions, to improve behavioral symptoms and to delay the disease 

progression. Moreover, the cost of health care for AD patients is huge and will only continue 

to increase (Table 1.2) (Alzheimer's-association, 2011). Thus, strategies for effective 

prevention and treatment of AD are urgently needed. 

Table 1.2. Average per person payments for healthcare and long-term care services, medicare 

beneficiaries aged ≥≥≥≥65 years, with and without Alzheimer’s disease or other dementia, 2004 medicare 

current beneficiary survey, 2010 dollars (Alzheimer's-association, 2011).  

Average Per Person 
Payments 

Beneficiaries with no Alzheimer's or 
Other Dementias  

Beneficiaries with Alzheimer's or 
Other Dementias  

Total payments* $13,515 $42,072  
Payments from Specified Sources 
Medicare  6720 19,304  
Medicaid  915 8419 
Private insurance 1869 2354 
Other payer  629 662  
HMO  897 523  
Out-of-pocket 2442 3141  
Uncompensated 256 333 

 *Payments by source do not equal total payments exactly due to the effect of population weighting. 

1.2 Pathology 

The pathologic hallmarks of AD are extracellular senile plaques composed of deposits of ~4 

kDa amyloid-β (Aβ) and intracellular neurofibrillary tangles formed by the accumulation of 

abnormally phosphorylated tau filaments in the brain regions that serve memory and cognitive 

function. A prominent neuroinflammatory activation process has also been observed (Citron, 

2010).  

1.2.1 Amyloid β 

There are two major forms of Aβ: 40 or 42 amino acids (aa) long (Aβ40 and Aβ42 

respectively), which are generated by sequential proteolytic cleavage of the transmembrane 

amyloid precursor protein (APP) by β and γ secretases (Figure 1.3). The N terminus of Aβ is 

located in the extracellular domain of APP, 28aa from the transmembrane region, and its C 

terminus is in the transmembrane region. A third group of enzymes, α-secretases, cleave 

between residues 16 and 17, precluding Aβ formation (Goedert et al., 2006). In neurons, 

besides generation on the cell surface, the endoplasmic reticulum (ER) was found to be the 

site for Aβ42 and the trans-Golgi network (TGN) was found to be the site for Aβ40 

generation (Hartmann et al., 1997). Aβ42 is the more amyloidogenic form because of its two 
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additional hydrophobic amino acids that is thought to be the real culprit for AD (Iwatsubo et 

al., 1994; Younkin, 1995; Goedert et al., 2006). In the three-dimensional structure of the Aβ 

fibril, residues 1 to 17 are disordered, and residues 18 to 42 form a β-strand-turn-β-strand 

motif that contains two parallel β sheets formed by residues 18 to 26 and 31 to 42 (Figure. 1.3 

and 1.4) (Goedert et al., 2006; Ahmed et al., 2010).   

   

 

Figure 1.3. Amyloid-β generation (Goedert et al., 2006). (A) Generation of Aβ from the amyloid precursor 
protein (APP). Cleavage by β-secretase generates the N terminus and intramembranous cleavage by γ-secretase 
gives rise to the C terminus of Aβ. Cleavage by α-secretase precludes Aβ formation. (B) Duplication of the APP 
gene and missense mutations (black box) in the APP gene cause inherited forms of AD and cerebral amyloid 
angiopathy. (C) Twenty missense mutations in APP are shown. Single-letter abbreviations for amino acid 
residues: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; 
Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr (modified from (Goedert et al., 2006) ). 

Many factors may influence Aβ generation including the most commonly investigated 

cholesterol (Puglielli et al., 2003) and cholesterol metabolism-related factors such as APOE 

ε4 (Tanzi et al., 2001) and statins (Jick et al., 2000; Fassbender et al., 2001). These studies 

suggest that cholesterol is involved in Aβ generation; high serum cholesterol level is a risk 

factor for AD. Hartmann and colleagues established a cell model to elucidate the relationship 

between γ-secretase and lipid metabolism. In this model, cholesterol upregulates γ-secretase 

activity, Aβ42 decreases the level of sphingomyelin (SM)  by activating the SM degrading 

enzyme, neutral sphingomyelinase (nSMase), and Aβ40 downregulates cholesterol de novo 
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synthesis by inhibiting hydroxymethylglutaryl-CoA reductase (HMGR) activity (Grimm et 

al., 2005; Grösgen et al., 2010). Such a model implies the physiological roles of Aβ in lipid 

metabolism, in addition to its role in copper homeostasis. APP might work as a Cu (I)-binding 

neuronal metallochaperone due to its primary N-terminal Cu-binding domain (CuBD) (Bayer 

et al., 2003). 

Enhanced production and/or reduced clearance may elevate the level of Aβ which, as it 

accumulates, tends to aggregate. Based on assembly states (Figure 1.4 (Ahmed et al., 2010) ), 

Aβ aggregates contain monomers, oligomers (e.g. dimers, trimers, tetramers, pentamers), 

protofibrils and fibrils (Sandberg et al., 2010). However, not all Aβ42 conformations are 

equally toxic and it is still under debate which species are the most toxic. To date, tetramer 

(Bernstein et al., 2009), dodecamer (Bernstein et al., 2009), protofibril, annular assemblies, 

Aβ-derived diffusible ligands (ADDLs), Aβ*56, secreted soluble Aβ dimers and trimers that 

are formed by 2-50 monomers are considered to be the toxic species in AD (Haass et al., 

2007; Demuro et al., 2010); whereas the mature Aβ-amyloid fibers are largely inert (Martins 

et al., 2008). 

 

 
Figure 1.4. Models of the Aβ42 oligomers and fibrils (Ahmed et al., 2010). (a) Schematic of monomer: Solid-
state NMR measurements show that Phe19 is in contact with Leu34, and amide exchange measurements indicate 
solvent-accessible turns at His13-Gln15, Gly25-Gly29 and Gly37-Gly38. (b) Schematic of the Aβ42 pentamer. 
The orientation of the C terminus toward the center of the pentamer is based on solvent accessibility. A similar 
orientation for the hexamer was proposed previously (Bernstein et al., 2009). (c) Three-dimensional image of 
single-touch AFM measurements of Aβ42 oligomers. (d-e) Schematic of the monomer within Aβ42 fibrils (d) 
and the parallel and in-register packing and staggering of the individual β-strands within Aβ42 fibrils (e) (Ahmed 
et al., 2010). 

The Aβ-aggregates damage neuron or synaptic integrity (network) both directly and 

indirectly thereby impairing memory. 
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Aβ alters neuronal Ca2+ homeostasis via disruption of the membrane Ca2+ permeability. 

Three major mechanisms are proposed (Demuro et al., 2010): i. Aβ interacts with endogenous 

plasmalemmal Ca2+-permeable ion channels, such as voltage-gated Ca2+ channels (N, P, and 

Q-VGCC), nicotinic acetylcholine channels (α7 and α4β2 nAChRs), glutamate receptors 

(AMPA and NMDA), dopamine receptors, serotonin receptors (5-hydroxytryptamine type 3), 

and intracellular inositol trisphosphate receptors (IP3Rs), ii. Aβ disrupts membrane integrity 

through the interaction with membrane lipids such as phosphoinositides (Decout et al., 1998), 

phosphatidylglycerol (Terzi et al., 1995), phosphatidylcholine (Avdulov et al., 1997), and 

gangliosides (McLaurin et al., 1998), and iii. the formation of a Ca2+-permeable Aβ pore 

(Arispe et al., 1993; Quist et al., 2005; Inoue, 2008; Demuro et al., 2010). In synaptic 

plasticity, Aβ-aggregates alter Ca2+ concentration in dendrites, either by binding to α7 

nAChRs, or by interacting with L-type VGCC. Increased intracellular Ca2+ could influence 

long-term potentiation (LTP) or long-term depression (LTD) directly or, alternatively, by 

activating extracellular-signal-regulated kinase/mitogen-activated protein kinase (ERK/MAP 

kinase), which subsequently affects LTP and LTD, and alters dendritic architecture through 

cytoskeletal remodelling (Small et al., 2001). 

Aβ is known to activate glial cells in the brain to release neurotoxic mediators such as pro-

inflammatory mediators, Tumor Necrosis Factor-α (TNF-α), Interleukin-1β (IL-1β), IL-6, IL-

8, prostaglandin E2 (PGE2), reactive oxygen species (ROS), nitric oxide (NO), Cox-2 and 

chemokines. These mediators trigger neuronal apoptosis or necrosis (Akiyama et al., 2000; 

Glass et al., 2010; Zotova et al., 2010), as well as synaptic deficits (Medeiros et al., 2007). 

Although astrocytes were reported to release TNF-α, IL-1β, ROS and NO (Hu et al., 1998; 

Schubert et al., 2009), microglia are considered to be the main inflammatory effector cells in 

the central nervous system (CNS).  

1.2.2 Microglia 

Microglia are the resident macrophages in the CNS. A recent study shows that there are 86.1 

± 8.1 × 109 NeuN-positive cells (“neurons”) and 84.6 ± 9.8 × 109 NeuN-negative 

(“nonneuronal”) cells in the adult human brain (Azevedo et al., 2009). The non-neuronal cells 

in the CNS include astrocytes, microglia and oligodendrocytes, approximately 20% of which 

are microglia (Lawson et al., 1990; Santambrogio et al., 2001). 

Microglia are non-uniformly distributed in all major regions of the brain, varying in 

density between different areas (from 5% in the cortex and corpus callosum, to 12% in the 

substantia nigra). Generally, more microglia are found in the gray matter than in the white 



Dissertation: Toll-Like Receptor 2 and Partner Receptors in Alzheimer’s Disease 

 

  
14 

matter. Densely-populated areas include the hippocampus, olfactory telencephalon, basal 

ganglia and substantia nigra (Walter Lisa et al., 2009). The less densely-populated areas 

include fibre tracts, cerebellum and most of the brainstem. The cerebral cortex, thalamus and 

hypothalamus contain average cell-densities (Lawson et al., 1990).  

Microglial cells are the first line of defense in the CNS. They serve as sensors and 

executers of innate immunity within the CNS (Walter Lisa et al., 2009); their morphology 

varies depending on location and activation states (Lawson et al., 1990). Their activation is 

non-specific. Even in the healthy condition, microglia are constantly scanning the CNS 

microenvironment. The wide range of microglial response patterns and the great malleability 

of the microglial phenotype appear to be the result of the cells’ ability to respond in a graded 

manner to changes around them. Therefore, "resting" microglia are actually constitutively 

active cells (Nimmerjahn et al., 2005; Wake et al., 2009; Graeber, 2010). Pathogenic stimuli 

drive the cells to differentiate into active immune complement cells, during which the 

morphology of microglia transforms from a ramified structure to a hyperramified and finally 

to an amoeboid morphology (Walter Lisa et al., 2009). They migrate toward the site of injury 

and release various neuroactive compounds which ultimately result in neuronal injury or 

neuroprotection (Biber et al., 2007; Wake et al., 2009). Furthermore, microglial cells are 

capable of proliferating in response to several stimuli. Most immune receptors including the 

pattern recognition receptors, major histocompatibility complex molecules, and chemokine 

receptors, which are essential to the initiation and propagation of immune responses, are 

constitutively expressed at low levels in microglia. During microglial activation, the 

immunologically relevant molecules are upregulated and inflammatory mediators are 

produced (Walter Lisa et al., 2009). Microglia express several phagocytic receptors (e.g. 

scavenger receptor A (SR-A), CD36, receptor for advanced glycation endproducts (RAGE), 

and CD47) and serve as the professional phagocytes of the CNS (Bamberger et al., 2003). 

Microglia are actively repressed by signals coming from electrically active neurons 

(Neumann, 2001; Walter Lisa et al., 2009); the removal of this tonic inhibition will lead to 

microglial activation (Walter Lisa et al., 2009). Microglial responses in the CNS are 

summarized in Figure 1.5 (Monk et al., 2006). 
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Figure 1.5. Microglia respond to immunological alarm signals in the CNS (Monk et al., 2006). In response 
to factors including cytokines, material from apoptotic cells, viral envelope glycoproteins and aggregated 
proteins (e.g.Aβ), microglia can undergo several different levels of activation, finally resulting in a fully 
functioning phagocytic cell. Activated microglia can be friends or foes to neighboring neurons. As friends, they 
can clear toxic material (apoptotic neurons, protein aggregates), secrete neurotrophic factors such as BDNF and 
protective factors such as glutathione and increase clearance of excitotoxic glutamate by astrocytes. Microglia 
can also secrete potentially neurotoxic molecules such as proinflammatory cytokines (TNF-α, IL-1β), glutamate, 
free radical species and NO (Monk et al., 2006). 

There are some cellular markers to identify microglial cells. Allograft inflammatory factor-

1 (AIF1) or ionized calcium-binding adaptor molecule 1 (Iba-1) is expressed specifically in 

microglia/macrophages (Imai et al., 1996; Ito et al., 1998). CD11b is commonly used as 

another microglial marker in nervous tissue and is implicated in various adhesive interactions 

of monocytes, macrophages and granulocytes as well as in mediating the uptake of 

complement coated particles (Roy et al., 2006). CD11b is the receptor for the fragment of the 

third complement component (CR3) (Capo et al., 2003) and also for fibrinogen, factor X and 

ICAM1 (Feng et al., 1998). 

The origin and renewal of microglial cells is still under discussion (Davoust et al., 2008). It 

is believed that microglia are derived from myeloid precursors in the neuroepithelium at an 

early stage of embryonic development and invade the CNS from the yolk sac during a late 

stage of embryogenesis (Walter Lisa et al., 2009). It is also demonstrated that ramified 

microglia are replenished by bone marrow precursor cells, even in adults (Ritter et al., 2006). 

There is evidence from both patients and animal AD models that bone marrow-derived 

microglia can be recruited to lesion sites in the brain (Malm et al., 2005; Cartier et al., 2009). 

It has even been suggested that the bone marrow-derived microglia have a higher capacity to 

restrict senile plaque formation than their resident counterpartners in AD (Simard et al., 
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2006b). Thus, microglial phenotypes can be modified by changing genetic expression in bone 

marrow cells, although there are still a number of technical issues needing to be addressed 

(Graeber, 2010). Recently, adult microglia were shown to be an ontogenically distinct 

population of mononuclear phagocytes derived from primitive myeloid progenitors that arise 

before embryonic day 8 (Ginhoux et al., 2010), however, this report does not exclude the 

possibility of renewal of microglial cells by peripheral precursor cells in pathogenic states. 

1.2.3 Microglia and Aβ pathogenesis 

Microglial activity is a double-edged sword in AD pathogenesis. On one hand they clear Aβ 

aggregates via phagocytosis and support neuronal survival by releasing neurotrophic 

molecules; on the other hand, they can be overactivated and release cytotoxic substances 

including NO or superoxide and pro-inflammatory cytokines, e.g. interleukin-1β (IL-1β) and 

tumor necrosis factor-α (TNF-α), thereby killing nearby neurons (Walter Lisa et al., 2009; 

Fuhrmann et al., 2010; Heneka et al., 2010) (Figure. 1.6 (Monsonego et al., 2003)). 

 
Figure 1.6. Pathways of microglia activation in Alzheimer's diseases (Monsonego et al., 2003). Microglia are 
ramified morphology in the intact CNS. In response to Aβ deposition in AD, microglial cells are activated and 
differentiate into phagocytic cells (CD11b+) (left), which induce a proinflammatory environment and secrete IL-
1β, TNF-γ, NO, free radicals, chemokines, and activate complement. The NO secreted by CD11b+ cells may 
enhance T cell apoptosis in the CNS. A second pathway for microglial cells is to differentiate into APCs (right), 
which are induced in the presence of GM-CSF and/or IFN-γ secreted by microglia, astrocytes, or other immune 
cells (T cells, macrophages) that infiltrate the CNS. As a result, microglia cells differentiate to dendritic-like 
cells that then may function as APCs for both TH1 and TH2 cells (Monsonego et al., 2003). 

The Aβ-initiated microglial phagocytosis and inflammatory activation are reported to be 

mediated through different but related receptors and signaling pathways. 

Schenk and colleagues (Schenk et al., 1999) reported that either active or passive 

immunization of mice with anti-Aβ antibodies results in the prevention of amyloid deposition 

as well as the removal of pre-existing plaques. This is the result of immunoglobulin receptor 

(FcR)-mediated stimulation of phagocytosis of the deposited fibrillar Aβ by microglial cells. 
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These data clearly demonstrate that microglia have an intrinsic capacity to mount an effective 

phagocytic response.  

To date, RAGE (Yan et al., 1996), SR-A (El Khoury et al., 1996; Paresce et al., 1996), 

scavenger receptors class B, CD36 (Paresce et al., 1996; El Khoury et al., 2003), scavenger 

receptors class B1 (SR-BI) (Thanopoulou et al., 2010), CD14 (Liu Y et al., 2005), α6β1-

integrin (Bamberger et al., 2003), and the integrin associated protein CD47 (Bamberger et al., 

2003)  have been reported to mediate Aβ phagocytosis (Figure 1.7). 

TLR2 (Fassbender et al., 2004; Jana et al., 2008; Udan et al., 2008; Reed-Geaghan et al., 

2009) and TLR4 (Walter S et al., 2007; Udan et al., 2008; Reed-Geaghan et al., 2009) have 

been associated with the Aβ-triggered microglial inflammatory activation. CD14 (Reed-

Geaghan et al., 2009; Reed-Geaghan et al., 2010) and CD36 (Coraci et al., 2002) mediate 

both inflammation and Aβ phagocytosis (Figure 1.7). The in vivo findings in those studies 

were based on either introducing Aβ directly through micro-injection into the cortex of wild-

type and tlr2-deficient mice (Jana et al., 2008); or by cross-breeding the receptor deficient 

mouse with APP transgenic mice (Richard et al., 2008; Reed-Geaghan et al., 2009; Reed-

Geaghan et al., 2010). However, such models were not feasible enough to address microglia 

study, because TLR2 itself reduces injury; for example, by injection-induced 

neuroinflammation (Babcock et al., 2006). Furthermore, TLR2 is expressed in neurons (Rolls 

et al., 2007), which makes it impossible to distinguish whether the outcome was due to TLR2 

deficiency in microglia or non-microglial cells in the cross-breeding model. Moore’s group 

proposed a CD36-TLR4-TLR6 receptor complex for Aβ-triggered inflammation (Stewart et 

al., 2010) based on their in vitro work; however in this study I observed an opposite role of 

TLR6 when it comes to TLR2, which will be addressed in the following sections. 
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Figure 1.7. Schematic diagram of receptors involved in Aβ phagocytosis and inflammation triggering. 
Microglia-mediated Aβ clearance (phagocytosis) and pro-/anti-inflammatory activation play important roles in 
AD pathogenesis. Upon interacting with Aβ through receptors such as CD47, α6β1-integrin, receptor for 
advanced glycation end products (RAGE), scavenger receptor (SR) and CD14, signals were triggered to 
polymerize actin, which is essential for cell adhesion, migration and phagocytosis; CD36, CD14, TLR2 and 
TLR4 were reported to be associated with Aβ-triggered microglial inflammatory activation, which results in the 
activation of NF-κB and the pro-inflammatory cytokines and/or anti-inflammatory cytokines production.  

Despite the known knowledge of microglial inflammation and phagocytosis in the 

pathogenesis of AD, a major unresolved question is whether inhibition of these responses will 

be a safe and efficient way to reverse or slow the disease progression. To address this 

question, it will be necessary to learn the detailed molecular mechanisms by which 

inflammatory responses are induced within the CNS and how these responses ultimately 

contribute to pathology. 

1.3 Toll-like receptor 2 and other Toll-like receptors  

Toll-like receptors (TLRs) are a family of type I transmembrane pattern recognition receptors 

(PRR) with leucine-rich repeat (LRR)-contained ectodomains. TLRs mediate the recognition 

of pathogen-associated molecular patterns (PAMPs) and induce innate immune activation 

(Takeda et al., 2003).  
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1.3.1 History 

“Das war ja toll” 

Although toll-like receptors have only been found for 17 years, they have attrached great 

study interests. The history of TLR study is well documented in a review by Medzhitov 

(Medzhitov, 2009); here only summarize some of the milestones in the research. 

Between 1983-1986, Christiane Nüsslein-Volhard from the Max Planck Institute of 

Developmental Biology in Tübingen observed a weird-looking mutated fruit fly larva in 

which the ventral portion of the body was underdeveloped. She commented “Das war ja 

toll!”, which means “That was weird!” or “that’s cool/great!”, and named the mutated gene 

responsible “Toll”. The normal function of Toll protein is essential for dorso-ventral polarity 

in the fly. The toll gene was one of the serially discovered genes controlling early 

embryogenesis for which Nüsslein-Volhard won the Nobel Prize in 1995 (Anderson et al., 

1984; Anderson et al., 1985a; Anderson et al., 1985b; Hashimoto et al., 1988; Hansson et al., 

2005). 

At the annual Cold Spring Harbor Symposium on Quantitative Biology in 1989, Dr. 

Charles A. Janeway Jr. first presented his ideas on the first line of defense in the host: that 

pattern recognition receptors on immune cells trigger the response against pathogens 

(Janeway Jr, 1989; Medzhitov, 2003). This idea was followed by his ground breaking 

research on the identification of toll-like receptors, which are so named due to their genetic 

similarity to Toll (Medzhitov et al., 1997b). The first toll-like receptor reported in human is 

TIL (now known as toll-like receptor 1), which was described as a product of “randomly 

sequenced cDNA 786” (rsc786) by Nomura and colleagues in 1994 (Nomura et al., 1994). 

Unfortunately, TIL was not found to activate NF-κB (Mitcham et al., 1996). At the same 

time, Hoffmann’s group observed that the drosophila Toll have an essential role in drosophila 

immunity against fungal infection by activating antimicrobial gene expression (Lemaitre et 

al., 1996). In 1997, Janeway and Medzhitov showed that a human homologue of the 

drosophila Toll protein, hToll (now known as TLR4), could activate NF-κB and induce 

expression of IL-1, IL-8, IL-6 and CD80 (Medzhitov et al., 1997b). Because the mammalian 

immune molecule IL-1 receptor and a tobacco resistant N protein had homology to drosophila 

Toll, the intracellular domain of Toll-like receptors was named TIR (Toll-IL-1R-Resistance 

protein) (Gay et al., 1991; Whitham et al., 1994). TLR4, as a LPS sensing receptor, was 

discovered one year later by Bruce A. Beutler and his colleagues (Poltorak et al., 1998) 

through positional cloning. Subsequent studies by Shizuo Akira and many others have 

continuously elucidated the specificities of other TLRs for various microbial ligands (Takeda 
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et al., 2003; Medzhitov, 2009). So far, 12 murine (TLR1-TLR13, with TLR10 being a pseudo 

gene because of a retrovirus insertion) and 10 human (TLR1-TLR10. The TLR11, TLR12 and 

TLR13 have been lost from the human genome) toll-like receptors (TLR1-TLR9 being 

conserved in both species) have been characterized (Shi Z. et al., 2011). TLR signaling 

pathways were elucidated in detail after numerous mice with different toll-like receptor 

knock-outs were generated by Akira and his colleagues (Medzhitov, 2009). 

1.3.2 Structure 

TLRs are expressed not only in innate immune cells, e.g. microglia and macrophages, but also 

in T and B-lymphocytes. They are also expressed in vascular endothelial cells, adipocytes, 

cardiac myocytes and intestinal epithelial cells, etc. (Vandevenne et al., 2010). Human 

microglial cells were reported to express all of the TLRs (TLR1-TLR9) (Olson et al., 2004).   

Each TLR has distinct domains responsible for PAMP recognition and immune signaling 

transduction. As shown in the table 1.3., TLR1, TLR2, TLR4, TLR5, TLR6, TLR11 and 

TLR13 are present on the plasma membrane (Takeuchi et al., 2010; Shi Z. et al., 2011), 

whereas TLR3, TLR7, and TLR9 are compartmentalized in ER. Those TLRs found in the ER 

could avoid unwanted activation of Toll-like receptors by self-nucleotides acting as potent 

TLR ligands (Barton et al., 2009; Takeuchi et al., 2010; Shi Z. et al., 2011). 

Table 1.3. Description of the Toll-like receptors family (Summarized from references (Takeuchi et al., 

2010; Vandevenne et al., 2010; Shi Z. et al., 2011))   

TLR Localization Ligand Origin of the Ligand Adapto r 
TLR1 
(withTLR2) 

Plasma 
membrane 

Triacyl lipoprotein Bacteria MyD88, TIRAP 

TLR2 Plasma 
membrane 

Lipoprotein Bacteria, viruses, 
parasites, self 

MyD88, TIRAP 

TLR3 Endolysosome dsRNA Virus TRIF 
TLR4 Plasma 

membrane 
LPS Bacteria, viruses, self MyD88, TIRAP, 

TRAM and TRIF 
TLR5 Plasma 

membrane 
Flagellin Bacteria MyD88 

TLR6  
(with TLR2) 

Plasma 
membrane 

Diacyl lipoprotein Bacteria, viruses MyD88, TIRAP 

TLR7  
(human TLR8) 

Endolysosome ssRNA Virus, bacteria, self MyD88 

TLR9 Endolysosome CpG-DNA Virus, bacteria, 
protozoa, self 

MyD88 

TLR10 Endolysosome Unknown Unknown Unknown 
TLR11 Plasma 

membrane 
Uropathogenic bacteria, 
Profilin-like molecule 

Protozoa MyD88 

TLR13 Endolysosome Unknown vesicular stomatitis 
virus 

MyD88, TAK1 

TLRs are type I transmembrane proteins. All TLRs share some common structural features 

(Figure 1.8):  they are composed of a variable N-terminal extracellular ectodomain containing 
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16-28 leucine-rich repeats (LRRs) with horseshoe-like shapes that are responsible for the 

detection and interaction with PAMPs. The individual LRR module is 20-30aas long and is 

composed of a conserved “LxxLxLxxN” motif and a variable part (Kobe et al., 2001). The 

hydrophobic core, formed by the conserved leucines and hydrophobic residues in the variable 

regions, extends throughout the entire protein. The LRRNT and LRRCT modules in the N and 

C termini do not have LRR motifs but frequently contain clustered cysteines forming disulfide 

bridges. These modules stabilize the protein by protecting its hydrophobic core from being 

exposed to solvent. The unique horseshoe-like shape is due to conserved sequence patterns in 

the LRR modules. The “LxxLxLxxN” motifs are located in the inner concave surfaces of the 

horseshoe-like structure formed from parallel β strands. The variable parts of the modules 

form the convex surface generated by helices, β turns, and/or loops (Jin et al., 2008a).  

 
Figure 1.8. Schematic representation of the protein structure of Toll-Like Receptors (Vandevenne et al., 
2010). The ectodomain consists in 16–28 leucine-rich repeats that are variable among human TLRs and among 
different species, indicated as grey circle, and involved in the recognition of PAMPs. A cystein-rich domain 
(depicted as two white circles) is present in Drosophila Toll but missing in human TLRs. The ectodomain of the 
IL-1R consists in three immunoglobulin-like domains. All TLRs share an intracellular domain that is indicated 
as a dark grey ellipse. This TIR domain is involved in the signal transduction and is highly conserved among 
human TLRs and among different species (Vandevenne et al., 2010). 
 

The binding of ligands to the extracellular domains of TLRs causes a dimerization of the 

receptors (Heterodimerization: TLR2-TLR1, TLR2-TLR6, TLR7-TLR8, TLR8-TLR9 and 

TLR7-TLR9 (Wang et al., 2006); Homodimerization: TLR2 (Strominger, 2007), TLR3, 

TLR4, TLR5, TLR9 and TLR13 (Ozinsky et al., 2000; O'Neill et al., 2007; Shi Z. et al., 

2011) )  and triggers the recruitment of specific adaptor proteins including MyD88, MAL 

(also known as TIRAP), TRIF, and TRAM to the intracellular TIR domain, thus initiating 

signaling (Kim et al., 2007). These adaptor proteins also contain TIR domains. TIR-TIR 

interactions between receptor-receptor, receptor-adaptor, and adaptor-adaptor are critical for 

activating signaling (O'Neill et al., 2007). 
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The crystal structures of TLR3-double-stranded RNA (dsRNA) (Bell et al., 2005; Choe et 

al., 2005), TLR4-MD-2-endotoxin antagonist Eritoran (Kim et al., 2007), TLR1-TLR2-tri-

acylated lipopeptide (Jin et al., 2007) and TLR2-TLR6-diacylated lipopeptide (Kang et al., 

2009) have been determined. A typical ligand-induced dimerization is shown in Figure 1.9 

(Jin et al., 2007). In these “m”-shaped complexes, the C termini of the extracellular domains 

of the TLRs converge in the middle. This observation suggests the hypothesis that 

dimerization of the extracellular domains forces the intracellular TIR domains to dimerize, 

and this initiates signaling by recruiting intracellular adaptor proteins. Three kinds of ligand-

TLR “m”-shape binding examples are shown in Figure 1.10 (Jin et al., 2008a). Hydrophobic 

ligands of TLR1, TLR2 and TLR4 interact with internal protein pockets of receptors. In 

contrast, dsRNA, a hydrophilic ligand, interacts with the solvent-exposed surface of TLR3.  

 
Figure 1.9. Model of Ligand-Induced Heterodimer of Full-Length TLR1 and TLR2 (Jin  et al., 2007). The 
cell membrane is shown schematically in orange and connecting linker regions are represented by broken lines. 
The structure of the heterodimeric TIR domain is drawn as proposed by Gautam et al. using PDB coordinates 
1FYV and 1FYW (Gautam et al., 2006) and (Xu Yingwu et al., 2000). Distance between the C termini of the 
TLR1 and 2 ectodomains is approximately 40Å. Diameter of the TIR dimer is estimated to be 50Å (Jin et al., 
2007). 
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Figure 1.10. The ‘m’ shaped TLR dimers induced by binding of agonistic ligands (Jin et al., 2008b). 
Dimerization may bring the intracellular TIR domains close together to initiate signaling. (a) Structure of the 
TLR1-TLR2-Pam3CSK4 complex (PDB entry 2Z7X). (b) Structure of the TLR3-dsRNA complex (PDB entry 
3CIY). (c) The model of the TLR4-MD-2-LPS complex proposed by Kim (Kim et al., 2007; Jin et al., 2008b). 

Contrary to the extracellular LRR, the intracellular C-terminal domain of the TLRs (TIR 

domain) is highly conserved; the intracellular domain conducts the transduction signal to the 

nucleus (Vandevenne et al., 2010). The X-ray crystallographic structure of intracellular TIR 

domains of TLR1, TLR2 (Xu Yingwu et al., 2000) and TLR10 (Nyman et al., 2008) have 

been determined, revealing the TIR domains to have a common fold containing a 5-stranded β 

sheet surrounded by 5 α helices. Mutational and modeling studies indicate that the BB loop 

connecting the second β sheet and the second α-helix plays an important role in TIR 

dimerization and/or adaptor recruitment. Mutation Pro681His, in the TLR2 BB loop, 

abolished signal transduction in response to stimulation by yeast and Gram-positive bacteria 

(Underhill et al., 1999). The Pro681His mutation did not cause noticeable structural changes 

but disrupted the physical interaction between the TIR domains of TLR2 and MyD88 (Xu 

Yingwu et al., 2000). Modeling and docking analyses predict that electrostatic 

complementarity plays the main role in the interaction between TIR domains (Gautam et al., 

2006). Interestingly, a recent crystal structure study showed that the BB loop of the TIR 

domain of TLR10 was involved in the homodimeric interaction with a neighboring TIR 

domain in the crystal (Nyman et al., 2008). However, it is not certain whether the 

homodimeric structure seen in the crystal corresponds to a physiologically relevant dimer of 

the TLR10 TIR domains because the TIR domain of TLR10 exists as a monomer in solution. 
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Due to a low affinity between isolated TIR domains in solution, the experimental 

determination of TIR multimer structure was severely hampered (Xu Yingwu et al., 2000). 

Several modeling studies have been performed to predict the structures of TIR multimers. The 

DD loop of TLR2 connecting the fourth β sheet and the fourth α-helix is proposed to be in a 

position in close contact with the BB loop of TLR1 (Gautam et al., 2006; Jin et al., 2008a). 

