Strukturanalyse und Oberflächenuntersuchung experimenteller Kompositmaterialien mit fluorapatithaltigen Nanofüllstoffen

Dissertation zur Erlangung des Grades eines Doktors der Zahnheilkunde
der Medizinischen Fakultät
der UNIVERSITÄT DES SAARLANDES

2011

vorgelegt von: Tina Hoffmann
geb. am: 24.05.1979 in Saarbrücken
Meiner Familie in Dankbarkeit gewidmet
3.2 Probenherstellung .. 37
 3.2.1 Probenherstellung für die TEM-Analyse ... 37
 3.2.2 Probenherstellung für die REM-Analyse .. 38
 3.2.3 Proben für die Mikrohärtemessung.. 39

3.3 Künstliche Alterung ... 40
 3.3.1 Thermische Wechselbelastung... 40
 3.3.2 Mechanische Belastung ... 40
 3.3.3 Erosive Belastung ... 41

3.4 Durchführung der Prüfungen ... 42
 3.4.1 TEM-Analyse... 42
 3.4.2 REM-Analyse .. 43
 3.4.3 Mikrohärtemessung.. 43

3.5 Statistische Anlayse ... 44

3.6 Überblick der Prüfgruppen .. 45
 3.6.1 Exploration der Gefüge struktur im REM/TEM... 45
 3.6.2 Prüfung des Einflusses von Phosphorsäure ... 45
 3.6.3 Mikrohärtemessung.. 46

4 ERGEBNISSE ... 47

4.1 Einfluß der thermischen Wechselbelastung (TWB)... 47
 4.1.1 LC Microfill Hybrid (Referenz)... 47
 4.1.2 LC Ceramic P (Referenz)... 49
 4.1.3 LC APA Comp 12% ... 52
 4.1.4 LC APA Comp 24% ... 54
 4.1.5 LC APA Ceram A2 .. 56
 4.1.6 LC APA Fill A2 ... 58
Inhaltsverzeichnis

4.1.7 LC Seal F (Referenz) ... 60
4.1.8 LC APA Seal ... 62
4.1.9 LC APA Seal ½ .. 64
4.1.10 LC APA Flow A3 ... 66
4.1.11 LC APA Hi Flow 12% .. 68

4.2 Einfluß der mechanischen Belastung ... 70

4.3 Einfluß der erosiven Belastung .. 74

4.3.1 LC Microfill Hybrid (Referenz) ... 74
4.3.2 LC Ceramic P (Referenz) .. 74
4.3.3 LC APA Comp 12% .. 75
4.3.4 LC APA Comp 24% .. 75
4.3.5 LC APA Ceram A2 ... 76
4.3.6 LC APA Fill A2 .. 76
4.3.7 LC Seal F ... 77
4.3.8 LC APA Seal .. 77
4.3.9 LC APA Seal ½ ... 78
4.3.10 LC APA Flow A3 ... 78
4.3.11 LC APA Hi Flow 12% .. 79

4.4 Mikrohärtemessungen ... 80

5 DISKUSSION .. 82

5.1 Diskussion der Methodik .. 82

5.1.1 Verwendete Materialien ... 82
5.1.2 Probenherstellung ... 82
5.1.3 Prüfbedingungen ... 84
5.1.4 Eingesetzte Analyseverfahren .. 91
5.2 Diskussion der Ergebnisse ... 92
 5.2.1 Ergebnisse der TEM-Analyse vor und nach thermischer Belastung 92
 5.2.2 Ergebnisse der REM-Analyse nach mechanischer Belastung 97
 5.2.3 Ergebnisse der REM-Analyse nach Säurekonditionierung 102
 5.2.4 Ergebnisse der Mikrohärtemessungen ... 104

5.3 Schlussfolgerung .. 108

6 LITERATURVERZEICHNIS .. 110

7 DANKSAGUNG ... 127

8 LEBENSLAUF .. 128

9 ANHANG ... 129
 9.1 Abkürzungsverzeichnis ... 129
Zusammenfassung

Kalzium und Phosphor liegen im Zahnschmelz in einem Verhältnis von 1:1,2 als Apatitverbindung in Form von Nanokristalliten (ca. 130 x 30 nm) vor. Durch den Einbau von Fluorid entsteht eine noch stabilere Struktur, das Fluorapatit. Durch den Einsatz der Nanotechnologie wurden Materialien entwickelt, deren Füllkörper bei Dimensionen von 1 bis 100 nm eingesetzt werden. Durch die Verwendung von fluorapatithaltigen Nanofüllern soll es möglich sein Füllungswerkstoffe herzustellen, die dem natürlichen Zahnschmelz ähneln und gleichzeitig die Anforderungen an zahnärztliche Füllungsmaterialien erfüllen.

Die Zielsetzung dieser Untersuchung war der werkstoffkundliche Vergleich von Kompositmaterialien mit und ohne Füllkörper auf der Basis von Nanofluorapatit (NFAP).

Untersucht wurden Universalkomposite und Flowkomposite der Firma S&C Polymer (Elmshorn) mit unterschiedlich hohen Anteilen an NFAP. Als Referenz dienten entsprechend NFAP-freie Materialien. Aus diesen Materialien wurden polierte Blöcke und Probenkörper angefertigt. Die Blöcke wurden einer künstlichen Alterung unterzogen (2500 Zyklen thermische Belastung (TC), 5º-55º C je 30 s, und 100.000 Zyklen mechanische Belastung (ML) mit 50 N), während die polierten Oberflächen der Probenkörper 15 und 30 s lang mit 37 % Phosphorsäure oder für 24 h mit 30 % Ethanol behandelt wurden.

Die Auswirkung der TC auf die Gefügestruktur der Materialien wurde transmissionselektronenmikroskopisch vor und nach der Belastung ermittelt. Die Effekte der mechanischen und erosiven Einflüsse auf die Oberflächenbeschaffenheit wurden mittels REM und Mikrohärtemessung (Vickers-Härte, Duramin, Struers) vor und nach deren Durchführung untersucht.

Unter den gewählten Versuchsbedingungen resultierten aus der Integration von Nanofluorapatitkristalliten in die organische Matrix der Komposite keine negativen Effekte in Bezug auf die untersuchten werkstoffkundlichen Parameter.
1 Summary

Tooth enamel consists of calcium and phosphor which appear in a ratio of 1:1.2 as apatite compound in form of nanocrystallites (ca. 130x30 nm). By incorporation of fluoride, a more solid structure results, fluoroapatite. Nanotechnology made it possible to develop materials whose packing bodies could be used in a range of 1-100 nm. By using fluorine-containing apatite nano-fillers, it is aimed to produce a filling material comparable with natural enamel while fulfilling the requirements of dental restorative materials.

The ambition of this study was the comparison of composite material properties with and without packing bodies on the basis of nano-fluoroapatite (NFAP).

In the course of the study universal composites and flowables with different portions of NFAP which are produced by S&C Polymer (Elmshorn) have been investigated. NFAP-free materials were used as a reference. Those materials functioned as base for preparing polished blocks and specimens. The blocks were part of an artificial ageing procedure containing specific parameters as 2500 cycles of thermal stress (TC), 5°-55°C per 30 seconds and 100,000 cycles of mechanical loading (ML) with 50 N. Furthermore the polished surfaces of other groups of specimens were either treated with 37 % phosphoric acid for 15 and 30 seconds or stored in an ethanol liquidation of 30% for 24 hours.

Before and after exposure different effects were determined. First of all the effect of TC on the microstructure of the different materials was analysed by transmission electron microscopy, secondly the effect of mechanical and erosive load on the surface properties by using SEM and last but not least micro-hardness measurement (Vickers hardness, Duramin, Struers).

NFAP were found as single particles and as clusters in the composite matrix. Thermal stress had no effects on the microstructure of the materials. The application of phosphoric acid showed that single crystallites dissolved out of the matrix but no adverse structural disintegration after ML. In principle the effect of ethanol led to a larger decrease of Vickers hardness than the acid conditioning did.

According to the selected conditions, the integration of nano-fluoroapatite into the organic matrix of composites had no negative effect concerning the material parameters of that study.
Einleitung

Die Entwicklung der Komposite wurde in den letzten 10 Jahren durch die Indikationseinschränkung für Amalgam, sowie durch die gestiegenen ästhetischen Ansprüche der Patienten stark vorangetrieben (Manhart and Hickel, 1999).

Der Wunsch, zerstörte Zähne mit zahnfarbigen Werkstoffen zu restaurieren, führte bereits in den 40’er Jahren erstmals zum Einsatz von selbsthärtenben Kunststoffen auf der Basis von Polymethylmethacrylaten (PMMA), die bei Raumtemperatur polymerisierten. Diese Materialien hatten jedoch schlechte physikalische Eigenschaften, wie z.B. eine hohe Polymerisations- schrumpfung, starke Verfärbungsneigung und eine mangelnde Abrasionsstabilität (Hellwig et al., 2009). Aufgrund des hohen Restmonomergehalts waren sie zudem pulpatoxisch (Dickens et al., 2003; Donly and Segura, 2002; Erickson and Glasspoole, 1995; Fontana et al., 2002; Geurtsen, 1987).

Einleitung

Durch den Zusatz der Füllstoffe konnten die werkstoffkundlichen Eigenschaften (Polymerisationsshrumpfung, Wasseraufnahme und Restmonomergehalt) deutlich verbessert werden (Hellwig et al., 2009; Puckett et al., 2007; Roulet, 1987).

In den folgenden Jahren wurden diese Werkstoffe kontinuierlich weiter entwickelt, so dass die ersten kommerziell erhältlichen Füllungsmaterialien Ende der 60’er Jahre in den Markt eingeführt wurden (Eichner and Kappert, 2008). Es handelte sich um chemisch härteende Paste/Paste-Systeme, bei denen die Abbindereaktion durch Mischung von Basis- und Katalysatorpaste in Gang gesetzt wurde. Die frühen Komposite waren bereits zahnfarben, was ihren Einsatz im Frontzahngebiet schnell unverzichtbar machte. Aufgrund der sehr groben Füllkörper (bis 100µm) waren diese Werkstoffe jedoch schlecht polierbar und neigten zu Verfärbungen. Die Mischung der Pasten führte zudem zu Porositäten in der Oberfläche.

Einleitung

Ursache der Polymerisationsschrumpfung ist die Umwandlung von C=C Doppelbindungen in kovalente Einfachbindungen zwischen den Molekülen, die mit einer Verringerung des Molekülabstands einhergeht. Moderne Kompositmaterialien haben eine Polymerisationsschrumpfung zwischen 1,7 und 3 Vol. % (Hellwig et al., 2009).

Der Polymerisationsschrumpfung wirkt in begrenztem Maße die Expansion der Komposite durch Wasseraufnahme entgegen, die zwischen 0,002 und 0,06 Vol.% liegt (Peutzfeldt, 1997). Die Wasseraufnahme der Komposite korreliert jedoch mit einem hydrolytischen Abbau der Silanschicht zwischen Füllkörper und Matrix. Dies führt in der Folge zu einer Verschlechterung der mechanischen Eigenschaften (Schulz, 2003).

Die polymerisationsbedingte mikroskopische Spaltbildung wird durch die thermische Wechselbelastung und Mastikation verstärkt. Dadurch wird das Eindringen von Flüssigkeiten, Bakterien und Luft zwischen Kavitätenwand und Restauration ermöglicht, was die Ausbildung von marginalen Verfärbungen, postoperativen Sensibilitäten und Sekundärkaries bewirken kann.

Eine Verbesserung der Randqualität wird durch eine adhäsive Verankerung der Komposite an der Zahnhartsubstanz angestrebt. Ein solcher Verbund kommt im Wesentlichen durch eine mikromechanische Verankerung in Oberflächenrauheiten zustande, die durch gezielte Konditionierung von Schmelz bzw. Dentin geschaffen werden (Frankenberger et al., 2007).

Am Dentin sind die Voraussetzungen für eine Anbindung von Kompositen aufgrund seiner Zusammensetzung und Struktur (tubuläre Mikrostruktur mit Dentinkanälchen und Dentinliquer, hoher Anteil an Kollagenfasern, Schmierschicht) deutlich ungünstiger (Frankenberger, 2006; Hellwig et al., 2009; Perdigao et al., 1998). Bei den meisten Dentinadhäsiven wird eine Auflösung der Schmierschicht (1-5 μm dicke Auflagerung aus Bakterien, Hydroxylapatit -und

Mit Hilfe der Adhäsivtechnik lassen sich prinzipiell dichte und klinisch akzeptable Restitutionen herstellen. Weitere Fortschritte bei der Reduktion der Randspaltbildung verspricht man sich von der Herstellung schrumpfungsreduzierter plastischer Füllungsmaterialien.

2.1 Anforderungen an zahnärztliche Füllungsmaterialien
Ziel einer jeden Füllungs therapie ist die funktionelle und ästhetische Wiederherstellung der ursprünglichen Zahnmorphologie und -anatomie, sowie der bakteriendichte Randschluss zur Prävention von Sekundärkaries. Um dieses Ziel zu erreichen, müssen hohe Ansprüche an die Füllungsmaterialien sowie die Adhäsivsysteme gestellt werden, die zu ihrer Verankerung an die Zahnharzsubstanz eingesetzt werden. Für die Materialauswahl spielen Faktoren wie Kavitätengröße, Belastung und Abrasionsfestigkeit eine große Rolle. Die an Füllungsmaterialien gestellten Anforderungen sind in Tabelle 1 zusammengefasst.

Tabelle 1 Anforderungen an direkte Füllungswerkstoffe

<table>
<thead>
<tr>
<th>Klinische Anforderungen</th>
<th>Physikalische Anforderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biokompatibilität</td>
<td>Geringe Polymerisationsschrumpfung</td>
</tr>
<tr>
<td>Einfache Verarbeitung</td>
<td>Geringe Wasseraufnahme</td>
</tr>
<tr>
<td>Geringe Technikssensibilität</td>
<td>Geringe Wasserlöslichkeit</td>
</tr>
<tr>
<td>Farbstabilität</td>
<td>Geringe thermische und elektrische Leitfähigkeit</td>
</tr>
<tr>
<td>Transluzenz (Ästhetik)</td>
<td>Wärmeausdehnungskoeffizient ähnlich der Zahnharzsubstanz</td>
</tr>
<tr>
<td>Röntgenopazität</td>
<td>Hohe Abrasionsfestigkeit</td>
</tr>
<tr>
<td>Fluoridabgabe</td>
<td>Hochglanzpolierbarkeit</td>
</tr>
<tr>
<td></td>
<td>Hohe Biege- und Druckfestigkeit</td>
</tr>
<tr>
<td></td>
<td>Zahnähnlicher E-Modul</td>
</tr>
</tbody>
</table>

Modifiziert nach (Schulz, 2003)
2.2 Aufbau und Zusammensetzung von Kompositen

Als Komposite bezeichnet man im Allgemeinen Werkstoffe (= „Kompositionswerkstoffe“), die aus unterschiedlichen Phasen aufgebaut sind (Hellwig et al., 2009):

Sie bestehen aus folgenden drei Hauptbestandteilen:

1. einer organischen Matrix
2. einer dispersen Phase (anorganische Füllkörper)
3. einer Verbundphase (Silan-Schicht)

Organische Komponente

Bei den verwendeten Monomeren handelt es sich üblicherweise um mehrfunktionelle (meist bifunktionelle Methacrylate = MA) mit der vereinfachten Grundformel:

MA-R-MA

R steht hierbei für ein organisches Zwischenglied aus aliphatischen Ketten, aromatischen Ringen, Urethanpräpolymeren oder Polyäther (Bath, 1985).

Das organische Zwischenglied (= Backbone) nimmt maßgeblichen Einfluss auf die chemisch-physikalischen Eigenschaften der Komposite. Hierzu zählen z.B. die Wasseraufnahme, die Polymerisationsschrumpfung, der Polymerisationsgrad und die Viskosität der Paste. Das am häufigsten eingesetzte Monomer in Dentalkompositen ist Bisphenol-A-Glycidylmethacrylat (Bis-GMA).

Ein Nachteil der Verdünnermonomere ist, aufgrund des deutlich geringeren Molekulargewichts, eine höhere Polymerisationsschwindung. Die ungesättigten, mehrfunktionalen Monomerbausteine werden im Rahmen einer radikalischen Polymerisation zu einem 3D-Netzwerk verknüpft, was eine Verfestigung des Kunststoffes bewirkt.

![Chemische Strukturen der Monomere](image)

Abb. 1: In Dentalkompositen häufig verwendete Monomere (Hellwig et al., 2009)
Einleitung

Anorganische Komponente
Um die mechanischen und physikalischen Eigenschaften der Kunststoffmatrix zu verbessern werden Füllkörper zugesetzt. Als anorganische Füllstoffe werden hier Quarz, Keramik und Siliziumdioxid verwendet. Bis zu einem bestimmten Grad korreliert die Zugabe von Füllkörpern mit der Verbesserung der Materialeigenschaften.

So werden z.B. Druck- und Zugfestigkeit, E-Modul und die Verschleißfestigkeit gesteigert, während die Polymerisationsshrinkung, die Wasseraufnahme und der thermische Expansionskoeffizient verringert werden (Eichner und Kappert, 2008). Des Weiteren wird durch die Füllkörperzugabe eine Röntgenopazität erreicht (v.a. durch Al, Ba, Sr in den eingesetzten Gläsern) und Einfluss auf die optischen Eigenschaften (Transparenz, Opazität) genommen.

Kopplungsagens/Verbundphase (Silan-Haftvermittler)
Füllstoffe und Monomermatrix stellen zwei, in ihren Eigenschaften sehr unterschiedliche Phasen dar, die im Kompositwerkstoff dauerhaft chemisch miteinander verbunden werden müssen. Da die Verbundphase fest an die Füllstoffe gebunden ist, wird sie von einigen Autoren nicht als separate Phase angesehen, sondern den Füllstoffen zugerechnet.

Das Kopplungsagens muss gleichzeitig hydrophile und hydrophobe Strukturen aufweisen. Die Struktur von dentalen Haftvermittlern kann vereinfacht in der Formel Si-R$_4$ (1-4) dargestellt werden, wobei 3 der 4 Reste (R) durch funktionelle Gruppen ersetzt sind. Die funktionellen Gruppen stellen eine Verbindung zum Füllkörper her, während der Rest eine Verbindung zur Monomermatrix etabliert. Das in methacrylatbasierten Matrixsystemen am häufigsten verwendete Verbundagens ist 3-Methacryloxypropyltrimethoxysilan (Abkürzungen: γ-MPTMS, gamma-MPTS, MPS).

Weitere Maßnahmen zur Haftverbesserung zwischen Matrix und Füllstoffen sind die Anbringung mechanischer Mikro- und Nanoretentionen, sowie eine Aufrauung oder Anätzung der Partikel zur Oberflächenvergrößerung. Diese haben sich jedoch bisher für eine Routineanwendung nicht durchsetzen können.

2.3 Die radikalische Polymerisation
Die Überführung vom plastischen in den festen Zustand erfolgt bei Methacrylat-basierten Kompositen durch eine radikalische Polymerisation.
Unter Energiezufuhr zerfallen Initiatoren (sogenannte „Radikalbildner“, d.h. reaktionsfreudige Matrixbestandteile wie z.B. Benzoylperoxid) in freie Radikale (vgl. Abb. 3) und addieren sich unter Aufspaltung der Doppelbindungen an die Monomere (Eichner and Kappert, 2008).

Durch die geöffnete Doppelbindung wird das Monomer selbst zum Radikal und öffnet wiederum Doppelbindungen von benachbarten Monomermolekülen (Schulz, 2003; Spahl et al., 1991). Das auf diese Weise entstandene Radikal trifft nun immer wieder auf neue Doppelbindungen benachbarter Monomermoleküle – durch kontinuierliche Anlagerung und Kettenwachstum entsteht ein Makromolekül.

An der Oberfläche entsteht während der Aushärtung eine so genannte Sauerstoffinhibitionsschicht, da O₂ die radikalische Polymerisation inhibiert (Hellwig et al., 2009). Sie dient der Anbindung an die nächste aufgetragene Schicht Komposit. Die an der Füllungsoberfläche vorliegende Inhibitionsschicht wird im Rahmen der Ausarbeitung und Politur der Füllung entfernt.

Inhibitoren dienen der Vermeidung einer vorzeitigen Polymerisation sowie der Einstellung der Verarbeitungsparameter (z.B. Lichtempfindlichkeit, Verarbeitungszeit). Eingesetzt werden sterische Phenole, wie z.B. Hydrochinomonomethyläther, oder Antioxidantien, wie Buthylhydroxyltoluol (BHT) oder Eugenol.

In die Kategorie weiterer Additiva lassen sich Weichmacher und optische Aufheller einordnen.

2.4 Klassifizierung von Kompositen

Grundsätzlich lassen sich die Komposite nach verschiedenen Gesichtspunkten einteilen. Hierzu zählen die Klassifikation nach Füllkörpergröße, Füllstoffgrad und Monomersystem.
2.4.1 Einteilung nach Füllkörpergröße

Eine der häufigsten Einteilungen der Komposite erfolgt nach der Füllkörpergröße (Lutz et al., 1983), wie in Abb. 4 dargestellt. Dabei unterscheidet man konventionelle oder Makrofüllerkomposite von Mikrofüller- und Hybridkompositen.

Bei den in konventionellen Kompositen eingesetzten Makrofüllstoffen, handelt es sich üblicher Weise um splitterförmige oder polymorphe anorganische Partikel aus Quarz, Glas oder Keramik. Die Gläser können schwermetallhaltig (s.o.) sein, um eine Röntgenopazität zu erreichen. Die Füllkörper haben eine Größe von 0,1-100 µm (Ferracane, 1995; Kullmann, 1990; Lutz and Phillips, 1983), wobei die durchschnittliche Teilchengröße zwischen 5 und 10 µm liegt. Es werden Füllgrade von 75 Gew. % erreicht.

Die Makrofüller verleihen dem Komposit eine hohe mechanische Festigkeit und eine geringe Polymerisationsschwindung. Jedoch weisen makrogefüllte Komposite eine geringe Verschleißfestigkeit auf, da zwischen Füllstoffen und Matrix einerseits ein großer Härteunterschied besteht und andererseits durch Hydrol yse der Verbundphase ein Herausbrechen der Füllstoffteilchen aus der organischen Matrix begünstigt wird (Hellwig et al., 2009).

Eine Alternative schien sich zum Beginn der 80’er Jahre mit den Mikrofüllerkompositen aufzutun. Treibende Kraft war die Entwicklung von Techniken, die die Herstellung von feinsteiligen SiO₂-Partikeln durch Pyrolyse erlaubten. Die gängigen Mikrofüllerkomposite enthalten feinstteilige, hochdisperse Kieselsäuren (Siliziumdioxiid) mit einer Größe unter 0,1 µm.
Die durchschnittliche Korngröße liegt bei 0,007-0,04 μm (Eichner and Kappert, 2008; Hellwig et al., 2009).

Ein wesentlicher Nachteil der homogenen Mikrofüllerkomposite liegt in der in Relation zum Volumen der Füllkörper hohen spezifischen Oberfläche. Dadurch kann wesentlich weniger Füllstoff zugesetzt werden als z.B. bei den Makrofüllerkompositen. Der Füllstoffgehalt von homogenen Mikrofüllerkompositen liegt bei maximal ca. 50 Gew. % (Puckett et al., 2007). Dies verringert einseitig die mechanische Festigkeit und erhöht die Polymerisationskontraktion. Zudem sind die SiO₂-Partikel nicht röntgenopak.

Aufgrund der gleichmäßigen Verteilung und der geringen Partikelgröße der Füllstoffe sind die Mikrofüllerkomposite hervorragend polierbar (Ernst and Willershausen, 2003b; Lutz et al., 1983). Da die Härte von Füllstoffen und Matrix ähnlich ist, weisen sie eine im Vergleich zu den makrogefüllten Werkstoffen höhere Verschleißfestigkeit auf. Die physikalischen Eigenschaften sind jedoch schlechter als die der konventionellen Komposite (erhöhte Polymerisationsverzögerung, hoher thermischer Expansionskoeffizient, geringere Biegefestigkeit, Vickershärte und Elastizitätsmodul).

Um die guten mechanischen Eigenschaften der konventionellen Komposite (z.B. Biegefestigkeit, E-Modul) und die hervorragenden ästhetischen sowie Oberflächeneigenschaften der Mikrofüllerkomposite (z.B. Polierbarkeit, Verschleißfestigkeit) in einem Material zu vereinen, wurden die Hybridkomposite entwickelt.

Die Hybridkomposite haben gute ästhetische und physikalische Eigenschaften sowie eine hohe Verschleißfestigkeit (Janda, 1988c; Lutz et al., 1983; Roulet and Noack, 1991).

In die Gruppe der Submikrometer-Hybridkomposite einzuordnen sind die Nanofüllerkomposite. Ziel der Entwicklung der Nanofüllerkomposite war, die mechanischen Eigenschaften der Feinstpartikelhybridkomposite, insbesondere ihre Oberflächeneigenschaften weiter zu verbessern. Mit einem solchen Komposit sollen gleichzeitig alle Indikationsbereiche, vom ästhetisch anspruchsvollen Frontzahnbereich bis zum kaulasttragenden Seitenzahnbereich, abgedeckt werden können (Saunders, 2009).

Die Optimierung erfolgte primär über die Füllstofftechnologie mit der Herstellung feinstpartikulärer Nanopartikel, die im Vergleich zu reinem SiO$_2$ bessere mechanische Festigkeiten aufweisen. Die Nanopartikel liegen definitionsgemäß in einem Größenbereich von 0,1-100 nm (Chen, 2010; Mitra et al., 2003; Puckett et al., 2007; Saunders, 2009).

Tatsächlich nehmen die Nanofüllerkomposite allerdings eine Sonderstellung zwischen Mikrofüller- und Hybridkompositen ein. Dabei sind die sogenannten Nanomere (Nanofüller-Primärpartikel) in Form von zum Beispiel feinsteiligen Siliziumdioxid-Füllkörpern in die Kunststoffmatrix integriert. Mit deren Hilfe kann der Füllkörpergehalt eines Mikrofüllerkomposites deutlich gesteigert werden, wodurch er dem eines Hybridkomposites entspricht (Ernst and Willershausen, 2003b). Zusätzlich liegt ein Teil dieser Nanofüllkörper in Form von Clustern, also wintraubennartig zusammengefügten Komplexen vor, die durch ihre Oberflächenstruktur einen Hochglanzeffekt der Füllung bewirken und eine Größe von 0,6-1,4 µm erreichen (Saunders, 2009).

Nanofüllerpartikel weisen einige spezifische Eigenschaften auf. Sie liegen mit ihrer Größe unterhalb der Wellenlänge des sichtbaren Lichts (400-800 nm) und können somit Licht in
Einleitung
diesem Wellenlängenbereich weder absorbieren, noch streuen (Chen, 2010). Das heißt, wenn
diese Materialien abrasiven Bedingungen unterliegen, entstehen Oberflächendefekte, die na-
hezu unsichtbar sind und die Oberfläche erscheint weiter glatt und glänzend (Chen, 2010; Mitra et al., 2003).

Aufgrund ihrer geringen Partikelgröße, sind Nanofüllkörper in der Lage, den Gesamtfüllstoff-
achhalt einer Kompositmatrix zu erhöhen. Theoretisch können auf diese Weise Füllgrade von
90-95 Gew. % erreicht werden (Chen, 2010; Saunders, 2009). Allerdings erhöht sich mit der
Verkleinerung der Partikelgröße die spezifische Oberfläche der Füllkörper und limitiert letzt-
endlich den Füllstoffgehalt durch die begrenzte Benetzbarkeit mit der Matrix (Chen, 2010).

Durch spezielle Herstellungsverfahren (Sol-Gel-Verfahren) und Oberflächenbeschichtungen
der Primärpartikel ist es bereits während der Entstehung (z.B. sterisches Coating) möglich,
das Aneinanderlagern der Partikel zu verhindern (Eichner and Kappert, 2008), was einen we-
sentlichen Unterschied zu den pyrolytisch hergestellten Mikrofüllern darstellt. Letztere sind
nahezu kugelförmig und liegen als recht stabile kettenförmige Strukturen bzw. Netzwerke
vor, also nicht vollständig als Primärteilchen.

Die Nanofüllerkomposite vereinen also die mechanische Stabilität der Hybridkomposite mit
hohem Füllergehalt und geringer Polymerisationsschrumpfung, mit der guten Polierbarkeit
und Ästhetik der Mikrofüllerkomposite. Bisher konnten sie klinisch jedoch keine Überlegen-
heit gegenüber klassischen Hybridkompositen zeigen.

2.4.2 Einteilung nach Füllgrad
Eine weitere Möglichkeit der Klassifikation von Kompositen ist die Einteilung nach ihrer
Viskosität (Willems et al., 1992). Durch Verringerung des Füllstoffanteils oder Zugabe von
Verdünnernonomeren (z.B.TEGDMA) entstehen niedrigvisköse, fließfähige Komposite.
Diese sogenannten „Flow-Komposite“ weisen schlechtere mechanische Festigkeitswerte auf
als Hybridkomposite und haben eine höhere Polymerisationsschrumpfung sowie geringere
Abrasionsstabilität. Daher sind sie für den routinemäßigen Einsatz in kaulasttragenden Berei-
chen nicht geeignet. Flow-Komposite zeichnen sich aufgrund des geringeren Füllstoffanteils
durch eine höhere Flexibilität aus. Dadurch können sie Zahndeformationen in begrenztem
Umfang elastisch kompensieren. Sie eignen sich in besonderem Maß für minimalinvasive
Restaurationen (z.B. kleine Klasse-V Kavitäten, erweiterte Fissurenversiegelung).

Eine weitere Indikation ist die Kombination mit konventionellen Füllungswerkstoffen. So
werden sie z.B. als „stress breaker“ unter konventionellen Hybridkompositen eingesetzt.
Schrumpfungsspannungen der Füllungskomposite sollen auf diese Weise elastisch aufgefangen werden. Ferner soll aufgrund ihrer Fließeigenschaften die Adaptation der Füllung an der Zahnhartsubstanz verbessert werden (Hellwig et al., 2009).

2.4.3 Einteilung nach Monomersystem

Klassische Methacrylate

Die Chemie der reinen Methacrylate sowie die eingesetzten Monomere (z.B. Bis-GMA, UDMA und TEGDMA) wurden bereits unter Kapitel 2.2 besprochen. Es handelt sich folglich um Werkstoffe, deren Aushärtung ausschließlich auf der Basis einer radikalischen Polymerisation von (Meth-) Acrylgruppen verläuft.

Ormocere

Von den klassischen Methacrylaten mit einem reinen organischen Backbone ist die Gruppe der sogenannten Ormocere abzugrenzen. Der Begriff Ormocer® ist eine Abkürzung für Organically Modified Ceramics, also organisch modifizierte Keramiken. Werkstoffkundlich sind sie zwischen organischen und anorganischen Polymeren einzuordnen (Schulz, 2003). Diese organisch-anorganischen Hybridpolymere wurden vom Fraunhofer Institut für Silikatforschung entwickelt und zeigen zahlreiche interessante Eigenschaften. Im Unterschied zu klassischen Methacrylaten basiert der Backbone des polymerisierbaren Moleküls auf einem Si-O-Gerüst mit endständigen Methacrylatgruppen (Hickel et al., 1998).
Die Matrix der Ormocere besteht folglich aus einer Mischung konventioneller Monomere (Bis-GMA, UDMA, TEGMA) und einem Polysiloxannetzwerk (Si-O-Si) (vgl. Abb. 5), an welches Methacrylatgruppen über Si-C-Bindungen kovalent gebunden sind (Braun, 2000; Hickel et al., 1998).

Auch in puncto mechanische Eigenschaften, Polierbarkeit, Oberflächenqualität, Verfärbungsneigung und Wasseraufnahme sind die Ormocere den Kompositen in etwa als gleichwertig gegenüber zu stellen (Bauer et al., 1995). Laut Herstellerangaben sind die Ormocere in allen Indikationsbereichen, die bisher durch Amalgam, Komposite und Kompomere abgedeckt wurden, einsetzbar. Zwar zeigen die Ormocere einen geringeren Restmonomergehalt, da die reaktiven organischen Methacrylate fest an die Ormocermatrix gebunden sind, jedoch geht auch von dem verwendeten Adhäsivsystem ein toxikologisches Potential aus.

Säuremodifizierte Methacrylate

Zu ihnen gehören Dentalmatrices, bei denen die Monomere im Vergleich zu klassischen Methacrylaten zusätzlich funktionelle Gruppen tragen. Bei den funktionellen Gruppen handelt es sich z.B. um hydrophile, polare Seitengruppen (-COOH-Gruppen).

In diese Kategorie lassen sich Kompomere und Ormocere mit Carboxylfunktion subsummieren.
Einleitung

Neben einer differenten Monomertechnologie weisen Kompomere auch eine andersartige Füllstofftechnologie auf. Als Füllkörper werden sowohl hochdisperses SiO₂ als auch Aluminium-Fluorsilikatgläser eingesetzt, die der Glasionomerzement-Technologie entstammen (Füllstoffanteil bis ca. 80 Gew. %). Die Partikelgröße liegt in der Größenordnung von 0,1 µm bis zu 10 µm. Die Füllstoffe enthalten Schwermetalle, um eine Röntgenopazität zu erreichen. Um die Säure-Base-Reaktion mit den Carbonsäuren der säuremodifizierten Matrix zu ermöglichen, sind die Glasfüllkörper nur teilsilanisiert (Adusei et al., 2004).

Aufgrund der Zusammensetzung von Matrix und Füllstoffen sind bei Kompomeren grundsätzlich zwei Reaktionsmechanismen möglich: die radikalische Polymerisation wie bei den

[Diagramm der TCB-Struktur]

Abb. 6: Struktur des amphiphilen TCB-Monomers
Kompositen und eine Säure-Base-Reaktion wie bei Glasionomerzementen. Da Komppomere jedoch vor dem Abbinden kein Wasser enthalten, kann die Säure-Base-Reaktion erst nach Wasseraufnahme induziert werden (Hickel, 1997; Roulet and Blunck, 1998).

Komppomere zeigen wie klassische Komposite bei der Polymerisation eine Schrumpfung in der Größenordnung von 2-3 Vol. %. Die nachträgliche Aufnahme von Wasser aus dem Speichel führt in der Folge zu einer Expansion durch Quellung (Gladys et al., 2001). Hierbei ist jedoch unklar, ob die Schrumpfung durch die Quellung voll umfänglich ausgeglichen werden kann (Peutzfeldt et al., 1997).