1.3.3 Toll-like receptor signaling 

Currently, two main toll-like receptor signaling pathways have been described: the MyD88-

dependent signaling pathway and the TRIF-dependent signaling pathway (Figure 1.11) 

(Kawai et al., 2010; Vandevenne et al., 2010). The signaling pathways are cell type-specific, 

thus define different immunological properties. For instance, plasmacytoid dendritic cells 

(pDC) and inflammatory monocytes have unique signaling pathways that govern antiviral 

responses that are probably absent in other cell types such as conventional dendritic cells 

(cDC) and macrophages (Kawai et al., 2006; Barbalat et al., 2009; Kawai et al., 2010). 

1.3.3.1 MyD88-dependent signaling pathway 

Upon ligand recognition, TLR-1, -2, -4, -5, -6, -7 and -9 recruit the adaptor protein MyD88 

via their respective TIR domains (Figure 1.11) (Vandevenne et al., 2010). Once activated by 

the receptor recruition, MyD88 binds the death domain (DD) of the downstream molecule IL-

1 Receptor-Associated Kinase 4 (IRAK4) through homotypic interactions, which results in 

the activation of the other following IRAKs, such as IRAK1 and IRAK2. Phosphorylated 

IRAKs are released from MyD88 and can activate the downstream TNF receptor-associated 

factor 6 (TRAF6), an E3 ligase that catalyzes the synthesis of polyubiquitin linked to Lys63 

(K63) on target proteins, including TRAF6 itself and IRAK1, in conjunction with the dimeric 

E2 ubiquitin-conjugating enzymes Ubc13 and Uev1A (Bhoj et al., 2009; Kawai et al., 2010). 

The K63-linked polyubiquitin chains then bind to the novel zinc finger-type ubiquitin-binding 

domain of TAB2 and TAB3, the regulatory components of the kinase TAK1 complex, to 

activate TAK1 (Kawai et al., 2010). The K63-linked polyubiquitin chains also bind to a 

regulatory component of the IKK complex, NEMO. A complex of TAK1 and IKK forms; this 

allows TAK1 to phosphorylate IKKβ through its close proximity to the IKK complex, which 

leads to NF-κB nuclear translocation and activation via phosphorylation, polyubiquitination 

and degradation of IκBα (Bhoj et al., 2009; Kawai et al., 2010; Vandevenne et al., 2010). In 

the MyD88-dependent pathway, TAK1 simultaneously activates the mitogen-activated protein 

kinases (MAPKs) such as the extracellular signal-regulated kinase (ERK), the c-jun N-

terminal kinase (JNK) and p38 by inducing the phosphorylation (rather than ubiquitination) of 



Dissertation: Toll-Like Receptor 2 and Partner Receptors in Alzheimer’s Disease 

 

  
25 

MAPK kinases, which then activate various transcription factors including activating protein 

(AP)-1 that controls pro-inflammatory gene expression (Vandevenne et al., 2010). In the case 

of the TLR-1, -2, -4 and -6 activation, besides MyD88, another TIR-containing adaptor, the 

TIR-associated protein (TIRAP) (also known as MyD88-adaptor-like (MAL)), serves as a 

linker adaptor to recruit MyD88 to the TLRs (Sheedy et al., 2007; Lin et al., 2010; 

Vandevenne et al., 2010). 

The activation of the MyD88-dependent pathway also induces the transcription of some 

NF-κB modulating molecules as feedback. These molecules include the IκB protein IκBζ that 

functions as an inducible coactivator for the NF-κB p50 subunit to facilitate IL-6 and IL-

12p40 production (Yamamoto et al., 2004); C/EBPδ that can maximize IL-6 production 

together with NF-κB (Litvak et al., 2009); IκB-NS that through modulating the DNA-binding 

capability of the NF-κB p65 subunit suppresses the induction of both IL-6 and TNF-α 

(Kuwata et al., 2006); and ATF3 that by recruiting histone deacetylase restricts NF-κB 

activity (Gilchrist et al., 2006; Kawai et al., 2010). 

1.3.3.2 TRIF-dependent signaling pathway  

The TIR-domain-containing adaptor inducing IFN-β (TRIF) mediated signaling pathway is 

important in TLR3 and TLR4 signaling (Figure 1.11) (Vandevenne et al., 2010). TRIF 

recruits TRAF6 and activates TAK1 for NF-κB activation, probably through ubiquitination-

dependent mechanisms similar to those of the MyD88-dependent pathway (Kawai et al., 

2010). In addition, the TRIF-dependent pathway leads to the activation of the interferon 

regulatory factor 3 (IRF3). TRIF-dependent activation of NF-κB, AP-1 and IRF3 triggers the 

formation of an enhanceosome that permits the expression of IFN-β (Sheedy et al., 2007; 

Vandevenne et al., 2010). Upon LPS stimulation, in addition to TIRAP and MyD88, the 

TLR4 binds to the TRIF-related adaptor molecule (TRAM) which allows the recruitment of 

the TRIF and leads to the activation of the IRF3 (Sheedy et al., 2007). In response to dsRNA 

challenge, TLR3 recruits the adaptor TRIF that interacts with a complex composed of the 

receptor-interacting protein kinase 1 (RIP1), the tumor necrosis factor receptor type 1-

associated death domain protein (TRADD) and the FAS-Associated death domain-containing 

protein (FADD). RIP1 undergoes K63-linked polyubiquitination that permits the activation of 

TAK1, which in turn activates NF-κB and AP-1 (Chen Nien-Jung et al., 2008; Vandevenne et 

al., 2010). TRIF was also reported to recruit a large complex that is comprised of 

TRAF6/TAB2/TAB3/TAK1. As mentioned above, the activated TAK1 induces the activation 
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of the downstream IKK complex and MAP kinases leading to nuclear translocation of the NF-

κB and AP-1 respectively (Kawai et al., 2010; Vandevenne et al., 2010). 
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Figure 1.11. TLR signaling pathways (Kawai et al., 2010; Vandevenne et al., 2010). TLR-mediated responses 
are controlled mainly by the MyD88-dependent pathway, which is used by all TLRs except TLR3, and the TRIF-
dependent pathway, which is used by TLR3 and TLR4. TRAM and TIRAP are sorting adaptors used by TLR4 
and TLR2-TLR4, respectively. In conventional dentritic cell (cDC) and macrophage, MyD88 recruits IRAK4, 
IRAK1, IRAK2 and TRAF6 and induces inflammatory responses by activating NF-κB, MAPK and IRF5. 
TRAF6 activates TAK1 in complex with TAB2 and TAB3 and activates the IKK complex consisting of NEMO 
and IKKαβ, which catalyze IκB proteins for phosphorylation. NF-κB induces C/EBPδ, IκBζ, IκB-NS, Zc3h12a, 
ATF3 and tristeraprolin (TTP), which influence the genes encoding IL-6, IL-12p40 or TNF. TRIF recruits 
TRAF6, TRADD and TRAF3. TRADD interacts with Pellino-1 and RIP1. RIP1 and TRAF6 cooperatively 
activate TAK1, which leads to activation of MAPK and NF-κB. TRAF3 activates the kinases TBK1 and IKKε, 
which phosphorylate and activate IRF3, the latter of which controls transcription of type I interferon. Nrdp1 is 
involved in TBK1-IKKε activation. The TRIF-dependent pathway leads to inflammasome activation during 
TLR4 signaling. In plasmacytoid dendritic cell (pDC), TLR7 and TLR9 recruit MyD88 along with IRAK4 and 
TRAF6, which activate IRF5 and NF-κB for inflammatory cytokine induction and IRF7 for type I interferon 
induction. For IRF7 activation, IRAK1- and IKKα-dependent phosphorylation is required, and TRAF3 is located 
upstream of these kinases. OPN-i is involved in IRF7 activation, and IRF8 facilitates NF-κB activation. The PI 
(3) K-mTOR-p70S6K axis enhances the TLR7 and TLR9 signaling pathways. IRF1 is involved in the induction 
of type I interferon by TLR7 and TLR9 in cDCs rather than pDCs. Among the many negative regulators of TLRs 
that have been identified, TANK (which suppresses TRAF6), A20 (which suppresses TRAF6 and RIP1), 
ATG16A (which suppresses inflammasome activation) and SHP-1 (which suppresses IRAK1 and IRAK2) are 
reported to be indispensable for preventing inflammatory diseases caused by enhanced or prolonged TLR 
signaling. Pink, TLRs; green, stimulators; yellow, negative regulators; blue, target genes (Kawai et al., 2010; 
Vandevenne et al., 2010).  

1.3.4 Toll-like receptor 2: a special TLR  

Of all known TLRs, TLR2 is a special member. Unlike other TLRs, which are functionally 

active as homomers, TLR2 is evolutionary developed to form heteromers with TLR1 or TLR6 

to broaden specificity for the diverse ligand repertoire or to induce different immune 

responses. Comparison of the amino acid sequence reveals that TLR2, TLR1, and TLR6 form 
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a TLR subfamily, which presumably diverged from one common ancestral gene (Farhat et al., 

2008). Among all TLRs, TLR1 and TLR6 have the most sequence identity (66%) of overall 

amino acid sequence and they are both located in chromosome 4. As described in section 

1.3.2 Structure and Figure 1.10., upon ligand binding, unlike other TLRs that typically bind to 

their ligands on the concave surfaces of horseshoe-like extracellular LRR domain, TLR2, as 

well as TLR1/TLR6, binds to ligands in the internal pocket and the outside region at the 

convex region of their horseshoe-like extracellular domain (Brodsky et al., 2007).  
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2 Aim of this work 

Microglial activation triggered by extracellularly-deposited Aβ acts as a double-edged sword 

in the pathogenesis of AD: on one side, it damages neurons by releasing neurotoxic 

inflammatory mediators, while on the other side it reduces Aβ-induced neuronal injury by 

internalizing Aβ (Walter Lisa et al., 2009; Fuhrmann et al., 2010; Heneka et al., 2010). Toll-

like receptors are associated with Aβ-induced microglial inflammatory activation and Aβ 

internalization (Fassbender et al., 2004; Tahara et al., 2006; Walter S et al., 2007; Jana et al., 

2008; Udan et al., 2008; Reed-Geaghan et al., 2009) but the mechanisms remain unclear. The 

aim of this study is to investigate the pathogenic role of TLR2 in AD and to identify the 

detailed molecular mechanisms mediating TLR2-mediated pathology. In detail, this stuy aims 

to answer the following questions: 

1. How does TLR2 interact with Aβ? 

2. How does TLR2 mediate the cellular responses, upon Aβ challenge, by inflammatory 

activation and phagocytosis? 

3. How does TLR2 transduce signals following Aβ challenge? 

4. What are the effects of microglial TLR2 on neuroinflammation, cerebral Aβ load and 

neuronal function in AD animal model? 

The figure 2.1 shows the work flow of the project. 

Furthermore, epidemiological studies suggest that diets enriched with omega-3 

polyunsaturated fatty acids (PUFAs), e.g. docosahexaenoic acid (DHA), reduce risk for AD 

(Barberger-Gateau et al., 2002). Therefore, as a supplemental study, the effects of omega-3 

PUFAs, mainly DHA, on the Aβ-triggered inflammatory and phagocytic responses were 

investigated. This data will be presented in a separate section (Part II. Omega-3 Fatty Acids 

Reduce Alzheimer’s Amyloid Peptide-induced Proinflammatory Activities in Bone Marrow 

Derived Macrophages). 
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Figure 2.1. Schematic diagram of the structure of the project (predominantly work Part I). The 
pathogenesis role of TLR2 in AD was investigated through in vivo and in vitro work, from both inflammation 
and pagocytosis triggered by Aβ. In vitro , about inflammation, (1) i. Through testing the response of primary 
cultured tlr2-deficient microglia to Aβ challenge to tell whether tlr2-deficiency would result in inflammation 
decrease; ii. Through confocal, Biacore and Pull-Down assays to investigate whether TLR2 colocalizes and 
directly interacts with Aβ; iii. Through expressing of TLR2 in endogenously TLR2-deficient HEK-293 cells to 
investigate whether TLR2 expression can confer Aβ-triggered inflammatory response; these data are to answer 
whether TLR2 is a primary receptor of Aβ to trigger inflammation. (2) Mechanismly, i. Through over-expressing 
TLR2/1 and TLR2/6 in HEK-293 cells, and knocking down TLR2, TLR1, and TLR6 via RNA interfering in 
RAW264.7 cells to determine which one of TLR1 and TLR6 might be co-receptor of TLR2 in mediating Aβ-
triggered inflammation; ii. Through testing the responses of domain deleted or motif/point mutated TLRs in 
HEK-293 cells to identify the critical region/site on TLR2 mediating inflammatory response. About 
phagocytosis, in a TLR2-deficient/wt cell cultured systems, investigated the effect of TLR2-deficiency on Aβ 
phagocytosis through FACS and G-actin/F-actin in vivo assay, after co-cultured the cells with Aβ.  In vivo, 
through bone marrow transplantation, a tlr2-deficienct microglia chimeric AD transgenic mouse model was 
generated. On these mice, inflammatory cytokine level in the brain was determined via real-time PCR; microglia 
amount in the brain (hippocampus) was quantified through Iba-1 immunohistochemistry staining, these data tell 
whether TLR2-deficiency changes the inflammatory pathology in vivo; Aβ load in the brain was determined via 
ELISA to tell the effect of TLR2-deficiency on the Aβ load in vivo, which reflect the change of phagocytosis. 
Finally, NeuN immunohistochemistry staining, PSD-95 Western blot and cognitive test were applied to evaluate 
the outcome of TLR2-deficiency in AD.  
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3 Materials and Methods 

3.1 Materials 

3.1.1 Instruments 

Accu-Jet Pipette Controller (BrandTech Scientific, Essex, USA) 

Autoclave V-150, V-2540EL (Systec, Wettenberg, Germany) 

Axiovert 25 inverted microscope (Carl Zeiss Microscopy, Jena, Germany) 

Barnes maze and Ethovision XT, v7.0 system (Noldus Information Technology, Wageningen, 

The Netherlands) 

Biacore J system (Biacore AB, Uppsala, Sweden) 

Biofuge 13 Centrifuge (Heraeus, Hanau, Germany)  

Consort E122 Electrophoresis Power supply (Cleaver Scientific Ltd, Warwickshire, UK) 

DNA Engine Thermal Cycler PTC-200 (Bio-Rad Laboratories, Hercules, USA) 

Eclipse TS100 Inverted Microscope (Nikon Instruments Inc., Melville, USA)  

Electric Heatable, Forceps for Safer Transfer of Tissue Specimens Leica EG F (Leica 

Microsystems Nussloch GmbH, Nussloch, Germany) 

Eclipse E600 fluorescence microscope (Nikon, Alzenau, Germany) 

Epson perfection V700 photo scanner (Epson, Munich, Germany) 

FACSCanto™ II Flow Cytometer (BD Biosciences, San Jose, USA) 

Fixed-angle rotor for Optima MAX series ultracentrifuge MLA-130, TLA-100.3, TLA-100 

(Beckman Coulter, Fullerton, USA) 

Forced-air laboratory freezer (Liebherr, Ochsenhausen, Germany) 

Forced-air laboratory refrigerator (Liebherr, Ochsenhausen, Germany) 

General Rotator, STR4 (Stuart Scientific, Staffordshire, UK) 

HERAcell CO2 incubator (Heraeus, Hanau, Germany) 

HERAcell 150i CO2 Incubator (Thermo Scientific, Langenselbold, Germany) 

Heraeus HERAsafe HS 12 biological safety cabinet (Class II) (Heraeus, Hanau, Germany) 

Heraeus function line heating and drying ovens (Heraeus, Hanau, Germany) 

HERAfreeze -86°C freezer (Heraeus, Hanau, Germany) 

Ice machine (Eurfrigor Ice Makers Srl, Lainate, Italy) 

Incubation hood TH30 and Universal shaker SM30 (Carl Roth GmbH, Karlsruhe, Germany) 

Laboratory balance ALS120-4, EW4200, EW420 (Kern & Sohn, Balingen, Germany) 
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Laboratory centrifuge SIGMA 4K15C (Sigma Laborzentrifugen GmbH, Osterode am Harz, 

Germany) 

Laboratory pH meter InoLab pH 720 (WTW, Weilheim, Germany) 

Leica SM 2000 R Sliding Microtome (Leica Microsystems Nussloch GmbH, Nussloch, 

Germany) 

Leica TP1020 Tissue Processor (Leica Microsystems Nussloch GmbH, Nussloch, Germany)  

Leica EG1150C Cold plate (Leica Microsystems Nussloch GmbH, Nussloch, Germany) 

Leica EG1150 H Heated Paraffin Embedding Module (Leica Microsystems Nussloch GmbH, 

Nussloch, Germany) 

Leica TCS SP5 Confocal microscope (Leica Microsystems Nussloch GmbH, Nussloch, 

Germany) 

Micro-plate reader (TECAN, Sunrise Remote, Männedorf, Switzerland) 

Magnetic stirrer (Ika-Combimag RCO, Namur, Belgium) 

Microscope Zeiss Axio Scope (Carl Zeiss, Göttingen, Germany) 

Midi agarose chamber, horizontal for gel (Neolab, Heidelberg, Germany) 

Mini-PROTEAN® 3 Cell electrophoresis system (Bio-Rad Laboratories, Hercules, USA) 

Mini Trans-Blot cell (Bio-Rad Laboratories, Hercules, USA) 

MLA-130 Rotor, Fixed Angle, Titanium for Ultracentrifuge (Beckman Coulter, Brea, USA)  

Multiband UV table (Peqlab, Karlsruhe, Germany) 

Multipette® plus (Eppendorf, Hamburg, Germany) 

Nanodrop ND-1000 spectrophotometer (Peqlab, Karlsruhe, Germany) 

Nuaire IR AutoFlow NU-2700E Water-Jacketed CO2 Incubator (Plymouth, MN) 

Pipette PIPETMAN P2, P20, P200, P1000 (Gilson, Villiers le Bel, France) 

Pipette Single-Channel 2 µl-20 µl, 10 µl-100 µl, 100 µl-1000 µl (Eppendorf, Hamburg, 

Germany)   

Pipette Pipetus (Hirschmann, Eberstadt, Germany) 

Platform shaker Duomax 1030 (Heidolph, Schwabach, Germany) 

Power supply for electrophoresis system PowerPac 200 (Bio-Rad Laboratories, Hercules, 

USA) 

Precision Balance scale (Sartorius, Goettingen, Germany) 

7500 Fast Real-time PCR System (Applied Biosystems, Carlsbad, USA ) 

Savant DNA 110 SpeedVac System for vacuum centrifuge (Thermo Scientific, 

Langenselbold, Germany) 

Schott KL 750 Illuminator (Schott, Mainz, Germany) 
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Sigma 4K10 bench top centrifuge (Sigma Laborzentrifugen GmbH, Osterode am Harz, 

Germany) 

SmartSpec3000 Spectrophotometer (Bio-Rad Laboratories, Hercules, USA) 

Stretching Table OTS 40(MEDITE GmbH, Burgdorf, Germany) 

Super High pressure Mercury Lamp Power supply (Nikon, Alzenau, Germany) 

Thermoblock TDB-120 (BioSan, Riga, Latvia) 

Thermomixer Comfort (Eppendorf, Hamburg, Germany) 

Ultra-pure water purification system PURELAB Ultra (ELGA, Celle, Germany) 

Ultracentrifuge Optima MAX 130,000 rpm (Beckman Coulter, Fullerton, USA) 

Ultrasonic bath (Transsonic T780, Elma, Singen, Germany) 

Ultrasonic processor UP400S (Hielscher, Teltow, Germany) 

UV/visible spectrophotometer Ultrospec3100pro (Amersham Biosciences, Munich, Germany) 

Vortex Genie 2 (Scientific Industries, Bohemia, USA) 

Vortex-Shaker Reax 2000 (Heidolph, Schwabach, Germany) 

Water bath (Köttermann GmbH & Co KG, Hänigsen, Germany) 

Wild M3 Stereomikroskop (Wild Heerbrugg, Gais, Switzerland) 

XCell SureLock™ Mini-Cell for blotting use Electrophoresis (Invitrogen GmbH, Darmstadt, 

Germany) 

3.1.2 Experimental materials 

Amersham Hyperfilm ECL chemiluminescence film (GE Healthcare, Buckinghamshire, UK) 

Assistent® 12mmø Microscope cover glasses (Glaswarenfabrik Karl Hecht KG, Sondheim, 

Germany), 

BD Falcon™ FACS tubes (Becton, Dickinson and Company, Heidelberg, Germany) 

BD Falcon™ Serological pipet, 5 ml, 10 ml, 25 ml (Becton, Dickinson and Company, 

Heidelberg, Germany) 

BD Plastipak syringe, 1 ml (Becton, Dickinson and Company, Heidelberg, Germany) 

Biosphere filter tips 10 µl, 100 µl, 1000 µl (Sarstedt, Nürnbrecht, Germany) 

Bottle Top Filter 500 ml, 0.22 µm (Sarstedt, Nürnbrecht, Germany)  

Cell Scraper 24 cm, sterile (TPP, Trasadingen, Switzerland) 

Cell strainer with 70 µm nylon mesh, Sterile (BD Biosciences, San Jose, USA) 

Combitips (plus) 5 ml, 10 ml, 12.5 ml (Eppendorf, Hamburg, Germany) 

Cover glasses (Assistant, Sondheim, Germany) 

Cover slips 10 × 10 mm (Marienfeld, Lauda-Königshofen, Germany) 
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Cryopure tubes for cell freezing (Sarstedt, Nümbrecht, Germany) 

Falcon round-bottom tubes 14 ml (BD Biosciences, San Jose, USA) 

15 ml, 50 ml, round bottom 50 ml conical centrifuge tubes (Sarstedt, Nürnbrecht, Germany) 

Immersion Oil "Immersol" 518 F fluorescence free (Carl Zeiss, Göttingen, Germany) 

Isoflurane (Baxter, Unterschleißheim, Germany) 

Laboratory glassware (Schott, Mainz, Germany) 

Microscope slides 76 × 26 mm (Gerhard Menzel, Braunschweig, Germany) 

Multiwell cell culture plate, 6 well, 12 well, 24 well, 48 well, 96 well (Falcon, Becton 

Dickinson labware, Franklin Lakes, NJ) 

Needle microlance 21 G, 24 G, 25 G (B.Braun, Melsungen AG) 

96-well microtest plates (Sarstedt, Nürnbrecht, Germany) 

NI-NTA Spin Columns (Qiagen, Hilden, Germany) 

NuncBlack microwell (Thermo Fisher Scientific, Roskilde, Denmark) 

NuPAGE® Novex 4-12% Bis-Tris Gel 1.0 mm, 15 well (Invitrogen, Karlsruhe, Germany) 

Pageruler prestained / unstained protein ladder (Fermentas, St. Leon-Rot, Germany) 

Parafilm M all-purpose laboratory film (Pechiney Plastic Packaging, Chicago, USA) 

Pasteur pipettes plain glass (VWR International, Leicestershire, UK) 

PCR SoftTube, 0.2 ml (Biozym Scientific, Oldendorf, Germany) 

PH-indicator Strips pH 0 - 14 universal indicator (Merck, Darmstadt, Germany) 

Petri Dish Polystyrene 92 × 16 mm with Ventilation Cams (Sarstedt, Nürnbrecht, Germany) 

Pipette tip 10 µl, 200 µl, 1000 µl (Sarstedt, Nürnbrecht, Germany) 

ProGel-P Tris.Tricine 10-20% gel(Anamed elektrophorese GmbH, Gross-Bieberau, Germany) 

Protran Nitrocellulose transfer membrane Protran BA83, 0.2 µm (Whatman, Dassel, 

Germany) 

Safe-Lock micro test tube 2.0 ml (Eppendorf, Hamburg, Germany) 

SafeSeal micro tube 1.5 ml (Sarstedt, Nürnbrecht, Germany) 

Sensor chip NTA (Biacore AB, Uppsala, Sweden) 

Sterile insulin syringe 1ml (Becton, Dickinson and Company, Heidelberg, Germany) 

Surgical Blades, sterile (B Braun, Tuttlingen, Germany) 

Syringe filter 0.22 µm Rotilabo (Carl Roth, Karlsruhe, Germany) 

Syringe, 2 ml, 5 ml, 10 ml, 20 ml (B Braun, Tuttlingen, Germany) 

Thickwall Polycarbonate 1ml 11 × 34 mm Tubes for Ultracentrifuge (Beckman Coulter, Brea, 

CA) 

Tissue culture flask, PE Phenolie style cap, 75 cm², 175 cm² (Sarstedt, Nürnbrecht, Germany) 
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Tissue culture dish 100 × 20 mm (Sarstedt, Nürnbrecht, Germany) 

Tissue culture dish 60 × 15 mm (BD Falcon, BD Biosciences, Durham, USA) 

Tube 13 ml for bacteria culture (Sarstedt, Nürnbrecht, Germany) 

UV quartz cuvette 10 mm (Hellma, Müllheim, Germany) 

3.1.3 Experimental kits and systems 

BD OptEIA™ TMB Substrate Reagent Set (BD Biosciences, San Diego, USA) 

BIAmaintenance kit (Biacore AB, Uppsala, Sweden) 

DyNAmo™Flash probe qPCR kit (FINNZYMES, Espoo, Finland) 

DyNAmo colorflash SYBR Green qPCR kit (FINNZYMES, Espoo, Finland)  

Endo Free Plasmid Maxi Kit (Qiagen, Hilden, Germany) 

G-actin/F-actin in Vivo Assay Kit (Cytoskeleton, Inc., Denver, USA) 

High pure plasmid isolation kit (Roche, Mannheim, Germany) 

Human β Amyloid 1-40 Colorimetric immunoassay kit (Invitrogen, Camarillo, USA) 

Human β Amyloid 1-42 Colorimetric immunoassay kit (Invitrogen, Camarillo, USA) 

IL-6 DuoSet® ELISA kit (R&D Systems, Minneapolis, USA) 

Limulus Amebocyte Lysate (LAL) QCL-1000® kit (CAMBREX Bio Science, Walkersville, 

USA) 

OptEIA Human IL-8 ELISA Set (BD Biosciences, San Diego, USA) 

Protein Assay Reagent (Bio-Rad Laboratories, Hercules, USA)  

PureLink™ HiPure plasmid maxiprep kit (Invitrogen, Darmstadt, Germany) 

QIAprep spin miniprep kit (Qiagen, Hilden, Germany) 

QIAquick PCR purification kit (Qiagen, Hilden, Germany) 

QIAquick gel extraction kit (Qiagen, Hilden, Germany) 

QuantiTect® SYBR®Green PCR Kit (Qiagen, Hilden, Germany) 

Rneasy Plus Mini Kit (Qiagen, Hilden, Germany) 

RQ1 RNase-Free DNase Kit (Promega, Madison, WI) 

SuperScript® II Reverse Transcriptase (Invitrogen, Darmstadt, Germany) 

SYBR® Advantage® qPCR Premix (Clontech, Mountain View, USA) 

TaKaRa LA Taq™ Hot Start Version (TAKARA BIO INC. Shiga. Japan) 

Tetra-His HRP conjugate Kit (Qiagen, Hilden, Germany) 

TNF-α/ TNFSF1A DuoSet® ELISA kit (R&D Systems, Minneapolis, MN) 

VectaStain Elite ABC kit (Vector Laboratories Inc.Burlingame, USA) 
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3.1.4 Chemicals, reagents and customized services 

Alexis Biochemicals, Lausen, Switzerland: Pam3CSK4 

Bachem, Heidelberg, Germany: FITC-conjugated Aβ42, Aβ42-1, Ac-DEVD-AMC 

Biozym Scientific, Oldendorf, Germany: Biozym LE Agarose 

Carl Roth, Karlsruhe, Germany: 2-Propanol, Acrylamide/Bisacrylamide Rotiphorese Gel 

30, Agar, Agarose, Ammonium chloride, Ampicillin, Antipain, Bis-Tris, Bromophenol blue, 

Calcium chloride, Chloramphenicol, Coomassie brillant blue G 250, Coomassie brillant blue 

R 250, Di-potassium hydrogen phosphate, Di-sodium hydrogen phosphate, Dithiothreitol 

(DTT), EDTA, EGTA, Ethanol, Ethidium bromide 1%, Glycerol, Hydrochloric acid, HEPES, 

Imidazole, Lactose, Magnesium chloride, Methanol, Phosphoric acid, PIPES, Potassium 

acetate, Potassium chloride, Potassium di-hydrogen phosphate, Potassium hydroxide, 

Powdered milk, Sodium acetate, Sodium chloride, Sodium di-hydrogen phosphate, Sodium 

dodecyl sulfate(SDS), Sucrose, Sodium hydroxide, Sodium sulfate, Sulfuric acid, 

Trichloroacetic acid, Tris, Triton X-100, TWEEN 20 

Fermentas, St. Leon-Rot, Germany: IPTG, PageRuler Prestained Protein Ladder, 

MassRuler™ Express HR Reverse DNA Ladder, O'GeneRuler™ Express DNA Ladder,  

GE Healthcare, Freiburg, Germany: Amersham ECL Plus Western blot detection reagents, 

Surfactant P20 (10%v/v, 0.22 µm filtered for biacore use) (Uppsala, Sweden), Glycine 2.0(10 

mM Glycine-HCl, pH2.0) 

Hedinger, Stuttgart, Germany: Aceton, Isopropanol, Xylol 

Invitrogen, Darmstadt, Germany: Antibiotic-Antimycotic (100X) liquid, Dulbecco’s 

Modified Eagle Medium (DMEM) (High Glucose), Geneticin(G418), Lipofectamine™ LTX 

Transfection Reagent, Lipofectamine™ 2000 Transfection Reagent, Opti-MEM I Reduced 

Serum Medium, ProLong® Gold antifade reagent with DAPI, RPMI 1640 Medium, Stealth 

RNAi™ synthesizing service, 0.05% Trypsin-EDTA, Trizol 

InvivoGen, San Diego, USA: Pam2CSK4 

Kodak, Rochester, USA: GBX Developer and Replenisher, GBX Fixer and Replenisher 

Merck, Darmstadt, Germany: 2-Mercaptoethanol, Ammonium acetate, Ammonium 

persulfate, Chloroform, Citric acid monohydrate, Entellan® Neu, Magnesium acetate, 

Magnesium sulfate, Potassium chloride, Sodium carbonate, Sodium cyanoborohydride, 

Sucrose 

New England Biolabs, Ipswich, USA: ColorPlus Prestained Protein Marker, Broad Range 

(7-175 kDa) 

Otto Fishar GmBH, Saarbrueken, Germany: H2O2 (30%) 
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PAN Biotech GmbH, Aidenbach, Germany: Fetal bovine serum-South America, Ham’s 

F12 Medium (with L-Glutamine, without phenol red, with 25 mM Hepes, with 1.176 g/l 

NaHCO3), Hygromycin B 

Perkin Elmer: Western lightning plus-ECL: Oxidizing reagent plus and Enhanced luminol 

reagent plus  

Qiagen, Hilden, Germany: Ni-NTA agarose 

R&D systems, Minneapolis, USA: Recombinant human IGF-I R, recombinant mouse TLR1 

, recombinant human TLR2, recombinant human TLR3 ( all 10 × Histidine-tagged at C-

terminus) 

Roche, Mannheim, Germany: dNTP mix (10 mM each), Protease inhibitor cocktail tablets 

Seqlab, Göttingen, Germany: DNA sequencing service 

Sigma-Aldrich Chemie, Steinheim, Germany: Albumin from bovine serum (Bovine serum 

albumin, BSA), bromophenol blue, Dimethyl sulfoxide (DMSO), Ethanol, Formamide, 

Glutathione,  LB Broth, LB Agar, Methyl-β-cyclodextrin, Mowiol, N,N-Dimethylformamide, 

N,N,N’,N’-Tetramethylethylenediamine (TEMED), Kanamycin, Oligonucleotides 

synthesizing service, 1,1,1,3,3,3-Hexafluoro-2-propanol (Hexafluoroisopropanol,HFIP), 

Paraformaldehyde (PFA), Phenylmethanesulphonylfluoride (PMSF), Poly-L-lysine (PLL), 

Polyethylene glycol 8000 (PEG8000), Sodium citrate, Sodium carbonate, TWEEN 20, 2-

Mercaptoethanol, (3-Aminopropyl) triethoxysilane, Triton X-100, HEPES 

3.1.5 Media 

3.1.5.1 Bacterial media and antibiotics 

LB-Broth medium LB Broth 20 g 

 Dissolve in 1 l diH2O, autoclave. 