Komppomere sind bezüglich der mechanischen Eigenschaften (Biege-, Zug- und Druckfestigkeit) vergleichbar mit denen der Mikrofüllerkomposites (Hellwig et al., 2009). Die Vorteile dieser Werkstoffe werden in einer einfachen Verarbeitung sowie der Fluoridabgabe gesehen (Attin et al., 1996). Letztere soll das Sekundärkariesrisiko reduzieren. Im Vergleich zu den Hybridkompositen weisen die Komppomere jedoch eine geringere Abrasionsfestigkeit und eine geringeres E-Modul auf (Hellwig et al., 2009). Ihr Indikationsspektrum ist daher auf Kavitäten der Klasse V und III, sowie für die Versorgung von keilförmigen Defekten und Restaurationen im Milchgebiss beschränkt.

Ringöffnene Epoxide

Ringöffnende Epoxide sind Monomersysteme auf der Basis von Siloranen (Siloxane mit Oxiran-Funktion). Ziel der Entwicklung dieser Werkstoffe war die Reduktion der Polymerisationskontraktion des Monomersystems, da die Verringerung des Schrumpfes durch Zugabe an Füllstoff an physikalische und verarbeitungstechnische Grenzen stößt.

Silorane sind eine neue Klasse ringöffnender Monomere, die sich bezüglich der Chemie grundlegend von den bisher üblichen dentalen Monomeren unterscheiden. Es handelt sich um eine Kombination der chemischen Bestandteile Siloxan und Oxiran.

Das Grundgerüst (Backbone) der Silorane besteht aus einem Polysiloxan-Skelett, ähnlich den Ormoceren (vgl. Abb. 7). Die Vernetzung dieser Makromoleküle erfolgt über die Oxiran-Gruppen, entsprechend der Methacrylatgruppen bei der radikalischen Polymerisation (Eichner and Kappert, 2008).
Einleitung

2.5 Weiterentwicklungen der Kompositwerkstoffe

Ein Hauptziel der modernen Zahnmedizin ist es, die Entstehung und die Progression von kariösen Läsionen und Sekundärkaries durch präventive Maßnahmen zu verhindern (Cochrane et al., 2010). Andererseits sollen bereits entstandene Defekte möglichst minimalinvasiv behandelt werden.

Die Fluoridanwendung gilt als Meilenstein der nicht invasiven Kariestherapie und bildet einen tragenden Pfeiler im Bereich der Kariesprävention. Calcium und Phosphat liegen im Zahn- schmelz in einem Verhältnis von 1:1,2 als Apatitverbindung (Ca_{10} (PO_{4})_{6} (OH)_{2}) in Form kleiner Kristallite vor (Hellwig et al., 2009). Durch den Einbau von Fluorid in das Kristallgitter des Hydroxylapatits kommt es zur Ausbildung von Fluorapatit oder fluoridiertem Hydroxylapatit. Beide Formen zeigen eine stabilere Gitterstruktur und somit eine erhöhte Widerstandsfähigkeit gegenüber kariösen Angriffen. Für die Bildung von Fluorapatit oder Fluorhydroxyapatit sind sowohl Calcium- und Phosphat-, als auch Fluoridionen erforderlich (Reynolds et al., 2008).

Remineralisierung beschreibt demnach den Einbau von Fluorid-, Calcium- oder Phosphat- ionen in Lücken des Kristallgitters von demineralisiertem Schmelz (Cochrane et al., 2010). Die Ionen werden dabei aus einer externen Quelle (z.B. Speichel) bereitgestellt.

Die remineralisationsfördernden Eigenschaften des Speichels stammen von dessen Fähigkeit, der Zahnhartsubstanz bioverfügbare Calcium- und Phosphationen zur Verfügung zu stellen. Durch spezielle Speichelproteine, wie Statherin (Schlesinger and Hay, 1977) und prolinreiche Phosphopeptide (Oppenheim et al., 1971) wird sichergestellt, dass die Ionen für die Diffusion in demineralisierte Läsionen verfügbar bleiben und nicht ausfallen.

Grundgedanke bei der Entwicklung neuer Komposite ist es dementsprechend, mit den Materialien an Schmelz und Dentin kariesprotektiv zu wirken bzw. die Reparatur initialer Defekte zu begünstigen (biomimetische Defektreparatur). Neuere Kompositwerkstoffe stellen im Wesentlichen Weiterentwicklungen der klassischen Feinpartikelhybridkomposite und Nano hybridkomposite dar.

Der nächste konsequente Schritt im Bereich der Füllkörpertechnologie geht also in die Richtung der Entwicklung Calcium-, Phosphat- und Fluorid-freisetzender Füllkörpersysteme (Saunders, 2009).

In der Literatur wurden verschiedene ionenfreisetzende Füllkörper untersucht. Vor allem Kalziumphosphate sind in diesem Zusammenhang von besonderem Interesse, da sie physiologischerweise in Knochengerewe, Schmelz und Dentin vorkommen (LeGeros, 1988;

<table>
<thead>
<tr>
<th>Strukturformel</th>
<th>Abkürzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amorphes Calciumphosphat</td>
<td>Ca₃(PO₄)₂·3H₂Oₙ</td>
</tr>
<tr>
<td>Monocalciumphosphat</td>
<td>Ca(H₂PO₄)₂</td>
</tr>
<tr>
<td>Dicalciumphosphat (anhydriert)</td>
<td>Ca HPO₄</td>
</tr>
<tr>
<td>Dicalciumphosphatdihydrat</td>
<td>Ca HPO₄·2H₂O</td>
</tr>
<tr>
<td>Tricalciumphosphat</td>
<td>Ca₃(PO₄)₂</td>
</tr>
<tr>
<td>Octacalciumphosphat</td>
<td>Ca₈H₂(PO₄)₆·3H₂O</td>
</tr>
<tr>
<td>Hydroxyapatit</td>
<td>Ca₁₀(PO₄)₂(OH)₂</td>
</tr>
</tbody>
</table>

(Skrtic et al., 2003)

2.5.1 Amorphes Calciumphosphat (ACP)

ACP ist ein wichtiges Zwischenprodukt bei der Bildung von Hydroxylapatit (HAP). Vergleichbar mit HAP und zahlreichen Di-, Tri- und Tetracalciumphosphaten verfügt es über eine ausgezeichnete Biokompatibilität (Park et al., 1998). Daher wurde ACP als bioaktiver Zusatz verschiedenen Bis-GMA basierten Kompositen zugefügt (Antonucci, 1994; Antonucci et al., 1996; Park et al., 1998; Skritic et al., 1995).

Es hat sich gezeigt, dass diese Komposite in der Lage waren, kurzfristig Calcium- und Phosphationen in ihre Umgebung freizusetzen und nachweislich Remineralisierungsphänomene in vitro zu erzeugen (Dickens et al., 2003; Skrtic et al., 1996). Nachteilig war allerdings die rasche Umwandlung von ACP in thermodynamisch stabilere aber weniger lösliche kristalline Phasen (z.B. HAP) (Cochrane et al., 2010). Als alleiniger Füllkörpertypus ist ACP aufgrund seiner Instabilität und schnellen Umwandlung in HAP ungeeignet (Skrtic et al., 2000).

Mit verschiedenen Methoden (Stabilisierung des ACP mittels verschiedener Ionen (P₂O₇ ₄⁻ oder Mg ²⁺), Modifikation von ACP mit glasähnlichen Substanzen (Tetraethoxysilan (TEOS) oder Zirkonylchlorid (ZrOCl₂)) wurde versucht diese Umwandlung zu verzögern. Auf diese Weise konnte eine anhaltende Ionenabgabe von ACP erzielt werden.

Zwar fungieren die ACP basierten Komposite dementsprechend als zuverlässige Ionenlieferanten, sie sind allerdings mechanisch sehr schwach, da die Füllkörper keine verstärkende
Einleitung

Funktion wie zum Beispiel Glasfüller übernehmen (Skrtic et al., 2002; Skrtic et al., 2000). Diese Tatsache schränkt den Indikationsbereich dieser Materialien deutlich ein.

2.5.2 Dicalciumphosphat (DCPA)

Xu et al. untersuchten 2007 eine weitere Calciumphosphatverbindung, die als Füllstoff experimentellen Kompositen zusetzt wurde: Dicalciumphosphat. Diese Verbindung war bereits durch die Anwendung in Knochenzementen bekannt (Chow, 2000).

Da bereits aus früheren Studien (Dickens et al., 2003; Skrtic et al., 2002; Skrtic et al., 2000) die unzureichenden mechanischen Eigenschaften der Calciumphosphate bekannt waren, wurden zwei wesentliche Veränderungen der Füllstoffgröße und Füllstoffzusammensetzung vorgenommen.

Einerseits verwendeten Xu et al. DCPA-Partikel im Nanometerbereich, die aufgrund ihrer geringen Größe eine hohe spezifische Oberfläche aufweisen. Andererseits wurden neben den ionenfreisetzenden Füllstoffen zur Verstärkung der Materialien sogenannte Whisker verwendet. Diese wurden auf die Füllkörperoberflächen aufgeschmolzen (Xu et al., 2006; Xu et al., 2007a).

Die Untersuchungen zeigten, dass die Verwendung der Whisker die mechanischen Eigenschaften der Komposite deutlich verbesserte. Die Verkleinerung der Partikelgröße der DCPA-Füllkörper, also die Vergrößerung ihrer spezifischen Oberfläche, führte zu erhöhten Abgaben von Calcium- und Phosphationen (Xu et al., 2006). Im Vergleich zu älteren CaPO\(_4\)-Kompositen wurden also mit geringeren Anteilen bioaktiver Füllstoffe höhere Ionенfreisetzung erzielt. Auf diese Weise bleibt die Möglichkeit, verstärkende Füllkörper einzubringen und so auch die mechanischen Eigenschaften zu verbessern.

2.5.3 Tetracalciumphosphat (TCP)

Tetracalciumphosphat ist die alkalischste unter allen CaPO\(_4\) Verbindungen (Chow, 2000). Deshalb verspricht man sich von dieser Verbindung einen gewissen puffernden Effekt in Bezug auf schädliche Säureeinwirkungen bei der Kariesentstehung (Xu et al., 2008).

Xu et al. untersuchten 2009 ein Whisker verstärktes TCP-Komposit und stellten auch hier eine wesentliche Verbesserung der mechanischen Eigenschaften durch die verstärkenden Whisker fest. Durch die Absenkung des pH-Wertes in einen kariogenen Bereich (pH 4), konnte eine erhebliche Erhöhung der Ca- und Phosphationenfreisetzung (um das 6-fache) beo-
bachtet werden. Die mechanischen Eigenschaften waren denen früherer CaPO₄⁻ Komposite deutlich überlegen.

2.5.4 Calciumfluorid (CaF₂)
Xu et al. untersuchten 2008 Nanokomposite, die CaF₂ Nanopartikel und verstärkende Whisker enthielten.

Die Möglichkeit der Abgabe von Ca, PO₄³⁻ und F⁻ Ionen aus diesen Füllungsmaterialien soll eine Demineralisation von Füllungsrandbereichen verhindern (Burke et al., 2006; Eichmiller and Marjenhoff, 1998; Forsten, 1998; Wang et al., 2007). Die untersuchten Komposite zeigten gute mechanische Eigenschaften, die wiederum auf die verstärkenden Whisker zurückgeführt wurden. Die Abgabe von Fluoridionen war höher als die herkömmlicher Glasionomerzemente.

2.5.5 Apatit- und Flourapatithaltige Nanofüllkörper
Es wurden in der Vergangenheit bereits hydroxylapatithaltige Komposite für die Anwendung als Knochenzemente oder Knochenersatzmaterialien entwickelt (Kobayashi et al., 1997; Wang et al., 1998).

Der Haupanteil der Zahnhartsubstanzen liegt in Form von Apatitkristalliten vor. Die Nutzung von HAP als Füllkörper bietet einige vielversprechende Vorteile. Zu ihnen gehören verbesserte Oberflächeneigenschaften (Polierbarkeit) und eine erhöhte Widerstandsfähigkeit gegen abrasive Einflüsse (Domingo et al., 2003).

Zudem ist HAP biokompatibel, röntgenopak, widerstandsfähig gegenüber Feuchtigkeit und besitzt die ideale Härte eines Füllerpartikels für dentale Komposite (Willems et al., 1993a).

Hydroxyl- bzw. Fluorapatit sind thermodynamisch relativ stabile Verbindungen mit eingeschränkter Löslichkeit (Cochrane et al., 2010; Xu et al., 2008). Jedoch haben Untersuchungen mit Nanofasern von HAP und Fluorapatit gezeigt, dass die Löslichkeitseigenschaften so verändert werden können, dass eine effektive F⁻-Ionenabgabe erreicht werden kann (Kim and Kim, 2006).

Wie voran beschrieben wurden bereits zahlreiche Calciumphosphatverbindungen als mögliche Füllkörper in bioaktiven Kompositen untersucht. Zwar zeigen sie eine vielversprechende Ionenfreisetzung, allerdings lag ihre größte Schwäche in den unzureichenden mechanischen Eigenschaften (Antonucci et al., 1996). Diese Schwäche hat man durch die Entwicklung der Whisker- verstärkten Komposite behoben (Xu et al., 2002; Xu et al., 2007b). Ein bleibender
Nachteil der whiskerverstärkten Komposite ist jedoch ihre weiße Farbe und eine relativ hohe Opazität. Dies wiederum führt zu ästhetischen Einschränkungen und einem eingeschränkten Indikationsbereich (Xu et al., 2009).

Mit der Verwendung von fluorapatithaltigen Nanofüllstoffen will man Füllungswerkstoffe herstellen, die in der Zusammensetzung natürlichen Zahnschmelz ähneln und gleichzeitig zahlreiche Anforderungen an zahnärztliche Füllungsmaterialien (hohe Abrasionsfestigkeit, ausreichende Härte, Fluoridfreisetzung, Kastabilität und Biokompatibilität) erfüllen. Hersteller dieser Materialien versprechen neben den guten mechanischen Eigenschaften (hohe Druck- und Abrasionsfestigkeit), eine sehr gute Hochglanzpolierbarkeit und eine geringe Polymerisationsschrumpfung. Durch kontinuierliche Fluoridfreigabe sollen die Füllungsänder geschützt und Sekundärkaries insbesondere an den Prädilektionsstellen entgegengewirkt werden.

2.6 Einflussfaktoren der Mundhöhle

Um klinisch erfolgreiche, langlebige Restaurationswerkstoffe herzustellen, wird von Kompositen ein hohes Maß an Widerstandsfähigkeit gegenüber oralen Einflussfaktoren gefordert (Roulet and Noack, 1991; Sue and Kawazoe, 2002). Die menschliche Mundhöhle bildet dabei eine komplexe wässrige Umgebung, in der Füllungsmaterialien einer Vielzahl von „schädigenden“ Einflüssen ausgesetzt sind (Gomec et al., 2004).

2.6.1 Mechanische Belastungen

Unter klinischen Bedingungen unterscheidet man Abnutzung von Restaurationsmaterialien durch Attrition und Abrasion (Nagarajan et al., 2004).

Attrition beschreibt Verschleißvorgänge durch direkten Kontakt von Zahn und Restauration. Physiologischerweise findet man diese beim Kauen, Schlucken oder Sprechen. Bei Parafunk-
Einleitung

...tionen, wie Knirschen oder Pressen können die entstehenden Kräfte die Abnutzungserschei-
...nungen deutlich verstärken (Heintze et al., 2006; Hellwig et al., 2009).

Ein exzessiver Substanzverlust durch Attrition kann verschiedene Probleme verursachen. Ne-
...nen dem Auftreten von Hypersensitivitäten, kann es zum Verlust von okklusalen Kontaktbe-
...ziehung kommen. Ein Verlust der vertikalen Kieferrelation kann die Entstehung kranio-
...mandibulärer Dysfunktionen fördern (Kadokawa et al., 2006).

Unter Abrasion fasst man Abnutzungsvorgänge durch Fremdstoffe zusammen. Letztere sind meist in Nahrungsmitteln enthalten (Demastikation), können aber auch als Bestandteile von Zahnpasten oder in Form von Staubpartikeln (z.B bei Bergarbeitern) vorliegen (Hellwig et al., 2009).

Diese Zusammenhänge sind wichtig im Hinblick auf den erweiterten Indikationsbereich zahn-
...farbener Restaurationsmaterialien. Der Einsatz von Kompositen in kauastragenden Berei-
...chen (Klasse I- und Klasse II- Kavitäten) ist in den letzten Jahren stetig angestiegen (Yap, 2002; Yesil et al., 2008). Gründe hierfür sind in erster Linie die gesteigerten ästhetischen An-
...sprüche der Patienten (Suzuki et al., 1995; Yap, 2002).

In der Vergangenheit war eine der Hauptursachen für das Versagen von Kompositfüllungen in Klasse I- und II- Kavitäten die okklusale Abnutzung durch die hohe mechanische Beanspru-
...chung (Mazer et al., 1992). Aus diesem Grund wurden erhebliche Anstrengungen unternom-
...men, um das Verschleißverhalten der aktuellen Komposite zu verbessern.

Die Leistungsfähigkeit von Kompositmaterialien ist abhängig von Füllkörpertyp und – men-
...ge, organischer Matrix, dem Verbund von Füllkörpern zur Matrix und den Polymerisationsbe-
...dingungen (Ferracane et al., 1998; Lim et al., 2002). In verschiedenen Untersuchungen hat sich gezeigt, dass der Füllstoffgehalt, die Oberflächenbehandlung der Füllpartikel und der Polymerisationsgrad des Komposits das Verschleißverhalten beeinflussen (Condon and Ferracane, 1997b).

Zur Untersuchung des Verschleißverhaltens von Füllungsmaterialien in vitro wird eine Viel-
...zahl von Kausimulatoren genutzt (Ghazal and Kern, 2009). Dabei wird Attrition durch direk-
...ten Kontakt eines Antagonisten aus Schmelz, Edelstahl oder Keramik mit dem zu untersu-
...chenden Material simuliert (two-body wear). Will man einen abrasiven Effekt nachahmen, erfolgt die Belastung durch Zugabe eines abrasiven Mediums (z.B. Wasser-PMMA Gemisch, three-body wear) (Kadokawa et al., 2006).
Es wird angenommen, dass durch eine mechanische Belastung der Oberfläche eines Kompositwerkstoffes zuerst die weichere Matrix abradiert wird. Infolge dessen treten die Füllstoffpartikel, die nun nicht mehr von der Matrix gestützt werden hervor und werden gelöst (Kadokawa et al., 2006).

2.6.2 Thermische Belastungen

In der Mundhöhle sind sowohl Zähne als auch Restaurationen verschiedenen Temperaturschwankungen ausgesetzt (Xu et al., 2002). Diese werden durch Nahrungsaufnahme, Konsum von Getränken (Palmer et al., 1992) oder Atemvorgänge (Boehm, 1972) beeinflusst (Gale and Darvell, 1999).

Ohne thermische Belastung und ohne Mundatmung beträgt die intraorale Temperatur in etwa 35°C. Durch den Verzehr von schmelzendem Eis oder den Konsum eisgekühlter Getränke, liegt die niedrigste mögliche Temperatur, die an Zahn- bzw. Füllungsoberflächen festgestellt werden kann, annähernd um 0°C. Temperaturen, die als tolerierbar oder angenehm empfunden werden, dürften allerdings in einem geringfügig höheren Bereich liegen (Gale and Darvell, 1999).

In-vitro-Simulationen dieser natürlich stattfindenden Temperaturschwankungen werden häufig durchgeführt, da klinische Untersuchungen kosten- und zeitintensiv sind. Wie oft solche Temperaturwechsel pro Tag individuell stattfinden, ist schwer zu bestimmen, da Ernährungsgewohnheiten von Mensch zu Mensch sehr stark variieren. Es wird geschätzt, dass solche Zyklen 20-50 mal pro Tag stattfinden (Gale and Darvell, 1999).

In verschiedenen Studien konnten infolge thermischer Belastungen eine Verschlechterung der physikalischen Eigenschaften, wie Bruchfestigkeit, Biegefestigkeit oder E-Modul, gezeigt werden (Mair and Vowles, 1989; Tanaka et al., 1993).

2.6.3 Chemische Belastungen

In verschiedenen Untersuchungen (Roulet and Wälti, 1984; Yap et al., 2001a) konnte gezeigt werden, dass in der Mundhöhle Abnutzungser scheinungen an Kompositen auch ohne mechanische Beanspruchung und abrasive Medien stattfinden. Chemische Einflüsse spielen in der Mundhöhle also ebenfalls eine bedeutende Rolle bei der Entstehung von Verschleiß an Restaurationsmaterialien (Yap et al., 2001a).

Chemische Agenzie in Speichel, Lebensmitteln oder Medikamenten können intermittierend oder kontinuierlich auf Zähne und Restaurationen einwirken. Eine intermittierende Exposition findet während der Nahrungsaufnahme statt, bis die Zähne gereinigt werden. Eine permanente Einwirkung kann dann erfolgen, wenn chemische Agenzie durch Debris (Zahnstein oder food impaction) aufgenommen oder durch bakteriellen Abbau von Auflagerungen entstehen (Yap et al., 2001a).

Aufgrund ihres häufigen Vorkommens in einer Vielzahl von Speisen und Getränken, soll im Folgenden näher auf die Agenzie Säure und Alkohol eingegangen werden.
Säuren

Die Rolle von Säuren bei der Entstehung von Erosionen ist schon länger bekannt (Eccles, 1979; Mohamed-Tahir et al., 2005). Erosionen, also der irreversibele Zahnhartsubstanzverlust durch chemische Prozesse, entstehen ohne die Beteiligung von Mikroorganismen.

Die Säuren können dabei zum Beispiel aus internen Quellen stammen, durch Krankheiten mit wiederholtem Erbrechen (Bulimie, Anorexia nervosa) oder gastroösophagealem Reflux (Sodbrennen) (Meurman and ten Cate, 1996). Aber auch die Aufnahme aus Nahrung, Getränken oder Medikamenten kommt als externe Ursprungsquelle in Frage (Mohamed-Tahir et al., 2005; Zero, 1996).

Genau wie Zahnoberflächen unterliegen auch Füllungsmaterialien erosiven Einflüssen, die bei niedrigen pH Werten eine Alteration ihrer Oberfläche verursachen können (Mohamed-Tahir et al., 2005).

In zahlreichen Studien zur Untersuchung von chemischem Verschleiß verschiedener Kompositmaterialien war infolge der Einwirkung von sauren Lösungen eine geringere Mikrohärte der untersuchten Materialien zu verzeichnen (Gomec et al., 2004; Mohamed-Tahir et al., 2005). Das Ausmaß der Schädigung unter Säureeinfluss war dabei materialabhängig.

Die Abnahme der Mikrohärte hat einen nachteiligen Effekt auf die Verschleißbeständigkeit und somit die Langlebigkeit der Restauration in der Mundhöhle (Yap et al., 2000).
Einleitung

Alkohol

Auch Alkohol ist Bestandteil unserer täglichen Ernährung. Neben alkoholhaltigen Getränken, ist er in Gemüse, Obst, Süßigkeiten, Medikamenten (z.B. Hustensaft) und Mundspülungen enthalten (Yap et al., 2004).

Yap et al. berichteten 2001 in einer Studie zur chemischen Degradation von Kompositen über einen aufweichenden Effekt von Alkohol auf verschiedene Komposite. Dies stimmt überein mit den Ergebnissen anderer Studien (Aguiar et al., 2005; Cavalcante et al., 2011; Yap et al., 2004; Yap et al., 2001a).

Inwieweit ein Komposit durch die chemischen Bedingungen in der Mundhöhle angegriffen wird, ist abhängig von der Chemie und Struktur seines Polymernetzwerks (Ferracane, 2006). Wichtige chemische Eigenschaften, die in diesem Zusammenhang eine Rolle spielen, sind die Hydrophilität des Polymers, die Art der chemischen Bindungen innerhalb des Polymers und der Unterschied in den Löslichkeitsparametern zwischen Polymer und Lösungsmittel (Bagheri et al., 2007; Ferracane, 2006; Schneider et al., 2008). Der Löslichkeitsparameter eines Stoffes beschreibt dabei die Fähigkeit eines Moleküls, einen Stoff zu penetrieren und zu lösen (Ferracane, 2006).

Das Ausmaß der Aufweichung nach Immersion in Alkohol variiert von Material zu Material (Cavalcante et al., 2011). Sind die Anziehungskräfte zwischen Molekülen des Lösungsmittels und den Bindungen des Komposites stärker als die Anziehungskräfte innerhalb der Polymerketten, dringt das Lösungsmittel in die Matrix ein und zerstört die Bindungen (Ferracane, 2006).

Der Lösungseffekt ist dann am größten, wenn eine minimale Diskrepanz der Löslichkeitsparameter von Lösungsmittel und Polymer besteht (McKinney and Wu, 1985; Wu and McKinney, 1982). Ethanol stellt eines der aggressivsten Lösungsmittel für dentale Kompositnetzwerke dar (Schneider et al., 2008; Wu and McKinney, 1982), da sein Löslichkeitsparameter weitgehend dem von Dimethacrylaten entspricht (Kao, 1989).

Ethanol verursacht eine Aufweichung der Kompositoberfläche durch Abbau des Polymergerüstes in unreagierte Monomere, Oligomere und lineare Polymere. Er öffnet die Polymerketten und macht Komposite so anfällig für weiteren Verschleiß (Aguiar et al., 2005).

Ethanol ist also das Mittel der Wahl, wenn es darum geht beschleunigte Alterung von Komposites zu simulieren (McKinney and Wu, 1985; Wu and McKinney, 1982).
2.7 Ziel der Arbeit / Fragestellung

Das Ziel der vorliegenden Untersuchung war daher zu prüfen, in wieweit sich eine künstliche Alterung (Thermowechselbelastung und mechanische Belastung) bzw. erosive Einflüsse auf die Struktur und Oberflächeneigenschaften von experimentellen FAP-haltigen Füllungswerkstoffen im Vergleich zu handelsüblichen Kompositen auswirken.
3 Material und Methode

3.1 Materialien
Tabelle 4 zeigt die Liste der geprüften Werkstoffe. Alle untersuchten Materialien wurden von der Firma S&C Polymer (Elmshorn) hergestellt.

Tabelle 4 Verwendete Materialien

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Material</th>
<th>Lot</th>
<th>Typ</th>
<th>NFAP* Anteil in Gew. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>LC Microfill Hybrid</td>
<td>LOT 5507906</td>
<td>Microhybridkomposit, Ref.</td>
<td>Ø</td>
</tr>
<tr>
<td>B</td>
<td>LC Ceramic P</td>
<td>LOT 212482</td>
<td>Microhybridkomposit, Ref.</td>
<td>Ø</td>
</tr>
<tr>
<td>C</td>
<td>LC APA Comp 12%</td>
<td>LOT 5501611</td>
<td>Nanohybridkomposit</td>
<td>12%</td>
</tr>
<tr>
<td>D</td>
<td>LC APA Comp 24%</td>
<td>LOT 5501609</td>
<td>Nanohybridkomposit</td>
<td>24%</td>
</tr>
<tr>
<td>E</td>
<td>LC APA Ceram A2</td>
<td>LOT 5506874</td>
<td>Nanohybridkomposit</td>
<td>8%</td>
</tr>
<tr>
<td>F</td>
<td>LC APA Fill A2</td>
<td>LOT 5509988</td>
<td>Nanohybridkomposit</td>
<td>4%</td>
</tr>
<tr>
<td>G</td>
<td>LC Seal F</td>
<td>LOT 5505805</td>
<td>F-haltiges Flow, Ref.</td>
<td>Ø</td>
</tr>
<tr>
<td>H</td>
<td>LC APA Seal</td>
<td>LOT 5506872</td>
<td>NFAP haltiges Flow</td>
<td>27%</td>
</tr>
<tr>
<td>I</td>
<td>LC APA Seal ½</td>
<td>LOT 5510031</td>
<td>NFAP haltiges Flow</td>
<td>18%</td>
</tr>
<tr>
<td>J</td>
<td>LC APA Flow A3</td>
<td>LOT 5510010</td>
<td>NFAP haltiges Flow</td>
<td>14%</td>
</tr>
<tr>
<td>K</td>
<td>LC APA Hi-Flow 12%</td>
<td>LOT 5501641</td>
<td>NFAP haltiges Flow</td>
<td>12%</td>
</tr>
</tbody>
</table>

* Nanofluorapatit

Es wurden fluorapatithaltige Komposite (Gruppe C, D, E, F) und Flowkomposite (Gruppe H, I, J, K) mit unterschiedlich hohem Gehalt an Nanofluorapatit untersucht.

Als Referenzen dienten zweiapatitfreie Microhybridkomposite (Gruppe A, B) und ein apatitfreier Einkomponenten-Fissurenversiegelung (Gruppe G).

3.2 Probenherstellung

3.2.1 Probenherstellung für die TEM-Analyse
Aus allen Prüfmaterialien wurden 10×5×5 mm große Probenkörper hergestellt. Die Herstellung der Prüfkörper erfolgte in einer speziellen Hohlform (TEM-Einbettungsschablone Agar Scientific, England s. Abb. 8). Die Komposite wurde in Schichtdicken bis maximal 2 mm in die Vertiefungen appliziert und die Oberseite der Form mit einer durchsichtigen Matrise (Kerr Hawe, Schweiz) abgedeckt.

Jede Schicht wurde mit einer LED-Polymerisationslampe (Elipar Free Light 2, 3M ESPE, Seefeld) im Standardmodus für 40 s lichtgehärtet (Lichtintensität 1200 mW/cm²). Zur Appli-

Die Flowkomposite wurden entsprechend der Gebrauchsanweisungsempfehlung mit sogenannten Needle Tips (S&C-Polymer, Elmshorn), die direkt auf der Applikationsspritze befestigt wurden, in die Form eingebracht. Die Materialien wurden in 1 mm dicken Schichten in die Form appliziert und jedes Segment für 40 s lichtgehärtet.

Die Oberflächen der Probenkörper wurden mittels SiC Papier (SiC-Grinding paper, Struers, Willich) aufsteigender Körnung bis 4000 grit unter ständiger Wasserkühlung an einer Poliermaschine (Gripo®, Mekton Instruments, Türkei) poliert.

3.2.2 Probenherstellung für die REM-Analyse
Die rasterelektronenmikroskopische Untersuchung von Proben erfolgte im Rahmen dieser Studie, um einerseits den Einfluß der mechanischen Belastung auf bereits thermisch vorbelastete Oberflächen zu untersuchen und andererseits, um eine mögliche Alteration der Oberfläche durch Säuren zu identifizieren.

Als Referenz wurden in beiden Versuchsreihen dafür die unbehandelten polierten Proben herangezogen.

REM–Analyse vor und nach thermomechanischer Belastung
Nach Abschluss der TEM-Untersuchungen wurden die für die TEM-Analyse hergestellten Proben (s. unter Punkt 3.2.1) einer mechanischen Belastung (siehe Punkt 3.3.2) im Kausimu-
labor unterzogen. Als Referenz dienten die vorgenannten Proben, welche im Rahmen der Untersuchung des Säureeinflusses hergestellt wurden.

REM-Analyse vor und nach erosiver Belastung

Aus jedem Prüfmaterial wurden für eine weitere Versuchsreihe drei runde Probekörper hergestellt. Die Proben wiesen einen Durchmesser von 5 mm und eine Dicke von 2 mm auf. Die Herstellung der Kompositproben erfolgte mit einer speziellen Form mit zylindrischen Mulden (Dentsply Detrey, Konstanz), wie in Abb. 9 dargestellt. Als Unterlage für diese Formen diente die glatte Seite einer Glasplatte.

Abb. 9: Form zur Prüfkörperherstellung

Die Applikation der Komposite in die Formen erfolgte durch Heidemann Spatel (CVIPC, Hu Friedy / PFI A66, Hu Friedy, Rotterdam) und Planstopfer (PFIUS, DE125R, Aesculap, Tuttlingen). Da die Formen nur eine Dicke von 2 mm aufwiesen, konnten die Materialien in einer Schicht eingebracht werden. Auch hier wurde jeder Prüfkörper wiederum durch eine LED-Polymerisationslampe (Elipar Free Light 2, 3M ESPE, Seefeld) im Standardmodus für 40 s einseitig polymerisiert (Lichtintensität 1200 mW/cm²). Die Flowkomposite wurden mit Needle Tips (S&C-Polymer, Elmhorn) in 1 mm dicken Schichten in die Form eingebracht und jedes Segment für 40 s lichtgehärtet.

Die Form wurde nach dem Einbringen der Werkstoffe vor der Polymerisation mit einer durchsichtigen Matrize (Kerr Hawe, Schweiz) abgedeckt.

Die Oberflächenpolitur der Testkörper erfolgte mit SiC-Papier bis 4000 grit unter ständiger Wasserkühlung.

3.2.3 Proben für die Mikrohärtemessung

Zur Messung der Mikrohärte wurden von jedem Prüfmaterial ebenfalls drei runde Probenkörper (Dicke: 2 mm, Ø 5 mm) mittels einer Schablone (Abb. 9) mit zylindrischen Mulden (Dentsply Detray, Konstanz), hergestellt.
Die Applikation der Prüfwerkstoffe, die Polymerisation und die Politur der Oberflächen stimmen exakt überein mit der Probenherstellung zur REM-Untersuchung erosiver Einflußfaktoren (s.o).

Nach Herstellung der runden Proben, wurden je drei Prüfkörper einer Materialgruppe in einem Block aus Polymethylmethacrylat (Paladur, Heraeus Kulzer) eingebettet (Abb. 10) und planparallel geschliffen.

![Abb. 10: 3 Prüfkörper zur Mikrohärtemessung eingebettet in PMMA](image)

3.3 Künstliche Alterung

3.3.1 Thermische Wechselbelastung

Um eine künstliche Alterung der Materialien zu simulieren, wurden die Proben zunächst einer thermischen Wechselbelastung (TWB) unterzogen (Thermocycler, Willytec®, München).

Dabei wurden die Prüfkörper für je 30 s in einem 5°C und anschließend einem 55°C Wasserbad eingetaucht. Die Zyklenanzahl wurde auf 2500 festgesetzt. Der Transportweg zwischen den unterschiedlich temperierten Bädern nahm 10 s in Anspruch.

3.3.2 Mechanische Belastung

Im Anschluss an die thermische Wechselbelastung wurden die Probenkörper einer mechanischen Belastung im Kausimulator (Willytec®, Version 4.1.1, München) unterzogen. Die Belastung erfolgte mit einer Kraft von 50 N bei einer Zyklenanzahl von 100.000 und wurde mit kreisrunden Keramikantagonisten (Empress2, Ivoclar Vivadent, Schaan/ Liechtenstein) durchgeführt. Es wurde eine Zyklensequenz von 1 Hz gewählt bei einer Hubhöhe von 3 mm
Material und Methode

und einer Absenkgeschwindigkeit von 60 mm/s. Der verwendete Keramikantagonist ist in Abb. 11 dargestellt.