 

LB-Broth-Agar plates LB Agar 35 g 

 

Dissolve in 1 l diH2O, autoclave. Cool the agar to 50°C. Add 1 

ml antibiotic (1:1,000) if applicable and pour into petri dishes. 

Store at 4°C. 

Ampicillin Ampicillin 100 mg 

100 mg/ml (1,000× ) Dissolve in 1 ml diH2O, filter-sterilize. Store at –20°C. 

 

Kanamycin Kanamycin 25 mg 

25 mg/ml (1,000× ) Dissolve in 1 ml diH2O, filter-sterilize. Store at –20°C. 
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3.1.5.2 Media for cell culture 

DMEM 
Dulbecco’s Modified Eagle 

Medium(DMEM)(High Glucose) 
445 ml 

 
Fetal bovine serum(56°C water bath, 30 

min inactivated) 
50 ml 

 Antibiotic-antimycotic (100× ) 5  ml 

 Filter with 0.22 µm bottle Top Filter. Store at 4°C 

 

RPMI RPMI 1640 Medium 445 ml 

 
Fetal bovine serum(56°C water bath, 30 

min inactivated) 
50 ml 

 Antibiotic-antimycotic (100× ) 5  ml 

 Filter with 0.22 µm bottle Top Filter. Store at 4°C 

3.1.6 Enzymes 

Klenow enzyme (Roche, Mannheim, Germany) 

Restriction enzymes (Fermentas, St. Leon-Rot, Germany; NEB, Frankfurt, Germany and 

Roche, Mannheim, Germany) 

T4 DNA ligase (Roche, Mannheim, Germany) 

3.1.7 Antibodies 

Table 3.1. Antibodies used in this work 

Antigen Usage (Dilution) Species Type Source 

Alpha Tubulin 1:10,000 for WB Mouse Monoclonal Abcam, Cambridge, UK 

Human Aβ 
1:500 for confocal; 
1:2500 for WB 

Mouse Monoclonal WO-2 
Millipore, Schwalbach/Ts, 

Germany 
Human beta 
Amyloid 

1:50 for IHC Mouse Monoclonal clone 6F/3D Dako, Hamburg, Germany 

Human TLR2 1:1000 for WB Goat Polyclonal 
R&D systems, Minneapolis, 

US 

Mouse-Iba-1 1:500 FOR IHC Rabbit Polyclonal 
Wako pure Chemical 

Industries Ltd, Osaka, Japan 
Mouse TLR2  1:500 for confocal Rabbit  Polyclonal Abcam, Cambridge, UK 
NeuN 1:50 for IHC Mouse Monoclonal Millipore. Temecula, CA 
PSD-95 1:2000 for WB Mouse Monoclonal Abcam, Cambridge, UK 

Mouse IgG 1:1000 Goat 
Peroxidase-conjugated 
antibody 

Sigma-Aldrich 
Munich, Germany 

Rabbit IgG 1:1000 Goat 
Peroxidase-conjugated 
antibody 

Sigma-Aldrich 
Munich, Germany 

3.1.8 Oligonucleotides 

Table 3.2. Oligonucleotides used for RNAi silence 

Target gene Stealth RNAi sequences 
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Sense Anti-sense 
Mouse Tlr1 GAC AUC CUC UCA UUG UCC AAG CUG 

A  
UCA GCU UGG ACA AUG AGA GGA UGU 

C  
Mouse Tlr2 CCG CUC CAG GUC UUU CAC CUC UAU 

U 
AAU AGA GGU GAA AGA CCU GGA GCG 

G 
Mouse Tlr6 CCA AUA CCA CCG UUC UCC AUU UGG 

U  
ACC AAA UGG AGA ACG GUG GUA UUG 

G 
RNAi 
control 

CCG GAC CUC UGA CUU CUC CUU CAU 
U 

AAU GAA GGA GAA GUC AGA GGU CCG 
G 

 

Table 3.3. Primers for human TLRs / mouse CD44 and mutants expression constructs in pIRES vector 

Constr
uct 
name 

Forward primer for 5' 
segment amplification 

Reverse primer for 
5' segment 

amplification 

Forward primer 
for 3' segment 
amplification 

Reverse primer for 3' 
segment amplification 

TLR1 CTAGCTAGCTAGCC
ACCATGACTAGCAT

CTTCCATTT 

  CCCGACGCGTCGGCTA
TTTCTTTGCTTGCTCTG

TCAGCTT 
TLR2 CTAGTCTAGACTAG

GCCACCATGCCACA
TACTTTGTGGATG 

  ATAGTTTAGCGGCCGC
ATTCTTATCTAGGACTT
TATCGCAGCTCTCAG 

TLR6 CTAGCTAGCTAGCC
ACCATGACCAAAG

ACAAAGAACC 

  CCCGACGCGTCGGTTA
AGATTTCACATCATTG

TTTTCAG 
mCD44 CTAGTCTAGACTAG

GCCACCATGGACAA
GTTTTGGTGGCA 

  ATAGTTTAGCGGCCGC
ATTCTTATCTACACCCC

AATCTTCATGTCCAC 
TLR2L
RR3-
4de 

CTAGTCTAGACTAG
GCCACCATGCCACA
TACTTTGTGGATG 

ATTTGTGAGATG
AGAAAAAGAAT

CTTCCTCTAT 

GATTCTTTTTCTC
ATCTCACAAAAT

TGCAAATCC 

ATAGTTTAGCGGCCGC
ATTCTTATCTAGGACTT
TATCGCAGCTCTCAG 

TLR1L
RR3-
4de 

CTAGCTAGCTAGCC
ACCATGACTAGCAT

CTTCCATTT 

TTGAGACATATT
TTTGAAAACACT

GATATC 

AGTGTTTTCAAA
AATATGTCTCAA

CTAAAAT 

CCCGACGCGTCGGCTA
TTTCTTTGCTTGCTCTG

TCAGCTT 
TLR6L
RR3-
4de 

CTAGCTAGCTAGCC
ACCATGACCAAAG

ACAAAGAACC 

TTGTGATAAGTT
CTTGAAAACACT

TAAATCA 

AGTGTTTTCAAG
AACTTATCACAA

CTGAATT 

CCCGACGCGTCGGTTA
AGATTTCACATCATTG

TTTTCAG 
TLR2L
RR7-
9de 

CTAGTCTAGACTAG
GCCACCATGCCACA
TACTTTGTGGATG 

TCCAGAAATCTG
CTTCAAACTTTT

TGGCTCAT 

AAAAGTTTGAAG
CAGATTTCTGGA

TTGTTAG 

ATAGTTTAGCGGCCGC
ATTCTTATCTAGGACTT
TATCGCAGCTCTCAG 

TLR1L
RR7-
9de 

CTAGCTAGCTAGCC
ACCATGACTAGCAT

CTTCCATTT 

AGTTGTATGCCA
AAGGCCCTCAG

GGTCTTCT 

CCTGAGGGCCTT
TGGCATACAACT

GTATGGT 

CCCGACGCGTCGGCTA
TTTCTTTGCTTGCTCTG

TCAGCTT 
TLR6L
RR7-
9de 

CTAGCTAGCTAGCC
ACCATGACCAAAG

ACAAAGAACC 

AGGTTTGGGCCA
TAGACTTTCTGT

CTCATTT 

ACAGAAAGTCTA
TGGCCCAAACCT

GTGGAAT 

CCCGACGCGTCGGTTA
AGATTTCACATCATTG

TTTTCAG 
TLR2L
RR10-
11de 

CTAGTCTAGACTAG
GCCACCATGCCACA
TACTTTGTGGATG 

TCTTTCTGTAAG
ATTCAAAAGTTT

CATAACCT 

AAACTTTTGAAT
CTTACAGAAAGA

GTTAAAA 

ATAGTTTAGCGGCCGC
ATTCTTATCTAGGACTT
TATCGCAGCTCTCAG 

TLR1L
RR10-
11de 

CTAGCTAGCTAGCC
ACCATGACTAGCAT

CTTCCATTT 

GTTCATATTCGA
AACCAGCTGGA

GGATCCTA 

CTCCAGCTGGTT
TCGAATATGAAC

ATCAAAA 

CCCGACGCGTCGGCTA
TTTCTTTGCTTGCTCTG

TCAGCTT 
TLR6L
RR10-
11de 

CTAGCTAGCTAGCC
ACCATGACCAAAG

ACAAAGAACC 

GTTCATCTCAGA
AAGAAATTGAA

AGACTCTG 

TTCAATTTCTTTC
TGAGATGAACAT

TATGAT 

CCCGACGCGTCGGTTA
AGATTTCACATCATTG

TTTTCAG 
TLR2L
RR12-
14de 

CTAGTCTAGACTAG
GCCACCATGCCACA
TACTTTGTGGATG 

GTTTTTCAGAGT
TGAATATAAAGT

GCTCAGA 

ACTTTATATTCA
ACTCTGAAAAAC

TTGACTA 

ATAGTTTAGCGGCCGC
ATTCTTATCTAGGACTT
TATCGCAGCTCTCAG 

TLR1L
RR12-

CTAGCTAGCTAGCC
ACCATGACTAGCAT

AGACTTCATCTG
AAAGATTTCATA

TATGAAATCTTT
CAGATGAAGTCT

CCCGACGCGTCGGCTA
TTTCTTTGCTTGCTCTG
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14de CTTCCATTT GATATAAC CTGCAAC TCAGCTT 

TLR6L
RR12-
14de 

CTAGCTAGCTAGCC
ACCATGACCAAAG

ACAAAGAACC 

AGAAGGCATAT
CAAACACGGTGT

ACAAAGCT 

TACACCGTGTTT
GATATGCCTTCT

TTGGAAA 

CCCGACGCGTCGGTTA
AGATTTCACATCATTG

TTTTCAG 
TLR2L
RRCTd
e 

CTAGTCTAGACTAG
GCCACCATGCCACA
TACTTTGTGGATG 

AGACACCAGTG
CAATGAAGTTAT

TGCCACCAG 

AATAACTTCATT
GCACTGGTGTCT

GGCATGTG 

ATAGTTTAGCGGCCGC
ATTCTTATCTAGGACTT
TATCGCAGCTCTCAG 

TLR1L
RRCTd
e 

CTAGCTAGCTAGCC
ACCATGACTAGCAT

CTTCCATTT 

GACGATCAGCA
GTTGGAATGGAT

TGTCCCCTG 

AATCCATTCCAA
CTGCTGATCGTC

ACCATCG 

CCCGACGCGTCGGCTA
TTTCTTTGCTTGCTCTG

TCAGCTT 
TLR6L
RRCTd
e 

CTAGCTAGCTAGCC
ACCATGACCAAAG

ACAAAGAACC 

GACGATCAGCA
GTTGGAATGGAT

TGTCCCCT 

AATCCATTCCAA
CTGCTGATCGTC

ACCATCG 

CCCGACGCGTCGGTTA
AGATTTCACATCATTG

TTTTCAG 
TLR1Y
737N 

CTAGCTAGCTAGCC
ACCATGACTAGCAT

CTTCCATTT 

CTAGGAATGGA
GTTCTGCGGAAT

GG 

CCATTCCGCAGA
ACTCCATTCCTA

G 

CCCGACGCGTCGGCTA
TTTCTTTGCTTGCTCTG

TCAGCTT 
TLR1S
S741N
K 

CTAGCTAGCTAGCC
ACCATGACTAGCAT

CTTCCATTT 

TGAGCTTGTGAT
ACTTGTTAGGAA

TGGAGT 

TACTCCATTCCT
AACAAGTATCAC

AAGCTCA 

CCCGACGCGTCGGCTA
TTTCTTTGCTTGCTCTG

TCAGCTT 
TLR6N
742Y 

CTAGCTAGCTAGCC
ACCATGACCAAAG

ACAAAGAACC 

GGAATGCTGTAC
TGTGGAATGGGT

TCC 

CCCATTCCACAG
TACAGCATTCCC

AAC 

CCCGACGCGTCGGTTA
AGATTTCACATCATTG

TTTTCAG 
TLR2E
KKA74
4PQNS 

CTAGTCTAGACTAG
GCCACCATGCCACA
TACTTTGTGGATG 

CTGGGGAATGG
AATTTTGCGGAA

TGGGCTCC 

GAGCCCATTCCG
CAAAATTCCATT

CCCCAGC 

ATAGTTTAGCGGCCGC
ATTCTTATCTAGGACTT
TATCGCAGCTCTCAG 

TLR2P
631A 

CTAGTCTAGACTAG
GCCACCATGCCACA
TACTTTGTGGATG 

GGAGCTTTCCTG
GCCTTCCTTTGG

C 

GCCAAAGGAAG
GCCAGGAAAGCT

CC 

ATAGTTTAGCGGCCGC
ATTCTTATCTAGGACTT
TATCGCAGCTCTCAG 

TLR2S
636QY
641F 

CTAGTCTAGACTAG
GCCACCATGCCACA
TACTTTGTGGATG 

TGCATCAAAGCA
GATGTTCCTCTG
GGGAGCTTTCC 

GGAAAGCTCCCC
AGAGGAACATCT
GCTTTGATGCA 

ATAGTTTAGCGGCCGC
ATTCTTATCTAGGACTT
TATCGCAGCTCTCAG 

TLR6Y
663N 

CTAGCTAGCTAGCC
ACCATGACCAAAG

ACAAAGAACC 

CTTTTTCTAGGT
TAGGTACCAATT

CAC 

GAATTGGTACCT
AACCTAGAAAA

AGAAG 

CCCGACGCGTCGGTTA
AGATTTCACATCATTG

TTTTCAG 
TLR2S
692C 

CTAGTCTAGACTAG
GCCACCATGCCACA
TACTTTGTGGATG 

GGCTCTTTTCAA
TGCAGTCAATGA

TATTG 

CAATATCATTGA
CTGCATTGAAAA

GAGCC 

ATAGTTTAGCGGCCGC
ATTCTTATCTAGGACTT
TATCGCAGCTCTCAG 

TLR2E
741P 

CTAGTCTAGACTAG
GCCACCATGCCACA
TACTTTGTGGATG 

AATGGCTTTTTT
CGGAATGGGCTC

CAG 

CTGGAGCCCATT
CCGAAAAAAGC

CATT 

ATAGTTTAGCGGCCGC
ATTCTTATCTAGGACTT
TATCGCAGCTCTCAG 

TLR2K
742Q 

CTAGTCTAGACTAG
GCCACCATGCCACA
TACTTTGTGGATG 

GGGAATGGCTTT
TTGCTCAATGGG

CTC 

GAGCCCATTGAG
CAAAAAGCCATT

CCC 

ATAGTTTAGCGGCCGC
ATTCTTATCTAGGACTT
TATCGCAGCTCTCAG 

TLR2K
743N 

CTAGTCTAGACTAG
GCCACCATGCCACA
TACTTTGTGGATG 

CTGGGGAATGG
CATTTTTCTCAA

TG 

CATTGAGAAAAA
TGCCATTCCCCA

G  

ATAGTTTAGCGGCCGC
ATTCTTATCTAGGACTT
TATCGCAGCTCTCAG 

TLR2A
744S 

CTAGTCTAGACTAG
GCCACCATGCCACA
TACTTTGTGGATG 

GCGCTGGGGAA
TGGATTTTTTCT

CAAT 

ATTGAGAAAAA
ATCCATTCCCCA

GCGC 

ATAGTTTAGCGGCCGC
ATTCTTATCTAGGACTT
TATCGCAGCTCTCAG 

Table 3.4. Primers for plasmid constructs sequencing 

Primer name Detect target Primer sequence 5' to 3' 
IRESMCSAforseq pIRES MCSA insert 5' AGGTGTCCACTCCCAGTTCA 
IRESMCSArevseq pIRES MCSA insert 3' GGGGGAGAGGGGCGGAATTGG 
IRESMCSBforseq pIRES MCSB insert 5' CCGAACCACGGGGACGTGGT 
IRESMCSBrevseq pIRES MCSB insert 3' AGCATTAACCCTCACTAAAGGGAA 

 

Table 3.5. Primers for Realtime PCR detection (SYBR green method) 
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Detector Primer forward Primer reverse 
mbetaActin GCAAGCAGGAGTACGATGAG TAACAGTCCGCCTAGAAGCA 
mTNF-alpha ATGAGAAGTTCCCAAATGGC CTCCACTTGGTGGTTTGCTA 
mIL-1beta GAAGAAGAGCCCATCCTCTG TCATCTCGGAGCCTGTAGTG 
mIL-6 AGTCCGGAGAGGAGACTTCA ATTTCCACGATTTCCCAGAG 
mIL-10 AGGGGCTGTCATCGATTTCTC TGCTCCACTGCCTTGCTCTTA 
mPtges1 GAGTTTTCACGTTCCGGTGT GGTAGGCTGTCAGCTCAAGG 
mIFN-γ AGCTCTTCCTCATGGCTGTT TTTGCCAGTTCCTCCAGATA 
mMCP-1 GAAGGAATGGGTCCAGACAT ACGGGTCAACTTCACATTCA 
mTLR1 CAACAGTCAGCCTCAAGCAT AACTTTGTACCCGAGAACCG 
mTLR2 GTCAGCTCACCGATGAAGAA GAGCCCATTGAGGGTACAGT 
mTLR6 GAGCCTGAGGCATCTAGACC AGATGCAAGTGAGCAACTGG 

 

Table 3.6.  Primers for mutant confirmation via RT-PCR product sequencing 

Primer name Detect target Primer sequence 5' to 3' 
hTLR2mutseqconfPCRfor ACT TCA TTC CTG GCA AGT GG 
hTLR2mutseqconfPCRrev 

Human tlr2 
CGC AGC TCT CAG ATT TAC CC 

hTLR1mut737seqconfor GTT CCT GGC AAG AGC ATT GT 
hTLR1mut737seqconrev 

Human tlr1 
TGC CCT TAA GTT AGC CCA AA 

3.1.9 Organisms 

3.1.9.1 Escherichia coli strains 

Table 3.7. E. coli strains used in this work 

 Strain Genotype Source 

Fusion-
Blue™ 

E.Coli K-12 
endA1, hsdR17 (rK12-, mK12+), supE44, thi-1, recA1, 
gyrA96, relA1, lac F´ [proA+B+, lacIqZ∆M15::Tn10(tetR)] 

Clontech, 
Mountain View, 

CA 

3.1.9.2 Cell lines 

Table 3.8. Cell lines used in this study 

Designations Growth Properties Organism Cell Type Source 

HEK-293 Adherent Human 
Primary embryonal 
kidney fibroblastoid 
cells 

DSMZ 

L-929 Adherent 
Mus musculus 
(mouse) 

Subcutaneous 
connective tissue, 
areolar and adipose 

ATCC 

RAW 264.7 Adherent 
Mus musculus 
(mouse) 

Macrophage; 
Abelson murine 
leukemia virus 
transformed 

ATCC 

THP-1 Suspension Human 
Human acute 
monocytic leukemia 

DSMZ 

Note:  
ATCC: American Type Culture Collection (ATCC), Manassas, USA; 
DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany 
Culture: HEK-293, L-929, and RAW264.7 cells were cultured in DMEM medium supplemented with 10% fetal 
bovine serum (FBS) and 1 × Antibiotic-Antimycotic (Invitrogen); THP-1 cells were cultured in RPMI1640 
medium supplemented with 10% FBS and 1 × Antibiotic-Antimycotic 
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3.1.9.3 Plasmids 

Table 3.9. Vector plasmids used in this work 

Plasmid Marker Resistence Source 

pCEP4 AMPr Hygromycin-B Invitrogen, Carlsbad, USA 

pcDNA3 AMPr Neomycin Invitrogen, Carlsbad, USA 

pIRES AMPr Neomycin Clontech, Palo Alto, USA 
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Table 3.10. Plasmids used in this study 

Insert and restriction enzyme sites 
Plasmid 

Vect
or MCSA MCSB 

Source 

pcDNA3-TLR1-YFP 
pcD
NA3 

KpnI/hTLR1-YFP/XbaI 
Addgene, Cambridge, 

USA 

pcDNA3-TLR6-YFP 
pcD
NA3 

BamHI/hTLR6-YFP/XbaI 
Addgene, Cambridge, 

USA 

pcDNA3-TLR2-CFP 
pcD
NA3 

BamHI/hTLR2-CFP/XbaI 
Addgene, Cambridge, 

USA 

pCEP4-TLR2 
pCE
P4 

KpnI/hTLR2/NotI This work 

pCEP4-mCD44 
pCE
P4 

KpnI/mCD44/NotI This work 

pIRES-TLR1 
pIRE

S 
NheI/hTLR1/MluI  This work 

pIRES-TLR2 
pIRE

S 
 XbaI/hTLR2/NotI This work 

pIRES-TLR6 
pIRE

S 
NheI/hTLR6/MluI  This work 

pIRES-TLR1-TLR2 
pIRE

S 
NheI/hTLR1/MluI XbaI/hTLR2/NotI This work 

pIRES-TLR6-TLR2 
pIRE

S 
NheI/hTLR6/MluI XbaI/hTLR2/NotI This work 

pIRES-TLR2LRR3-4de 
pIRE

S 
 

XbaI/hTLR2LRR3-
4de/NotI 

This work 

pIRES-TLR1LRR3-4de 
pIRE

S 
NheI/hTLR1LRR3-

4de/MluI 
XbaI/hTLR2/NotI This work 

pIRES-TLR6LRR3-4de 
pIRE

S 
NheI/hTLR6LRR3-

4de/MluI 
XbaI/hTLR2/NotI This work 

pIRES-TLR2LRR7-9de 
pIRE

S 
 

XbaI/hTLR2LRR7-
9de/NotI 

This work 

pIRES-TLR1LRR7-9de 
pIRE

S 
NheI/hTLR1LRR7-

9de/MluI 
XbaI/hTLR2/NotI This work 

pIRES-TLR6LRR7-9de 
pIRE

S 
NheI/hTLR6LRR7-

9de/MluI 
XbaI/hTLR2/NotI This work 

pIRES-TLR2LRR10-11de 
pIRE

S 
 

XbaI/hTLR2LRR10-
11de/NotI 

This work 

pIRES-TLR1LRR10-11de 
pIRE

S 
NheI/hTLR1LRR1

0-11de/MluI 
XbaI/hTLR2/NotI This work 

pIRES-TLR6LRR10-11de 
pIRE

S 
NheI/hTLR6LRR1

0-11de/MluI 
XbaI/hTLR2/NotI This work 

pIRES-TLR2LRR12-14de 
pIRE

S 
 

XbaI/hTLR2LRR12-
14de/NotI 

This work 

pIRES-TLR1LRR12-14de 
pIRE

S 
NheI/hTLR1LRR1

2-14de/MluI 
XbaI/hTLR2/NotI This work 

pIRES-TLR6LRR12-14de 
pIRE

S 
NheI/hTLR6LRR1

2-14de/MluI 
XbaI/hTLR2/NotI This work 



Dissertation: Toll-Like Receptor 2 and Partner Receptors in Alzheimer’s Disease 

 

  
43 

pIRES-TLR2LRRCTde 
pIRE

S 
 

XbaI/hTLR2LRRCTd
e/NotI 

This work 

pIRES-TLR1LRRCTde 
pIRE

S 
NheI/hTLR1LRRC

Tde/MluI 
XbaI/hTLR2/NotI This work 

pIRES-TLR6LRRCTde 
pIRE

S 
NheI/hTLR6LRRC

Tde/MluI 
XbaI/hTLR2/NotI This work 

pIRES-TLR1Y737N 
pIRE

S 
NheI/hTLR1Y737

N/MluI 
XbaI/hTLR2/NotI This work 

pIRES-TLR1SS741NK 
pIRE

S 
NheI/hTLR1SS741

NK/MluI 
XbaI/hTLR2/NotI This work 

pIRES-TLR6N742Y 
pIRE

S 
NheI/hTLR6N742

Y/MluI 
XbaI/hTLR2/NotI This work 

pIRES-
TLR2EKKA744PQNS 

pIRE
S 

 
XbaI/hTLR2EKKA7

44PQNS/NotI 
This work 

pIRES-
TLR2EKKA744PQNS-

TLR1 

pIRE
S 

NheI/hTLR1/MluI 
XbaI/hTLR2EKKA7

44PQNS/NotI 
This work 

pIRES-
TLR2EKKA744PQNS-

TLR1Y737N 

pIRE
S 

NheI/hTLR1Y737
N/MluI 

XbaI/hTLR2EKKA7
44PQNS/NotI 

This work 

pIRES-TLR2P631A 
pIRE

S 
 

XbaI/hTLR2P631A/
NotI 

This work 

pIRES-TLR2S636QY641F 
pIRE

S 
 

XbaI/hTLR2S636QY
641F/NotI 

This work 

pIRES-TLR6Y663N 
pIRE

S 
NheI/hTLR6Y663

N/MluI 
XbaI/hTLR2/NotI This work 

pIRES-TLR2S692C 
pIRE

S 
 

XbaI/hTLR2S692C/N
otI 

This work 

pIRES-TLR2E741P 
pIRE

S 
 

XbaI/hTLR2E741P/N
otI 

This work; 

Made by Lisa Wolf under 
my supervision 

pIRES-TLR2K742Q 
pIRE

S 
 

XbaI/hTLR2K742Q/
NotI 

This work; 

Made by Lisa Wolf under 
my supervision 

pIRES-TLR2K743N 
pIRE

S 
 

XbaI/hTLR2K743N/
NotI 

This work; 

Made by Lisa Wolf under 
my supervision 

pIRES-TLR2A744S 
pIRE

S 
 

XbaI/hTLR2A744S/
NotI 

This work; 

Made by Lisa Wolf under 
my supervision 

3.1.10 Mice 

APPswe/PS1dE9 mice: Originally generated by D. Borchelt (Johns Hopkins University) 

(Jankowsky et al., 2001) were bred on C57BL6/J background and genotyped by A. Kiliaan 

(Radboud University Nijmegen Medical Center). APPswe/PS1dE9 Double transgenic mice 

express a chimeric mutant mouse/human amyloid precursor protein (Mo/HuAPP695swe: 
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KM594/5NL) and a mutant human presenilin 1 (PS1-dE9: deletion of exon 9) under the 

control of the mouse prion protein (PrP) promoter, which make the expression of transgene 

predominantly to CNS neurons (Jankowsky et al., 2001). Both mutations are associated with 

early-onset Alzheimer's disease. The "humanized" Mo/HuAPP695swe transgene allows the 

mice to secrete human Aβ peptide (Garcia-Alloza et al., 2006). The transgenic mice start to 

develop β-amyloid plaques at 4 months of age and by 6 months plaques will be easily 

detectable (Garcia-Alloza et al., 2006).  

TLR2 knockout (TLR2–/–) mice in a C57BL6/N background were kindly provided by S. 

Akira (Osaka University, Osaka, Japan).  

Wild-type C57BL6/N mice were purchased from Charles River (Sulzfeld, Germany).  

All mice were locally housed in the animal facilities managed by Prof. Dr. M. Freichel and 

Prof. Dr. M. Menger. 

All animal experiments were approved by the ethical committee of the regional council in 

Saarland, Germany (Versuch Nr. 27/2007). 

3.2 Methods 

3.2.1 Primary cell culture 

Bone marrow (BM) cells were isolated from 8-week-old TLR2–/–, C57BL/6 mice as described 

previously (Hao et al., 2011). Briefly, Cells were derived from the marrow of medullar 

cavities of the tibia and femur of the hind limbs. Erythrocytes were removed by lysis with 

hypotonic erythrocyte lysing solution (EL buffer: 0.156 M ammonium chloride, 0.01 M 

potassium hydrogen carbonate and 0.1 mM EDTA). For BM transplantation, cells were 

washed twice with ice-cold phosphate buffered saline (PBS) and suspended in PBS. For BM-

derived macrophage (BMDM) culture, cells were cultured in DMEM medium supplemented 

with 10% FBS, 1 × Antibiotic-Antimycotic (Invitrogen) and 20% L929 cell-conditioned 

medium in 75cm2 flasks. Non-adherent cells were collected 24 hrs later and re-seeded in a 

new flask. Medium was changed every 3 days until macrophages were used for experiments 

after 14 days. 

Primary microglial cells were isolated from brains of  neonatal mice as previously 

described (Liu Y et al., 2005). Briefly, the meninges from the forebrains of newborn mice 

were mechanically removed. The cells were seeded into 100 ng/ml poly-lysine-coated flasks 

and cultured in DMEM  medium supplemented with 10% FBS and 1 × Antibiotic-

Antimycotic under a humidified atmosphere of 10% CO2 at 37°C for at least 14 days (Ishii K, 
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2000). Microglial cells were then collected from the microglia-astrocyte co-cultures by 

shaking with a rotary shaker (220 rpm, 2 hrs).  

3.2.2 Preparation of Aββββ peptides and quality control 

Human Aβ42 synthesized and provided by B. Penke (Albert Szent Gyorgyi Medical 

University, Hungary) (Zarándi et al., 2007). The aggregation of Aβ was sterile prepared 

according to published protocol (Dahlgren et al., 2002): 

1. Deaggregate by pipetting 1 mg lyophilized Aβ1-42 in 0.5 ml 1,1,1,3,3,3-Hexafluoro-

2-propanol (HFIP, Fluka) until complete dissolved; 

2. Lyophilize the dissolved Aβ1-42 by vacuum centrifugation (by Savant DNA 110 

SpeedVac System, Thermo Fisher Scientific), RT, 2.5 hrs; 

3. Completely dissolve the lyophilized Aβ1-42 into 40µl DMSO. Then dilute to a stock 

concentration of 100 µM in Ham’s F12 Medium (with L-Glutamine, without phenol 

red, with 25 mM Hepes, with 1.176 g/l NaHCO3) (PAN Biotech GmbH), incubate at 

37 °C, 72 hrs. 

All A β used in this study, for all the assays including cell stimulation, Biacore, Pull-down 

assay, G-actin/ F-actin assay and confocal assay, if not specifically noted, was aggregated 

Aβ42 prepared as described here. In some circumstances the term Aβ1-42 was used to 

differentiate the Aβ42 from Aβ42-1 control peptide. 

The fluorescent Aβ used for FACS analysis of phagocytosis was prepared by mixing 

FITC-conjugated Aβ42 (Bachem, Heidelberg, Germany) and unlabeled Aβ at the ratio of 1:4, 

and incubated the same as with the unlabeled Aβ42 described above. 

The Aβ42-1(Bachem, Heidelberg, Germany), which has the same amino acids components 

but a reverse sequence as Aβ1-42, was treated in a way the same as for Aβ1-42 and used as 

Aβ42 control peptide.  

To exclude the possibility of endotoxin contamination in the Aβ, Limulus Amebocyte 

Lysate (LAL) assay was run with the LAL QCL-1000® kit (CAMBREX Bio Science 

Walkersville), which is a quantitative test for gram-negative bacterial endotoxin. In LAL test, 

the test sample is mixed with the LAL (contains proenzyme) and incubated at 37°C for 10 

min. A substrate (Ac-Ile-Glu-Ala-Arg-pNA) (pNA: p-nitroaniline) solution is then mixed with 

the LAL-sample and incubated at 37°C for an addditonal 6 min. During this time the activated 

enzyme catalyzes the splitting of pNA from the colorless substrate. The reaction is stopped 

with stop reagent:  
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If endotoxin is present in the sample, the released pNA produces yellow color. The 

absobance of the sample can be determined spectrophotometrically at 405-410 nm. The 

endotoxin concentration can be calculated from a standard curve. 