Zur Herstellung der Antagonisten wurden Gusskanäle aus Empress 2 an einem Ende mittels Keramikpolieren (EVE Diapol, Ernst Vetter GmbH, Pfortzheim) abgerundet und der übrige Teil für 120 s mit Flusssäure (IPS Ceramic Etching Gel, Ivoclar Vivadent, Schaan/ Liechtenstein) benetzt. Im Anschluss wurde ein Silanisierungsmittel aufgetragen (Monobond S, Ivoclar Vivadent, Schaan/ Liechtenstein) und die Keramikstäbe mit Dualzement (Ivoclar Vivadent, Schaan/ Liechtenstein) in den Halterungen des Kausimulators befestigt.

3.3.3 Erosive Belastung

Applikation von Phosphorsäure zur REM-Analyse

Zur Untersuchung des Einflusses von Säure auf die experimentellen Werkstoffe wurden die polierten Oberflächen der Proben aller Prüfmaterialien für 15 s und 30 s mit 37%iger Phosphorsäure (Ätzgel, Kerr, Schweiz) benetzt und anschließend für 30 s mit Wasser abgesprüht und getrocknet.

Eine Analyse der Oberflächenbeschaffenheit erfolgte mittels rasterelektronenmikroskopischer Untersuchungen an den polierten, unbehandelten Oberflächen und jeweils nach Säureapplikation.

Applikation von Phosphorsäure zur Mikrohärtemessung

Zur Untersuchung des Einflusses der Säureeinwirkung auf die Mikrohärte der Materialien, wurden alle zu untersuchenden Materialgruppen mit Phosphorsäure behandelt. Die Säure (37%ige H$_3$PO$_4$) wurde auch hier in Form von Ätzgel (Kerr, Schweiz) für 30 s auf die Oberflächen aufgetragen und anschließend für 30 s mit Wasser abgesprührt.
Die Bestimmung der Vickers-Härte erfolgte an den unbehandelten, polierten Oberflächen, sowie nach 30 s Säurewirkung.

Einwirkungen von Ethanol zur Mikrohärtemessung
Zur Untersuchung des Einflusses von Alkohol auf die Gefügestruktur der Materialien wurden die zur Bestimmung der Mikrohärte hergestellten Probenkörper für 24 h in 30%igem Ethanol gelagert. Die Vickers-Härte wurde vor und nach Ethanol einwirkung gemessen.

3.4 Durchführung der Prüfungen

3.4.1 TEM-Analyse

Es wurden Übersichtsaufnahmen im Größenbereich von 4800-49000fach angefertigt, und besonders hervorzuhebende Strukturen bei 68.000- bzw. 98000facher Vergrößerung dargestellt.

TEM-Untersuchung vor und nach thermischer Wechselbelastung
Nach Herstellung der Prüfkörper erfolgte eine erste Untersuchung der Materialien im TEM, um Hinweise auf die Gefügestruktur sowie Art und Verteilung der verwendeten Füllstoffe zu erhalten.

Insbesondere bei den fluorapatithaltigen Materialien, sollte untersucht werden, ob die Füllstoffe gleichmäßig in der organischen Matrix verteilt sind bzw. ob sie in Form von Nanomen oder Clustern vorliegen.
Eine zweite TEM-Untersuchung erfolgte nach thermischer Wechselbelastung aller Testmaterialien (2500 Zyklen, 5°-55°C), um gegebenenfalls Effekte auf die Gefügestruktur oder Desintegrationen der Füllstoffe beurteilen zu können.

3.4.2 REM-Analyse
Die Untersuchung der Proben im REM erfolgte an den Originalproben. Sie wurden mit einem leitfähigem Kleber (Leit C nach Göcke, Neubauer Chemikalien, Münster) auf Aluminiumenteller (Stifprobenteller Artikel G, Plano, W. Plannet GmbH, Balzers) aufgeklebt. Um die rasterelektronenmikroskopische Untersuchung zu ermöglichen, wurden die aufgeklebten Prüfkörper mit einer dünnen Platinschicht besputtert (Polaron, Quorum SC7640 Hi Resolution Sputter Coater). Es wurden Bilder mit 5000- und 10000facher Vergrößerung angefertigt.

Untersuchung nach künstlicher Alterung
Um Einflüsse der künstlichen Alterung (TWB und mechanische Belastung im Kausimulator) auf das Strukturgefüge der Materialien festzustellen, erfolgte im Anschluss an die Belastung eine rasterelektronenmikroskopische Untersuchung der Oberflächen (Quanta 200, FEI PHILLIPPS). Dabei wurden repräsentative Areale der belasteten Bereiche ausgewählt.

Untersuchung nach erosiver Belastung
Um ein mögliches Herauslösen von Füllkörpern, insbesondere der fluorapatithaltigen Nanofüllstoffe, aus der organischen Matrix unter Säureeinfluss zu untersuchen, wurden die Oberflächen der zu diesem Zweck hergestellten Proben im Anschluss an die Applikation von Phosphorsäure für je 15 und 30 s im REM dargestellt.

Auswertung
Um die Effekte der künstlichen Alterung (thermomechanische Wechselbelastung) und erosiven Einflüsse auf die Oberflächen beurteilen zu können, wurde eine REM-Untersuchung auch an den polierten, aber ansonsten unbelasteten Oberflächen durchgeführt.

Diese wurde an Prüfkörpern der für die Erosionsversuche hergestellten Proben durchgeführt und dienten gleichzeitig als Referenzen für die thermomechanisch belasteten Proben.

3.4.3 Mikrohärtemessung
Nach Wegnahme der Prüfkraft werden an dem bleibenden pyramidenförmigen Eindruck, der in der Aufsicht quadratisch ist, die Längen der beiden Diagonalen d₁ und d₂ gemessen, ihr Mittelwert gebildet und die Vickershärte computergestützt ermittelt.

Die Härte nach Vickers HV ist als Quotient aus der aufgebrachten Prüfkraft F und der Oberfläche A des bleibenden Eindrucks definiert.

\[HV = K \times \frac{F}{A} \]

\[HV = 0,102 \times \frac{F}{A} \]
\[A = \frac{d^2}{\cos (22^\circ)} = \frac{d^2}{1,8544} \]
\[HV = \left(\frac{0,102 \times F \times 1,8544}{d^2} \right) \]
\[= \left(\frac{0,1891 \times F}{d^2} \right) \]
\[HV = \text{Härte Vickers} \]

F = Prüfkraft in Newton

\[d = \text{arithmetischer Mittelwert der Diagonalen} \quad d = \frac{(d_1+d_2)}{2} \]

A = Eindruckoberfläche

Mikrohärtemessungen nach Phosphorsäureeinwirkung

Eine Härteprüfung wurde an den unbehandelten, polierten Oberflächen sowie nach Applikation von Phosphorsäure für 30s durchgeführt.

Mikrohärtemessungen nach EthanolEinwirkung

Eine weitere Härteprüfung erfolgte nach 24stündiger Lagerung der Prüfkörper in 30%igem Ethanol.

3.5 Statistische Analyse

Für die Mikrohärtemessungen wurden Mittelwerte und Standardabweichungen berechnet. Der Vergleich der verschiedenen Erosionslösungen erfolgte mit Hilfe parametrischer Prüfverfahren (Tukey-Test bei gegebener Varianzhomogenität, Games-Howell Test bei fehlender Varianzhomogenität), da in allen Gruppen Normalverteilung vorlag.

Die statischen Tests wurden auf einem Signifikanzniveau von 5 % durchgeführt.
3.6 Überblick der Prüfgruppen

3.6.1 Exploration der Gefügestruktur im REM/TEM

TEM Proben \[\rightarrow\] TEM-Untersuchung nach Politur

Thermische Wechselbelastung (TWB) \[\rightarrow\] TEM-Untersuchung nach TWB

Mechanische Belastung \[\rightarrow\] REM-Untersuchung der Oberflächen

3.6.2 Prüfung des Einflusses von Phosphorsäure

Runde Prüfkörper für REM-Untersuchungen

Politur \[\rightarrow\] 15s H₃PO₄ \[\rightarrow\] 30s H₃PO₄ \[\rightarrow\] REM-Untersuchung der Oberflächen
3.6.3 Mikrohärtemessung

Runde Prüfkörper für Mikrohärtemessungen

- Politur
- 30s H_3PO_4
- 24h Ethanol

Bestimmung der Vickers- Härte
4 Ergebnisse

4.1 Einfluß der thermischen Wechselbelastung (TWB)

4.1.1 LC Microfill Hybrid (Referenz)

TEM und REM Analyse vor Belastung

Abb. 12: LC Microfill Hybrid, TEM (A-D) und REM Aufnahmen (E, F) vor Belastung, PP: Präpolymerisat, MF:Mikrofüllstoff, GF: Glasfüller; schwarze Pfeile: Mikrofüllstoffagglomerate. Vergrößerung: 440x (A), 13000x (B), 30000x (C), 68000x (D), 5000x (E), 10000x (F)
Abb. 12 zeigt eine Übersicht der Struktur von LC Microfill Hybrid. Dieses Material diente als Referenz zu den untersuchten fluorapatithaltigen Kompositen. In der Übersichtsvergrößerung (Abb. 12 A) zeigt sich ein dicht gefülltes Material, das sowohl splitterförmige als auch rundliche Präpolymerisate (PP) im Aufbau erkennen lässt. Das splitterförmige Vorpolymerisat zentral ist dabei mit einer Größe von über 100 µm relativ groß. Innerhalb der Matrix ist ein ca. 4 µm großes Agglomerat aus Mikrofüllstoffen (MF) sichtbar (Abb. 12 B).

TEM nach thermischer Belastung

Abb. 13: LC Microfill Hybrid, TEM Aufnahmen nach thermischer Belastung, GF: Glasfüllstoff, MF: Mikrofüllstoff, weiße Pfeile: Mikrofüllstoffagglomerate. Vergrößerung: 13000x (A), 49000x (B)

4.1.2 LC Ceramic P (Referenz)

TEM und REM-Analyse vor Belastung

Abb. 14: LC Ceramic P, TEM (A-D) und REM Aufnahmen (E, F) vor Belastung. GF: Glasfüllstoff, MF: Mikrofüllstoff; Bild B: weiße Umrandung: Mikrofüllstoffagglomerat, Bild C: schwarzer Pfeil: splitterförmiger Glaspartikel, Bild D: schwarzer Pfeil: solitärer MF, weiße Pfeile: Agglomerate kleinerer Mikrofüller. Vergrößerung: 4800x (A), 13000x (B), 30000x (C), 68000x (D), 5000x (E), 10000x (F)
Abb. 14 zeigt die Struktur des Microhybridkomposites LC Ceramic P, das ebenfalls als Referenzmaterial für die untersuchten Komposite dient und daher keine Nanofluorapatitfüllstoffe (FAP) enthält. Es zeigt sich eine dicht gefüllte Materialstruktur mit Bariumsilikatgläsern unterschiedlicher Größe und Form. Größere Partikel liegen in einem Bereich von bis zu ca. 2 μm, kleinere splitterförmige Gläser zeigen eine Größe von in etwa 1 μm (Abb. 14 A).

In Bild B werden auch einzelne kleinere Glaspartikel in einem Größenbereich von 0,3-0,5 μm erkennbar. Zwischen den unterschiedlich großen Glasfüllkörpern (GF) sind Mikrofüllstoffe (MF) in Form feinstteiliger Siliziumdioxidpartikel in die organische Matrix eingelassen. Am linken unteren Bildrand (Abb. 14 B) ist ein über 2 μm großes Agglomerat aus Mikrofüllstoffen erkennbar.

TEM nach thermischer Belastung

Abb. 15: LC Ceramic P, TEM Aufnahmen nach thermischer Belastung, GF: Glasfüllstoff, Bild B: schwarzer Pfeil: solitärer Mikrofüller, weißer Pfeil: Mikrofüllstoffagglomerat. Vergrößerung: 13000x (A), 49000x (B)
Abb. 15 zeigt das Referenzmaterial LC Ceramic P nach thermischer Wechselbelastung. Es sind keine Effekte auf die Struktur des Materials erkennbar. Es zeigen sich wiederum die Silikatgläser unterschiedlicher Form und Größe (Abb. 15 A), sowie die dazwischen liegenden solitären (Abb. 15 B, schwarzer Pfeil), aber auch clusterartig zusammengefügten SiO₂-Partikel (Abb. 15 B, weißer Pfeil).
4.1.3 LC APA Comp 12%

TEM und REM-Analyse vor Belastung

Abb. 16: LC APA Comp 12%, TEM (A-D) und REM Aufnahmen (E, F) vor Belastung, GF: Glasfüllstoff, FAP: Fluorapatitpartikel, Bild A: weiße Kreise: Fluorapatitcluster, Bild B: schwarzer Pfeil: FAP-Primärpartikel, Bild C: schwarzer Pfeil: quer angeschnittener FAP-Partikel, weißer Pfeil: wabenartig, poröse Struktur von FAP. Vergrößerung: 13000x (A), 18500x (B), 68000x (C), 98000x (D), 5000x (E), 10000x (F)

Abb. 16 C zeigt ein solches Agglomerat aus Fluorapatitpartikeln, umgeben von einigen Mikrofüllern und Silikatgläsern (GF). Die Fluorapatitfüllstoffe (FAP) liegen in kristalliner oder amorpher Form vor und sind in Längs- oder Querrichtung (schwarzer Pfeil) angeschnitten. Die Fluorapatitkristallite sind etwa 150-200 nm lang und ca. 50 nm breit. Typisch ist dabei die wabenartige, poröse Struktur der Apatite (weißer Pfeil).

In Bild D erkennt man zwei solitäre ungeclusterete Fluorapatitkristallite (FAP) zwischen größeren Glasfüllkörpern (GF) und Mikrofüllerpartikeln (Abb. 16 D).

Infolge der Politur zeigen sich wieder einzelne Poren (Abb. 16 E und F) als Artefakte.

TEM nach thermischer Belastung

![TEM Aufnahmen nach thermischer Belastung](image_url)
4.1.4 LC APA Comp 24%

TEM und REM-Analyse vor Belastung

Abb. 18: LC APA Comp 24%, TEM (A-D) und REM Aufnahmen (E, F) vor Belastung, GF: Glassfüllstoff, FAP: Fluorapatitpartikel, Bild A: schwarze Kreise: Fluorapatitcluster, Bild B: quer angenschnittener FAP-Patikel, Bild C: schwarze Pfeile: Fluorapatitcluster. Vergrößerung: 13000x (A), 49000x (B), 68000x (C), 98000x (D), 5000x (E), 10000x (F);
Das Komposit LC APA Comp 24 % enthält im Vergleich zu LC APA Comp 12 % doppelt soviel Nanofluorapatit. Dementsprechend zeigt sich die inselartige Konfiguration dieser Füllstoffe ausgeprägter (vgl. Abb. 18 A, schwarze Kreise). Es sind weniger größere Bariumsilikatgläser enthalten, während die Mikro- und Nanofüllstoffe dominieren.

Die Fluorapatitpartikel (FAP) weisen ebenso wie bei LC APA Comp 12 % eine unterschiedliche Kristallinität auf und sind längs und quer angeschnitten (Abb. 18 B, schwarzer Pfeil). Die Kristallite sind in etwa 150-200 nm lang und 50 nm breit.

Die Fluorapatitfüllstoffe (FAP) liegen in diesem Material also in Form von Aggregaten vor, in Abb. 18 C zusammengelagert mit dicht gepackten Siliziumdioxdpartikeln (schwarze Pfeile). Sie können allerdings auch solitär als Primärteilchen in die Matrix eingebettet sein, was bei Abb. 18 D erkennbar ist.

Nach Politur sind glatte homogene Flächen mit wenigen Poren sichtbar (Abb. 18 E und F).

TEM nach thermischer Belastung

Nach thermischer Belastung zeigt sich die sowohl die solitäre (Abb. 19 A, weißer Pfeil), als auch clusterartige Verteilung (weiße Umrandung) der Nanofüllstoffe unverändert.

In Abb. 19 B ist ein Agglomerat aus Fluorapatitkristalliten (FAP) und Mikrofüllstoffen (schwarze Pfeile) sichtbar. Auch hier ist wiederum die netzartige, poröse Struktur der Apatitpartikel erkennbar.
4.1.5 LC APA Ceram A2

TEM und REM-Analyse vor Belastung

Abb. 20: LC APA Ceram A2, TEM (A-D) und REM Aufnahmen (E, F) vor Belastung, PP: Präpolymerisat, MF: Mikrofüllstoff, Bild A: schwarze Pfeile: Präpolymerisat, Bild B: schwarze Pfeile: Mikrofüllstoffagglomerat, Bild C und D: schwarze Pfeile: Fluorapatitcluster, FAP: Fluorapatitpartikel. Vergrößerung: 1900x (A), 13000x (B), 49000x (C), 68000x (D), 5000x (E), 10000x (F)

Auf den REM Aufnahmen (Abb. 20 E und F) sind entsprechend der TEM Aufnahmen die Präpolymerisate erkennbar. Wiederum zeigen sich infolge der Politurmaßnahmen einzelne Porenbildungen.

TEM nach thermischer Belastung

![TEM Aufnahmen nach thermischer Belastung](image)

Abb. 21 B ist geprägt von Bariumsilikatfüllkörpern (GF) unterschiedlicher Größe und Morphologie sowie von Mikrofülleragglomeraten (MF).
4.1.6 LC APA Fill A2

TEM und REM-Analyse vor Belastung

Abb. 22: LC APA Fill A2, TEM (A-D) und REM Aufnahmen (E, F) vor Belastung, GF: Glasfüllstoff, MF: Mikrofüllstoff, FAP: Fluorapatitpartikel, Bild B: schwarze Pfeile: Mikrofüllstoffagglomerate, Bild C und D: schwarze Pfeile: FAP-Primärpartikel. Vergrößerung: 1400x (A), 13000x (B), 30000x (C), 68000x (D), 5000x (E), 10000x (F)
Ähnlich wie das vorangegangene Material LC APA Ceram A2 gleicht auch hier die Grundstruktur eher dem Referenzmaterial LC Microfill Hybrid. Ebenfalls hier vorzufinden sind hochmikrogefüllte Präpolymerisate (PP) in einer Größenordnung von 30-40 μm aber auch in kleinerer Form zwischen 10-20 μm (Abb. 22 A).

Das Erscheinungsbild wird neben den Bariumsilikatglasfüllern von Mikrofülleraglomeraten (MF) bestimmt (Abb. 22 B, schwarze Pfeile).

Trotz der Dominanz der Mikrofüllstoffe zeigen sich einzelne Fluorapatitpartikel (FAP) (Abb. 22 C und D, schwarze Pfeile). Bei höherer Vergrößerung wird in der Aufnahme D die warbenartige Struktur des Nanofluorapatits sichtbar.

In Korrelation mit den TEM Aufnahmen sind auch auf den REM Bildern die in LC APA Fill A2 enthaltenen Präpolymerisate (PP) sichtbar (Abb. 22 E und F).

TEM nach thermischer Belastung

4.1.7 LC Seal F (Referenz)

TEM und REM-Analyse vor Belastung

Abb. 24: LC Seal F, TEM (A-D) und REM Aufnahmen (E, F) vor Belastung, MF: Mikrofüllstoff, GF: Glasfüllstoff, schwarze Pfeile: Mikrofüllstoffagglomerate. Vergrößerung: 4800x (A), 13000x (B), 49000x (C), 98000x (D), 5000x (E), 10000x (F)
LC Seal F dient als Referenzmaterial für die untersuchten Flow-Komposite und enthält daher kein Nanofluorapatit. Das Material weist eine für Flowkomposite typischerweise weniger dicht gefüllte Struktur auf (Abb. 24 A).

Das Erscheinungsbild wird haupsächlich geprägt von einer Kombination aus Bariumgläsern und Mikrofüllstoffen (Abb. 24 C).

Nach der Oberflächenpolitur zeigen sich einzelne Poren (Abb. 24 E und F).

TEM nach thermischer Belastung

4.1.8 LC APA Seal

TEM und REM-Analyse vor Belastung

Abb. 26: LC APA Seal, TEM (A-D) und REM Aufnahmen (E, F) vor Belastung, weiße Kreise und Pfeile: Fluorapatitcluster, schwarze Pfeile: Mikrofüllstoffagglomerate. Vergrößerung: 13000x (A), 30000x (B), 49000x (C), 98000x (D), 5000x (E), 10000x (F)
Ergebnisse

Die REM Aufnahmen zeigen Spuren der Politur, aber eine homogene Oberfläche. Es sind hier rundliche, hellere Areale von ca.1-2 μm Größe erkennbar (Abb. 26 E und F, Pfeile).

TEM nach thermischer Belastung

![Abb. 27: LC APA Seal, TEM Aufnahmen nach thermischer Belastung, FAP: Fluorapatitpartikel. Vergrößerung: 13000x (A), 49000 x (B)](image)

Die thermische Belastung zeigt keine Einwirkungen auf das Materialgefüge (vgl. Abb. 27). Die Fluorapatitpartikel liegen fast ausschließlich in geclusterter Form vor und dominieren das Erscheinungsbild neben SiO₂-Aggregaten (Abb. 27 A). Abb. 27 B zeigt ein etwas über 1 μm großes Agglomerat aus Fluorapatitpartikeln (FAP) und einigen Mikrofüllstoffen.
4.1.9 LC APA Seal ½

TEM und REM-Analyse vor Belastung

Abb. 28: LC APA Seal ½, TEM (A-D) und REM Aufnahmen (E, F) vor Belastung. GF: Glasfüllstoff, FAP: Fluorapatitpartikel, schwarze Umrandung: Fluorapatitcluster, schwarze Pfeile: FAP-Primärpartikel. Vergrößerung: 13000x (A), 30000x (B), 68000x (C), 98000x (D), 5000x (E), 10000x (F)
Bei LC APA Seal ½ wurde der Apatitgehalt im Vergleich zu LC APA Seal halbiert (vgl. Abb. 28). Es sind Silikatgläser enthalten, deren Größenordnung zwischen ca. 0,8 und 2 µm liegen (Abb. 28 A).

Abb. 28 B demonstriert, dass in diesem Fall die Fluorapatitkristallite neben der clusterförmigen Anordnung (schwarze Umrandung) auch einzeln als Primärpartikel in die organische Matrix integriert sind (schwarzer Pfeil).

Die Abb. 28 C und D zeigen die Verteilung der Fluorapatite (FAP) in der Matrix neben Glasfüllkörpern (GF) in Form kleiner Zusammenschlüsse sowie als solitäre Partikel (FAP). Erkennbar ist wiederum die poröse, netzartige Struktur der Fluorapatitkristallite. Die Fluorapatitfüllstoffe liegen in einem Größenbereich von 150-200 nm Länge und ca. 80 nm Breite.

Durch Politurmaßnahmen lassen sich auf der Oberfläche Riefen und vereinzelte Porenbildungen erkennen (Abb. 28 E und F).

TEM nach thermischer Belastung

Das Materialgefüge wird auch nach Thermocycling unverändert geprägt von Fluorapatitfüllstoffen angeordnet in Form von locker zusammengeschlossenen Inseln aber auch solitär in die Matrix integrierten Partikeln (Abb. 29 A). Neben einigen Bariumsilikatfüllstoffen (GF) liegt das Fluorapatit (FAP) in einer überwiegend kristallinen Struktur vor (Abb. 29 B).
4.1.10 LC APA Flow A3

TEM und REM-Analyse vor Belastung

Abb. 30: LC APA Flow A3, TEM (A-D) und REM Aufnahmen (E, F) vor Belastung. GF: Glasfüllstoff, FAP: Fluorapatitpartikel, Bild B: schwarze Umrandung: Fluorapatitcluster, schwarzer Pfeil: FAP-Primärpartikel, Bild C: schwarze Pfeile: Mikrofüllstoffagglomerat. Vergrößerung: 13000x (A), 49000x (B), 68000x (C), 98000x (D), 5000x (E), 10000x (F)
Die Struktur von LC APA Flow A3 zeigt einen Aufbau aus verschiedenen großen runden und splitterförmigen Silikatgläsern, Clustern aus Nanofluorapatiten und Mikrofüllstoffagglomeraten (Abb. 30 A).

Die Fluorapatitpartikel liegen vornehmlich in aggregierter Form (Abb. 30 B, schwarze Umrandung) und nur vereinzelt als Primärpartikel vor (schwarzer Pfeil).

Abb. 30 C zeigt die lockere Struktur des Materials mit splitterförmigen Bariumsilikatgläsern (GF). Dazwischen angeordnet sind einzelne kreisrunde 40-60 nm große Mikrofüllstoffpartikel (MF) bzw. Cluster aus SiO$_2$ (schwarze Pfeile). Im rechten unteren Bildrand ist ein Agglomerat aus Fluorapatitfüllstoffen (FAP) und Mikrofüllstoffen (MF) sichtbar.

Abb. 30 D zeigt ein 400-600 nm großes Agglomerat aus Fluorapatitfüllstoffen (FAP) und Mikrofüllern, wobei die porös-wabenartige Struktur der Apatite auffällt.

Beide REM Bilder stellen eine homogene Oberflächenstruktur von LC APA Flow A3 dar (Abb. 30 E und F).

TEM nach thermischer Belastung

Abb. 31: LC APA Flow A3, TEM Aufnahmen nach thermischer Belastung, GF: Glasfüllstoff, FAP: Fluorapatitpartikel, schwarze Pfeile: Fluorapatitcluster. Vergrößerung: 13000x (A), 49000x (B)

4.1.11 LC APA Hi Flow 12%

TEM und REM-Analyse vor Belastung

Abb. 32: LC APA Hi Flow 12%, TEM (A-D) und REM Aufnahmen (E, F) vor Belastung, GF: Glasfüllstoff, FAP: Fluorapatitpartikel, Bild B: schwarze Kreise: Fluorapatitcluster, Bild C: schwarzer Pfeil: FAP-Primärpartikel, Bild D: weißer Pfeil SiO₂-Agglomerat, schwarze Pfeile: Fluorapatitcluster. Vergrößerung: 4800x (A), 13000x (B), 30000x (C), 68000x (D), 5000x (E), 10000x (F)

Abb 32 B zeigt, dass auch hier die Fluorapatitfüllstoffe ebenfalls in Clustern vorliegen (schwarze Kreise). Einzelne Apatitfüllkörper liegen auch als solitäre Partikel in der Matrix vor (Abb. 32 C, schwarzer Pfeil).

Neben SiO₂ Agglomeraten (Abb. 32 D, weißer Pfeil) ist im linken Bildrand ein Cluster aus Fluorapatitfüllstoffen (FAP) mit der bereits bekannten netzartigen Struktur erkennbar (schwarze Pfeile).

Nach Politur weist die Oberfläche einzelne Poren auf (Abb. 32 E und F).

TEM nach thermischer Belastung

![TEM Aufnahmen nach thermischer Belastung (GF: Glasfüllstoff, FAP: Fluorapatitpartikel, weiße Umrandung: Fluorapatitcluster. Vergrößerung: 4800x (A), 49000x (B)](image)

Auch in diesem Fall konnten unter dem Einfluss der thermischen Wechselbelastung keine Veränderungen der Materialstruktur festgestellt werden (Abb. 33) Erkennbar ist in beiden Abbildungen die Tendenz der Fluorapatitfüllstoffe (FAP) zur Agglomeration (Abb. 33 A, Abb. 33 B, weiße Umrandung).
4.2 Einfluß der mechanischen Belastung

Nach thermomechanischer Belastung (Abb. 36) sind zentrale Auflockerungen der Materialstruktur von LC APA Comp 12 % sowie kleinere Rissbildungen feststellbar (weiße Pfeile). Dem Material scheint ein Film aufzuliegen (schwarze Pfeile). LC APA Comp 24 % weist
infolge der mechanischen Belastung eine nur geringfügig veränderte Oberflächenmorphologie auf (Abb. 37). Zentral sind eine muldenartige Vertiefung und eine Rissentwicklung erkennbar (Pfeil).

LC Seal F stellt sich nach Belastung nur geringfügig verändert dar (Abb. 40) und weist zentral eine muldenförmige Vertiefung auf (Pfeile). Nach Belastung (Abb. 41) sind an der Oberflä-
che von LC APA Seal mehrere deutliche Ausbrüche (Pfeile) erkennbar. Die Gefügestruktur ist sichtbar aufgraht.

In der Peripherie sind infolge der Belastung deutliche Rissbildungen (Abb. 42, Pfeile) bei LC APA Seal ½ festzustellen. Abb. 43 zeigt eine zentrale muldenförmige Vertiefung durch die mechanische Belastung (Pfeile).

LC APA Hi Flow 12% läßt eine geringfügige Auflockerung der Oberfläche (Abb. 44) erkennen. Dem Material ist ein Film aufgelagert (Pfeil).

Die größten Veränderungen der Oberflächenmorphologie ergaben sich nach thermomechanischer Belastung beim Referenzmaterial LC Microfill Hybrid und dem fluorapatithaltigen
Komposit LC APA Ceram A2. Hier zeigten sich massive Destruktionen der Oberflächen mit kraterartigen Ausbrüchen.

Bei dem Flowkomposit LC APA Seal ½ war eine etwas deutlichere Rißentwicklung erkennbar. Bei den beiden Materialien LC APA Comp 12 % und LC APA Hi-Flow 12 % konnte man an den Oberflächen filmartige Auflagerungen erkennen.
4.3 Einfluß der erosiven Belastung

4.3.1 LC Microfill Hybrid (Referenz)

4.3.2 LC Ceramic P (Referenz)

Es zeigen sich bei LC Ceramic P insgesamt reaktiv homogene Oberflächen (Abb. 46). Es sind zwar einzelne Poren sichtbar, diese könnten allerdings politurbedingt sein.

Abb. 45: LC Microfill Hybrid, REM Aufnahmen nach Säurekonditionierung, A: nach 15 s H₃PO₄, B: nach 30 s H₃PO₄, PP: Präpolymerisat. Vergrößerung: 10000x

Abb. 46: LC Ceramic P, REM Aufnahmen nach Säurekonditionierung, A: nach 15 s H₃PO₄, B: nach 30 s H₃PO₄. Vergrößerung: 10000x
4.3.3 LC APA Comp 12%

Abb. 47: LC APA Comp 12%, REM Aufnahmen nach Säurekonditionierung, A: nach 15 s H₃PO₄, B: nach 30 s H₃PO₄, Pfeile: Materialausbrüche. Vergrößerung: 10000x

Abb. 47 A zeigt einige Fehlstellen (Abb. 47), die Oberfläche bleibt jedoch insgesamt homogen. Abb. 47 B zeigt 2-3 etwas tiefere Ausbrüche (Pfeile), aber auch hier bleibt die Oberflächenhomogenität erhalten.

4.3.4 LC APA Comp 24%

Abb. 48: LC APA Comp 24%, REM Aufnahmen nach Säurekonditionierung, A: nach 15 s H₃PO₄, B: nach 30 s H₃PO₄. Vergrößerung: 10000x

Die Applikation der Säure zeigt keine Effekte auf die Oberflächenstruktur (vgl. Abb. 48).
4.3.5 LC APA Ceram A2

4.3.6 LC APA Fill A2

4.3.7 LC Seal F

Abb. 51: LC Seal F, REM Aufnahmen nach Säurekonditionierung, A: nach 15 s \(\text{H}_3\text{PO}_4 \), B: nach 30 s \(\text{H}_3\text{PO}_4 \), PP: Präpolymerisat. Vergrößerung: 10000x

Es zeigen sich wenige Porenbildungen als Folge der Politur (Abb. 51). Auch nach Säurewirkung zeigen sich unverändert homogene Oberflächen (Abb. 51 A und B).

4.3.8 LC APA Seal

Abb. 52: LC APA Seal, REM Aufnahmen nach Säurekonditionierung, A: nach 15 s \(\text{H}_3\text{PO}_4 \), B: nach 30 s \(\text{H}_3\text{PO}_4 \), Pfeile: Materialausbrüche. Vergrößerung: 10000x

Nach der Konditionierung mit Phosphorsäure (Abb. 52) treten mehrere Ausbrüche auf (Abb. 52 A und B, Pfeile). In Abb. 52 B sind diese Ausbrüche in kleiner Form zu erkennen. Mit einer Größe von 1-2 \(\mu \text{m} \) entspricht die Größe der Ausbrüche der, der nach der Politur erkennbaren helleren Areale. Dabei handelt es sich vermutlich um Fluorapatitcluster.
4.3.9 LC APA Seal ½

4.3.10 LC APA Flow A3

Beide Bilder stellen eine homogene Oberflächenstruktur von LC APA Flow A3 dar (Abb. 54). Folgen der Phosphorsäurewirkung sind nicht feststellbar.
4.3.11 LC APA Hi Flow 12%

Im Vergleich zu den anderen untersuchten Flowkompositen zeigt LC APA Hi Flow 12 % eine etwas deutlichere Ausbildung von Poren (vgl. Abb. 55). Dieser Eindruck wird vor allem nach 15 s Applikation von \(\text{H}_3\text{PO}_4 \) verstärkt (Abb. 55 A).

Der deutlichste Effekt nach Konditionierung mit Phosphorsäure war bei dem fluorapatithaltigen Flow LC APA Seal nachweisbar. Infolge der Säurekonditionierung haben sich ausgeprägte kraterförmige Ausbrüche von 1-3 \(\mu \text{m} \) Größe ausgebildet. Das als Referenz dienende Flowmaterial LC Seal F, als auch die Flowkomposite LC APA Seal ½ und LC APA Flow A3 zeigten sich größtenteils unverändert. Eine Ausbildung von Poren war in geringem Ausmaß bei LC APA Flow A3 erkennbar.

Die beiden apatithaltigen Komposite LC APA Comp 24 % und F LC APA Fill A2 ließen nach der Säurekonditionierung, ebensowenig wie das Referenzmaterial LC Ceramic P Auswirkungen der Säurekonditionierung erkennen. Das Referenzmaterial LC Microfill Hybrid, sowie die fluorapatithaltigen Komposite LC APA Comp 12 % und LC APA Ceram A2 wiesen denzente Veränderungen der Oberflächenmorphologie auf. Diese äußerten sich in rau erscheinenden Oberflächen, sowie einzelnen Poren und Fehlstellen.