In the case of this study, results show that the Aβ42 here used contains no detectable 

endotoxin: 

Standard con (EU/ml) 1 0.5 0.25 0.125 0.0625 
Standard delta O.D.405 0.169 0.083 0.049 0.044 0.039 
Aβ sample delta O.D.405: lot#1:0.034, lot#2: 0.036, both lower than detection limit 

The FITC-conjugated Aβ42 fluorescent Aβ mixture used for FACS and ordinary Aβ used 

for other experiments were characterized by Western blot to have a similar oligomeric profile 

(Figure 3.1): 

 

Figure 3.1. The oligomeric profile of Aββββ42 and FITC-labled Aββββ42. The FITC-conjugated Aβ42 fluorescent 
Aβ mixture used for FACS and ordinary Aβ42 used for other experiment were characterized by Western blot to 
have a similar oligomeric profile. 

3.2.3 Aββββ42 challenge and sample collection 

Microglia, BMDM, RAW264.7 and HEK-293 cells plated in 48-well plates (BD, Heidelberg, 

Germany) at 2 × 105/well (HEK-293 at 1 × 105/well) were treated with aggregated Aβ42 at 5 

µM and 10 µM in 200 µl DMEM + 10% FBS medium for 24 hrs. For microglia, 10 ng/ml 

Pam3CSK4 (ALEXIS Biochemicals, Loerrach, Germany) was used as a positive control. For 

BMDM and HEK-293 cells, a concentration of 100 ng/ml of Pam3CSK4 was used. In some 

experiments on HEK-293 cells, 100 ng/ml Pam2CSK4 (InvivoGen) was used. The 

supernatants were collected, stored at -20°C for detection of TNF-α, IL-1β and IL-8 level. 

Endotoxin 
Proenzyme Enzyme 

Substrate +H2O 
Enzyme 

Peptide +pNA 

1 

2 
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3.2.4 TNF-αααα, IL-1ββββ and IL-8 level detection with ELISA kits 

The TNF-α, IL-1β and IL-8 level in the cell supernatants was determined with commercial 

ELISA kits (obtained from R&D Systems, Wiesbaden, Germany and from eBioscience, San 

Diego, USA), according to the manufacturer’s protocols. Basic steps are: 

1. One day before measurement, dilute the Capture Antibody to the working 

concentration in PBS without carrier protein. Immediately coat a 96-well microplate 

with 100 µl per well of the diluted Capture Antibody. Seal the plate and incubate 

overnight at room temperature. 

2. Aspirate each well and wash with Wash Buffer (0.05% Tween 20 in PBS), repeating 

the process two times for a total of three washes. Wash by filling each well with 400 

µl Wash Buffer. Complete removal of liquid at each wash. After the last wash, remove 

any remaining Wash Buffer by inverting the plate and blotting it against clean paper 

towels.  

3. Block plates by adding 300 µl of Reagent Diluent to each well. Incubate at room 

temperature for a minimum of 1 hour. 

4. Repeat the aspiration /wash as in step 2.  

5. Add 100 µl of sample or standard in Reagent Diluent, or an appropriate diluent, per 

well. Cover with an adhesive strip and incubate 2 hrs at room temperature. 

6. Repeat the aspiration /wash 3 times as in step 2. 

7. Add 100 µl of the Detection Antibody, diluted in Reagent Diluent, to each well. Cover 

with a new adhesive strip and incubate 2 hrs at room temperature. 

8. Repeat the aspiration /wash 8 times as in step 2. 

9. Add 100 µl of the working dilution of Streptavidin-HRP to each well. Cover the plate 

and incubate for 20 min at room temperature, avoid from direct light. 

10. Repeat the aspiration /wash 8 times as in step 2. 

11. Add 100 µl of Substrate Solution to each well. Incubate for 20 min at room 

temperature, avoid the plate from direct light. 

12. Add 50 µl of Stop Solution to each well. Gently tap the plate to ensure thorough 

mixing. 

13. Determine the optical density of each well immediately using a microplate reader; set 

to 450 nm and wavelength correction to 570 nm.  Subtract readings at 570 nm from 

the readings at 450 nm.  
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14. Make standard curve according to standard reads and calculate the sample value 

according to standard equation. 

3.2.5 Confocal microscopy analysis of TLR2-Aββββ42 co-localization 

Unlike conventional microscopy, laser scanning confocal microscopy aquires signals point by 

point from the whole specimen by an arrangement of diaphragms which, at optically 

conjugated points of the path of rays, act as a point light source and as a point detector 

respectively, all structures out of focus are suppressed at image formation by the detection 

pinhole. The emitted/reflected light passing through the detector pinhole is transformed into 

electrical signals by a photomultiplier and displayed on a computer monitor screen. Images 

are reconstructed by computational software. Thus, visualization deep within living and fixed 

cells and tissues and three-dimensional images can be created. For cell biological use, the 

high resolution of confocal microscopy is ables to differ unrelated molecules.  

In this study, to localize Aβ and TLR2 in cells, 5 × 104 primary microglia plated on 12 

mmø Assistent® microscope cover glasses ( Glaswarenfabrik) in a 24-well cell culture plate 

(Falcon) were treated with 5 µM aggregated Aβ42 in culture for 30 min and terminated by 

putting on ice. The cells were immediately washed with ice cold PBS and fixed with 4% PFA. 

After increasing permeability with 0.1% Triton X-100 and blocking in 1% BSA over 30 min, 

cells were stained with rabbit anti-mouse TLR2 (1:500, Abcam, Cambridge, UK) and mouse 

anti-Aβ (1:500, clone WO-2, Millipore, Schwalbach/Ts, Germany), 2 hrs. Cy3-conjugated 

goat anti-rabbit IgG and Alexa488-conjugated donkey anti-mouse IgG were used as relevant 

second antibodies. The slides were gently mounted by putting on an object glass with 

ProLong®Gold antifade reagent with DAPI (Invitrogen) to stain the cell nucleus and imaged 

under Leica TCS SP2 AOBS laser scanning confocal microscope (performed by using the 

confocal machine in the laboratory of Prof. Dr. P. Lipp, kindly instructed by Mr. Q Tian). 

Different channels were merged with Image J as described (Hao et al., 2011).  

3.2.6 Biacore analysis of TLR2-Aββββ direct interaction 

Surface Plasmon Resonance (SPR) is a physical process that can occur when plane-polarized 

light hits a metal film under total internal reflection (TIR) conditions. In this condition, 

although no light is coming out of the prism in TIR, the electrical field of the photons extends 

about a quarter of a wavelength beyond the reflecting surface. In SPR, the prism is coated 

with a thin film of gold on the reflection site, which gives a SPR signal at convenient 

combinations of reflectance angle and wavelength. The binding of biomolecules occurred at 
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the site results in the change of the refractive index on the sensor surface, which is measured 

as a change in resonance angle or resonance wavelength. Such signals can be converted to an 

arbitrary measured value (angle or wavelength). The biacore machine uses the Resonance 

Unit (RU), which is exactly converted from the actual angle shift in reflected light (Figure 

3.2). 

 
Figure 3.2. Biacore principle. Surface Plasmon Resonance (SPR) is a powerful technique to measure 
biomolecular interactions in real-time in a label free environment. In this experiment, one of the interactants is 
immobilized to the sensor surface (there are two flow cells on the NTA sensor chip used this work), the other are 
free in solution and passed over the surface. The binding of the interactants occurred at the site sensor surface is 
converted to resonance signal and is real-timely record. 

In this study, a Biacore® J system (Biacore AB, Uppsala, Sweden) and NTA sensor chips 

(Biacore AB) was used to investigate whether TLR2 can directly interact with Aβ. In 

according to the manufecturer’s instruction, the C-terminal 10 His-tagged human TLR2 

(Glu21-Leu590), or control receptor TLR1 (Ser25-Asp581) and TLR3 (Lys27-Ser711) (all 

from R&D Systems) was immobilized in the flow cell 1 (FC1) of the NTA chips; insulin-like 

growth factor-1 receptor (IGF-1R) (Glu31-Asn932) as reference receptor (from R&D 

Systems) was immobilized in flow cell 2 (FC2) of all the NTA chips. All flow cells were 

immobilized with an amount to yield 20,000 to 30,000 RU and the basal resonance difference 

between FC1 and FC2 (FC1-FC2) was around 0 RU. Aggregated Aβ1-42 or Aβ42-1, used as 

a control peptide in the running buffer (0.01 M HEPES, 0.15 M NaCl, 50 µM EDTA, 0.005% 

Surfactant P20, pH=7.4) at the concentration of 5µg/ml, was injected into both flow cells at 

the rate of 10 µl/min for 1 min, followed by another 5 min of running buffer flow at the rate 

of 10 µl/min. The whole binding assay was performed at 25 °C. The difference of basal 

response between FC1 and FC2 was set to 0 RU. Sensorgrams of FC1-FC2 representing the 

interactions between ligands and receptors was recorded and analyzed using BIAviewer 

software (Biacore AB) (The Biacore experiments were performed by using the Biacore® J 

Gold-Dextran Microfluidic 
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system in the laboratory of Prof. Dr. E. Meese and the laboratory of Prof. Dr. J Hemberger 

(Institut für Biochemische Verfahren und Analysen, Gießen). The laboratory of Prof. Dr. R. 

Zimmermann kindly provided pre-training). 

3.2.7 Pull-down analysis of TLR2-Aββββ42 direct interaction 

The pull-down assay is another in vitro method for determination of physical interaction 

between two or more proteins. It is a form of affinity purification and is useful in confirming 

the existence of a protein-protein interaction. In a pull-down assay, a bait protein is tagged 

and captured on an immobilized affinity ligand specific for the tag, thereby generating a 

“secondary affinity support” for purifying other proteins that interact with the bait protein. 

The secondary affinity support of immobilized bait is then incubated with a protein source 

that contains putative “prey” proteins. The potential “prey” would bind to the “bait” and could 

be eluted together with the bait and be detected with further tools such as Western blot. 

Here the pull-down assay was applied to confirm the binding of TLR2 with Aβ. Human 

TLR2 (Glu21-Leu590) and IGF-1R (Glu31-Asn932) (both are tagged with 10 His on C-

terminal) at 50 µg/ml, and blank control (PBS without receptor) were incubated with 5 µM 

Aβ42 aggregates in PBS for 20 hrs and loaded to Ni-NTA spin columns (Qiagen, Hilden, 

Germany), respectively. After thoughly washing with a buffer containing 50 mM NaH2PO4, 

300 mM NaCl, 10 mM Imidazole and 0.01% TritonX-100, the columns were eluted with the 

buffer (50 mM NaH2PO4, 300 mM NaCl, 500 mM Imidazole and 0.01% TritonX-100, pH 

8.0). The Aβ and His-tagged receptors in the eluted buffer was detected by Western blot. 

Basic procedure was similar to conventrional Western blot as will be described below, except 

using a ProGel-P Tris.Tricine 10-20% (Anamed elektrophorese GmbH, Germany) gel for 

electrophoresis (Schagger, 2006). Aβ was detected with WO-2 antibody (1 µg/ml, Millipore). 

The TLR2 or IGF-1R on the same blot membrane was detected with a Tetra-His HRP 

Conjugate Kit (Qiagen) according to the manufacturer’s protocol. 

3.2.8 Construction of plasmids and establishment of TLRs-mutated cell lines  

In general, molecular cloning includes the making of inserts through polymerase chain 

reaction (PCR), restriction enzyme digestion, ligation and transformation. In addition, to 

establish protein stable expressing cell lines, further steps of transfection and selection are 

required (Figure 3.3). 
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Figure 3.3. Workflow of molecular cloning. Molecular cloning includes the making of inserts of interest, 
restriction enzyme digestion of inserts and vector, ligation and transformation. In addition, to construct protein-
of-interest expressing cell line, further steps of transfection and selection are required. 

In this study, the templates used for amplifying wild type human TLR2, human TLR1, 

human TLR6 and mouse CD44 were wild-type hTLR2 plasmid (a gift of Ruslan M. 

Medzhitov, Yale University) and cDNA derived from human acute monocytic leukemia cell 

line THP-1 or mouse RAW264.7 cell line. The primers are listed in Table 3.3. 

3.2.8.1 Total RNA isolation from THP-1 and RAW264.7 cells 

Total RNA from human monocytic THP-1 cells and mouse macrophage RAW264.7 cells 

was isolated with RNeasy plus kit (Qiagen), which can selectively remove double-stranded 

DNA without the need for additional DNase digestion. In principle, cells are first lysed and 

homogenized in a highly denaturing guanidine-isothiocyanate-containing buffer (buffer RLT 

plus), which immediately inactivates RNases to ensure isolation of intact RNA. The lysate is 

then passed through a gDNA Eliminator spin column. This column, in combination with the 

optimized high-salt buffer, allows efficient removal of genomic DNA. Ethanol is added to the 

flow-through to provide appropriate binding conditions for RNA, and the sample is then 

applied to an RNeasy spin column, where total RNA binds to the membrane and contaminants 

are efficiently washed away. High-quality RNA is then eluted in RNase free water: 
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1. The THP-1 cells or RAW264.7 cells (around 1×107 cells) were homogenized 10 min, 

on ice in 600 µl buffer RLT plus (supplemented with 10 µl β-mercaptoethanol per ml 

buffer). 

2. Transfer the homogenized lysate to a gDNA Eliminator spin column placed in a 2 ml 

collection tube. 

3. Centrifuge for 30 s at 16,000 × g. Discard the column, and save the flow-through. 

Add 1 volume (200 µl) of 70% ethanol to the flow-through, and mix well by 

pipetting. Proceed immediately to next step. 

4. Transfer the sample, including any precipitate, to an RNeasy spin column placed in a 

2 ml collection tube. Close the lid, and centrifuge for 15 s at 16,000 × g. Discard the 

flow-through. 

5. Add 700 µl buffer RW1 solution to the RNeasy mini spin column (in the 2 ml 

collection tube). Close the lid, and centrifuge for 15 s at 16,000 × g. Discard the 

flow-through. 

6. Add 500 µl buffer RPE to the RNeasy spin column. Close the lid gently, and 

centrifuge for 15 s at 16,000 × g. Discard the flow-through. 

7. Add 500 µl buffer RPE to the RNeasy spin column. Close the lid gently, and 

centrifuge for 2 min at 16,000 × g. 

8. Place the RNeasy spin column in a new 2 ml collection tube. Centrifuge at full speed 

for 5 min to further dry the membrane. 

9. Place the RNeasy spin column in a new 1.5 ml collection tube. Add 100 µl RNase-

free water directly to the spin column membrane. Close the lid, and centrifuge for 5 

min at 16,000 × g to elute the RNA.    

3.2.8.2 First strand cDNA synthesis   

First strand cDNA from the above isolated RNA was synthesized using SuperScript™ II 

Reverse Transcriptase (RT, Invitrogen), which is an engineered version of Moloney Murine 

Leukemia Virus (MMLV) RT with reduced RNase H activity and increased thermal stability. 

This enzyme can be used to generate cDNA up to 12.3 kb. The reaction is: 

Random primers (250 ng/µl) 1 µl 
Total RNA 1 ng-5 µg 
dNTP mix (10 mM each) 1 µl 
Sterile distilled H2O To 12 µl 
Heat the mixture to 65°C for 5 min and quick chill on ice. Collect the contents of the tube by brief centrifugation 
and add: 
5× First-strand buffer 4 µl 
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0.1 M DTT 2 µl 
Mix contents gently. Incubate at 25°C for 2 min 
Add 1 µl (200 units) SuperscriptII RT and mix by pipetting up and down, incubate at 25 °C for 10 min 
 
Incubate at 42 °C for 50 min 
Inactivate the reaction by heating at 70 °C for 15 min 
The cDNA can now be used for PCR amplification 

3.2.8.3 Polymerase chain reaction (PCR) with TaKaRa LA Taq DNA polymerase 

PCR is a widely used molecular biology method for gene cloning. The TaKaRa LA Taq 

DNA polymerase is a thermostable polymerase that possesses a 3’ to 5’ exonuclease 

(proofreading) activity, which detects and removes the misincorporated bases that cause slow 

elongation, making the reaction proceed smoothly, allowing generation of longer and more 

accurate PCR product. The standard PCR reaction mixture is made as follows: 

TaKaRa LA Taq™ HS (5 unit/µl) 0.5 µl 
10 × LA PCR™ Buffer II(Mg2+ plus) 5 µl 
dNTP mixture (2.5 mM each) 8 µl 
Template ‹1 µg 
Primer 1 Final conc.0.2-1.0 µM 
Primer 2 Final conc.0.2-1.0 µM 
Sterilized distilled water Up to 50 µl 
Thaw all reagents on ice and keep them on ice until reaction set up. 

  

The standard PCR program is: 

step Temprature time Note 
1 94 °C 1 min Initiation 
2 98 °C 10 sec Denaturation 
3 52 °C 30 sec Annealing 
4 72 °C 4 min(∼1min/ kb) Elongation 
5 Goto step 2 30 cycles Amplification 
6 72 °C 10 min Final elongation 
7 4 °C For ever Storage 

For mutant TLR1, TLR2 or TLR6 insert generation, site-directed mutagenesis with an 

overlap extension-PCR using the wild type receptor DNA as templates strategy (Heckman et 

al., 2007) was applied. That is, as shown in Figure 3.4, for receptor mutagenesis,  mutagenic 

primers b, corresponding to “Reverse primer for 5’ segment amplification” in the table 3.3, 

and c, corresponding to “Forward primer for 3' segment amplification” in the table 3.3 and 

flanking primers a and d, corresponding to “Forward primer for 5' segment amplification” and 

“Reverse primer for 3' segment amplification” in the table 3.3, respectively were designed and 

commercially synthesized in Sigma-Aldrich.  Intermediate PCR products AB and CD that are 

overlapping fragments of the entire product AD but with mutation of interest were first 

generated. Products AB and CD were then denatured and used as template DNA for the 

second PCR, in which the flanking primers were used. As strands of each product hybridize at 

their overlapping, complementary regions that also contain the desired mutation (indicated by 
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the cross). Thus the amplification of product AD in PCR #2 actually created mutated final 

products. For wild type receptor insert generation, simply amplifying the product between the 

flanking primers using wild type plasmids or cDNA as templates was enough. The wild type 

and mutated TLR1/ TLR6 were inserted into multiple cloning site (MCS) A between NheI 

and MluI sites of pIRES vector (Clontech Laboratories, Palo Alto, CA). The wild type CD44, 

TLR2 and mutated TLR2 were inserted into MCS B between XbaI and NotI sites of pIRES 

vector. In this study, wild type human TLR2 and mouse CD44 were also cloned to pCEP4 

vector between KpnI and NotI in the multiple cloning sites.  

For receptor domain deletion inserts generation, a strategy similar to the above described 

site-directed overlap extension-PCR was applied.  As shown in figure 3.4, two linking primers 

b (corresponding to “Reverse primer for 5’ segment amplification” in the table 3.3) and c 

(corresponding to “Forward primer for 3' segment amplification” in the table 3.3), as well as 

two flanking primers a and d (corresponding to “Forward primer for 5' segment 

amplification” and “Reverse primer for 3' segment amplification” in the table 3.3, 

respectively), were designed and used. The linking primer b and c contain sequences on both 

upstream and downstream side of intested deletion candidate gene fragments. Therefore, 

primers b and c generate overlapping sequences by including nucleotides that span the 

junction of upstream and downstream segments in the first PCR. A second PCR using the 

hybrid gene product would generate products of full sequence including upstream and 

downstream segments without the deletion sequence. Similarly, the domain deleted TLR1/ 

TLR6 sequences were inserted into multiple cloning site (MCS) A between NheI and MluI 

sites of pIRES vector. The domain deleted TLR2 was inserted into MCS B between XbaI and 

NotI sites of pIRES vector. 
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Figure 3.4. PCR-mediated overlap extension creates specific nucleotide mutations or chimeric domain 
deletion products of TLR1, 6 or 2. (Left) Site-directed mutagenesis is accomplished by using mutagenic 
primers (b and c) and flanking primers (a and d) to generate intermediate PCR products AB and CD that are 
overlapping fragments of the entire product AD. Products AB and CD are denatured when used as template 
DNA for the second PCR; strands of each product hybridize at their overlapping, complementary regions that 
also contain the desired mutation (indicated by the cross). Amplification of product AD in PCR #2 is driven by 
primers a and d. Final product AD (with mutation) can be inserted into the expression vector, for instance, 
pIRES, for expression. (Right) Chimeric gene with domain deletion products can be generated by two PCRs, 
similar to left, except that internal primers b and c are not mutagenic. Instead, because the goal here is to delete 
an internal segment (shown in dashed line) from a complete gene to get the upstream and downstream side gene 
segments connected, primers b and c generate overlapping sequences by including nucleotides that span the 
junction of segments AB (black line) and CD (purple line). The second PCR generates the hybrid gene product 
AD that is then ready to insert into the expression vector for expression (Adapted from reference (Heckman et 
al., 2007)). 

3.2.8.4 Enzymatic restriction digestion 

Enzymatic restriction digestion is a widely applied technique that cuts the DNA at specific 

recognition nucleotide sequences. It produces either sticky or blunt-end terminals and thus 

facilitates ligating relevant nucleotides. The digestions were carried out in corresponding 

buffers and incubated at the defined temperature according to the manufacturer’s manuals. 

For analytic digestion confirmation, 0.5 µg DNA was analyzed for each reaction, while 2 µg 

DNA was used for preparative digestions. The incubation time varied from 30 min to 4 hrs. In 
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extreme conditions, the incubation time was prolonged up to 12 hrs. The digestion products 

were analyzed by agarose gel electrophoresis. 

In this study, the KpnI, MluI, NheI, NotI and XbaI were used in wild type and mutated 

TLR1, TLR2 and TLR6 cloning. It was achieved by adding a corresponding restriction 

enzyme recognition site to the primers for amplification of the inserts.  

Specifically for cloning human TLR2 into the pCEP4 vector between KpnI and NotI, there 

exists a KpnI restriction site within the TLR2 sequence (cut position: 2682), which makes it 

impossible to apply a KpnI-cut sticky for insert. Thus, blunt-ends after KpnI digestion of the 

pCEP4 vector and XbaI digestion of engineered pIRES-XbaI-TLR2-NotI plasmid was 

introduced. The blunt-end was generated by use of Klenow Enzyme (DNA polymerase I, 

large fragment, Roche). The Klenow enzyme carries the 5’→3’ polymerase and the 3’→5’ 

exonuclease activities of intact DNA polymerase I, but lacks the 5’→3’ exonuclease activity 

of the native enzyme; therefore, it catalyzes the addition of mononucleotides from 

deoxynucleoside-5’-triphosphates to the 3’-hydroxyl terminus of a primer/template DNA. 

Such a property is used to synthesize DNA complementary to single-stranded DNA templates 

to generate a blunt terminal for ligation. The klenow reaction is: 

Components Reaction 
Template DNA 1 µg DNA 
Nucleotides, final concentration  1 mM of desired dNTP each 

10 × Filling buffer 2 µl 
Klenow 1 U 
H2O add up to 20 µl 
Incubation 15 min at 37 °C 

 

Further, in order to exchange the intracellular domain of TLR1 with that of TLR6, instead 

of the above described PCR strategy, a direct restriction enzyme digestion strategy based on 

the constructed TLR1 and TLR6 plasmids was used, since there is but one XcmI site within 

the transmembrane domain-encoding nucleotide sequence (as suggested by sequence 

analysis). 

3.2.8.5 Agarose gel electrophoresis 

The agarose gel electrophoresis is a technique to separate DNA or RNA molecules by size 

difference. The separation is carried out as negatively charged nucleic acid molecules migrate 

through an agarose matrix at different speeds, due to their sizes, in the electric field. The 

larger the molecules are, the slower they move. The agarose gel used in this study is either 1% 

(w/v) for DNA fragments larger than 500 bp or 2% (w/v) for smaller than 500 bp DNA 

fragments.  
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3.2.8.6 Extraction of DNA from agarose gels 

After agarose gel electrophoresis, the DNA bands were checked under UV lamp with 70% 

UV strength. The DNA band of interest was cut off the gel and extracted with the Gel 

Extraction Kit (Qiagen). The DNA containing gel slides were dissolved in 3 volumes of high 

salt QG buffer (100 mg gel = 100 ml) by incubation at 55°C with shaking for 10 min. One gel 

volume of 2-propanol is added additionally when the DNA fragment is <500 bp or >4 kb. The 

dissolved gel was then loaded to the QIAquick spin column, which absorbs particular size 

Nucleic acids to the silica membrane in the spin under high salt condition. The spin was 

centrifuged at 25,000 × g for 1 min to let the column membrane bind DNA. After washing 

away the primers, nucleotides, enzymes, mineral oil, salts, agarose, ethidium bromide, and 

other impurities from the DNA samples with 0.75 ml PE buffer, the pure interest DNA was 

eluted with a small volume (10-20 µl) of nucleotide free water. 

3.2.8.7 DNA quantification 

DNA quantification was performed by spectrometric measurements at 260 nm because it 

absorbs UV light with an absorption peak at 260 nm. According to the Beer-Lambert Law, the 

absorption A is depending on the path length l, the concentration c, and the molar extinction 

coefficient ε: A = ε × l × c. dsDNA has an average extinction coefficient of 0.02 (µg/ml)-1cm-

1, thus an O.D.260 of 1 corresponds to a concentration of 50 µg/ml dsDNA. The O.D.260 

value may be interfered with by contaminants such as RNA, proteins, and phenol, etc. 

O.D.260/O.D.280 ratio is an indicator for protein contaminations. The O.D.260/O.D.280 ratio 

should be in the range between 1.8 and 2.0. 

3.2.8.8 DNA ligation 

Ligation is the process of linking DNA fragments together with the help of a DNA ligase. The 

ligation reactions were carried out using the T4 DNA ligase kit (Roche) according to the 

manufacturer’s manuals. The relevant purified restriction digested inserts and vectors were 

added as the following ligation mixture reaction: 

10 × ligation buffer 3 µl 
Vector DNA 50 - 200 ng  
Insert DNA 3 × excess to vector DNA 
T4 DNA ligase 2 U 
Nuclease-free H2O Up to 30 µl 
16 °C, overnight (16 hrs) incubation 

 

The ligation mixture was stored at 4 °C after ligation. 5 µl from the ligation mixture was 

used for the one transformation reaction. 
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3.2.8.9 Preparation of Fusion-Blue competent E. coli cells 

Organisms are, by nature, resistant to extracellular DNA. In order to select and amplify the 

ligated plasmid of interest, many techniques have been adapted to make the E.Coli cells 

susceptible to uptake bacteriophage DNA. I used a high efficiency competent cell preparation 

method adapted from Chung et al. (Chung et al., 1989). The recipe of the transformation and 

storage solution for chemical transformation (TSS) is: 

Final concentration 10 ml 
10% Polyethyleneglycol (PEG)(w/v, MW8000) 1 g 
5% DMSO (vol/vol) 0.5 ml 
50 mM MgCl2 (pH6.5) MgCl2⋅6H2O, 0.1 g 
85% LB Medium LB up to 10ml 
Autoclave or filter to sterilize. Store at 4 °C for < 2weeks 

Procedure: 

1. Pick a single, well isolated fusion-blue E.Coli clone and inoculate it into LB broth for 

overnight incubation at 37 °C with shaking at 250 rpm to saturation. 

2. Transfer 20 µl of the saturated overnight culture to 100 ml of LB medium, and 

incubate the cells at 37 °C with the shaking at 220 rpm, until O.D.600 reach 0.5. 

3. Chill the flask on the ice for 20 min and then collect the cells by centrifugation at 

5,000 rpm for 15 min at +/- 0 °C. 

4. Resuspend the cells in 10 ml of ice cold TSS solution; the competent cells are ready to 

be transformed.  The competent cells can be aliquoted and stored at -70 °C for 2 

months. 

3.2.8.10 Transformation of ligates to Fusion-Blue competent E. coli cells 

For transformation, 100 µl fusion-blue competent cells were thawed on ice and incubated with 

1 µg DNA (e.g. 2 µl of miniprep DNA, or 5 µl of ligation mix) on ice for 30 min. This was 

followed by a heat shock at 42 °C water bath for 45 sec. The heat-shocked cells were then 

cooled on ice for 2 min. Transformed cells are recovered by adding 500 µl LB medium and 

incubated at 37 °C with 450 rpm shaking for 60 min. To plate the transformed cells, cells 

were gently harvested by centrifugation at 1,050 × g for 5 min. Dispose of 500 µl of the 

supernatant and resuspend the cell pellet in the remaining 100 µl of medium. Resuspended 

cells are plated on LB plates with the corresponding antibiotics and incubated at 37 °C 

overnight. 

3.2.8.11 Plasmid DNA minipreparation 

DNA minipreparation is a small-scale DNA preparation that is quick and easy to handle. In 

this study, a High pure plasmid isolation kit (Roche) was used to isolate high pure plasmid 
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DNA. The starter culture was inoculated with one colony in 2 ml LB medium with 

appropriate antibiotics according to the plasmid antibiotic resistance. The bacterial culture 

was incubated at 37 °C with rolling for more than 8 hours. The cells were harvested by 

centrifugation at room temperature and 6,000 × g for 30 sec. The cell pellet was resuspended 

in 250 µl suspension buffers containing RNase and added in 250 µl lysis buffer for alkaline 

lysis and plasmid DNA releasing at room temperature for 5 min. The lysis was teminated by 

350 µl chilled binding buffer and incubated for 5 min on ice and centrifuged at top speed for 

10 min; then transfer the supernatant to the high pure filter tube and centrifuge at top speed 

for 1 min. The plasmid DNA would bind selectively to glass fiber fleece. After washing the 

column with 700 µl wash buffer, the DNA bound in the filter was eluted in 50 µl low salt 

solution (neucleotidase free water).  

DNA minipreparations were also made using the QIAprep spin miniprep kit (Qiagen) 

according to the standard protocol. 

3.2.8.12 Plasmid DNA maxipreparation 

PureLink™ HiPure plasmid maxiprep kit (Invitrogen) was used to maxiprep the plasmid 

DNA for transfection use. Briefly, 200 ml of LB cultured cells were harvested by centrifuging 

at 4,000 × g for 10 minutes in a bucket. The cell pellet was resuspended in 10 ml 

Resuspension Buffer with RNase A until homogeneous and then added to 10 ml Lysis Buffer. 

Mix gently for complete lysis, and then incubate at room temperature for 5 minutes. The lysis 

process is stopped by 10 ml Precipitation Buffer and the mixture centrifuged at >12,000 × g 

for 10 min at room temperature. The supernatant was loaded onto the column provided by the 

manufacturer. Plasmid DNA would bind to the column. Allow the solution in the column to 

drain by gravity flow. After a step of washing with 60 ml Wash Buffer, the DNA component 

was eluted from the column with 15 ml Elution Buffer, then 10.5 ml isopropanol was added to 

the elution tube to precipitate the DNA. Centrifuge at >15,000 × g for 30 min to get a plasmid 

DNA pellet. The pellet was washed with 5 ml 70% ethanol and finally resuspended in 500 µl 

nuclease free water. 

3.2.8.13 Transfection of plasmid DNA and Stealth RNAi™ to mammalian cells using 

Lipofectamine™2000 

Transfection of plasmid DNA into cultured mammalian cells allows for analysis of functional 

mechanisms. It can be achieved with a variety of methods, e.g., retroviruses, electroporation, 

DEAE dextran, calcium phosphate- and a liposome-based deliveries method. The 
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Lipofectamine™2000 (Invitrogen) is an adapted proprietary formulation for transfection. In 

this study, Lipofectamine™2000 was used for both stable introducing 

TLR1/TLR2/TLR6/CD44 and mutated plasmids DNA to HEK-293 cells and transient 

transfection of stealth RNAi™ to RAW264.7 cells for RNA silencing. Since both HEK-293 

and RAW264.7 cells are adherent cells, one day before transfection the cells were plated in 

Opti-MEM® I + 10% FBS medium without antibiotics in 24-well plate wells so that cells will 

be 90-95% confluent at the time of transfection. On the day of transfection, dilute 0.8 µg 

plasmid DNA (or 20 pmol stealth™RNAi) in 50 µl of Opti-MEM® I Reduced Serum 

Medium without serum and then dilute the appropriate amount (for plasmid transfection, 2 µl; 

for stealth™RNAi, 1 µl) of Lipofectamine™2000 in 50 µl of Opti-MEM® I Medium. 

Incubate for 5 minutes at room temperature, and mix gently. Then combine the diluted DNA 

with diluted Lipofectamine™ 2000, mix gently and incubate at room temperature for 20 

minutes. The complexes were at last added to the cell wells, mix gently and incubate at 37 °C 

in a CO2 incubator for 24-48 hrs prior to further experiments. For HEK-293 stable cell lines 

selection, selective medium (500 µg/ml G418 for plasmid engineered in pIRES vector, 400 

µg/ml Hygromycin B for plasmid engineered in pCEP4 vector) was supplied in the following 

day for selection. 

3.2.8.14 Confirm expression of TLRs in HEK-293 cell lines and RNAi knockdown in 

RAW264.7 cells 

HEK-293 TLRs expression cell lines were screened out with high concentration of G418 or 

Hygromycin B, the surviving cells should express corresponding TLRs. In order to ensure the 

findings, TLR2 expression in TLR1, TLR6, TLR2, TLR2-TLR1, TLR2-TLR6, 

TLR2EKKA741-744PQNS, TLR2E741P, TLR2K742Q, TLR2K743N, TLR2A744S, and 

TLR2EKKA741-744PQNS-TLR1Y737N co-expressed HEK-293 cell lines was confirmed by 

Western blot. Briefly, 5 × 106 HEK-293 cells per cell line were lysed in 200 µl lysis buffer 

(10 mM Tris pH8.0, NaCl 150 mM, 1%Triton X-100, plus 1×protein inhibitor cocktail 

(Roche)). 20 µl of the cell lysates were run in Western blot using goat anti-human TLR2 

antibody IgG (AF2616, R&D systems, 1:1,000 in 5% non-fat milk PBS from 0.2 mg/ml 

stock). α-tubulin on the same NC membrane was detected as loading control with α-tubulin 

antibody ( mouse monoclonal, DM1A, abcam). Meanwhile, total mRNA from HEK-293 

TLR2wt, TLR2E741P, TLR2K742Q, TLR2K743N, TLR2A744S, TLR2EKKA (741-744) 

PQNS-TLR1wt and TLR2EKKA (741-744) PQNS-TLR1Y737N cells were isolated with 

TRIZOL and first strand cDNA was sythesized with a method as will be described in the 
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following sections (See section 3.2.14.1-3.2.14.3 for procedure). This was followed by an 

ordinary PCR to generate DNA products containing the interest mutant region for sequencing: 

1. Prepare the following 50 µl reaction in a 0.5 ml PCR tube on ice: 

Component Volume(µl) Final concentration 
10 × PCR Buffer 2 µl 1 × 
5 × Q-solution 4 µl 1 × 
dNTP Mix (10 mM each) 0.4 µl 200 µM 
Forward tlr1 /tlr2 / tlr6 primer (10 µM) 0.5 µl 0.25 µM 
Reverse tlr1 / tlr2 / tlr6 primer (10 µM) 0.5 µl 0.25 µM 
DNA template (1st strand cDNA) 2 µl  
Taq DNA polymerase 0.1 µl 0.5 units/reaction 
Nuclease free water Up to 20 µl 

 

2. Gently mix the reaction and spin down in a microcentrifuge, then run PCR programm 

in a DNA Engine Thermal Cycler PTC-200 as below: 

 

The PCR products were sequenced to confirm the corresponding mutants (the primers for 

PCR and sequencing were listed in Table 3.6). 

The tlr1, tlr2 and tlr6 RNA silencing knock down effect was confirmed by realtime PCR 

through SYBR Green method: 

1. RNA isolation with RNeasy plus kit as described in section 3.2.8.1, the RNA was 

finally eluted in 25 µl RNase-free water.  

2. First strand cDNA synthesis using the SuperScript™ II Reverse Transcriptase kit as 

described in section 3.2.8.2. 

3. The cDNAs as templates were forward to realtime PCR determination of tlr1, tlr2 and 

tlr6 RNA level with the DyNAmo colorflash SYBR Green qPCR kit 

(FINNZYMES): 

Reaction setup: 

Component Volume/reaction Final concentration 
2× master mix 10 µl 1 × 
Primer forward (10 µM) 0.5 µl 0.25 µM 
Primer reverse (10 µM) 0.5 µl 0.25 µM 
cDNA 1 µl ≤500 ng/reaction 
RNase-free water 8 µl  
Total reaction volume 20 µl  

Note: For Applied Biosystems 7500 use the 0.3 × ROX final concentration. 

Initial denaturation 94 °C 3 min 
Denaturation 94 °C 1 min 
Annealing 55 °C 60 sec 

                              

Extension 72 °C 1 min 
Final extension 72 °C 10 min 
Storage 4 °C For ever 

35 Cycles 
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Realtime Cycler conditions: 

Step time temperature 
Initial Denaturation: 7 min 95 °C 
Denaturation: 10 s 95 °C 
Annealing/extension 30 s 60 °C 
Number of cycles 45 
Perform melting curve (dissociation curve) analysis 

3.2.9 G-actin/F-actin assay in primary macrophages during Aββββ42 phagocytosis  

Primary BMDMs cultured in a 6-well plate (BD) at a density of 1×106 cells /well were treated 

with aggregated Aβ42 (5 µM) for 0, 15, 30, and 60 min. The cells were then harvested and 

analyzed with G-actin/F-actin in Vivo Assay Kit (Cytoskeleton, Inc., Denver, CO) according 

to the manufacturer’s instructions. Briefly, the cells were lysed at the cell culture temperature 

in a lysis and filamentous actin (F-actin) stabilization buffer, followed by a separation of the 

globular-actin (G-actin) and F-actin through ultracentrifuge at 100,000 × g for 1 h at 37 °C. 

After the G-actin in the supernatant was removed, the F-actin in the pellets was 

depolymerized to globular form by F-actin depolymerization solution. Finally, both G-form 

and F-form actin components were detected via Western blot with anti-actin antibody and the 

ratio of F-actin to G-actin densitometry was determined, which represents the phagocytosis 

activity (Tu et al., 2003). 

3.2.10 Flow cytometric analysis of FITC-Aββββ42 phagocytosis in primary 

macrophages 

BMDM cells cultured in a 24-well plate (BD) at a density of 3 × 105 cells/well were treated 

with 5 µM FITC-conjugated Aβ42 for 0, 1, 3, 6, and 24 hrs. Thereafter, macrophages were 

washed with PBS and detached from the plate with 0.05% Trypsin-EDTA (Invitrogen). The 

mean fluorescence intensity (mFI) of internalized FITC-labeled Aβ42 was immediately 

determined by BD FACSCanto II flow cytometry (Franklin Lakes, NJ) (the use of the FACS 

machine was based on training by the manufacturer).  

3.2.11 Bone marrow transplantation 

Bone marrow transplantation was performed as described (Hao et al., 2011) and finished 

together with Dr.Wenlin Hao. Briefly, APPswe/PS1dE9 recipient mice at the age of 6 months 

were exposed to a 10 Gy whole-body irradiation given as split doses of 2 × 5 Gy with a 4 hrs 

interval using a linear accelerator (γ-source). Donor BM cells (1 × 107 per mouse) derived 

from TLR2-/- or wild type (wt) C57BL6/N mice were then injected, via the tail vein, into each 
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recipient. Transplanted mice were housed in autoclaved cages and treated with antibiotics in 

drinking water (0.2 mg/ml trimethoprim and 1 mg/ml sulfamethoxazole, both from Sigma, 

Schnelldorf, Germany) for 3 weeks after irradiation.  

3.2.12 Tissue collection 

The mice were euthanized 12 months after BM transplantation by deep anaesthesia with 

inhalation of isoflurane. They were rapidly perfused transcardially with ice cold PBS. The 

brain was removed and divided sagittally (Figure 3.5). The left hemi-brain was immediately 

fixed in 4% paraformaldehyde (PFA) and stored at 4 °C for immunohistochemistry. A 0.5 

mm-thick piece of tissue was sagittally cut from the right hemi-brain, homogenized in Trizol 

and stored at -80 °C for RNA isolation. The rest of the right hemi-brain was snap frozen in 

liquid nitrogen for biochemical analysis (Figure 3.5). 

 
Figure 3.5. Schematic figure of brain sample sections preparation. The brain was divided according to the 
lines into 4 parts. The left hemi-brain was immediately fixed in 4% paraformaldehyde (PFA) and stored at 4 °C 
for immunohistochemistry process. A 0.5 mm-thick piece of cerebral tissue was sagittally cut from the right 
hemi-brain, homogenized in Trizol and stored at -80 °C for RNA isolation. The rest of the right hemi-cerebral 
was snap frozen in liquid nitrogen for biochemical analysis. The remained part was frozen in liquid nitrogen as 
well. 

3.2.13 Immunohistochemistry staining of Iba-1 

The PFA-fixed brain was embedded in paraffin (Ms. A. Schottek helped with embedding 

work) and serial 2 µm-thick sagittal sections were cut and mounted on glass slides. 

Immunohistochemical staining was performed on these sections with the VectaStain Elite 

ABC kit (Vector Laboratories). To demonstrate the inflammatory neuropathological changes, 

the rabbit anti-Iba-1 (1:500, Wako Chemicals GmbH, Neuss, Germany) was used as a primary 

antibody, detailed procedures are as follows: 

1. The slides were serially deparaffinized in the solutions below: 



Dissertation: Toll-Like Receptor 2 and Partner Receptors in Alzheimer’s Disease 

 

  
64 

Xylol 5 min 

Xylol 5 min 

Ethanol 100% 5 min 

Ethanol 100% 5 min 

Ethanol 96% 3 min 

Ethanol 70% 3 min 

Ethanol 50% 3 min 

dH2O dip 

2. Antigen retrieval by cooking the sections in 1× citrate buffer (10 mM pH6.0) in a 

microwave oven, 560 watts, 3 min × 5 times. Refill with buffer between each 

cooking. Cool down slowly by leaving on the bench for >30 min after cook. 

3. The endogenous peroxidase of the tissue was inactivated via incubating the slides 

in the mixture of H2O2 / Methanol/dH2O buffer, RT, 30min. 

4. Wash slides with TBS, 5 min × 2  times and then with TBS-T, 5 min, once. 

5. Block with blocking buffer (Casein + 5% goat serum), RT, 1h. 

6. 1st Antibody reaction: with 1:500 dilution of the polyclonal rabbit-anti mouse-Iba-

1 (Wako) in dilution buffer, incubate at 4 °C, overnight. 

7. Wash as step 4. 

8. 2nd Antibody reaction: with the 1:500 diluted biotin labeled goat-anti-rabbit 

(Vector Laboratories) in dilution buffer, RT, 1h. 

9. Preparation of ABC reagent: Add 10 µl reagent A, 10 µl Reagent B to 1 ml PBS/T. 

Incubate in dark for at least 30 min before use. 

10. Wash the slides as step 4. 

11. Incubate the slides with ABC reagent, RT, 30 min 

12. Wash as step 4  

13. Develop with DAB, 120 sec, and then wash with dH2O, 3 times. 

14. Counterstaining with Hematoxylin, 10 sec, forward to dH2O wash 3 times. Then 

develop in running tap water fro 5 min, and then change back to dH2O. 

15. Dehydration: serially treat the slides in the following solutions: 
50% Ethanol Dip  

70% Ethanol Dip  

96% Ethanol Dip, 2 times 

100% Ethanol Dip, 2 times 

Xylol 1st 2 min 

Xylol 2nd  2 min 

Then put in Xylol until mount in entellan 
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16. Mount the slides with Entellan Neu (Merck), and then cover the tissue with 

cover glass. 

All slide images were acquired by Zeiss Axiophot microscope (Göttingen, Germany). For 

microglial quantification, data were reported as the number of Iba-1-labelled cells normalized 

to the full area (mm2) in the total hippocampus. Iba-1-positive cells with clear haematoxylin 

nucleus staining were counted. 

Buffers recipe: 

Citrate buffer(10×  ) 

Citric acid monohydrate 2.1014 g/l, pH=6.0  

H2O2/Methanol/dH2O  

10 ml H2O2  (30%) (Otto Fishar GmbH) 

17 ml methanol 

73 ml dH2O 

Blocking buffer 

0.2% Casein 

0.1% Tween-20 

0.1% Triton-X 

5% Goat serum 

In 1× PBS 

Diluting buffer 

0.02% Casein 

0.01% Tween-20 

0.01% Triton-X 

1% Goat serum 

In 1× PBS 

DAB 

1 mg/ml 3, 3′-Diaminobenzidine tetrahydrochloride (DAB, Sigma) in 1× PBS, Add 1 µl H2O2/ 3 ml DAB 

solution right before use (all waistes demand special disposal) 

3.2.14 Reverse transcription PCR and Real-time PCR analysis of gene 

transcripts 

Real-time PCR is a quantitative PCR method for the determination of cope number of PCR 

templates such as DNA or complementary DNA (cDNA) in a PCR reaction. There are two 

types of real-time PCR: intercalator-based and probe-based. Both methods require a special 

thermocycler equipped with a sensitive camera that monitors the fluorescence in each well of 

the 96-well plate at frequent intervals during the PCR Reaction. Intercalator-based method 

(also known as SYBR Green method) requires a double-stranded DNA dye in the PCR 

reaction which binds to newly synthesized double-stranded DNA and gives fluorescence. 
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Probe-based real-time PCR (also known as TaqMan PCR) requires a pair of PCR primers (as 

regular PCR does), and an additional fluorogenic probe which is an oligonucleotide of 20-26 

nucleotides with both a reporter fluorescent dye and a quencher dye attached. The probe is 

designed to bind only the DNA sequence between the two specific PCR primers. Only a 

specific PCR product can generate a fluorescent signal in TaqMan PCR. Therefore, the 

TaqMan method is more accurate and more reliable than SYBR green method. In this study, 

the TaqMan method was applied to evaluate the relative transcript levels of TNF-α, IL-1β, 

Chemokine (C-C motif) ligand 2 / monocyte chemotactic protein-1 (CCL-2 /MCP-1), and 

iNOS in the TLR2 knockout or wild type bone marrow reconstructed APP mouse brains with 

the 7500 Fast Real-time PCR System (Applied Biosystems).  Ordinarily it includes the 

isolation of total RNA, first strand cDNA synthesis, and real-time PCR detection: 

3.2.14.1 Brain total RNA isolation with Trizol 

Homogenization: The 0.5 mm-thick piece of tissue sagittally cut from the right hemi-brain 

(see above tissue collection section 3.2.12) was homogenized in 1 ml Trizol (Invitrogen) 

according to the manufacturer’s manuals: 

1. Phase separation: Incubate the homogenized samples for 5 min at room temperature to 

permit complete dissociation of nucleoprotein complexes. Then add 0.2 ml of 

chloroform and shake vigorously by hand for 15 sec, and then incubate at room 

temperature for 3 min. Centrifuge the samples at 12,000 × g for 15 min at 4 °C. The 

sample mixture was separated into a lower red, phenol-chloroform phase, an 

interphase and a colorless upper aqueous phase. RNA remains in the aqueous phase. 

2. RNA precipitation: Transfer the colorless aqueous phase to a fresh tube; precipitate 

the RNA from the aqueous phase by mixing with 0.5 ml isopropyl alcohol. Incubate at 

room temperature for 10 min and then centrifuge at 12,000 × g for 10 min at 4 °C. The 

precipitated RNA is the gel-like pellet on the bottom side of the tube. 

3. RNA wash: romove the supernatant and wash the RNA once with 1 ml 75% ethanol. 

Mix by brief vortexing and centrifuge at 7,500 × g for 5 min at 4 °C. 

4. Redissolve the RNA: briefly dry the RNA pellet and then dissolve it in appropriate 

volume of RNase-free water, incubating for 10 min at 55 °C. 
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3.2.14.2 Genome DNA degradation prior to RT-PCR 

To erase trace genomic DNA contamination in the RNA sample, RQ1 (RNA Qualified) 

RNase-Free DNase (Promega), which is a DNase I that degrades both double-stranded and 

single-stranded DNA endonucleolytically, was used. The reaction was set up as following: 

RNA sample in water 8 µl 

RQ1 RNase-Free DNase 10 × Reaction buffer 1 µl 

RQ1 RNase-Free DNase 1 U/ µg RNA 

Nuclease-free water To a final volume of 10 µl 

Incubate at 37 °C for 30 min, and then add 1 µl of RQ1 DNase Stop solution to terminate 

the reaction. The DNase was then inactivated by incubating at 65 °C for 10 min. 

3.2.14.3 First strand cDNA synthesis   

First-strand cDNA was synthesized by priming total RNA with hexamer random primers 

(Invitrogen) and using Superscript II reverse transcriptase (Invitrogen) as described in section 

3.2.8.2. 

3.2.14.4 Real-time quantitative PCR 

For quantification of TNF-α, IL-1β, iNOS, CCL-2 transcription level, real-time quantitative 

PCR with the Taqman® gene expression assays of mouse TNF-α, IL-1β, iNOS, CCL-2 and 

18s RNA was performed using the 7500 Fast real-time PCR system with a DyNAmo™Flash 

probe qPCR kit (FINNZYMES).  

Reaction setup for Taqman probe: 

Components (in order of 

addition) 

Volume/20µl 

reaction 

Final conc. Notes 

2 × DyNAmo™ Flash probe 

Master mix 

10 µl 1×  

Primer mix (in H2O) (including 

probe) 

1 µl 500 nM primer, 250 nM 

TaqMan®probe 

 

50× ROX reference dye (F-

401L) 

0.4 µl 1×  

Template cDNA(in H2O) 1 µl  Max 200 ng/20 µl 

reaction 

H2O Up to 20 µl 

 

Select FAM-labeled detectors and set up reaction system cycling to run: 
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step purpose temp time 

1 UNG incubation 50 ºC 2 min 

2 Initial denaturation 95 ºC 7 min 

3 Denaturation 95 ºC 5 s 

4 Annealing+extension 60 ºC 30 s 

5 Data acquisition   

6 Number of cycles 45 cycles, step 3-5  

 

The amount of double-stranded PCR product synthesized in each cycle was measured by 

detecting the free FAM dye cleaved from the Taqman® probes. Threshold cycle (Ct) values 

for each test gene from the replicate PCRs was normalized to the Ct values for the 18s RNA 

control from the same cDNA preparations. The ratio of transcription of each gene was 

calculated as 2(∆Ct), where ∆Ct is the difference Ct (18s RNA) – Ct (test gene). 

3.2.15 Brain homogenates 

The brain was homogenized according to the published protocol (Figure 3.6)(Mc Donald et 

al., 2010). Briefly, frozen hemisphere was bounce-homogenized in a Tris-buffered saline 

(TBS) (500 µl/100 mg tissue), supplemented with the Roche Complete Protease Inhibitor 

Cocktail and centrifuged at 16,000 × g for 30 min at 4 °C. The supernatant (TBS-soluble 

fraction) was collected and stored at -80 °C. The pellet was re-suspended (the same volume as 

shown above) in TBS plus 1% Triton-X 100 (TBS-TX) plus Protease inhibitor, ultrasonicated 

for 5 min in 4 °C water bath with Transsonic T 780, and centrifuged at 16,000 × g for another 

30 min at 4 °C. The supernatant was collected and stored at -80 °C as the TBS-TX-soluble 

fraction. The pellet was extracted for a third time using an above described volume of ice-cold 

guanidine buffer (5 M guanidine-HCl/ 50 mM Tris, pH 8.0, herein referred to as guanidine-

soluble fraction) by shaking at room temperature ≥4h and then centrifuged as before (at 16, 

000 × g and 4 °C, 30 min) (Figure 3.6). The protein concentration of all samples was 

measured using the Bio-Rad Protein Assay. Aβ concentration in three different fractions of 

brain homogenates was determined by Aβ40/42 ELISA kits (see below).  
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Mouse brain tissue (e.g.100mg)

Homogenize in 1:5 (w/v) (e.g. 500µl) TBS,
Centrifuge at 4°C, 16,000 × g, 30 min

Pellet: membrane-associated and water-insoluble proteins

Homogenize in 1:5 (w/v) (e.g.500µl) TBS+1%TX-100 by 
Ultrasonic, 5 min in ice. Centrifuge at 4°C, 16,000 × g, 30 min

Pellet: Triton-insoluble proteins

Resuspend in 1:5 (w/v) (e.g.500µl) Guanidine-HCl,
RT, shaking, ≥4h.
Then, centrifuge at 4°C, 16,000 × g, 30 min

Guanidine-HCl-soluble proteins
(Gua-Cl)

Water-soluble parenchymal
and cytosolic proteins (TBS)

Detergent-extracted proteins
(TBS-TX)

 
Figure 3.6. Schematic figure of brain homogenates preparation (Modified from reference (Mc Donald et 
al., 2010)). Serial extraction of water-soluble, detergent-soluble and Guanidine-HCl-soluble Aβ. Human brain 
tissue was homogenized in 5 volumes of Tris-buffered saline (TBS), centrifuged at 16, 000 ×g for 30 min and the 
supernatant was designated as the TBS extract. The pellet was re-homogenized in 5 volume of Tris-buffered 
saline containing 1% TX-100 (TBS-TX), centrifuged and the supernatant removed (TBS-TX extract). The 
remaining pellet was then extracted in 5 volume 5 M guanidine-HCl/ 50 mM Tris, pH 8.0, centrifuged and the 
supernatant removed (Gua-Cl extract). 

3.2.16 Bio-Rad Protein Assay 

Protein concentration Bio-Rad Assay was completed with Protein Assay Reagent (Bio-Rad), 

based on the Bradford dye-binding procedure (Bradford, 1976), a simple colorimetric assay 

for measuring total protein concentration. Protein concentrations between 200 µg/ml and 

1,400 µg/ml (20-140 µg totals) can be assayed in a microplate format. Briefly, in high-

concentration assay, 10 µl sample or serial diluted standards were loaded on a 96-well format 

microplate, and then 200 µl 1× assay reagent was added to each well. Absorption at 595 nm 

was read with a Micro-plate reader and protein concentration was determined according to a 

standard curve.  

3.2.17 Aββββ ELISA 

Aβ1-40 and Aβ1-42 concentrations in three different fractions of brain homogenates were 

determined by Aβ42/40 ELISA kits (both from Invitrogen). Procedure is as follows: 

1. Prepare samples and through serial dilution prepare the following Aβ1-40/ Aβ1-42 

standards: 250, 125, 62.5, 31.25, 15.63, 7.81, and 0 pg/ml Hu Aβ40/ Aβ42. 
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2. Add 50 µl of Aβ1-40/ Aβ1-42 peptide standards, controls, and samples to each plate 

well. 

3. Add 50 µl of anti-Hu Aβ40/ Aβ42 (Detection Antibody) solution to each well. Cover 

plate with plate cover and incubate for 3 hrs at room temperature with shaking. 

4. Thoroughly aspirate solution from wells and discard the liquid. Wash wells 4 times.  

5. Add 100 µl Anti-rabbit Ig’s-HRP Working Solution to each well. Cover plate with the 

plate cover and incubate for 30 min at room temperature. 

6. Thoroughly aspirate solution from wells and discard the liquid. Wash wells 4 times. 

7. Add 100 µl of Stabilized Chromogen to each well. The liquid in the wells will begin to 

turn blue. Incubate for 30 min at room temperature and in the dark.  

8. Add 100 µl of Stop Solution to each well. Tap side of plate gently to mix. The solution 

in the wells would change from blue to yellow. 

9. Read the absorbance of each well at 450 nm having blanked the plate reader against a 

chromogen blank composed of 100 µl each of Stabilized Chromogen and Stop 

Solution. Read the plate within 30 min after adding the Stop Solution. 

10. Use curve fitting software to generate the standard curve. Read the concentrations for 

test samples and controls from the standard curve. Multiply value(s) obtained for 

sample(s) by the appropriate factor to correct for the sample dilution.  

3.2.18 Barnes maze test 

The cognitive function of recipient APPswe/PS1dE9 mice 1 year post bone marrow 

transplantation was tested with Barnes Maze using the established protocol (O'Leary et al., 

2009; Hao et al., 2011). The test involved 5 days of acquisition training with two trials per 

day. For each trial, the mouse was placed at the center of the maze. After 5-10 sec, the mouse 

was allowed to run on the platform freely until reaching the escape hole. In order to reduce 

the stress for mice, no extra aversive stimuli were given. For each trial, latency to enter the 

escape hole and distance travelled were recorded by EthoVision® XT (V7.0) tracking 

software. In the end, the latency and total distance were averaged from the two trials per day 

for statistical analysis. 

3.2.19 Immunofluorescence staining of NeuN on paraffin brain sections 

The PFA-fixed brain was embedded in paraffin (A. Schottek helped with embedding work) 

and serial 2 µm-thick sagittal sections were cut and mounted on glass slides. In order to 

investigate the neuronal loss, the slides were stained with NeuN antibody, a neuron-specific 
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protein resticted to nuclei in most vertebrate CNS and PNS neuronal cell types (Mullen et al., 

1992):  

1. Deparaffinization: 

Xylol 5 min 

Xylol 5 min 

Ethanol 100% 5 min 

Ethanol 100% 5 min 

Ethanol 96% 3 min 

Ethanol 70% 3 min 

Ethanol 50% 3 min 

dH2O dip 

2. Antigen retrieval by cooking the sections in 1× citrate buffer (10 mM pH6.0) in a 

microwave oven, 560 watts, 3 min × 7 times. Refill with buffer between each cooking. 

Cool down slowly by leaving on the bench for >30 min after cook 

3. Wash with dH2O, dip, 3 times 

4. Block with blocking buffer (5% Goat serum, 0.1% Tween-20, 0.1% Triton-X, in 1× 

PBS), RT, 1 h 

5. 1st Antibody reaction: with 1:50 dilution of mouse anti-NeuN monoclonal antibody 

(Millipore), in dilution buffer (1% Goat serum, 0.1% Tween-20, 0.1% Triton-X, in 1× 

PBS), incubate at 4°C, overnight. Antibody: 1:50 dilution of 1 mg/ml stock, 4 °C, 

overnight 

6. Wash with PBS 5 min, 2 times, then with PBS/TritonX 5 min, 1 time 

7. 2nd Antibody reaction: with the 1:150 diluted Cy3 conjagated goat-anti-mouse 

antibody (final concentration 5 µg/ml), 37 °C, 1 h 

8. Wash with PBS, 5 min, 3 times 

9. Counterstain with DAPI (1:1000) in PBS, RT, 5 min 

10. Wash: with aqua dest, 3 times 

11. Mount with Mowiol 

12. Observe under Eclipse E600 fluorescence microscope. NeuN positive cells in the CA3 

region of hippocampus were counted. 

3.2.20 Western blot analysis of PSD-95 

PSD-95 in the brain homogenate (TBS-TX fraction) was detected by Western blot using 

mouse anti-PSD-95 monoclonal antibody (clone 6G6-1C9, abcam, Cambridge, UK) 

according to the established protocol (Pham et al., 2010). Mouse α-tubulin was detected as a 

loading control using the DM1A antibody (Abacam): 
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3.2.20.1 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) technique 

separates proteins according to their mobility difference in an electric field. Protein samples 

treated with SDS show an identical charge per unit mass and migrate in SDS gels only 

according to their molecular masses.  

The SDS-PAGE system used in this study is the Mini-PROTEAN® 3 Cell electrophoresis 

system (Bio-Rad). One gel is composed of a lower separating gel and an upper stacking gel. 

The stacking gel is 4%, while the percentage of the separating gel varies from 8% to 15%. 

Low percentage gels are used for large proteins, while small proteins are separated in high 

percentage gels. In this study,  12% separating gel was used.  

The gel and the electrodes were assembled in the SDS-PAGE chamber. The brain 

homogenate samples were diluted 1:1 in 2 × SDS-PAGE Sample loading buffer and heated at 

95°C for 5min. Then, 20 µl sample per well was loaded to 12% Acrylamide gel for 

electrophoresis running at 100 V until the Bromophenol blue front runs out of the gel. 

Proteins on the gel were transferred to NC membranes and detected by immunoblotting. 

Recipe: 

Separating gel 12% 

ddH2O 2        ml 

Acrylamide;bisacrylamide 30% 4        ml 

Tris-Cl 1 M pH9.2 3.75   ml 

SDS 10% 100    µl 

Ammonium persulfate (APS) 25% 15      µl 

TEMED(N, N, N', N'-tetramethylethylenediamine) 15      µl 

 

Stacking gel 5% 

ddH2O 3.5     ml 

Acrylamide;bisacrylamide 30% 810    µl 

Tris-Cl 1M pH6.8 625    µl 

SDS 10% 50      µl 

Ammonium persulfate 25% 10      µl 

TEMED 10      µl 

 

SDS-PAGE electrophoresis buffer 10 × (1Liter): 

Chemical Con. In 10 × buffer Amount 

Tris-base  0.25 M 30.3 g 

Glycine  1.92 M 144.1 g 
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SDS  1% 10 g 

ddH2O  Until 1 liter 

Store at 4 °C. Dilute to 1x for working solution 

 

2× SDS-PAGE sample Loading Buffer: 

1 M Tris-Cl (pH 6.8) 6.25 ml 

80% Glycerol 6.25 ml 

10% SDS 10 ml 

2-Mercaptoethanol 2.5 ml 

0.05% (w/v) bromophenol blue 2.5 ml 

ddH2O 22.5 ml 

Total 50 ml 

3.2.20.2 Protein detection using immunoblotting 

Proteins separated by SDS-PAGE were further transferred to a nitrocellulose (NC) transfer 

membrane (Whatman) with a pore size of 0.20 µm via a Mini Trans-Blot cell (Bio-Rad) 

system. The SDS gel was loaded into a blotting sandwich, which consists of, starting from 

Negative charge pole to Positive charge pole: sponge, Whatman paper, SDS gel, NC 

membrane, Whatman paper, sponge. Sponges and Whatman papers were all rinsed with 

transfer buffer before assembling. Air bubbles between the SDS gel and the NC membrane 

were expelled before packing. Proteins were transferred to the NC membrane by running the 

system at 0.1 mA per cm² membrane for 75 min with cooling. The NC membrane was 

unpacked from the sandwich after running and incubated with the blocking buffer at room 

temperature for 60 min followed by washing with TBST 5min × 3times. Then, the membrane 

was incubated with the 1/2000 dilution from stock 1st antibody mouse monoclonal [6G6-1C9] 

IgG2a to PSD-95 (abcam) in blocking buffer at 4 °C overnight. The tracing unbound antibody 

was rinsed 5 min × 8 times with TBST. The membrane was then incubated with the 1/2000 

diluted horseradish peroxidase conjugated 2nd goat anti-mouse antibody (Dako) at room 

temperature for 2 hours. After washing, the same as for the 1st antibody, drain washing buffer, 

add western lightning solution (1:1 mixture of Oxidizing reagent plus and Enhanced luminal 

reagent plus, Perkin Elmer) and develop for 1 min.  Expose the developed NC membrane to a 

high performance chemiluminescence film (GE healthcare) for 1-30 min. The film was 

visualized by proceeding with Kodak GBX Developer and Fixer solution.  

The same membrane was washed 5 × 5 min with TBST, and blocked in 5% non-fat milk in 

PBS overnight. The membrane was developed for α-tubulin using α-Tubulin antibody (mouse 

monoclonal, DM1A) (abcam) (1:10,000 in 5% non-fat milk PBS) at RT for 2 h. 
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The densitometry of the PSD-95 lanes and the α-tubulin lanes were quantified with Image 

J software. The ratio of PSD-95/α-tubulin density represents the relative PSD-95 level in 

original samples. 

Buffer recipe:  

PBST: NaCl 155  mM 

 NaH2PO4 2.5  mM 

 Na2HPO4 10  mM 

 TWEEN 20 0.25  % (v/v) 

 Dissolve in diH2O, pH 7.3, filter-sterilize. 

 

Blocking buffer:  Milk powder 5  % (w/v) 

 Resuspend in PBS buffer, pH 7.3. 