Abb. 55: LC APA Hi Flow 12%, REM Aufnahmen nach Säurekonditionierung, A: nach 15 s \(\text{H}_3\text{PO}_4 \), B: nach 30 s \(\text{H}_3\text{PO}_4 \). Vergrößerung: 10000x
4.4 Mikrohärtemessungen

Tabelle 5 zeigt die Ergebnisse der Mikrohärtemessungen nach verschiedenen Oberflächenbehandlungen.

<table>
<thead>
<tr>
<th>Material</th>
<th>Poliert</th>
<th>30 s H₂PO₄</th>
<th>24 h Ethanol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mittelwert</td>
<td>STABW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>LC Microfill Hybrid</td>
<td>37 a</td>
<td>1</td>
<td>37 a</td>
</tr>
<tr>
<td>LC Ceramic P</td>
<td>88 a</td>
<td>3</td>
<td>83 b</td>
</tr>
<tr>
<td>LC APA Comp 12%</td>
<td>85 a</td>
<td>3</td>
<td>83 a</td>
</tr>
<tr>
<td>LC APA Comp 24%</td>
<td>75 a</td>
<td>2</td>
<td>75 a</td>
</tr>
<tr>
<td>LC APA Ceram A2</td>
<td>68 a</td>
<td>2</td>
<td>62 b</td>
</tr>
<tr>
<td>LC APA Fill A2</td>
<td>51 a</td>
<td>3</td>
<td>45 b</td>
</tr>
<tr>
<td>LC Seal F</td>
<td>35 a</td>
<td>1</td>
<td>32 b</td>
</tr>
<tr>
<td>LC APA Seal</td>
<td>32 a</td>
<td>1</td>
<td>29 b</td>
</tr>
<tr>
<td>LC APA Seal ½</td>
<td>37 a</td>
<td>1</td>
<td>35 b</td>
</tr>
<tr>
<td>LC APA Flow A3</td>
<td>39 a</td>
<td>1</td>
<td>35 b</td>
</tr>
<tr>
<td>LC APA Hi Flow 12%</td>
<td>56 a</td>
<td>2</td>
<td>53 a</td>
</tr>
<tr>
<td>Amalgam</td>
<td>199</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Dentin</td>
<td>64</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Schmelz</td>
<td>323</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>PMMA</td>
<td>17</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Angegeben sind die Vickershärtenwerte (HV) für 3 verschiedene Oberflächenbehandlungen, gleiche Buchstaben (bezogen auf eine Zeile) bezeichnen Werte mit nicht signifikantem Unterschied (Tukey bzw. Games-Howell Test p>0,05)

Nach Politur zeigen die Komposite im Vergleich zu den Flowmaterialien grundsätzlich höhere Mikrohärterwerte. Ausnahmen bilden LC Microfill Hybrid und LC APA Hi Flow 12%. Das Referenzmaterial LC Microfill Hybrid zeigt poliert eine relativ geringe Vickershärte von 37 und weist damit zusammen mit dem Flow LC APA Seal ½ die geringste Oberflächenhärte in poliertem Zustand auf. LC APA Hi Flow 12% zeigt unter den Flowkompositen mit 56 die größte Oberflächenhärte.
Die Applikation von Phosphorsäure auf die Oberflächen der Materialien führte bei fast allen Materialien zu einer Abnahme der Vickershärte (Tabelle 5). Alle der untersuchten Flowkomposite zeigten eine Verringerung der Härtewerte. Bis auf Gruppe LC APA Hi Flow 12 % waren diese Abnahmen signifikant (p<0,05).

Bei den untersuchten Kompositen zeigten LC Microfill Hybrid und LC APA Comp 24 % unveränderte Vickerhärten nach Säureapplikation. Die übrigen Komposite wiesen unter der Säurewirkung Härteabnahmen auf, die jedoch nur für LC Ceramic P, LC APA Ceram A2 und LC APA Fill A2 signifikant waren (Tabelle 5).

Das Eintauchen der Prüfkörper für 24 h in 30 %igen Ethanol führte bei allen Materialien zu einer Senkung der Oberflächenhärte. Die Härteunterschiede waren mit wenigen Ausnahmen signifikant (Tabelle 5).

Generell hatte die erosive Belastung durch Ethanol einen größeren Einfluß als die Säureeinwirkung.
5 Diskussion

5.1 Diskussion der Methodik

5.1.1 Verwendete Materialien
Alle untersuchten Materialien wurden von der Firma S&C Polymer (Elmshorn) zur Verfügung gestellt. Dabei galt es, experimentelle Komposite mit Füllstoffen auf der Basis von Nano-fluorapatit (NFAP) mit Materialien ohne diese Füllstoffe zu vergleichen. Untersucht wurden vier Komposite (LC APA Comp 12 %, LC APA Comp 24 %, LC APA Ceram A2, LC APA Fill A2) und vier Flowkomposite (LC APA Seal, LC APA Seal ½, LC APA Flow A3, LC APA Hi Flow 12%) mit unterschiedlichen Anteilen an NFAP (vgl. Tabelle 4). Als Referenzen dienten dabei zwei Microhybridkomposite (LC Microfill Hybrid, LC Ceramic P) und ein fluoridhaltiges Flow (LC Seal F) ohne NFAP.

5.1.2 Probenherstellung
Für die TEM-Untersuchungsreihe wurden rechteckige Prüfkörper (10x5x5 mm) mit einer TEM-Einbettungsschablone hergestellt. Auf diese Weise konnte die Herstellung der Ultra-dünnschnitte standardisiert werden.

Die Proben für die rasterelektronenmikroskopische Untersuchung erosiver Faktoren und für die Mikrohärtemessungen wurden auf einer Glasplatte mit Hilfe einer runden Form hergestellt. Auf diese Weise konnte sichergestellt werden, dass auch diese Prüfkörper annähernd gleiche Dimensionen aufwiesen. Sowohl für die Anfertigung von REM Aufnahmen, als auch zur Durchführung der Mikrohärtemessungen war hier eine kleinere Probengröße ausreichend.

Vor der Messung der Mikrohärte wurden jeweils drei runde Prüfkörper einer Materialgruppe in einen PMMA Block eingebettet. An einer Schleifmaschine wurde dieser Block planparallel ausgerichtet um Fehlerquellen bei der Härtemessung auszuschließen.

Vor der Polymerisation der Testmaterialien wurden die Schablone bzw. die standardierte Form mit einer Klarsichtmatrise bedeckt. Auf diese Weise konnte die Ausbildung einer Sauerstoffinhibitionsschicht vermieden werden. Allerdings haben Untersuchungen in der Vergangenheit gezeigt, dass die Aushärtung eines Komposites gegen eine Matrise unter Druck zur Ausbildung einer polymerreichen, unstablen Oberflächenschicht führt (Kao, 1989; McKinney and Wu, 1985). Politurmaßnahmen können diese instabile Schicht entfernen und erzeugen eine füllkörperreiche Oberfläche. Polierte Oberflächen sind im Vergleich zu unpoli-
lierten signifikant härter und weniger anfällig gegenüber chemischer Degradierung (Kao, 1989).

Alle hergestellten Prüfkörper wurden aus diesem Grund mit Siliziumcarbid-Schleifpapier absteigender Körnung bis 4000 grit poliert. Dieses Vorgehen stimmt überein mit anderen Studien zur Untersuchung von Verschleißmechanismen von Kompositen (Gohring et al., 2002; Kern et al., 1999; Mehl et al., 2007).

Die Aushärtung der Prüfkörper erfolgte für 40 s und bei einer Probendicke > 2mm inkrementweise. Diese Polymerisationszeit entsprach den Herstellerangaben. Die Aushärtung wurde mittels einer LED Polymerisationslampe (Elipar Free Light 2, 3M Espe, Seefeld) mit einer Intensität von 1200 mW/cm² durchgeführt.

Komposite besitzen die Eigenschaft, ihre Härte nach initial erfolgter Polymerisation noch weiter zu steigern (Chadwick et al., 1990). Dieser Prozeß geht einher mit einer Verbesserung
der mechanischen Eigenschaften und läuft größtenteils innerhalb von 24 h ab (Leung et al., 1985; Quance et al., 2001; Uhl et al., 2004). Auch Pilo und Cardash stellten fest, dass die Nachhärtung von Kompositen im Wesentlichen innerhalb eines Tages abläuft und nach 24 h ihr Maximum erreicht (Pilo and Cardash, 1992). Eine längere Lagerungszeit hat daher kaum noch Einfluss auf die Durchhärtungstiefe (Leung et al., 1985). Es kann also davon ausgegangen werden, dass eine Lagerung von einem Tag eine ausreichende Nachhärtung der Testmaterialien gestattet.

In der durchgeführten Studie wurde eine trockene Lagerung der Proben gewählt. Durch die Lagerung in Wasser kommt es zu einer Volumen- und Gewichtsveränderung, die vor allem bei Studien zur Untersuchung der marginalen Integrität von Restaurationsmaterialien eine Rolle spielt. Um eine In-vivo-Situation zu simulieren, wäre außerdem eine wesentlich längere Lagerungsdauer nötig, da Komposite bis zu einem Zeitraum von 90 Tagen hygroskopische Veränderungen durchlaufen (Martin and Jedynakiewicz, 1998).

5.1.3 Prüfbedingungen

Thermische Belastung

In der hier vorliegenden Studie wurden die untersuchten Kompositwerkstoffe einer thermischen Wechselbelastung in einem Thermocycler (Willytec®, München) unterzogen, welches ein Standardverfahren im Rahmen werkstoffkundlicher Prüfungen darstellt.

Zum einen sollte untersucht werden, ob die thermische Wechselbelastung Auswirkungen auf die Gefügestruktur der Werkstoffe zeigt. Zum anderen war die thermische Belastung Teil eines Alterungsprotokolls (thermomechanische Belastung), dessen Einfluss auf die Materialoberflächen analysiert wurde.

Die Informationen über relevante Maximaltemperaturen in der Mundöhle stammen aus In-vivo-Untersuchungen. Die meisten dieser Untersuchungen messen Temperaturen an der Zahnoberfläche während der Aufnahme heißer oder kalter Getränke mit Hilfe von Wärmführern (Palmer et al., 1992) oder wärmeabhängiger Widerstände (Plant et al., 1974). Durch diese Studien wurde unter anderem festgestellt, dass in verschiedenen Bereichen der Mundöhle große Temperaturschwankungen vorliegen. Die Menge und Expositionzeit einer aufgenommenen Flüssigkeit haben starken Einfluss auf Temperaturveränderungen an der Zahnoberflä-
Diskussion

Tolerierbare Temperaturen sind sehr stark vom subjektiven Empfinden jedes Einzelnen abhängig und variieren enorm zwischen unterschiedlichen Testpersonen (Yap et al., 2001b). Die Maximaltemperaturen in der vorliegenden Studie wurden auf 5° C und 55° C festgesetzt. Diese oder gerinfgfügig modifizierte Parameter (Gohring et al., 2002; Xu et al., 2002) wurden in zahlreichen Studien der letzten Jahre ebenfalls angewendet (Ghazal and Kern, 2009; Hahnel et al., 2010; Heintze et al., 2006; Kern et al., 1999; Mehl et al., 2007).

Xu et al. nahmen an, dass sich in etwa 50 mal pro Tag thermische Wechsel in der menschlichen Mundhöhle ereignen (Xu et al., 2002). Gale und Darvell schätzen, dass thermische Wechselbelastungen 20-50 mal täglich stattfinden, so dass ca. 10.000 Zyklen der Zeitdauer eines Jahres entsprechen würden (Gale and Darvell, 1999). Kim et al. gab in seiner Studie eine Zyklenzahl von 30 pro Tag an, was 3 Mahlzeiten pro Tag simulieren sollte (3 mal 10 Zyklen pro Einheit) (Kim et al., 1992).

Da die Nahrungsaufnahme einer individuell großen Schwankung ausgesetzt ist, können diese Werte nur schwer präzise vorhergesagt werden. Geht man von 30 Zyklen täglich aus, entspricht der in der vorliegenden Studie gewählte Wert von 2500 Zyklen also in etwa 3-4 Monaten.

Da die Prüfkörper in der Regel sehr klein sind, gehen thermischen Veränderungen schnell von statten. Längere Verweilzeiten in den unterschiedlich temperierten Bädern sind daher nicht erforderlich und würden zu überinterpretierten Ergebnissen führen (Gale and Darvell, 1999). Eine Zeitspanne von 30 s, wie sie in der hier durchgeführten Untersuchung gewählt wurde, ist also vollkommen ausreichend.

Mechanische Belastung

Die Prüfkörper wurden im Rahmen der vorliegenden Untersuchung einer Belastung mit 50 N für 100.000 Zyklen in einem Willytec Kausimulator unterzogen. Die Belastung wurde mittels abgerundeten Keramikantagonisten (Empress 2) durchgeführt. Auf ein abrasives Medium (Drei-Medien-Abrasion) wurde verzichtet.

durch Mair bestätigt, der Attrition und Abrasion als die beiden Hauptmechanismen bei der Entstehung von Abnutzungen an zahnärztlichen Füllungsmaterialien ermittelte (Mair, 1992).

Lutz et al. nahmen an, dass Attritionen in okklusalen Kontaktbereichen (OCA: occlusal contact area) und Abrasionen in kontaktfreien Bereichen (CFA: contact free area) stattfinden (Lutz et al., 1984). Der Verschleiß unter Kaulast bei okklusalen Kontakt ist 3 bis 5mal größer als in kontaktfreien Bereichen (Lutz et al., 1984; Willems et al., 1993b).

Die Vielschichtigkeit oraler Abnutzungsprozesse macht es schwierig, Verschleiß in vitro zu simulieren. Seit den vierziger Jahren wurden bereits zahlreiche Methoden entwickelt, um den okklusalen Verschleiß von Restaurationsmaterialien in vivo und in vitro zu untersuchen. Mit keiner dieser Methoden konnte exakt die klinische Leistungsfähigkeit von Füllungsmaterialien vorhergesagt werden, was wohl zumindest teilweise an der Komplexität der oralen Tribologie liegt (Mehl et al., 2007).
Dennoch stellt die In-vitro-Simulation von Verschleiß einen wichtigen Aspekt in der präklinischen Untersuchung (Screening) von Kompositen dar (Kern et al., 1999; Mehl et al., 2007). Klinische Studien zum Thema Verschleiß sind sehr teuer und zeitaufwendig. Außerdem gelingt es unter klinischen Bedingungen kaum die Testparameter zu standardisieren (Gohring et al., 2002; Kern et al., 1999).

Mit dem in unserem Fall eingesetzten zweiachsischen Kausimulator Willytec® ist es möglich, reproduzierbare und standardisierte Belastungen der Prüfkörper durchzuführen, da die Bewegungen durch zwei computergesteuerte Schrittmotoren erzeugt werden (Ghazal and Kern, 2009; Kern et al., 1999). Bereits in zahlreichen Studien kam dieser Kausimulator zum Einsatz (Ghazal and Kern, 2009; Kern et al., 1999; Mehl et al., 2007).

Um den Nachteil der fehlenden Homogenität von Zahnenschmelz zu beheben, hat man nach alternativen Materialien für die Herstellung von Antagonisten gesucht. Grundsätzlich sollte ein Ersatzmaterial ähnliche Eigenschaften wie Zahnenschmelz in puncto Verschleißverhalten, Härte und Abrieb aufweisen (Shortall et al., 2002). Steatit (Hu et al., 1999; Wassell et al., 1994), Edelstahl (Yap et al., 2001b) oder Keramik kamen zum Einsatz (Ghazal and Kern, 2009).

Shortall et al. kamen zu der Schlußfolgerung, dass Keramik im Vergleich zu Steatit und Edelstahl am besten geeignet ist, um als Antagonist Zahnenschmelz zu simulieren (Shortall et al., 2002). Aus diesem Grund wurden auch in der hier vorliegenden Untersuchung Keramikantagonisten verwendet.

Ghazal et al. und auch Heintze et al. nutzen in Studien zum Verschleißverhalten von zahnärztlichen Materialien ebenfalls Keramik zur Substitution von Schmelz (Ghazal and Kern, 2009; Heintze et al., 2006).

Die Form des Antagonisten ist ebenfalls von Bedeutung. Zylindrische oder abgeflachte Formen sind nachteilig, da es bei Belastung zu einem Aufschlag der Kanten des Antagonisten auf
dem Prüfkörper kommt. Dies wiederum führt zu einer beschleunigten Abnutzung der Oberfläche und kann das Verschleißmuster verändern. Eine abgerundete Form ist einer flachen oder zylindrischen vorzuziehen, um diese Problematik zu vermeiden (Turssi et al., 2003; Wassell et al., 1994).

Eine Belastung mit 300.000 Kauzyklen wird einer klinischen Funktion von in etwa einem Jahr gleichgesetzt (Ghazal et al., 2008). Andere Studien besagten, dass 240.000-250.000 Kauzyklen in einem Kausimulator einer klinischen Funktion von ca. 1 Jahr gleichkommen (Krejci et al., 1990; Sakaguchi et al., 1986). Die in unserer Untersuchung gewählte Zyklenzahl von 100.000 Zyklen entspricht also in etwa einem Zeitraum von 4 Monaten. Diese Zyklenanzahl wurde auch in Studien von Heintze et al. und Kadokawa et al. genutzt (Heintze et al., 2006; Kadokawa et al., 2006).