 

10× Membrane transfer buffer stock (4° C) 

Tris-base 30.3 g 

Glycine 144.1  g 

ddH2O Until 1 liter 

 

1× Membrane transfer buffer from 10× stock 

10× transfer buffer stock 100 ml 

ddH2O 500 ml 

Ethanol  200 ml 

ddH2O Until 1 liter 

 

Blocking buffer: 

Nonfatty milk 5 g 

PBS 100 ml 

Mix until the milk dissolved 

 

10× TBS (tris-saline) buffer: 

Tris base 6.05 g 

NaCl 43.9 g 

ddH2O Until 500 ml 

3.2.21 Statistics 

Data shown in the result figures are presented as mean ± SD (for in vitro data) or mean ± 

SEM (for in vivo data). For multiple comparisons, one-way or two-way ANOVA followed by 

Bonferroni’s, Tukey’s Honestly Significant Difference or Tamhane’s T2 post hoc test 
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(dependent on the result of Levene’s test to determine the equality of variances) was applied. 

Two-independent-samples t-test was used to compare means for two groups of cases. All 

statistical analysis was performed on Statistical Package for the Social Sciences 15.0 for 

Windows (SPSS, Chicago). Statistical significance was set at p<0.05. 
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4 Results 

4.1 TLR2 is a primary receptor for A ββββ42 to trigger inflammatory activation 

4.1.1 Tlr2-deficiency reduces Aββββ42-induced inflammatory activation in microglia and 

macrophages 

Microglia are the resident macrophages in the CNS and play a major role in the 

neuroinflammatory activation, especially under pathological conditions (Nguyen et al., 2002). 

TLR2 has been observed to be involved in Aβ-triggered microglial inflammatory activation 

(Jana et al., 2008; Richard et al., 2008; Reed-Geaghan et al., 2009). Our previous study 

showed that deficiency of MyD88, the most common signaling adaptor molecule in the toll-

like receptor-mediated innate immune response, in macrophages decreased Aβ-triggered 

inflammatory activation (Hao et al., 2011). Here, in a cell culture system, whether TLR2 

deficiency reduces Aβ-triggered inflammatory activation was first tested. Microglia and bone 

marrow-derived macrophages (may reflect microglial precursor cells (Priller et al., 2001)) 

were cultured and stimulated with TLR2 ligand Pam3CSK4 or aggregated Aβ42. Indeed, tlr2-

deficient microglia (Figure 4.1A-B) or macrophages (Figure 4.1C) secreted significantly less 

TNF-α (Figure 4.1A,C) or IL-1β (Figure 4.1B) as compared to wild-type control cells after 

stimulation with 5 or 10 µM oligomeric Aβ aggregates, or Pam3CSK4 positive control ligand, 

suggesting that TLR2 mediates the Aβ inflammatory recognition. This result correlates with 

the previous observation that TLR2 gene-silencing reduced inflammatory gene transcription 

in microglia upon Aβ activation (Jana et al., 2008). 

 

Figure 4.1. Tlr2-deficiency reduces Aββββ-induced inflammatory cytokine secretion in microglia and 
macrophages. Primary cultured microglia (A-B, n=5) and bone marrow-derived macrophages (BMDMs) (C, 
n=7) derived from wild-type (wt) or tlr2-deficient (ko) mice were challenged with 5 and 10 µM Aβ42 aggregates 
and 10 ng/ml (for microglia) or 100ng/ml (for BMDMs) Pam3CSK4 for 24 hrs. The supernatants were then 
collected for the measurements of TNF-α (A, C) and IL-1β (B) with ELISA kits (Data are the means ± SD, n≥5). 
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4.1.2 TLR2 co-localizes with Aββββ in Aββββ-treated microglia 

It is hypothesized in this study that TLR2 is a primary receptor of Aβ, thus, the spatial 

relationship between TLR2 and Aβ on microglia was investigated under confocal microscopy. 

Thirty minutes after the treatment of aggregated Aβ42, TLR2 and Aβ were co-stained with 

corresponding antibodies. The co-localization of TLR2 and Aβ was observed as the overlap 

between two different fluorophores which were conjugated to TLR2 and Aβ, respectively 

(Figure 4.2).   

 

Figure 4.2. Aββββ co-localizes with TLR2 in microglial cells upon incubation with Aββββ.  Primary microglia were 
incubated with aggregated Aβ42 for 30 min and then fixed for the immunofluorescent staining with antibodies 
against TLR2 (in red) and Aβ (in green) as described in the methods section. Under confocal microscopy, co-
localization of Aβ and TLR2 was shown in yellow colour. 

4.1.3 TLR2 directly binds to Aββββ 

In order to study the direct interaction between Aβ and TLR2, real-time surface plasmon 

resonance spectroscopy (Biacore) was applied. Soluble C-teminus 10 × His-tagged TLR2, 

TLR1 or TLR3 and IGF-1R, as a reference receptor, were immobilized in the two paralleled 

flow cells of the NTA sensor chip. Aggregated Aβ42 or control peptide Aβ1-42 was 

simultaneously injected into these two flow cells.  A clear and strong response indicating Aβ 

binding to the receptor was observed in the TLR2-immobilized flow cell, but not in the TLR 

control receptors, TLR1 and TLR3 immobilized flow cells. The different response units 

between TLR2 and IGF-1R flow cells (FC1-FC2) are shown in Figure 4.3 (Figure 4.3 B, D); 

while no significant response was observed in the TLR1 or TLR3 channel (Figure 4.3 A, C, 

D). In the control experiment, Aβ42-1, instead of Aβ42 was injected to the flow phase. No 

responsive difference in the two paralleled flow cells was observed (Figure 4.3 A-D).  

In order to further study the binding between Aβ42 and TLR2, a pull-down assay was 

performed. Aβ42 aggregates were incubated with TLR2 and IGF-1R tagged with 10 × His on 

the C-terminus. Then, the solution was loaded on Ni-NTA spin columns. After thoroughly 

washing, the complex of Aβ42 and receptor was eluted and detected with Western blot as 

described in the method section. As shown in Figure 4.3E and F, the Aβ42 from the Aβ-
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TLR2-loaded column was significantly more than that from the Aβ-IGF-1R-loaded column 

(p<0.05, Figure 4.3 E-F) or from the Aβ42 aggregates direct load non-receptor blank control 

column (Figure 4.3E). The blot with anti-His antibody showed that the amount of eluted 

receptors is comparable. Unfortunately, this assay was not able to tell which species of Aβ 

does TLR2 bind, since aggregated Aβ eluted from the Ni-NTA spin columns in this assay 

seems to under go a deaggregation process: the only Aβ species found in the elutes was 

monomeric. This might be due to the NTA and high imidazole level (500mM) presented in 

the system, as they may affect the histidine imidazole rings that are important for the 

formation of Aβ oligomers and fibrils (Dong et al., 2003; Sarell et al., 2009). 

 

 

Figure 4.3. TLR2 directly interacts with Aββββ. (A-D), the interactions between TLR1/TLR2/TLR3 and Aβ42 
aggregates were studied with Biacore J. The response difference (Resp. Diff) between flow cell 1 (FC1) 
immobilized with TLR1 (A), TLR2 (B) or TLR3 (C) and FC2 immobilized with IGF-1R (FC1-FC2) are shown 
by sensorgrams (A-C) after loading Aβ42 or Aβ42-1 in the flow phase. The “Resp. Diff” at the steady stage is 
summarized and presented in bars (D). The response due to the interaction between TLR2 and Aβ42 was 
markedly larger than that upon interaction of TLR2 and Aβ42-1 (p<0.001, n=6) (B, D). (E-F), Direct binding of 
TLR2 and Aβ42 was further proven by a pull-down assay. Aggregated Aβ42 was incubated with TLR2 or IGF-
1R tagged with His on C-terminal and then loaded onto Ni-NTA spin columns. After washing, Aβ42 was eluted 
and detected with immunoblot (E). The amount of Aβ was quantified using densitometric analysis (F). (Data are 
the means ± SD, n=6; A-C and E are representatives of the independent experiments).   
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4.1.4 TLR2 expression enables HEK-293 cells to respond to Aββββ challenge 

HEK-293 cells, which do not endogenously express TLR2 (Brightbill et al., 1999; Walter S et 

al., 2007), do not respond to Aβ (Walter S et al., 2007). Interestingly, after over-expressing 

TLR2 in HEK-293 cells, it was observed that IL-8 secretion, which indicates a cellular 

inflammatory response, was induced 24 hours post-treatment with aggregated Aβ42. Neither 

mock transfection nor control receptor CD44 over-expression caused IL-8 release (p<0.001) 

(Figure 4.4). 

 

Figure 4.4. TLR2 expression confers HEK-293 cells to secreate inflammatory cytokine upon Aββββ challenge. 
HEK-293 cells were engineered to stably express TLR2 or control receptor CD44. The cells were stimulated 
with 10 µM Aβ for 24 hrs, the IL-8 level in the supernatants was determined through ELISA (Data are the means 
± SD, n=3).   
 

However, the Aβ42 peptides used in this study were a mixture of monomeric, oligomeric 

and fibril Aβ42, although enriched in oligomeric aggregates (see material section 3.2.2 and 

Figure 3.1). Due to the technical limitation, specific Aβ42 species was not purified and used 

in this study. Thus, it is not clear which species of Aβ42 interacted with TLR2 and activated 

the inflammatory signaling cascade.  

4.2 Molecular mechanisms of TLR2 in Aββββ-triggered inflammatory signaling 

4.2.1 TLR1 enhances whereas TLR6 suppresses TLR2-mediated Aββββ-triggered 

inflammatory activation 

Typical TLR2 recognition is in co-operation with TLR1 (for triacylated lipopeptides) or 

TLR6 (for diacylated lipopeptides) (Medzhitov et al., 1997a; Jin et al., 2008a). However, 

which co-receptor, TLR1 or TLR6, may co-operate with TLR2 in Aβ recognition was not 

known. To address this, HEK-293 cell lines expressing TLR2 and TLR1, TLR2 and TLR6, 

TLR2, TLR1 or TLR6 were established. The TLR2 expression level was comparable as 



Dissertation: Toll-Like Receptor 2 and Partner Receptors in Alzheimer’s Disease 

 

  
80 

confirmed by TLR2 immunoblot (Figure 4.5A). These cell lines were challenged with 

aggregated Aβ42. As shown in Figure 4.5B, HEK-293 cells expressing TLR1 or TLR6 alone 

did not respond to Aβ as indicated by IL-8 release. IL-8 release in TLR2 and TLR1 co-

expressing cells was significantly increased (p=0.028); whereas, IL-8 production in TLR2 and 

TLR6 co-expressing cells was reduced (p<0.001) compared to the TLR2 alone expressing 

cells. In order to further confirm this finding, the tlr1, tlr2 or tlr6 gene expression in the 

macrophage cell line, RAW264.7 cells was knocked down using interference RNA (Figure 

4.5C). Accordingly, the TNF-α secretion was reduced in the tlr2-silenced cells (Figure. 4.5D, 

p=0.018), whereas it was increased in the tlr6-silenced macrophages (Figure 4.5D, p<0.001). 

 

Figure 4.5. Toll-like receptor 1 enhances whereas Toll-like receptor 6 suppresses the TLR2-mediated Aββββ-
triggered inflammatory activation. (A) Western blot confirmed the TLR2 expression in the HEK-293 cell lines 
constructed to express TLR2, TLR1, or TLR6 alone, or co-expressing TLR2-TLR1 or TLR2-TLR6. (B) The 
HEK-293 cell lines as shown in (A) were stimulated with 10 µM aggregated Aβ42 for 24 hrs, the inflammatory 
cytokine IL-8 level in the supernatants was determined through ELISA. (C) In RAW264.7 cells, Tlr1, tlr2 and 
tlr6 expression were silenced down by introducing stealth siRNA specific for mouse tlr1, tlr2, tlr6. The knock 
down effect was confirmed through realtime PCR: the tlr1, tlr2, and tlr6 mRNA relative level in the 
corresponding silenced cells were detected. (D) RAW264.7 cells knocking down of tlr1, tlr2 or tlr6 as shown in 
(C) were stimulated with10 µM Aβ for 24 hrs; the inflammatory cytokine TNF-α level in the supernatants was 
determined through ELISA (Data are the means ± SD, n=4). 

4.2.2 Extra cellular LRR domains on TLR2 are essential for ligand recognition 

After found that TLR2 mediated Aβ-initiated inflammatory activation in co-operation with 

TLR1, this study further investigated the detailed mechanisms mediating the Aβ recognition. 

The precursor of human TLR2 contains 784aa including a signal sequence (aa1-18), an 

extracellular domain (aa19-588), a transmembrane segment (aa589-609) and a cytoplasmic 

TIR domain (aa610-784). In the extracellular domains of TLR2, TLR1 and TLR6, as aligned 

with ClustalW program (Figure 4.7) and reported (Meng et al., 2003; Grabiec et al., 2004; 
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Omueti et al., 2005; Kang et al., 2009), there are approximately 20 LRR modules, in which 

LRR7-10 in TLR2, LRR9-12 in TLR1 and LRR11-14 in TLR6 were reported to play crucial 

roles in the lipopeptide recognition (Figure 4.7). The crystal structures of TLR2-TLR1 and 

TLR2-TLR6 heterodimers with ligands suggest that the lipopeptide-binding sites of TLR2 are 

at the convex region formed at the border of central and C-terminal domains opening into a 

crevice that is connected to a large internal pocket. The heterodimeric interface of TLR1-

TLR2 is from H318 to H398 on TLR2 and P315 to Q383 on TLR1 (Figure 4.6) located in the 

LRR11-14 region for both receptors (Figure 4.7) (Jin et al., 2007). The heterodimeric 

interface of TLR6-TLR2 is from H318 to K404 on TLR2 and H311 to K390 on TLR6 (Figure 

4.6), also locate in the LRR11-14 region for the receptors (Figure 4.7) (Kang et al., 2009). 

Thus, potential important LRRs in TLR2, TLR1 and TLR6 were screened by constructing 

expression vectors with deletion of sequences encoding LRR3-4, LRR7-9, LRR10-11, 

LRR12-14 or LRRCT in TLR2, TLR1 and TLR6. TLR2 mutants were expressed alone or 

with wild-type TLR1. TLR1 and TLR6 mutants were co-expressed with wild-type TLR2 in 

HEK-293 cells. As shown in Figure 4.8A, following the treatment with Pam3CSK4 and 

Pam2CSK4, all of the studied TLR2 LRRs are essential for ligand recognition, as deletion of 

any studied LRR in TLR2 abolished IL-8 production, either in TLR2-expressed cells or in 

TLR2-TLR1 co-expressed cells. LRRs of TLR1 and TLR6 were relatively less important. 

With the exception of the deletion of LRR12-14 or LRRCT on TLR1 resulting in a decreased 

response upon Pam3CSK4 challenge, deletion of other LRRs in TLR1 and TLR6 did not 

induce significant changes upon the ligand challenge (Figure 4.8B). 
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Figure 4.6. Schematic of the TLR2 and TLR1/TLR6 interaction interface. The interacting amino acids are 
sorted according to the interacting force. Interacting Region where interacting residues in the TLR1 and TLR2 
(left), TLR6 and TLR2 (right) interface are linked by broken lines, summarized from references (Jin et al., 2007; 
Kang et al., 2009). 
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Figure 4.7. Sequence alignment of the ectodomains of human TLR1, TLR2, and TLR6. Human TLR1, 
TLR2, and TLR6 extracellular sequences are aligned with ClustalW program. The consensus patterns (Kang et 
al., 2009) are shown above the sequences. Based on crystal structure reports (Jin et al., 2007; Kang et al., 2009), 
the residues for extracellular TLR2-TLR1/6 dimerization are in red; residues for ligand binding are in green; 
residues for both receptor dimerization and ligand binding are in bold italic red. 
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Figure 4.8. TLR2 extracellular LRRs are essential for ligand recognition and LRRs of TLR1, TLR6 
modulate the recognition. HEK-293 cells were transfected to express TLR2 alone or co-express TLR1 or TLR6 
with indicated LRRs deleted. The cells were stimulated with 100 ng/ml Pam2CSK4 or Pam3CSK4 for 24 hrs, 
IL-8 in the supernatants was determined via ELISA. (A) Any of the TLR2 LRRs deletion resulted in impaired 
TLR2 response upon ligand stimulation, regardless whether co-expressed with TLR1 or not. (B) Co-expressing 
with wild type TLR2, TLR1 or TLR6 deletion showed no responsive change, as compared with TLR2-TLR1/6 
co-expression cells for Pam2CSK4 stimulation, while for Pam3CSK4 stimulation, the deletion of TLR1 or TLR6 
LRR7-14 and extracellular C terminal LRR decreased the response (Data are the means ± SD, n=3). 

4.2.3 Intracellular domains of TLR1 and TLR6 are involved in the diverse reactions 

of TLR2/1 and TLR2/6 complexes upon ligand challenge  

TLR2 attains specificity for the ligands by forming heteromers with TLR1 or TLR6 (Farhat et 

al., 2008). And that TLR1 enhanced but TLR6 reduced Aβ-triggered TLR2-mediated 

inflammatory activation was demonstrated, which is in accordance with the response profile 

of TLR2/1 complex to its ligand Pam3CSK4. Although different cellular responses might be 

due to different extracellular ligand-binding interfaces of the receptor complex, in this study, 

whether the cytoplasmic domains of TLR1, TLR2 and TLR6 also contributes to this diverse 

reaction was investigated. It is notable that there is but one XcmI restriction enzyme cleavage 

site in the nucleotide sequences encoding both TLR1 and TLR6 transmembrane-domains 

(Figure 4.9A), which makes it possible to exchange the TLR1 and TLR6 intracellular domains 
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following XcmI cleavage, as shown in Figure 4.9A. The chimeric TLR1-TLR6 receptors alone 

or together with TLR2 in HEK-293 cells were over-expressed. Following the stimulation with 

the Pam3CSK4, neither TLR1 nor TLR6-expressing cells released IL-8, whereas TLR2-

expressing cells secreted IL-8 and TLR2-TLR1 co-expressing cells produced the highest level 

of IL-8 (Figure 4.9B). Interestingly, the IL-8 level was significantly reduced in the TLR2-

TLR1 co-expressing cells after replacing the TLR1 intracellular domain with the TLR6 

intracellular domain (Figure 4.9B). Meanwhile, TLR2-TLR6 co-expressing cells produced the 

lowest level of IL-8. The replacement of the TLR6 intracellular domain with the one from 

TLR1 increased the release of IL-8 (Figure 4.9B). Similarly, following the Pam2CSK4 

challenge, the replacement of the TLR6 intracellular domain by the TLR1 intracellular 

domain reduced IL-8 secretion from TLR2-TLR6 co-expressing cells, while the replacement 

of the TLR1 intracellular domain by the TLR6 relevant domain increased IL-8 secretion from 

the TLR2-TLR1 co-expressing cells (Figure 4.9C). These results suggest that the intracellular 

domains of TLR1 and TLR6 have divergent roles in their relationship with TLR2.  

 

 
Figure 4.9. TLR1 and TLR6 intracellular domains are involved in ligand specific signal transduction. 
TLR2 and wild type or domain exchanged TLR1 and TLR6 were engineered to be expressed on HEK-293 cells. 
(A) The intracellular domains of TLR1 and TLR6 were exchanged through XcmI restriction digestion based on 
the restriction sites analysis. (B) Upon Pam3CSK4 stimulation, the TLR2-TLR1 expressing cells respond 
maximally. The response was minimized by replacing the TLR1 intracellular domain with that of TLR6. 
Replacement of the TLR6 intracellular domain with that of TLR1 enhanced the response level of TLR2-TLR6 
expressing cells (Data are the means ± SD, n=3). (C) Upon Pam2CSK4 stimulation, the TLR2-TLR6 expressing 
cells respond maximally. The response was reduced by replacing the TLR6 intracellular domain with that of 
TLR1. Replacement of the TLR1 intracellular domain with that of TLR6 enhanced the response level of TLR2-
TLR1 expressing cells (Data are the means ± SD, n=3). 
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In order to determine the specific regions in the intracellular fragments responsible for the 

inflammatory signal transduction, the alignment and functional analysis was performed 

between the intracellular sequences of TLR1, TLR2 and TLR6 (Figure 4.11). The following 

facts were also taken into consideration: 

1. In eukaryotic cells, the phosphorylation mainly occurs on the three hydroxyl-

containing amino acids: serine, threonine, and tyrosine, especially serine. 

Phosphoserine (pSer), phosphothreonine (pThr), and phosphotyrosine (pTyr) account 

for 86.4%, 11.8%, and 1.8%, respectively, of the total phosphorylated amino acids 

(Olsen et al., 2006; Shi Yigong, 2009). The potential phosphorylated sites in TLR2, 

TLR1 and TLR6 cytoplasmic domains predicted with NetPhos 2.0 programm  

(http://www.cbs.dtu.dk/services/NetPhos/) are shown in Figure 4.10: 

 
Figure 4.10. Phosphorylation site prediction for TLR2, TLR1 and TLR6. The full sequence of TLR2, TLR1 
and TLR6 was predicted for potential phosphorylating sites by online NetPhos 2.0 software 
(http://www.cbs.dtu.dk/services/NetPhos/). Score threshold was set to 0.500. The intracellular phosphoserine (S), 
phosphothreonine (T) and phosphotyrosine (Y) are listed at the right side. The predicted phosphorylating sites 
conserved in two or more of the three receptors were underlined.   
 

2. Compared with TLR6, TLR1 PQYSIPSS (735-742) is an extra site that might be 

recognised by GSK3 for Ser/Thr Phosphorylation as predicted with the Eukaryotic 

Linear Motif (ELM) resource for Functional Sites in Proteins (http://elm.eu.org).  

3. The secondary structure of DD loop is critical in the TIR-TIR platform formation,  

which is essential for the dimerization of TLRs (Gautam et al., 2006). The sequences 

of homologous DD loops of TLR1, TLR2 and TLR6 are compared in Figure 4.11, 

which shows that only EKKA (741-744) and QR (747-748) in TLR2 are different 

from the homologous regions of TLR1 and TLR6.   

4. Proline (P) is a unique amino acid residue in that the cyclic structure of its side chain 

locks its ϕ backbone dihedral angle at about 75°, thus, it has an exceptional 

pos context score pred pos context score predpos context score pred
636 RKAPSRNIC 0.028 . 642 HAFISYSGH 0.524 *S* 647 HAFISYSEH 0.957 *S*
646 DAFVSYSER 0.877 *S* 644 FISYSGHDS 0.964 *S* 649 FISYSEHDS 0.961 *S*
648 FVSYS ERDA 0.993 *S* 648 SGHDSFWVK 0.003 . 653 SEHDSAWVK 0.010 .
692 NIIDS IEKS 0.898 *S* 658 AWVKSELVP 0.016 .

678 VPGKSIVEN 0.957 *S* 683 VPGKSIVEN 0.957 *S*
696 SIEKSHKTV 0.910 *S* 690 CIEKSYKSI 0.986 *S* 695 CIEKSYKSI 0.805 *S*

693 KSYKSIFVL 0.477 . 698 KSYKSIFVL 0.477 .
704 VFVLSENFV 0.101 . 698 IFVLSPNFV 0.023 . 703 IFVLSPNFV 0.023 .
710 NFVKSEWCK 0.079 . 704 NFVQSEWCH 0.058 . 709 NFVQSEWCH 0.058 .
720 ELDFSHFRL 0.509 *S* 723 FHEGSNSLI 0.003 . 728 FHEGSNNLI 0.002 .
784 AAIKS---- 0.025 . 725 EGSNSLILI 0.007 .

738 IPQYSIPSS 0.064 . 743 IPQNSIPNK 0.050 .
741 YSIPSSYHK 0.030 .
742 SIPSS YHKL 0.862 *S*
748 HKLKSLMAR 0.198 .
763 PKEKSKRGL 0.694 *S* 768 PKEKSKRGL 0.694 *S*

796 NDVKS---- 0.078 .
699 KSHKTVFVL 0.450 . 617 VCQWTQTRR 0.050 . 622 VCQWTQTRR 0.050 .
758 KIMNTKTYL 0.032 . 619 QWTQTRRRA 0.977 *T* 624 QWTQTRRRA 0.977 *T*

685 ENIITCIEK 0.080 . 756 KALMTQRTY 0.589 *T*
760 MNTKTYLEW 0.041 . 754 MARRTYLEW 0.435 . 759 MTQRTYLQW 0.015 .

781 NIKLTEQAK 0.033 . 786 NMKLTLVTE 0.255 .
789 LTLVTENND 0.019 .

617 HGLWYMKMM 0.054 . 609 DLPWYLRMV 0.165 . 614 DLPWYLRMV 0.165 .
641 RNICYDAFV 0.084 . 643 AFISYSGHD 0.046 . 648 AFISYSEHD 0.166 .
647 AFVSYSERD 0.103 . 663 ELVPYLEKE 0.149 .
653 ERDAYWVEN 0.821 *Y* 691 IEKSYKSIF 0.578 *Y* 696 IEKSYKSIF 0.578 *Y*
715 EWCKYELDF 0.088 . 709 EWCHYELYF 0.062 . 714 EWCHYELYF 0.062 .
761 NTKTYLEWP 0.224 . 712 HYELYFAHH 0.081 . 717 HYELYFAHH 0.081 .

737 PIPQYSIPS 0.300 .
743 IPSSYHKLK 0.093 . 748 IPNKYHKLK 0.154 .
755 ARRTYLEWP 0.074 . 760 TQRTYLQWP 0.072 .

hTLR2 hTLR1 hTLR6TLR2 

TLR1 

TLR6 
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conformational rigidity compared to other amino acids and acts as a structural 

disruptor in secondary structure elements such as α helices and β sheets. Proline is 

also commonly found in turns.  

5. According to a recent scan on the mouse tissue-specific protein phosphorylation and 

expression, there are more than 58% of identified phosphorylation sites that are not 

included in any existing database, such as the Phosphosite database 

(www.phosphosite.org) and the Phospho.ELM database (http://phospho.elm.eu.org/) 

(Huttlin et al., 2010).  

 

 
Figure 4.11. TLR2, TLR1 and TLR6 intracellular domain sequence alignment. The intracellular sequences 
of TLR2, TLR1 and TLR6 were aligned with ClustalW program (http://www.ebi.ac.uk/Tools/msa/clustalw2/). 
Identical residues are darkened and the domains of interest investigated in this study are boxed. 
 

Based on the analysis above, the following mutants in TLRs were made and HEK-293 cell 

lines expressing these mutated receptors were generated to test the functional changes related 

to these genetic mutations:  

TLR1 Y737N 
TLR1 SS741NK 
TLR6 N742Y 
TLR2EKKA744PQNS 
TLR2P631A 
TLR2S636QY641F 
TLR6Y663N 
TLR2S692C 

 

The cell responses upon Pam3CSK4 and Pam2CSK4 challenge were evaluated and 

compared to the response of cells expressing TLR2 alone. As shown in Figure 4.12, 

TLR2EKKA744PQNS and TLR2P631A mutants almost completely abrogated the cell 

response to both Pam3CSK4 and Pam2CSK4 stimulation (p<0.001). In addition, 

TLR1Y737N and TLR1SS741NK mutation reduced the cellular response upon Pam3CSK4 

stimulation in TLR2-co-expressing cells (p<0.001).  
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Figure 4.12. Screen intracellular domain of TLR2, TLR1 and TLR6 for key region essential for signal 
transduction. The TLR2, TLR1 and TLR6 intracellular domain as shown in Figure 4.11 were mutated and 
stably expressed in HEK-293 cells. The cells were stimulated with Pam2CSK4 or Pam3CSK4 at the 
concentration of 100 ng/ ml for 24 hrs. IL-8 level in the supernatants was determined through ELISA (Data are 
the means ± SD, n≥3). 

4.2.4 EKKA(741-744) motif at DD-loop of TLR2 is essential for Aββββ-triggered 

inflammatory signaling; the signaling defect due to the motif mutation is restored by 

TLR1 expression in a tyrosine737-dependent manner  

Based on the findings in the screening experiments above, this study focused on EKKA motif 

in the DD-loop to investigate its role in Aβ-triggered inflammatory signaling. HEK-293 cell 

lines were established to express: i, TLR2 or its mutants TLR2EKKA741-744PQNS, ii, 

TLR2EKKA741-744PQNS and TLR1, iii, TLR2EKKA741-744PQNS and TLR6, and iiii, 

TLR2EKKA741-744PQNS and TLR1Y737N. The TLR2 expression in these cell lines was 

confirmed by Western blot (Figure 4.13A) and the mutations were confirmed by RT-PCR 

product sequencing (Figure 4.13B). The cells were activated with aggregated Aβ42 at the 

concentrations of 5 µM and 10 µM for 24 hrs. The IL-8 level in the supernatants was 

determined. As shown in Figure 4.14, when EKKA (741-744) was replaced by PQNS from 

TLR6 (Figure 4.14A), the TLR2-mediated inflammatory response was completely abolished 

(Figure 4.14B, p<0.001). Interestingly, the dysfunction of TLR2 due to this mutation was 

fully recovered by the co-expression of wild-type TLR1, but not TLR6 or TLR1 with the 

substitution of Y737N (Figure 4.14B, p<0.001).  
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Figure 4.13 Confirmation of the expression of TLR2 and mutatant in the cell lines. (A) TLR2 expression in 
the selected TLR2, TLR2EKKA744PQNS, TLR2EKKA744PQNS co-expressing TLR1, TLR6 or mutated TLR1 
and TLR2K742Q expressing HEK-293 cell lines was confirmed by Western blot. (B) The expression and 
mutation of TLR2 and TLR1 was confirmed by sequencing the RT-PCR product derived from corresponding 
cell lines.  
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Figure 4.14. TLR2EKKA (741-744) motif is essential for signaling and TLR1 works as a complementary 
partner in a tyrosine737 dependent way. (A) ClustalW alignment of the amino acid sequence of human TLR1, 
TLR6 and TLR2; secondary structure of TIR domains are labelled (Xu Yingwu et al., 2000). TLR2EKKA (741-
744) and TLR1, TLR6 counterpart nucleotide sequences were shown with mutation indications. (B) TLR2, 
TLR2EKKA744PQNS motif replacement, and TLR1, TLR6 stably co-expressing HEK-293 cell lines were 
generated and stimulated with 5 µM or 10 µM Aβ for 24 hrs, inflammatory release of IL-8 in the supernatants 
was measured through ELISA  (Data are the means ± SD, n=4). 

4.2.5 Lysine742 is the key residue in TLR2EKKA (741-744) motif for Aββββ-triggered 

inflammatory signaling 

As TLR1 PQYSIPSS (735-742) was predicted to be a Ser/Thr Phosphorylation site, and the 

substitution of TLR1Y737N disabled the potential of TLR1 to recover the TLR2EKKA (741-

744) PQNS mutation-caused signaling dysfunction, in this study it is asked whether lysine at 

site 743, in the TLR2EKKA (741-744) region, the counterpart of TLR1 tyrosine737, is the key 

residue for signaling. Amino acid residues in the TLR2EKKA (741-744) region were 

substituted with P, Q, N and S one by one and the mutated TLR2 receptors were expressed in 

HEK-293 cells (Figure 4.14A). The expression and mutation of the receptors was confirmed 

by sequencing the RT-PCR product derived from the transcripts of the corresponding cell line 

(Figure 4.13B). Upon the activation by aggregated Aβ, the mutation of lysine742 to glutamine 

(Q), the homologous residue of TLR6, abolished the cellular response, as compared to wild-
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type TLR2 expressing cells (Figure 4.15, p<0.001). The mutation of other residues in this 

motif did not change the cellular response to Aβ challenge. 

 
Figure 4.15. TLR2 lysine742 in EKKA (741-744) motif is the key residue for signaling. TLR2, 
TLR2EKKA744PQNS motif replacement and TLR2E741P, TLR2K742Q, TLR2K743N and TLR2A744S point 
mutant stably co-expressing HEK-293 cell lines were generated and stimulated with 5 µM or 10 µM Aβ for 24 
hrs, inflammatory release of IL-8 in the supernatants was measured with ELISA (Data are the means ± SD, n≥4).  
 

4.3 Tlr2-deficiency enhances Aββββ phagocytosis in vitro 

Recently it was observed that deficiency of MyD88 enhanced Aβ phagocytosis in 

macrophages (Hao et al., 2011). Here, the effect of TLR2 on Aβ phagocytosis was 

investigated. As actin polymerization is a prerequisite of phagocytosis and represents the 

activity of phagocytosis (Tu et al., 2003), the ratio of filamentous actin (F-actin) to globular-

actin (G-actin) was measured in aggregated Aβ42-treated bone marrow-derived macrophages. 

As shown in Figure 4.16A, after incubation with 5 µM Aβ, the polymerization of actin started 

after 15 min. At time points of 30 min and 60 min, the actin polymerization ratios were 

significantly higher in tlr2-deficient macrophages than in wild-type control cells (Figure 

4.16A, p=0.004 and 0.023 at 30 min and 60 min, respectively). No difference of 

polymerization between these two cell groups was observed in the background or within 15 

min after Aβ incubation (Figure 4.16A, p>0.05). In a further measurement, Aβ internalization 

was directly quantified by measuring fluorescence-conjugated Aβ in macrophages after 

incubating cells with 5 µM aggregated FITC-labeled Aβ42 for different duration. Similarly, 

results showed that the internalization of Aβ was significantly increased in tlr2-deficient 

macrophages over a period of 6 hours of incubation as compared to the control cells (Figure 
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4.16B, p=0.029). This difference was more pronounced when Aβ42 incubation duration was 

prolonged (Figure 4.16B, p<0.001 at 24 hours post Aβ42 incubation). 

 
Figure 4.16. Tlr2-deficiency enhances the phogocytosis of Aβ. (A) Primary bone marrow-derived 
macrophages from tlr2 wild type or knockout mice were fed with aggregated Aβ42 for 0, 15, 30, and 60 min. 
Actin polymerization was analyzed with G-actin/ F-actin in Vivo Assay Kit, where actin was detected by 
Western blot; the ratio of filamentous form (F-actin) and globular form actin (G-actin) was quantified through 
lane density analysis with ImageJ (software download: http://rsbweb.nih.gov/ij/download.html) (Data are the 
means ± SD, n≥4). (B) Primary bone marrow-derived macrophages from tlr2 wild type or knockout mice were 
co-cultured with FITC-conjugated Aβ42 for 0, 1, 3, 6, and 24 hrs. Aβ internalization was analyzed with flow 
cytometry represented in mean fluorescence intensity (mFI) (Data are the means ± SEM, n≥6).   
   
4.4 Tlr2-deficiency ameliorates AD-like pathological changes in AD mouse model 

Previous work shows that deficiency of MyD88 in microglia improved cognitive function in 

APP transgenic mice, which is associated with decreased inflammatory activation and Aβ 

load in the APP transgenic mouse brain (Hao et al., 2011). Here goes to address whether 

microglial TLR2 affects AD pathogenesis. Therefore, in this study, tlr2-deficient bone 

marrow chimeric APP transgenic mice were constructed, in which bone marrow cells 

migrated into the brain and differentiated into microglia, thereby creating a tlr2-deficient 

microglial pool (Khoury et al., 2008). 1 year post bone marrow transplantation, the recipient 

mice were subjected for analysis. 

4.4.1 Deficiency of microglial TLR2 decreases neuroinflammation 

Aβ impairs neurons and causes synaptic deficits indirectly via triggering microglial 

inflammatory activation (Akiyama et al., 2000; Medeiros et al., 2007; Glass et al., 2010; 

Zotova et al., 2010). Here whether the Aβ-triggered inflammation in tlr2-deficient bone 

marrow reconstructed mice altered was evaluated. The number of microglial cells recruited 

into the hippocampus was quantified after immunohistochemical staining of Iba-1, a Ca2+-

binding peptide selectively expressed by microglia in the brain (Leone et al., 2006; Hao et al., 

2011). As shown in Figure 4.17, in non-APP recipient mice, there was no significant 
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difference in the number of Iba-1-positive cells after the tlr2-deficient and wild-type bone 

marrow reconstruction (58.51±5.00 cells/ mm² in tlr2-deficient mice and 63.74±3.39 cells/ 

mm² in wild-type controls, p=0.412, n=5). Interestingly, in the APP transgenic recipient mice, 

the number of recruited microglia following tlr2-deficient bone marrow reconstruction was 

significantly less than that following wild-type bone marrow reconstruction (123.59±11.03 

cells/ mm² versus 164.88±10.34 cells/ mm², p=0.017, n≥8). However, the morphology of 

microglia was not markedly different between these two groups of mice.  

 
Figure 4.17. Toll-like receptor 2-deficiency reduces hippocampal microglial cells. Six-month old APP 
transgenic mice and their wild-type (non-APP) littermates were transplanted with tlr2-deficient or wild-type 
bone marrows. Microglia in the hippocampus were stained with Iba-1 antibody (A) and were counted and 
compared. No microglial cell amount difference was found between the TLR2 KO and WT bone marrow 
reconstructed non-APP mice (p=0.412, n=5), but the microglia in TLR2KO reconstructed APP mice were much 
more than those in WT bone marrow reconstructed APP mice (n≥8 per group) (B, Data are the means ± SEM). 
  

The transcription levels of proinflammatory genes, e.g. TNF-α, IL-1β, CCL-2 and iNOS in 

the brain of APP transgenic recipients were further determined. As shown in Figure 4.18, the 

relative transcription levels of TNF-α, IL-1β and CCL-2 were significantly reduced in APP 

transgenic mice after tlr2-deficient bone marrow reconstruction compared with wild-type 

bone marrow reconstruction. 
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Figure 4.18. Toll-like receptor 2-deficiency reduces pro-inflammatory gene transcription in the AD mouse 
brain.  Six-month old APP transgenic mice were transplanted with tlr2-deficient or wild-type bone marrow. One 
year after bone marrow reconstruction, transcription of proinflammatory genes, TNF-α, IL-1β, CCL-2 and iNOS 
in the brain were determined via real-time PCR. Transcription level of TNF-α, IL-1β, and CCL-2 in tlr2-
deficient bone marrow reconstructed mouse brain were significantly decreased as compared to wt bone marrow 
reconstructed mice (Data are the means ± SEM, n≥7 per group).  
 

4.4.2 Tlr2-deficiency in myeloid cells decreases the Aββββ load in AD mouse brain 

Aβ has been considered a key pathogenic molecule in AD. After the observe of the decreased 

inflammatory activation in tlr2-deficient bone marrow reconstructed mouse brains, the 

question arise that whether tlr2-deficiency would also result in a decrease in the clearance of 

Aβ, which may increase the Aβ load in the brain. Cerebral Aβ load in the APP mouse brains 

was evaluated using ELISA 1 year after tlr2-deficient and wild-type bone marrow 

reconstruction. The brains were homogenized and separated into Tris buffer (TBS), Tris plus 

1% Triton buffer (TBS-TX) and guanidine chloride buffer (Gua-HCl)-soluble fractions (see 

Method section 3.2.15). Interestingly, no significant increase of Aβ level was found between 

the tlr2-deficient and wild-type bone marrow chimeric APP transgenic mice (Figure 4.19). On 

the contrary, Aβ load in the APP transgenic mice reconstructed with tlr2-deficient BM 

showed a slight but significant reduction (around 10%) of Aβ42 in the guanidine-soluble 

fraction of brain homogenate compared to wild-type BM reconstructed mice (Figure 4.19).  
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Figure 4.19. Tlr2-deficiency decreases the Aββββ load in the brain. Six-month old APP transgenic mice were 
transplanted with TLR2-deficient or wild-type bone marrow. One year after bone marrow reconstruction, the 
Aβ40 and Aβ42 level in TBS, TBS-TX and Gua-HCl components (see material and methods for detail) were 
determined through ELISA. Aβ42 level in the Guanidine fraction was slightly decreased in tlr2-deficient bone 
marrow reconstructed APP mouse brains (Data are the means ± SEM, n≥8 per group). 
 
4.4.3 Tlr2-deficiency in myeloid cells attenuates neuronal damage in the AD mouse brain  

To examine the effects of tlr2-deficiency in myeloid cells on neuronal function in APP mice, 

one year after bone marrow transplantation,  the Barnes maze test was performed to assess the 

cognitive function of the mice. As shown in the Figure 4.20, tlr2-deficient bone marrow-

reconstructed mice took significantly less time (Figure 4.20A) and traveled a shorter distance 

(Figure 4.20B) to escape from the open field than their wt bone marrow-reconstructed APP 

transgenic littermates (p=0.044 and 0.040, respectively, n=6 per group).  

 
Figure 4.20. Tlr2-deficient bone marrow reconstruction improves the cognitive state of APP transgenic 
mice. Six-month old APP transgenic mice were transplanted with tlr2-deficient or wild-type bone marrow. One 
year post bone marrow reconstruction, the cognitive state of the APP transgenic mice was analyzed by Barnes 
maze test, in which tlr2-deficient bone marrow-reconstructed APP transgenic mice spent less time (A) and 
traveled a shorter distance (B) to escape (A-B, two-way ANOVA, Data are the means ± SEM, n=6 per group). 
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After observing that myeloid tlr2-deficiency ameliorated cognitive deficits in APP- transgenic 

mice, pathological changes of neurons in the mouse brain was investigated. In AD, 

progressive atrophy and neuronal loss from the entorhinal cortex to the CA1, CA2, CA3 and 

CA4 hippocampal subfields occurs with disease progression (Bobinski et al., 1997; 

Apostolova et al., 2006). Hence, neuronal cells in the CA3 area of the hippocampus were 

counted by staining with a neuron-specific marker (NeuN, neuronal nuclei) (Mullen et al., 

1992). However, result showed no significant difference in the number of NeuN-positive cells 

in the CA3 region between the tlr2-deficient and wildtype bone marrow-reconstructed APP 

transgenic mice (Figure 4.21).  

 
Figure 4.21. Tlr2-deficiency does not protect against neuronal loss in hippocampus CA3 region of AD 
mice. Six-month old APP transgenic mice were transplanted with tlr2-deficient or wild-type bone marrow. 
Neuronal cell number, stained with NeuN antibody, in the hippocampal CA3 region was counted and compared 
between these two mouse groups 1 year post bone marrow reconstruction. No difference was found between tlr2 
wt and ko bone marrow reconstructed APP transgenic mice (p>0.05, Data are the means ± SEM , n≥7 per group) 

Decline in synaptic number and synaptic integrity is another key change in AD patients 

(Hyman et al., 1986; DeKosky et al., 1990) with a decrease of synaptic scaffold protein level 

also associated (Pham et al., 2010). Thus the protein level of post-synaptic density protein 95 

(PSD-95, also known as disks large homolog 4, DLG4), a specialized post-synaptic scaffold 

protein, in the brain homogenates was evaluated using Western blot. Indeed, PSD-95 level in 

APP-transgenic mouse brain was lower than that in non-APP mouse brain (Figure 4.22, 

p<0.005). Furthermore, the relative PSD-95 level in tlr2-deficient bone marrow-reconstructed 

APP-transgenic mouse brains was much higher than that in wild-type bone marrow 

reconstructed APP-transgenic controls (Figure 4.22, p=0.004), suggesting less synaptic loss 

after tlr2-deficient bone marrow reconstruction. Importantly, in non-APP mice, no PSD-95 

level difference was found between the tlr2-deficient bone marrow-reconstructed and wild-

type bone marrow-reconstructed recipients (Figure 4.22, p>0.05).  
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Figure 4.22. Tlr2-deficiency slows synaptic impairment. Six-month old APP transgenic and non-APP control 
mice were transplanted with tlr2-deficient or wild-type bone marrow. One year after bone marrow 
reconstruction, the protein level of postsynaptic density protein 95 (PSD-95) in the brain homogenate were 
evaluated through Western blot with PSD-95 antibody. The amount of PSD-95 was normalized by α-tubulin. 
Relative PSD-95 level was higher in tlr2-deficient bone marrow reconstructed mice brain than that in wt bone 
marrow reconstructed APP transgenic mice brain  (Data are the means ± SEM, n≥8 per group) 
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5 Discussion 

AD is a progressive neurodegenerative disease pathologically characterized by extracellular 

Aβ deposits and activated microglia (Citron, 2010; Zotova et al., 2010). Microglia may act as 

a double-edged sword in AD pathogenesis (Walter Lisa et al., 2009; Fuhrmann et al., 2010). 

On one side, they injure neurons by releasing neurotoxic inflammatory mediators, and on the 

other side, they clear Aβ to protect the neuron. Innate immune signaling cascades, e.g. TLRs-

MyD88 pathway, control the inflammatory profile, and thereby modify AD pathogenesis 

(Fassbender et al., 2004; Liu Y et al., 2005; Tahara et al., 2006; Jana et al., 2008; 

Koenigsknecht-Talboo et al., 2008; Richard et al., 2008; Reed-Geaghan et al., 2009; Reed-

Geaghan et al., 2010; Hao et al., 2011). Here, the thesis study demonstrated that TLR2 is a 

primary receptor for Aβ. Tlr2-deficiency reduces microglial inflammatory activation but 

enhances Aβ phagocytosis, which is associated with improved neuronal function in AD mice. 

Further, this study also show that TLR1 and TLR6, as co-receptors, play opposing roles in 

modulating TLR2-mediated Aβ-triggered responses. TLR1 enhances, while TLR6 suppresses, 

the inflammatory response. Furthermore, the amino acid motif EKKA (741-744), especially 

K742, in the TLR2 cytoplasmic domain was identified to be essential in the Aβ-triggered 

inflammatory signal transduction and demonstrated a complementary role of TLR1 in the 

TLR2-mediated inflammatory signaling. 

5.1 TLR2 is a primary receptor for A ββββ  

Up to now, CD14, CD36, TLR2 and TLR4 have been shown to be involved in the Aβ-

triggered inflammatory activation in microglia (Fassbender et al., 2004; Walter S et al., 2007; 

Jana et al., 2008; Udan et al., 2008; Reed-Geaghan et al., 2009; Reed-Geaghan et al., 2010). 

These receptors were reported to respond to Aβ and trigger inflammation through a receptor 

complex, including TLR4/TLR2 (Udan et al., 2008), CD14/TLR2/TLR4 (Reed-Geaghan et 

al., 2009) or CD36-TLR4-TLR6 (Stewart et al., 2010). However, with the exception of CD14 

which was shown to directly bind to Aβ aggregates (Fassbender et al., 2004; Liu Y et al., 

2005), no evidence of direct binding between a single immune receptor and Aβ has been 

reported. Thus, it is unclear whether these are primary receptors for Aβ recognition.  

In this study, it was observed that tlr2-deficiency reduces proinflammatory responses of 

the primary cultured microglial cells and bone marrow-derived macrophages upon Aβ 

challenge, corroborating with a previous report (Jana et al., 2008). Furthermore, this study 

demonstrated that TLR2 is a primary receptor for Aβ to trigger inflammation with the 
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following evidence: 1, TLR2 co-localizes with Aβ under confocal microscopy; 2, TLR2 

directly binds to Aβ in the biacore and pull-down assay; 3, the transgenic expression of TLR2 

is enough to confer inflammatory activation upon Aβ challenge in HEK-293 cells, which do 

not endogenously express TLR2 (Buwitt-Beckmann et al., 2006) or respond to Aβ via 

inflammatory signaling.  

However, due to the limitation of the Biacore J system, this study was not able to present 

kinetic binding parameters of TLR2-Aβ interaction. 

The TLR2 ectodomain consists of 20 LRRs and it has been shown that LRRs-containing 

receptors (e.g. Nogo-66 receptor) bind to Aβ (Park et al., 2006). Additionally, as reported by 

our group previously, Aβ also binds to CD14 (Fassbender et al., 2004; Liu Y et al., 2005); 

however, although the three central LRRs (8–10) of TLR2 are very similar to the LRRs (1–3) 

in CD14 (Kajava et al., 2010), the interface of the receptor to bind Aβ remains to be 

identified. Furthermore, the structural requirements of Aβ to bind TLR2 remain to be 

identified; the aggregated structure seems to be essential for TLR2 recognition as soluble Aβ 

is not able to activate microglial inflammatory responses (Fassbender et al., 2004). 

5.2 TLR1 and TLR6 are co-receptors of TLR2 modulating Aββββ induced 

response 

Unlike other TLRs, which are functionally active as homomers, TLR2 has evolutionarily 

developed a unique ability to form heteromers with TLR1 or TLR6 to attain ligand specificity 

(Farhat et al., 2008). This study showed that TLR2 alone was able to confer a cellular 

inflammatory response in HEK-293 cells; the roles of TLR1 and TLR6 in this process were 

also investigated. Indeed, in TLR2-transgenic HEK-293 cells, which are endogenously 

deficient of various TLRs (e.g. TLR2) and only express low levels of TLR1 and TLR6 

(Buwitt-Beckmann et al., 2006), over co-expression of TLR1 with TLR2 enhanced the Aβ42-

triggered inflammatory response, while over co-expression of TLR6 with TLR2 reduced the 

response. These results suggest that TLR1 and TLR6 act as co-receptors playing opposing 

roles in modulating an Aβ triggered inflammatory response. This was confirmed by gene 

knock down. In RAW264.7 macrophages, the knocking down of tlr2 gene expression 

significantly reduced TNF-α production, a proinflammatory cytokine, upon Aβ challenge; 

while tlr6 gene silencing increased the cell response. Thus, the TLR2/TLR1 complex is the 

selected receptor complex for Aβ-induced neuroinflammatory activation. To my knowledge, 

this is the first to demonstrate that TLR2-mediated Aβ-triggered inflammatory activation is 
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enhanced by TLR1 and inhibited by TLR6. These findings are important for therapeutic 

design when using TLR2 as a target. 

The selectivity pattern of utilizing the TLR2/TLR1 heterodimer in Aβ recognition is 

similar to the combination of TLR2/TLR1 in Pam3CSK4 recognition.  

5.3 TLR2 lysine742 is essential for signaling 

As a primary receptor, the region of TLR2 essential for Aβ recognition is of great interest, 

since such a region could be a potential therapeutic target. In order to find such a region, 

while considering the limited Aβ resource and similarity between an Aβ-triggered response 

and a TLR2/TLR1 ligand-triggered response, this study first screened the domains with TLR2 

ligands, and then confirmed the importance of the region with an Aβ challenge. 

For TLR2 ligands, through LRR domain deletion, it was observed here that any LRR 

deletion in TLR2 resulted in no inflammatory response upon ligand challenge, suggesting that 

an integrated TLR2 extracellular domain is necessary for ligand recognition. As only LRR7-

14 and extracellular C terminal LRR deletions in TLR1 and TLR6 decreased the ligand-

induced response, the complete integrity of TLR1 and TLR6 might not be as important as 

TLR2 in ligand recognition. However, because of the current HEK-293 cell model, the lower 

effects of LRRs deletion in TLR1 and TLR6 on TLR2-mediated inflammatory activation 

might also be due to compensation by endogenous TLR1 and TLR6.  

The roles of intracellular fragments of the receptors were further investigated. Firstly, 

responses from TLR1 and TLR6 intracellular domain-exchanged cells upon ligand challenge 

suggest that the intracellular domain of the receptors also participates in determining the 

ligand response specificity. Secondly, based on bioinformatic analysis and site-directed 

mutation of TLR2, TLR2EKKA (741-744) motif and TLR2 proline631 were identified in this 

study to be essential for the inflammatory signaling of TLR2. Replacement of the 

TLR2EKKA (741-744) to PQNS or proline631 to alanine (A) from the homologous region of 

TLR6 impaired TLR2 signaling. Indeed, although proline631 is out of the TIR domain, the 

importance of this residue was indicated by an observation on the association between the 

TLR2-P631H single nucleotide polymorphisms (SNP) and tuberculosis. The P631H mutation 

has a dominant negative effect on TLR2 signaling (Etokebe et al., 2010).  

The DD loop of TLR2 was observed to be critical for the formation of the TIR-TIR 

platform (Gautam et al., 2006). Sequence alignment showed that there are only two 

corresponding regions within the DD loop that are different between TLR2, TLR1 and TLR6: 

EKKA (741-744) and QR (747-748) for TLR2, PQYS (735-738) and SS (741-742) for TLR1, 
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and PQNS (740-743) and NK (746-747) for TLR6. Here it was observed that the 

TLR1SS741NK mutation reduced the cellular response for Pam3CSK4 stimulation in TLR2-

co-expressed cells. This corroborates with published results that the corresponding TLR2 

R748A mutation reduced NF-κB activity upon Pam3CSK4 stimulation (Gautam et al., 2006). 

For the first time, in this study, it was found that the TLR2EKKA (741-744) PQNS mutation 

abolished the inflammatory responses initiated by both Pam3CSK4 and Pam2CSK4. The 

study thus focused on the effect of this mutation in Aβ-triggered responses. 

Indeed, TLR2EKKA (741-744) PQNS mutation abolished the inflammatory activation 

upon Aβ stimulation. Very interestingly, the abolished response could be recovered by co-

expressing wild type TLR1 in a TLR1Y737-dependent manner, which suggests that TLR2 

K743, the homologue of TLR1Y737, might be the key residue in the EKKA motif. However, 

after site-directed mutation of the EKKA motif, one residue after another, it was found out 

that the key residue was lysine742, instead of lysine743.  

The lysine742, in the vertebrate TLR2, is evolutionarily highly conserved (Tschirren et al., 

2011). It has been suggested that TLRs are involved in co-evolutionary processes with 

pathogens. Several studies in humans and livestock have observed that TLRs have been 

subject to purifying selection (Mukherjee et al., 2009; Seabury et al., 2010). Indeed, Tschirren 

et al observed that the lysine742 is conserved in 17 different rodent species, which could be 

due to the strong purifying selection against functional change (Tschirren et al., 2011). 

TLR1 was the first reported toll-like receptor in humans (Nomura et al., 1994). 

Unfortunately, it was not found to be able to activate NF-κB alone (Mitcham et al., 1996). 

Later, TLR1, as well as TLR6, was observed to work together with TLR2 to attain specificity 

for ligand binding (Wyllie et al., 2000; Hajjar et al., 2001; Takeuchi et al., 2001; Takeuchi et 

al., 2002; Farhat et al., 2008). However, except under certain circumstances,  TLR2 does not 

need TLR1 or TLR6 for the immune reaction (Abplanalp et al., 2009). For example, TLR1-/- 

and TLR6-/- mice survive equivalently upon F. tularensis infection whereas survival of TLR2-

/- mice was significantly reduced with increased F. tularensis burdens and impaired secretion 

of TNF-α and other pro-inflammatory cytokines. In addition, human TLR6 and TLR1 are 

located on the same chromosome 4p14 and have similar genomic structures, which suggests 

that they are the products of an evolutionary duplication (Takeda et al., 2003). It is also 

hypothesized, by some investigators, that TLR1 and TLR6 may be redundant in the 

recognition of ligands in concert with TLR2 (Abplanalp et al., 2009). Here, for the first time, 

show that TLR1 not only takes part in specific ligand binding, but also is engaged in 

intracellular signaling. Furthermore, this study revealed that TLR1 can save TLR2 signaling 
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when TLR2 dysfunctions due to a mutation. The exact mechanism mediating the functions of 

TLR2 lysine742 and TLR1 tyrosine737 in Aβ-triggered signaling remains to be clarified. 

5.4 Aββββ-triggered phagocytosis and inflammatory activation are 

mediated through relatively independent pathways 

Microglia clear Aβ deposits in the brain to exert beneficial effect in AD pathogenesis. 

Furthermore, peripherally-recruited microglia have been reported to be more efficient than 

their endogenous counterparts in Aβ elimination (Simard et al., 2006b; Grathwohl et al., 

2009). In this study, the effect of tlr2-deficiency on Aβ uptake was tested. It was found out 

that, similar to Myd88-deficiency (Hao et al., 2011), although tlr2-deficiency reduced Aβ-

induced inflammatory activation, the Aβ phagocytosis was enhanced. Although the 

mechanism modulating phagocytosis requires further investigation, the signaling pathways 

controlling Aβ-triggered inflammatory activation and Aβ internalization are likely separate. It 

is evident that acute TLR-mediated microglial activation of TLR2, TLR4 and TLR9 increase 

Aβ phagocytosis (Iribarren et al., 2005; Chen Keqiang et al., 2006; Tahara et al., 2006; 

Scholtzova et al., 2009). However, it should be noted that the increased Aβ phagocytosis in 

those studies occurred after pre-stimulation of TLRs. Upon Aβ challenge, phagocytosis 

indeed starts earlier than inflammatory activation (Liu Y et al., 2005), with phagocytosis even 

serving to trigger inflammatory activation (Halle et al., 2008).  

Despite the improved Aβ uptake capability of the tlr2-deficient microglia, the Aβ load in 

the tlr2-deficient bone marrow chimeric APP transgenic mice brain was only slightly 

decreased. The cause(s) of inconsistency between in vitro and in vivo findings will be 

discussed below.  

5.5 Pathogenic role of TLR2 in an AD mouse model 

5.5.1 Tlr2-deficient bone marrow chimeric APP transgenic mice is a feasible model to 

investigate the pathogenic role of TLR2 

Although the microglial turnover in irradiated bone marrow chimeric rodents was questioned 

and argued that microglia are not renewed by bone marrow-derived cells under normal 

conditions (Ajami et al., 2007; Mildner et al., 2007; Davoust et al., 2008), these studies 

demonstrated that, under specific conditions, bone marrow-derived cells are able to cross the 

blood-brain barrier and to differentiate into microglia. This implies that (i) the adult bone 

marrow contains a subpopulation of cells displaying microglial differentiation potential, and 
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(ii) this subpopulation could be used as vehicle cells for the treatment of CNS disorders, 

providing an ad hoc CNS preconditioning is performed (through irradiation or other means) 

(Ajami et al., 2007; Davoust et al., 2008). Therefore, this study constructed tlr2-deficient/wt 

chimeric APP mice through BM transplantation, which allow to create a tlr2-deficient 

microglial pool reacting to cerebral Aβ deposits (Keene et al., 2010; Hao et al., 2011). 

To construct the animal model, the whole body irradiation was performed before the BM 

reconstruction. This design was based on three evidences: (i) only 5.65±2.66% of microglia in 

the hippocampus were derived from the BM cells in the TgCRND8 APP transgenic mouse 3 

months after head-protected-irradiation based BM-reconstruction (from parallel project 

performed in our group); (ii) TLR2 did not affect the recruitment of microglia into the brain in 

the wild-type mice after whole-body irradiation (Figure 4.17) in BM transplantation model; 

and (iii) TLR2 does not regulate leukocyte recruitment after brain injury (Babcock et al., 

2008). The chimeric animal model constructed by cross-breeding the tlr2-deficient and APP 

transgenic mice was not selected because TLR2 expresses in neurons (Rolls et al., 2007), 

which makes it impossible to distinguish whether the effects are from microglial tlr2-

deficiency or non-microglial tlr2-deficiency. Similarly, injection of Aβ into the tlr2-deficient 

mouse brain could not be a feasible approach because tlr2-deficiency reduces brain injury-

induced neuroinflammation (Babcock et al., 2006).  

5.5.2 Reduction of neuroinflammatory activation could improve the cognitive deficits in 

APP transgenic mice  

Growing evidences suggest that aggregated Aβ damages neurons by triggering microglia to 

release various neurotoxic inflammatory mediators including cytokines (e.g. TNF-α and IL-

1β), chemokines (e.g. CCL-2), and reactive oxygen and nitrogen species (Akiyama et al., 

2000; Wyss-Coray, 2006). PET analysis has shown that microglial activation correlates with 

AD progression (Cagnin et al., 2001; Edison et al., 2008; Okello et al., 2009). Some 

epidemiological studies link the use of non-steroidal anti-inflammatory drugs (NSAIDs) with 

reduced risk for later AD (in 't Veld et al., 2001). Although the mechanisms for the beneficial 

effects of NSAIDs are still fully known (Lee Young-Jung et al., 2010). Some studies suggest 

this anti-AD benefit of NSAIDs is arise from their anti-inflammatory effects, apart from their 

Aβ42 lowering effects (Szekely et al., 2008). In AD animal models, which over-express 

Alzheimer’s amyloid precursor protein (APP) in neurons, microglia are observed to be 

activated and recruited to Aβ deposits, where they subsequently damage neurons (Bard et al., 
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2000; Liu Y et al., 2005; Meyer-Luehmann et al., 2008). All these studies suggest that 

suppressing microglial inflammation might be an effective therapeutic strategy for AD. 

Indeed, in the bone marrow reconstructed AD mouse model, the amount of microglial cells 

in the hippocampal region of tlr2-deficient BM reconstructed APP mice was significantly less 

than that in wt BM reconstructed APP mice. Meanwhile, the transcriptional levels of pro-

inflammatory cytokines such as TNF-α, IL-1β and CCL-2 were significantly decreased in the 

brains of tlr2-deficient BM transplantated APP mice. Although astrocytes could also be 

induced to express TLR2 and mediate inflammatory response (Phulwani et al., 2008), as 

nonhematopoietic original cells they were not likely to play a role in a bone marrow 

transplantation model (Wagers et al., 2002; Guo et al., 2004). Thus, in this study, the reduced 

inflammation effect should come from a myeloid source, specifically microglia, which were 

thought to be at least partially originated from, and can be replenished by, myeloid precursors, 

especially under pathological states (Walter Lisa et al., 2009; Hao et al., 2011).  

Thousands of reports have shown that the inflammatory mediators including IL-1β, IL-6, 

TNF-α, IL-8, transforming growth factor-β (TGF-β), and macrophage inflammatory protein-

1α (MIP-1α), are upregulated in AD (Akiyama et al., 2000). Whether this inflammatory 

response is beneficial or detrimental for the neural environment is under debate. Although low 

level of cytokines such as TNF-α and IL-1β activate NF-κB-dependent signaling pathways 

and might promote cellular growth and survival (Piani et al., 1992; Tracey et al., 1994; Chao 

et al., 1995; Nguyen et al., 2002), high concentration of these cytokines is neurotoxic over a 

longer term (Strijbos et al., 1995; Simard et al., 2006a). It has been recently established that 

uncontrolled TNF-α induces neuronal damage and chronic TNF-α infusion in the brain 

causes neuronal death by apoptosis (Nadeau et al., 2003; Stepanichev et al., 2003; Simard et 

al., 2006a). In the case of AD, transgenic mice genetically engineered to overexpress APP 

show less pathology when they are chronically treated with anti-inflammatroy agents (Jantzen 

et al., 2002). Thus, the brain neuronal damage and cognitive changes in the tlr2-deficient and 

wt BM reconstructed APP mice were investigated. 

It was found that tlr2-deficiency improved the cognitive state of AD mice. 

Immunohistochemistry showed that neuronal loss was unchanged, whereas the synapse was 

less impaired in tlr2-deficient-reconstructed APP mice, as suggested by a reduction in the loss 

of the specialized post-synaptic scaffold protein PSD-95 in the brain homogenate. 

The reduced neuroinflammatory activation in the tlr2-deficient BM chimeric APP mice 

corroborates our previous observation that Myd88-deficient BM cells ameliorate 

neuroinflammation in AD mice (Hao et al., 2011). Importantly, the synapse loss in the AD 
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mice used in this study is attenuated after tlr2-deficient BM reconstruction although a direct 

association between this neuronal improvement and reduced neuroinflammation needs further 

investigation. 

5.5.3 Reduction of Aββββ load could be another mechanism to improve neuronal function in 

APP transgenic mice 

Pittsburgh compound B-based positron emission tomography (PET) demonstrated that Aβ 

deposition in the human brain is associated with neuronal dysfunction revealed by both 

cognitive investigation and functional magnetic resonance imaging even at the pre-dementia 

stage (Sperling et al., 2009; Chételat et al., 2011; Villemagne et al., 2011). The soluble 

aggregated Aβ in postmortem brain tissue detected with Western blot was closely correlated 

with AD (Mc Donald et al., 2010). Aggregated Aβ directly injures synaptic junctions in the 

neocortex and limbic system, thereafter causing neuronal loss (Selkoe, 2002). The soluble Aβ 

oligomers, especially dimers, were observed to inhibit long-term potentiation (LTP) by 

increasing activation of extrasynaptic NR2B-containing receptors and cause neuritic 

degeneration in which Tau hyperphosphorylation is involved (Shankar et al., 2008; Li et al., 

2011). Furthermore, aggregated Aβ could decrease adult neurogenesis, thereby interfering 

with the recovery from neuronal damage in AD pathogenesis (Crews et al., 2010a; Crews et 

al., 2010b).  

Microglia have a beneficial effect in AD pathogenesis by clearing Aβ deposits in the brain. 

(Simard et al., 2006b; Grathwohl et al., 2009). In accordance with our previous finding on Aβ 

phagocytosis by Myd88-deficient macrophages (Hao et al., 2011), here tlr2-deficiency 

enhances Aβ phagocytosis by BM-derived macrophages was observed. As described above 

and published (Hao et al., 2011), tlr2- or Myd88-deficiency increases Aβ phagocytosis but 

decreases Aβ-triggered inflammatory activation. Indeed, tlr2-deficient BM reconstruction 

reduced the cerebral Aβ of APP mice in this study, especially the highly aggregated Aβ 

(Figure 4.19). 

However, according to the result (Figure 4.19), this Aβ load reduction effect of tlr2-

deficient BM reconstruction appears to be limited, which could be explained by two dynamic 

factors regarding the generation and clearance of Aβ: (i) a decrease in the total number of 

microglia in the brain due to tlr2-deficient microglial recruitment (Figure 4.17); (ii) an 

increase in Aβ production in the brain due to tlr2-deficiency; our previous work showed that 

both TLR2 and its downstream adaptor molecule Myd88-deficiency increases β-secretase 
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activity (Myd88-deficiency also increases γ-secretase activity) in the mouse brain (Hao et al., 

2011); (iii) the Aβ clearance capability of bone marrow (hematogenous) macrophages in the 

brain is limited. Although the peripherally-recruited microglia have been assumed to be more 

efficient than their endogenous counterparts in Aβ elimination (Simard et al., 2006a; Simard 

et al., 2006b), it is noteworthy that the assumption was deduced from the observation of 

improved CD11c expression in the bone marrow originated microglia (Simard et al., 2004). 

This may not be sufficient evidence to draw such a conclusion. Indeed, there is no direct 

evidence that shows that myeloid microglia are more phagocytic. On the contrary, it was 

reported that resident microglia are more effective in removal of myelin debris and neuronal 

cell debris compared to hematogenous macrophages in a bone marrow chimeric experimental 

autoimmune encephalomyelitis (EAE) rat model (Rinner et al., 1995) and cerebral ischemia 

mouse model (Schilling et al., 2005). Phagocytosis is a complex process involving receptor 

binding, internalization, and phagosome biogenesis and maturation. Despite observing an 

increased Aβ internalization in tlr2-deficienct BMDMs, this was not sufficient to justify an 

increase in the clearance of Aβ. It was reported that macrophages from Myd88-deficient mice 

show a range of phagocytosis- and phagosome maturation-associated defects including 

reduced uptake of particles and killing of pathogens (Henneke et al., 2002; Marr et al., 2003; 

Liu N et al., 2004). Maturation of bacterium- but not apoptotic cell-containing phagosomes 

was accelerated or “induced” in a TLR2/4, MyD88 and MAPK p38 signaling-dependent 

manner (Blander et al., 2004; Blander, 2007, 2008).  

In summary, this study demonstrated the molecular mechanisms of TLR2 in Aβ-triggered 

inflammatory activation. It shows that TLR2, cooperating with TLR1, is the primary receptor 

for Aβ-triggered inflammation. Inhibition of TLR2 in microglia might reduce the detrimental 

effect of inflammatory activation, but does not impair the beneficial effect of Aβ clearance. 

Further more, a (EKKA) motif essential for TLR2 intracellular signaling was discovered; 

dysfunction due to mutation of this motif can be restored by its co-receptor TLR1. This study 

contributes to a better understanding of AD pathophysiology and may eventually translate to 

therapeutic options to prevent and / or treat AD progression.  
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Part II. Omega-3 Fatty Acids Reduce Alzheimer’s Amyloid 

Peptide-induced Proinflammatory Activities in Macrophages 
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1 Summary 

Epidemiological studies suggest that diets enriched with omega-3 polyunsaturated fatty acids 

(PUFAs), e.g. docosahexaenoic acid (DHA), reduce the risk for AD (Barberger-Gateau et al., 

2002; Morris et al., 2003; Schaefer et al., 2006). However, the underlying mechanism remains 

unclear. In AD, microglia/macrophage-dominated neuroinflammation can be considered a 

double-edged sword; on one hand, they injure neurons by releasing highly toxic molecules, 

while on the other hand they protect neurons by clearing pathogenic amyloid β (Aβ) (Walter 

Lisa et al., 2009; Hao et al., 2011). In this part of study, with cultured bone marrow-derived 

macrophages (BMDMs), It was observed that DHA reduces Aβ aggregate-induced secretion 

of pro- (e.g. TNF-α and IL-6) but not of anti- (e.g. IL-10) inflammatory cytokines. In order to 

elucidate the mechanisms mediating the anti-inflammatory effects of omega-3 PUFAs, the 

BMDMs were pre-treated with DHA and then were stimulated with different TLR ligands.  

Results show that, DHA suppresses TLR2, 3, 4 and 9, as well as interferon-γ-mediated 

inflammatory activation, which has been shown to be directly or indirectly, involved in AD 

pathogenesis. Interestingly, DHA does not reduce the uptake of Aβ aggregates by 

macrophages, which is considered to be a beneficial cellular response in the course of AD. In 

summary, this study contributes to the understanding of mechanisms mediating preventative 

effects of omega-3 PUFA-supplemented functional diets in AD patients.  
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2 Introduction 

As stated in Part I, AD is the leading cause of dementia and is becoming a major medical 

challenge (Szekely et al., 2007). Preventative and therapeutic strategies aiming to control the 

development and progression of AD is of increasing interest. Besides interfering the identified 

primary innate immune receptor for Aβ-triggered microglial inflammation changes AD 

pathogenesis in mouse model as shown in Part I work of this thesis, it is notable that studies 

already demonstrated that non-steroidal anti-inflammatory drugs can delay onset, slow 

progression, and decrease cognitive deficits of AD (McGeer PL, 1996; in 't Veld et al., 2001). 

Furthermore, epidemiological studies showed that foods supplemented with omega-3 

polyunsaturated fatty acids (PUFAs), e.g. docosahexaenoic acid (DHA), can modulate 

inflammatory profiles in humans (Pischon et al., 2003; Ferrucci et al., 2006; Farooqui et al., 

2007), such as reducing proinflammatory cytokines (TNF-α and IL-6) or increasing anti-

inflammatory molecules (IL-10 and TGF-β) in circulating monocytes and the serum. 

Interestingly, omega-3 PUFA-enriched food also reduces the risk for AD, especially when 

sufficient PUFAs are consumed before the development of clinical dementia (Barberger-

Gateau et al., 2002; Morris et al., 2003; Schaefer et al., 2006). In APP transgenic mice, 

similar “anti-AD” effects of PUFAs have been observed as those resulting from a DHA-

supplemented diet, including improved cognitive deficits, reduced Aβ deposition in the brain 

parenchyma and blood vessels, and decreased phosphorylated tau inside of neurons (Lim et 

al., 2005; Oksman et al., 2006; Green et al., 2007; Hooijmans et al., 2007). In cultured 

macrophages, omega-3 PUFAs were observed to inhibit TLR2 and TLR4-induced 

inflammatory activation (Lee Joo Y. et al., 2003; Lee Joo Y. et al., 2004). 

Thus, it is hypothesized in this study that omega-3 PUFAs could suppress Aβ-induced 

neurotoxic inflammatory activation and that TLRs might be relevant to this modulatory 

action. In this part of study, bone marrow-derived macrophages (BMDMs) were cultured, 

pretreated with PUFAs and activated with aggregated Aβ. It was observed that omega-3 

PUFAs suppress Aβ-induced pro- but not anti-inflammatory activities. Interestingly, omega-3 

PUFAs do not reduce macrophage phagocytosis of Aβ. Confirming the hypothesis that Aβ-

triggered microglial inflammation and phagocytosis are mediated through relatively 

independent pathways. 
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3 Materials and Methods 

3.1 Materials 

Instruments, experimental materials and kits, unless otherwise specified, were the same as 

described in Part I. Polyinosinic-polycytidylic acid (Poly I: C, TLR3 ligand), purified 

lipopolysaccharides (LPS, TLR4 ligand) and CpG ODN (TLR9 ligand) were from ALEXIS 

biochemicals (Lörrach, Germany). Imiquimod (R837, TLR7 ligand) was from InvivoGen 

(Toulouse, France). Docosahexaenoic acid (DHA, C22:6 n-3), Eicosapentaenoic acid (EPA, 

C20:5 n-3) and Arachidonic acid (AA, C20:4 n-6) were from Sigma-Aldrich (Steinheim, 

Germany) and dissolved in 95% ethanol at the concentration of 100 mM as stock solutions. 

The final concentrations of DHA, EPA and AA for cell treatment were decided based on 

previous publications (Skuladottir et al., 2007; De Smedt-Peyrusse et al., 2008). Vehicle 

containing the same concentration of ethanol was used as the ligand control. Final ethanol 

concentration in the medium was below 0.1%. 

3.2 Methods 

3.2.1 Preparation and characterization of Aββββ aggregates 

Aβ aggregates preparation and characterization are same as Part I (Section 3.2.2 and Figure 

3.1). 

3.2.2 Culture of bone marrow-derived macrophages  

Primary bone marrow-derived macrophages (BMDMs) were isolated from 7 to 9-week-old 

C57BL/6 (Charles River, Sulzfeld, Germany) and Myd88-deficient mice (kindly provided by 

S. Akira, Osaka University, Osaka, Japan), culture procedure is the same as described in Part I 

(Section 3.2.1).  

3.2.3 Cell challenge and ELISA analysis of cytokine release 

BMDMs, cultured at 2 × 105 cells per well in 48-well plate (BD, Heidelberg, Germany), were 

pretreated with DHA/EPA/AA/Vehicle control (concentrations indicated in the results) for 24 

hrs and then challenged with TLR ligands: Pam3CSK4 (100 ng/ml), LPS (100 ng/ml), Poly 

I:C (30 µg/ml), Imiquimod (1 µg/ml) and CpG ODN (5 µg/ml), as well as IFN-γ (200 U/ml) 

or 10 µM Aβ42 aggregates for 18 hrs in the presence of the pretreated lipids. Supernatants 

were collected for detection of TNF-α, IL-6, IL-10, interferon-inducible Protein 10 (IP-10) 

and PGE2 by ELISA kits (R&D Systems, Wiesbaden, Germany) (procedure follows the 
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manufacturer’s manuals and is similar to Part I section 3.2.4). Some of the DHA pretreated 

cells were lysed for a caspase 3 activity test. 

3.2.4 Reverse transcription and quantitative PCR for analysis of inflammatory 

genes and Aββββ phagocytosis-related receptors 

BMDMs at 3 × 105 cells per well in a 24-well plate were treated with 25 µM DHA or vehicle 

for 18 hrs. Total RNA was isolated from BMDMs using the RNeasy Plus mini kit (QIAGEN, 

Hilden, Germany). First-strand cDNA was synthesized by priming total RNA with hexamer 

random primers (Roche Molecular Biochemicals, Mannheim, Germany) and using 

Superscript II reverse transcriptase according to the manufacturer's instructions (Invitrogen). 

Detailed procedure can be found in Part I (section 3.2.8.1-3.2.8.2).  

The quantitative PCR was performed with the Applied Biosystems 7500 Real-Time PCR 

system (Applied Biosystems, Foster City, CA) using SYBR®Advantage qPCR Premix 

(Clontech, Mountain View, CA) to determine the amplification products as described 

previously (Liu et al., 2006). Primer sequences for TNF-α, IL-6, IL-10, PGE2 synthase 1 

(ptGES1), CD14, RAGE, CD36, SR-A and GAPDH genes are shown in Table 3.1: 

Table 3.1 Primer sequences for real-time quantitative PCR detectors 

Product Forward Reverse 

GAPDH ACAACTTTGGCATTGTGGAA GATGCAGGGATGATGTTCTG 

CD14 AGGGTACAGCTGCAAGGACT CTTCAGCCCAGTGAAAGACA 

RAGE CTGAAGCTTGGAAGGTCCTC CCTCATCGACAATTCCAGTG 

CD36 CCAAGCTATTGCGACATGAT CCTGCAAATGTCAGAGGAAA 

SR-A CATGGCAACTGACCAAAGAC AGGACTTGGAGATTGCATCC 

TNF-α ATGAGAAGTTCCCAAATGGC CTCCACTTGGTGGTTTGCTA 

IL-6 AGTCCGGAGAGGAGACTTCA ATTTCCACGATTTCCCAGAG 

IL-10 AGGGGCTGTCATCGATTTCTC TGCTCCACTGCCTTGCTCTTA 

PTGES1 GAGTTTTCACGTTCCGGTGT GGTAGGCTGTCAGCTCAAGG 

 

The following cycles were performed: initial denaturation cycle at 95 °C for 10 sec, 

followed by 45 amplification cycles at 95 °C denaturation for 5 sec and annealing/extension at 

60°C for 34 sec. In the end, a dissociation curve was performed. 

The amount of double-stranded PCR product synthesized in each cycle was measured 

using SYBR green I dye. Threshold cycle (Ct) values for each detected gene from the 

replicate PCRs was normalized to the Ct values for the GAPDH control from the same cDNA 
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preparations. The ratio of transcription of each gene was calculated as 2(∆Ct), where ∆Ct is 

given by: Ct (GAPDH) – Ct (test gene).  

3.2.5 Apoptosis caspase 3 assay  

BMDMs, cultured at 2 × 105 cells per well in 48-well plate (BD, Heidelberg, Germany), were 

pretreated with 25 µM DHA/vehicle control for 24 hrs, then cells were lysed in 200 µl 

Caspase lysis buffer [10 mM HEPES, pH 7.4, 42 mM KCl, 5 mM MgCl2, 1 mM 

phenylmethylsulfonyl fluoride, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM DTT, 1 µg/mL 

pepstatin A, 1 µg/mL leupeptin, 5 µg/mL aprotinin, 0.5% 3-(3-

cholamidopropyldimethylammonio)-1-propane sulfonate (CHAPS)]. The activity of caspase 3 

was determined by use of a fluorescent substrate as described previously (Kögel et al., 2003) 

with a minor modification: 50 µl of this lysate was added to 150 µl reaction buffer (25 mM 

HEPES, 1 mM EDTA, 0.1% CHAPS, 10% sucrose, 3 mM DTT, pH 7.5) and 10 µM of the 

fluorigenic substrate Ac-DEVD-AMC (Ac-DEVD-AMC: Ac-Asp-Glu-Val-Asp-AMC, 

Bachem, works as a susceptible fluorescent substrate for caspase 3). Accumulation of Acetyl-

DEVD-7-amido-4-methylcoumarin (AMC) fluorescence was monitored over 1 h using a 

Tecan’s Safire2™ microplate reader (Tecan, Männedorf, Switzerland) (excitation 380 nm, 

emission 465 nm). Fluorescence of blanks containing no cell lysate was subtracted from the 

values. Protein content was determined using the Pierce Coomassie plus Protein Assay 

reagent (KMF, Cologne, Germany). Caspase activity is expressed as change in fluorescent 

units per microgram protein and per hour. 

3.2.6 LDH toxicity assay 

BMDM cells were cultured in DMEM medium and treated with DHA/Vehicle for 24 hrs, then 

cytotoxicity was evaluated through lactate dehydrogenase (LDH) level measurement  via the 

Cytotox 96 Non-Radioactive Cytoxicity Assay kit (Promega) according to the manufacturer’s 

instructions  (Philip J Lee, 2007). Experimental steps are: 

 

1. Transfer 50 µl supernatant to enzymatic assay plate 

2. Reconstitute substrate mix using assay buffer provided in the kit 

3. Add 50 µl reconstituted substrate mix to each well of enzymatic assay plate 

4. Cover plate and incubate 30 min at room temperature, protect from light 

5. Add 50 µl stop solution(1M acetic acid) to each well 

6. Record absorbance 490 nm   



Dissertation: Toll-Like Receptor 2 and Partner Receptors in Alzheimer’s Disease 

 

  
112 

3.2.7 Flow cytometric analysis of Aββββ42 internalization  

BMDMs cultured in a 12-well plate (BD) at a density of 2 × 105 cells per well were pretreated 

with 25 µM DHA, EPA, AA or vehicle control for 24 hrs, and then incubated with 0.5 µM 

FITC-conjugated Aβ42 aggregates in the culture medium containing fatty acids for 0, 3, 6, 

and 24 hrs. The internalization assay was terminated by placing cells on ice. BMDMs were 

washed with PBS and detached from the plate with 0.05% Trypsin-EDTA (Invitrogen). The 

percentage and mean fluorescence intensity (mFI) of macrophages internalizing FITC-labeled 

Aβ42 were immediately measured by BD Cytometer FACSCanto II. All experiments were 

independently replicated at least three times. 

3.2.8 Statistics 

Data in figures are presented as mean ± SD. One-way ANOVA followed by Tukey's HSD or 

Tamhane's T2 post hoc test (dependent on the result of Levene's test to determine the equality 

of variances) was used for multiple comparisons. Two-independent-samples t test was used to 

compare means for two groups of cases. All statistical analysis was performed on SPSS 11.0 

for Windows (SPSS, Chicago, IL). Statistical significance was set at p < 0.05. 
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4 Results 

4.1 DHA reduces TLR2, 3, 4 and 9-initiated pro- but not anti-

inflammatory cytokine secretion in macrophages 

Since innate immune receptors, e.g. CD14, TLR2 and 4, have been reported to recognize 

fibrillar Aβ and mediate inflammatory responses in microglia/macrophages (Fassbender et al., 

2004; Liu Y et al., 2005; Tahara et al., 2006; Jana et al., 2008; Richard et al., 2008), here how 

DHA modulates TLR2 and TLR4-initiated inflammatory activation was first investigated. As 

shown in Figure 4.1A, DHA treatment significantly reduced Pam3CSK4 (TLR2 ligand) and 

LPS (TLR4 ligand)-induced TNF-α secretion from BMDMs in a concentration-dependent 

manner (p<0.05). Similarly, the secretion of IL-6 was significantly decreased by DHA (Figure 

4.1C, p<0.001). The modulatory effects of DHA on other TLR-initiated inflammatory 

activation was further investigated. As shown in Figure 4.1B and D, DHA markedly 

suppressed Poly I: C (TLR3 ligand) and CpG ODN (TLR9 ligand)-induced TNF-α and IL-6 

secretion (p<0.001). Imiquimod (R837) (TLR7 ligand) did not induce secretion of the 

cytokines studied (Figure 4.1B and D). Interestingly, release of the anti-inflammatory 

cytokine IL-10, following TLR2, 4, 7 and 9, but not TLR3 activation, was not reduced by 

DHA treatment (Figure 4.1E, p>0.05).  

In order to exclude the possibility that DHA suppresses inflammatory activation via 

inducing cell death, the activity of caspase 3 (a marker for apoptosis) and the release of lactate 

dehydrogenase (LDH, to detect loss of cell integrity) from macrophages following the DHA 

treatment was analyzed. No significant cell death caused by DHA was observed (Figure 4.2). 
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Figure 4.1, DHA treatment inhibits TLRs-induced inflammatory activation. BMDMs were pretreated with 
DHA at the indicated concentrations for 24 hrs and then challenged with TLR2, TLR4 (A, C, E), or TLR3, 
TLR7, TLR9 (B, D, E) ligands for 18 hrs in the presence of DHA. The media was collected for ELISA analysis 
of TNF-α (A, B), IL-6 (C, D) and IL-10 (E). *p < 0.05, ** p < 0.01, *** p < 0.001, as compared to vehicle 
control (one-way ANOVA or t test, n≥6 per group). 
 

 

 

Figure 4.2, DHA 25 µµµµM treatment does not have a significant effect on cell apoptosis and viability. 
BMDM cells were cultured in DMEM medium and treated with DHA/Vehicle for 24 hrs; Caspase-3 activity (A) 
and LDH releasing assay (B) were performed to evaluate the apoptosis and cell death effect caused by DHA 
treatment. No significant cell apoptosis or death was observed with 25 µM DHA treatment (t test, n=4 per 
group). 

4.2 DHA suppresses IFN-γγγγ-induced IP-10 secretion in macrophages  

IFN-γ is an important endogenous inflammatory activator and stimulates a different signaling 

pathway than TLRs. Thus, this study continued to test effects of DHA on IFN-γ-initiated 

inflammatory activation. Secretion of IP-10 was significantly decreased by DHA in a 

concentration-dependent manner (Figure 4.3A, p<0.05). Interestingly, this suppressive effect 
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of DHA was independent of MyD88, a common signaling molecule downstream to TLRs. As 

shown in Figure 4.3B, DHA decreased IP-10 release from Myd88-deficient macrophages in a 

similar manner to wild-type control cells (p<0.05). 

 

Figure 4.3, DHA treatment inhibits IFN-γγγγ-induced inflammatory activation. Myd88-deficient (A) or 
wildtype (B) BMDMs were pretreated with DHA at the indicated contentrations for 24 hrs and then challenged 
with 200 U/ml IFN-γ for 18 hrs. The media was collected for ELISA measurement of IP-10. *p < 0.05, ** p < 
0.01, *** p < 0.001, as compared to vehicle control (one-way ANOVA, n=6 per group). 

4.3 DHA reduces aggregated Aββββ42-induced pro-inflammatory cytokine 

secretion in macrophages 

Following the investigation of general anti-inflammatory effects of DHA, the effects of DHA 

on Aβ aggregate-induced inflammatory activation were examined. It was observed that DHA 

treatment significantly reduced Aβ42 aggregate-induced TNF-α secretion from macrophages 

in a concentration-dependent manner (Figure 4.4A, p<0.05). Similarly, Aβ42 aggregate-

initiated IL-6 secretion was also significantly decreased by DHA (Figure 4.4C, p < 0.01). 

DHA did not reduce Aβ42 aggregate-initiated IL-10 secretion (Figure 4.4D, p> 0.05). 

Meanwhile, repeated experiments using lipid controls of DHA EPA, another common used 

omega-3 PUFA, and AA, an omega-6 PUFA in the brain, instead of DHA were used to co-

treat macrophages with Aβ42 aggregates. Upon Aβ42 activation, EPA, but not AA, 

significantly reduced the release of TNF-α (Figure 4.4B, p<0.01), whereas AA significantly 

increased Aβ-initiated IL-6 secretion (Figure 4.4C, p<0.001). In order to determine the 

mechanisms by which DHA inhibits Aβ42-induced proinflammatory cytokine secretion, the 

transcripts of TNF-α, IL-6 and IL-10 were quantified. Interestingly, the transcript of TNF-α 
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was significantly up-regulated and that of IL-6 or IL-10 was not markedly changed by DHA 

co-treatment upon Aβ activation (Figure 4.4E). 

 

Figure 4.4, Omega-3 PUFAs inhibit Aββββ42 aggregate-induced inflammatory activation in BMDMs. 
BMDMs were pretreated with omega-3 PUFAs DHA and EPA, or omega-6 PUFA AA at the indicated 
concentrations for 24 hrs and then challenged with 10 µM Aβ42 aggregates for 18 hrs in the presence of relevant 
PUFAs. The media was collected for ELISA analysis of TNF-α (A, B), IL-6 (C) and IL-10 (D). (E), transcripts 
of TNF-α, IL-6 in BMDMs treated with or without DHA were quantified by real-time PCR. *p < 0.05, ** p < 
0.01, *** p < 0.001, as compared to vehicle control (one-way ANOVA, n≥6 per group). 
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4.4 DHA suppresses aggregated Aββββ-induced PGE2 secretion in 

macrophages 

PGE2 is a primary product of arachidonic metabolism and is synthesized via the 

cyclooxygenase (COX) and prostaglandin synthase pathways. Postsynaptical PGE2 functions 

as a retrograde messenger in hippocampal synaptic signaling via a presynaptic EP2 receptor,  

thereby involving in the pathogenesis of neurodegenerative processes (Sang et al., 2005). 

Therefore, besides the proinflammatory cytokines level, here the transcription level of PGE2 

synthase (PTGES1) and its catalysed product PGE2 level were also investigated after 

challenge with Aβ42 for the BMDMs pre-treated with DHA or control lipid AA. As shown in 

Figure 4.5A, the PGE2 level secreted by the DHA treated BMDMs upon Aβ challenge was 

lower than vehicle treated cells, while the PGE2 level in arachidonic acid pretreated cells was 

increased compare with control. Interestingly, however, the PGE2 synthase transcript was 

also increased in DHA treated cells compared to vehicle treated cells (Figure 4.5B).  

 

 
Figure 4.5, DHA reduces Aβ42 aggregates induced PGE2 secretion. BMDMs were pretreated with DHA or 
AA at the indicated concentrations for 24 hrs and then challenged with 10 µM Aβ42 aggregates for 18 hrs in the 
presence of relevant PUFAs. The media was collected for ELISA analysis of PGE2 (A). Transcripts of PGE2 
synthase 1 (PTGES1) were measured via real-time PCR (B). The *p < 0.05, ** p < 0.01, as compared to vehicle 
control (one-way ANOVA, n=9 per group). 
 

4.5 DHA does not affect macrophage uptake of Aββββ aggregates  

Growing evidence has suggested that microglial elimination of Aβ protects neurons against 

AD-related neurodegeneration (Tahara et al., 2006; Richard et al., 2008). The effect of DHA 

on Aβ internalization by macrophages was tested. Interestingly, the internalization of Aβ42 

aggregates, as measured by the mFI and percentage of fluorescent cells in flow cytometry, 

was not altered by DHA treatments (Figure 4.6A, p>0.05). EPA and AA (used as controls for 

DHA) did not affect Aβ internalization either (Figure 4.6A, p>0.05). In additional 
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experiments, the transcripts of the known receptors related to Aβ phagocytosis: RAGE, 

CD36, SR-A and CD14 (El Khoury et al., 1996; Yan et al., 1996; El Khoury et al., 2003; Liu 

Y et al., 2005) were determined via realtime-PCR. As shown in Figure 4.6B, DHA treatment 

increased transcription of RAGE and CD36, although the transcription of SR-A and CD14 

was decreased in the DHA-treated cells. Thus, DHA did not overall reduce the Aβ 

phagocytotic capacity. 

 

Figure 4.6, PUFAs do not affect internalization of Aββββ42 aggregates by BMDMs. BMDMs were pretreated 
with 25 µM DHA, EPA, or AA for 24 h and then incubated with 0.5 µM FITC-conjugated Aβ42 aggregates for 
0, 3, 6 or 24 hrs. Cells were detached and the fluorescence was measured with flow cytometry (A). B: transcipts 
of Aβ phagocytosis-related receptors in DHA-treated cells were measured with real-time PCR. *p < 0.05, *** p 
< 0.001, as compared to vehicle control (one-way ANOVA, n=13 per group). 
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5 Discussion 

Senile plaques containing Aβ deposits accumulate over decades and induce neuronal death in 

AD. Microglial activation around Aβ plaques has been demonstrated to make opposing 

contributions to AD pathophysiology: on one hand, release of neurotoxic inflammatory 

mediators is considered to be detrimental; on the other hand, phagocytotic Aβ clearance could 

play a beneficial role. This study using primary cultured macrophages demonstrates that 

omega-3 fatty acids, e.g. DHA and EPA, significantly inhibit Aβ-induced pro-inflammatory 

activation while leaving uptake of Aβ unchanged.  

Higher levels of omega-3 PUFAs in the plasma have been associated with reduced AD risk 

and anti-inflammatory cytokine profiles in humans (Endres et al., 1989; Barberger-Gateau et 

al., 2002; Morris et al., 2003; Ferrucci et al., 2006; Schaefer et al., 2006). It is supposed that 

omega-3 PUFAs, which readily cross the blood-brain barrier, could suppress the 

inflammatory activation of microglia in the brain, which in turn prevents AD pathogenesis 

(Edmond, 2001). Indeed, here it was observed that omega-3 PUFAs significantly inhibited 

Aβ-induced TNF-α and IL-6, but not IL-10, secretion from bone marrow-derived 

macrophages which, similar to microglia, belong to the mononuclear phagocyte lineage and 

contribute to AD pathogenesis (Simard et al., 2006b).  

However, the mechanisms by which DHA reduced Aβ-induced proinflammatory cytokine 

release from macrophages are still far from being understood. Innate immune receptors, such 

as CD14, TLR2 and TLR4, have been demonstrated to recognize Aβ aggregates, thereby 

triggering microglial inflammatory activation (Fassbender et al., 2004; Liu Y et al., 2005; 

Walter S et al., 2007; Jana et al., 2008). Interestingly, DHA treatment inhibits TLR2 and 

TLR4 ligand-induced inflammatory activation in macrophages (Lee Joo Y. et al., 2001; Lee 

Joo Y. et al., 2003; Lee Joo Y. et al., 2004). Thus, DHA might inhibit Aβ-initiated 

inflammatory activation by blocking TLRs signaling. However, this study demonstrated that 

DHA not only targets TLR2 and 4, but also TLR3, 7 and 9; because DHA treatment inhibits 

the release of all these TLRs-induced proinflammatory cytokines. Moreover, DHA blocked 

IFN-γ-induced inflammatory activation. It was also observed that this anti-inflammatory 

effect of DHA was independent of MyD88, a common signaling molecule downstream to 

TLR2, 4 and 9. Since different receptors transduce signals through different pathways, 

omega-3 PUFAs are thus unlikely targeting one single molecule, e.g. receptor or signaling 

adaptor, in inflammatory activation. Even more interestingly, the transcription level of the 
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pro-inflammatory cytokines was observed to be not decreased by DHA treatment, suggesting 

the suppression effect of DHA might be at the post-transcriptional level. 

Recently, the beneficial effect of Aβ deposit clearing upon activation of 

microglia/macrophages has gained great interest (Liu Y et al., 2005; Simard et al., 2006b; 

Hao et al., 2011). Here in this part of study, it was observed that treatment with omega-3 

PUFAs reduces TLR-induced inflammatory activation, but does not reduce the internalization 

of aggregated Aβ, which clearly argues for the separation of signaling cascades responsible 

for Aβ uptake and inflammatory reponses. Indeed, deficiency of TLR2, TLR4 or MyD88 was 

first observed to decrease macrophage clearance of bacteria such as E. coli (Blander et al., 

2004), but a following study did not show this effect upon the uptake of silica particles or 

Staphylococcus aureus (Yates et al., 2005). Moreover, MyD88 was not involved in TLR4-

induced phagocytosis of E. coli (Kong et al., 2008). Regarding Aβ phagocytosis, previous 

reports indicated that TLR ligand-induced inflammatory activation facilitates microglial 

phagocytosis of Aβ (Iribarren et al., 2005; Chen Keqiang et al., 2006; Tahara et al., 2006), 

whereas previous study of ours (Hao et al., 2011) and the Part I work of this thesis showed 

that without ligand preactivation, deficiency of TLR2 or MyD88 did not decrease Aβ 

phagocytosis; instead, deficiency of TLR2 or MyD88 activation increase Aβ internalization 

(Part I of this thesis and (Hao et al., 2011)). Furthermore, in this study, DHA treatment did 

not down-regulate the Aβ phagocytosis-related receptors, RAGE and CD36. In some reports, 

these receptors could even be up-regulated upon treatment with omega-3 PUFAs (Vallvé et 

al., 2002). Thus, omega-3 PUFAs do not impair the phagocytotic capacity of Aβ. 

In summary, this study demonstrated that omega-3 PUFAs prevent neurotoxic pro-

inflammatory activation by Aβ aggregates, but do not impair elimination of Aβ by 

macrophages, showing a beneficial role in AD pathophysiology. This, together with the 

potential effects of omega-3 PUFAs on APP processing (Lim et al., 2005), neuronal 

protection (Calon et al., 2004; Akbar et al., 2005) and differentiation (Kan et al., 2007; Liu J-

W et al., 2008), suggests that a dietary supplement of omega-3 PUFAs could offer a 

preventative and therapeutic strategy for AD.   
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