Erosive Belastung

In Studien, die sich mit der Analyse von Kompositverschleiß durch erosive Faktoren befassen, kommen verschiedene Agenzien zum Einsatz. Zu nennen sind Zitronensäure, Phosphor-, Milch-, oder Essigsäure (Chadwick et al., 1990; Gedalia et al., 1991; Gomie et al., 2004; Mohamed-Tahir et al., 2005; Mohamed-Tahir and Yap, 2004; Yap et al., 2000; Yap et al., 2004; Yap et al., 2001a).

Aufgrund des häufigen Vorkommens in verschiedenen Lebensmitteln, besonders in häufig konsummierten Erfrischungsgetränken (Mohamed-Tahir et al., 2005), wurde im Rahmen der hier durchgeführten Untersuchung Phosphorsäure als erosives Medium gewählt.
Diskussion

Die meisten Studien wählten eine Lagerungszeit der Proben von einem Tag (Yanikoglu et al., 2009) oder einer Woche in verschieden sauren Lösungen (Chadwick et al., 1990; Gomèc et al., 2004; Mohamed-Tahir et al., 2005; Mohamed-Tahir and Yap, 2004; Yap et al., 2000; Yap et al., 2001a).

Es ist anzunehmen, dass in diesen Studien verschiedene Verdünnungen von sauren Lösungen zur Präkonditionierung der Prüfkörper eingesetzt wurden. In der hier durchgeführten Studie wurde die Säure (37%ige Phosphorsäure) wesentlich höher konzentriert angewendet. Aus diesem Grund wurde eine erheblich geringere Konditionierungszeit von 15 s und 30 s ausgewählt.

Dazu wurden alle Prüfkörper für 24 h in 30 %igem Ethanol gelagert. Mikrohärtemessungen vor und nach Exposition sollten deutlich machen, wie stark die einzelnen Materialien durch Alkohol angegriffen werden.

Alkohol ist Bestandteil unserer täglichen Ernährung. Neben alkoholhaltigen Getränken (Wein, Bier etc.) findet man ihn in Gemüse, Obst, Süßigkeiten und als Bestandteil von Medikamenten und Mundspülösungen (Yap et al., 2004). In diesen ist er in seiner Funktion als Antiseptikum oder Lösungsmittel für andere Inhaltsstoffe zugesetzt (Overholser et al., 1990).

Dabei wurde Ethanol in wässrigen Lösungen in unterschiedlichen Verdünnungen (50 %: (Yap et al., 2000) 75 %: (Condon and Ferracane, 1997b) 96 %: (Hahnel et al., 2010) oder unverdünnt verwendet (Aguiar et al., 2005; Asmussen and Peutzfeldt, 2003; Cavalcante et al., 2011; Guiraldo et al., 2009; Moon et al., 2004).

Obwohl Ethanol in Konzentrationen von 50 bzw. 75 % also die größte Wirkung auf die Alterung von Kompositen zu haben scheint, wurde in der hier vorliegenden Untersuchung eine Konzentration von 30 % gewählt. Damit wird immer noch ein Alterungseffekt erreicht (Yap et al., 2001a), aber diese Konzentration entspricht eher dem Alkoholgehalt von gängigen Nahrungsmitteln. Auch Mundspülungen enthalten maximal bis zu 30 % Alkohol (z.B. Listerine 21,6 %) meist sogar unter 10 % (Yap et al., 2003).

In der hier vorliegenden Untersuchung wurde eine Expositionsdauer von 24 h ausgewählt. Dies korreliert mit anderen Studien, bei denen die Proben ebenfalls für den Zeitraum eines Tages behandelt wurden (Aguiar et al., 2005; Asmussen and Peutzfeldt, 2003; Guiraldo et al., 2009).

5.1.4 Eingesetzte Analyseverfahren

In nahezu allen Studien, in denen die Strukturanalyse von Kompositen von Interesse ist, werden heutzutage TEM-Analysen eingesetzt. In Untersuchungen von Mikrofüllerkompositen mit Füllkorpern in einem Größenbereich von unter 0,04 μm dient die TEM-Untersuchung beispielsweise der Abschätzung des interpartikulären Abstandes (Lim et al., 2002; Vankerckhoven et al., 1981). Andere Studien betonen den Nutzen dieser Methode für die Beurteilung der Morphologie, Größe und Verteilung insbesondere von Nanopartikeln (Arcis et al., 2002; Schmitt et al., 2009; Xia et al., 2008). Die TEM-Untersuchung ist also eine adäquate Methode zur ultrastrukturellen Untersuchung von Kompositen.

Die rasterelektronenmikroskopische Analyse stellt für Untersuchungen dentaler Komposite eine Möglichkeit dar, Degradierungsprozesse zu verstehen und zwischen verschiedenen Materialien zu vergleichen. Insbesondere in Studien zu mechanischem (Gohring et al., 2002; Lim et al., 2002; Mehl et al., 2007) und chemischem (Kao, 1989; Yap et al., 2000) Verschleißverhalten von Kompositmaterialien erlaubt diese Methode eine qualitative Oberflächenanalyse.
Anhand der Beobachtungen von Effekten durch mechanische Belastungen oder die Wirkung chemischer Agenzien lassen sich Rückschlüsse auf verschiedene Verschleißmechanismen ziehen (Condon and Ferracane, 1997b). Die REM-Analyse ist also ein wichtiges Instrument zur Oberflächencharakterisierung von Füllungsmaterialien.

Die physikalischen Eigenschaften eines Materials geben einen Eindruck davon, wie es bei Belastung unter Bedingungen in der Mundhöhle reagieren wird. Härte wird definiert als der Widerstand eines Werkstoffes gegen das mechanische Eindringen eines härteren Prüfkörpers (Cavalcante et al., 2011; Yap et al., 2000; Yap et al., 2003). Die Härte von Kompositwerkstoffen ist abhängig von Füllkörpertyp und -gehalt und korreliert mit anderen mechanischen Eigenschaften wie Polierbarkeit und Abrasionstabilität (Hahnel et al., 2010; Schmage et al., 2009; Schmitt et al., 2009).

Ein Rückgang der Vickershärte eines Komposites kann zu einer erhöhten Anfälligkeit einer Restauration für Verschleiß und Abnutzung führen (Hahnel et al., 2010). Der Härteverlust geht einher mit der Alterung eines Materials unter oralen Bedingungen und kann einen Formverlust und Verfärbungen der Restauration zur Folge haben (Hahnel et al., 2010). Die chemische Aufweichung hat also einen negativen Effekt auf ihre Lebensdauer (Gomec et al., 2004; Mohamed-Tahir et al., 2005).

5.2 Diskussion der Ergebnisse

5.2.1 Ergebnisse der TEM-Analyse vor und nach thermischer Belastung

Die TEM Aufnahmen geben Aufschluß über die Art, Struktur und Größe der Füllkörper, sowie deren Verteilung innerhalb der Matrix. Bei den beiden Materialien LC Microfill Hybrid und LC Ceramic P handelt es sich um Micohybridkomposite, die kein Nanofluorapatit enthalten und somit als Referenzen für die fluorapatitalthigen Komposite dienten. LC Microfill Hybrid hat mit 79 Gew. % einen minimal geringeren Füllstoffgehalt als das Referenzmaterial LC Ceramic P mit 82 Gew. % und ist im Gegensatz zu Letzterem gekennzeichnet durch das
Auftreten von Präpolymerisaten. Diese sind ebenfalls in den fluorapatithaltigen Nanohybridkompositen LC APA Ceram A2 und LC APA Fill A2 enthalten. Das Referenzmaterial LC Ceramic P zeichnet sich dagegen durch eine relativ homogene Mischung von Mikrofüllstoffen und Gläsern unterschiedlichster Größe und Formen aus. Sein Erscheinungsbild entspricht eher demjenigen der Materialien LC APA Comp 12 % und LC APA Comp 24 %.

Die Flowkomposite zeigten in der TEM-Analyse entsprechend dem reduzierten Füllstoffghalt wie erwartet eine weniger dicht gefüllte Struktur mit einem erhöhten Matrixanteil. Der Gesamtfüllstoffgehalt der untersuchten Flowkomposite varierte zwischen 38 % bei den Materialien LC APA Seal und LC APA Seal ½ und 66 % bei den LC APA Flow A3 und LC APA Hi Flow 12 %.

Die Fluorapatitparikel lagen bei allen untersuchten Materialien vorwiegend in Form von clusterartigen Zusammenschlüssen, aber auch als einzelne Primärpartikel vor. Bei LC APA Comp 12 % und 24 % war die inselartige Konfiguration der Apatite deutlicher ausgeprägt als bei den Kompositen LC APA Ceram A2 und LC APA Fill A2. Dies korreliert möglicherweise mit den höheren Anteilen an Nanofluorapatit: 12 % bzw 24 % bei LC APA Comp, gegenüber 8 % und 4 % bei LC APA Ceram A2 und LC APA Fill A2.

Während die Materialien LC APA Comp 12 und 24 % sowohl clusterförmige Aggregate als auch Einzelpartikel zeigten, wies das Fluorapatit in LC APA Ceram A2 eine Tendenz zur clusterartigen Anordnung auf. Einzelpartikel kamen eher selten vor. Man sah außerdem geringfügig kleinere Apatikristallite.

Bei den Flowkompositen konnte generell eine eher agglomerierte Anordnung des Fluorapatits beobachtet werden. Eine Ausnahme bildete hier LC APA Seal ½, in dessen Gefüge auch einige einzelne Primärteilchen erkennbar waren.

Die Fluorapatitteilchen zeigten also Unterschiede in Größe, Kristallinität und Verteilung innerhalb der Matrix. Sie hatten entweder ein amorphes Erscheinungsbild oder lagen als nadelförmige Kristallite vor mit einer typischen Größenordnung von 150-200 nm Breite und einem Durchmesser von ca 50 nm. In höheren Vergrößerungen ließ sich oft eine wabenartige, poröse Struktur der Fluorapatite erkennen.

Agglomerationen von Füllstoffen werden generell als nachteilig für die Funktion und Eigenschaften eines Komposites angesehen (Bayne et al., 1992; Lim et al., 2002; Xia et al., 2008). Diese können ihren Ursprung im Herstellungsprozess haben oder durch Silanisierungsprozesse entstehen (Xia et al., 2008). Cluster werden möglicherweise schlechter von der Matrix pe-
Diskussion

netriet, so dass Agglomerate keine stabile Kopplung zur Matrix aufweisen. Zusätzlich sind die mechanischen Eigenschaften der Agglomerate per se gering (Lim et al., 2002).

Die Füllkörper sollen nach Möglichkeit dicht und homogen verteilt sein, um eine maximale Verschleißresistenz (Bayne et al., 1992) und optimale mechanische Eigenschaften zu gewährleisten (Schmitt et al., 2009; Xia et al., 2008).

Die TEM-Analyse nach Thermocycling ergab keinerlei sichtbare Effekte auf die Gefügestrukturn der Materialien.

Bei Kompositen kann aber auch innerhalb des Materials thermischer Stress entstehen, da auch hier große Differenzen der thermischen Expansionskoeffizienten zwischen Füllkörper und Matrix bestehen. Der thermische Streß kann zusammen mit der Anwesenheit von Wasser oder anderen Flüssigkeiten zur Degradierung von Füllkörper-Matrix Grenzflächen (Hahnel et al., 2010) führen und eine Streßkorrosion von Füllkörpern bewirken (Mair and Vowles, 1989; Montes and Draughn, 1986). Spannungen innerhalb des Materials, die durch verschiedene Temperaturveränderungen induziert werden, können die Entstehung von Mikrorissen und

In der Literatur gibt es widersprüchliche Aussagen über die Effekte von Thermocycling. Während einige Untersuchungen nach thermischer Wechselbelastung nachteilige Auswirkungen auf die Verschleiß- und Abrasionsfestigkeit von Kompositen sowie eine Verschlechterung der Materialeigenschaften belegen (Mair, 1991; Mair and Vowlès, 1989; Montes and Draughn, 1986), beschreiben wiederum andere Studien keine signifikanten Effekte (Xu et al., 2002).

5.2.2 Ergebnisse der REM-Analyse nach mechanischer Belastung

Nach der mechanischen Belastung wurden die Materialoberflächen erneut einer REM-Untersuchung unterzogen um eine qualitative Oberflächenanalyse durchzuführen, um auf diese Weise Informationen zum Verschleißverhalten und den Verschleißmustern der Materialien zu gewinnen.

Das Referenzmaterial LC Ceramic P und die übrigen fluorapatithaltigen Komposite LC APA Comp 12 %, LC APA Comp 24 % und LC APA Fill A2 zeigten im Gegensatz dazu weitaus geringere Veränderungen der Oberflächenmorphologie. Während LC Ceramic P und LC APA Fill A2 nur dezente Aufrauungen der Oberfläche sowie vereinzelte Gefügeauflockerungen aufwiesen, waren bei LC APA Comp 12 % und LC APA Comp 24 % zusätzlich dazu kleine Mikrorisse erkennbar.

Bei den Flowkompositen wiesen die Materialien der Gruppen LC APA Seal und APA Seal ½ die deutlichsten Veränderungen auf. Im Oberflächengefüge waren deutliche Auflockerungen und Aufrauungen erkennbar. LC APA Seal ½ zeigte einzelne Mikrorisse. Diese waren in abgeschwächter Form auch bei LC APA Hi Flow 12 % erkennbar. Nur minimale Verände-
Diskussion

Die Beobachtungen der ratsereletronenmikroskopischen Analyse korrelieren mit zahlreichen Studien, die ebenfalls eine qualitative REM-Analyse nach einer mechanischen Belastung erhoben haben. In diesen Untersuchungen wurden unter steigender Belastung Mikrorisse, Rauigkeiten oder Poren durch den Verlust von Füllerpartikeln sichtbar (Ghazal and Kern, 2009; Gohring et al., 2002; Mehl et al., 2007; Nagarajan et al., 2004; Yesil et al., 2008). Lim et al. beobachteten nach mechanischer Belastung ein Aufblättern und Abschuppen von Material (Lim et al., 2002). Nagarajan et al. stellten fest, dass unabhängig von der Last, ein dünner Film auf der Oberfläche ausgebildet wurde, der bei höherer Belastung diskontinuierlich war und teilweise abgelöst wurde. Diese Filme entstehen durch Reibungseffekte aus einer Mischung von Füllkörperbestandteilen und Fragmenten der Kompositmatrix, sowie abgelösten Partikeln des Antagonisten (Nagarajan et al., 2004). Aufliegende Filme waren auch in der hier vorliegenden Untersuchung bei den Materialien LC APA Comp 12 % und LC APA Hi Flow 12 % ansatzweise erkennbar.

Ein Vergleich zwischen Untersuchungen zum Verschleiß von Kompositen gestaltet sich schwierig, da zum Teil relativ unterschiedliche Studiendesigns verwendet werden. Verschiedene Kausimulatoren kommen zum Einsatz, aber auch andere Parameter, wie Belastungsstärke, Zyklenzahl, die Art der verwendeten Antagonisten, oder der Einsatz eines abrasiven Mediums variieren von Studie zu Studie (Hahnel et al., 2010; Mehl et al., 2007).

Die qualitative REM-Untersuchung zeigt morphologische Unterschiede der getesteten Komposite und Flowmaterialien, insbesondere der Materialien LC Microfill Hybrid, LC APA Ceram A2 und LC APA Seal.

Diese Unterschiede sind möglicherweise verbunden mit Eigenschaften wie Füllstoffgehalt und -verteilung, Partikelgrösse (Condon and Ferracane, 1997b), Konversionsgrad der Polymermatrix, Eigenschaften der organischen Matrix und dem chemischen Verbund zwischen Füllkörper und Matrix (Kern et al., 1999; Lim et al., 2002; Mehl et al., 2007).

Verschleiß, Rauigkeit und Oberflächenhärte können durch die Kompositchemie, Polymerisationsmethoden, sowie Art und Stärke der mechanischen Belastung beeinflusst werden (Kern et al., 1999; Mehl et al., 2007).

Die Polymerisationbedingungen waren innerhalb der vorliegenden Studie für alle Materialien gleich, so dass hier keine Unterschiede im Konversionsgrad zu erwarten sind. Des Weiteren

Studien in der Vergangenheit haben belegt, dass es einen klaren Zusammenhang gibt zwischen Füllkörperform und der Verschleißfestigkeit von Kompositen. Mit zunehmendem Füllstoffgehalt wird ein Komposit resisterter gegen Verschleiß (Condon and Ferracane, 1997b; Lim et al., 2002).

Nicht nur der prozentuale Füllstoffgehalt beeinflusst die mechanischen Eigenschaften, sondern auch die optimale Größe und Form der Partikel zusammen mit der homogenen Verteilung in der organischen Matrix, insbesondere bei Nanokompositen (Schmitt et al., 2009).

Optimalerweise wird eine einwirkende Kraft von der Matrix komplett auf die härteren anorganischen Füllerpartikel übertragen (Heintze et al., 2006). Harte Füllstoffe schützen die weichere Matrix vor Abrasion, wobei ein stabiler Haftverband die Adhäsion zwischen Füllstoff und Matrix verbessert. Dies wiederum führt zu einem verbesserten Lasttransfer auf die Matrix und erhöht so die Widerstandschaft gegen Verschleiß. Unter idealen Bedingungen dient diese Schicht als Stressabsorber. Mit geeigneter Silanisierung bricht ein Komposit nicht an

Abrasions spielen eine Schlüsselrolle in der Abnutzung dentaler Komposite (Braem et al., 1986).

Da die mechanische Belastung im Kausimulator in destilliertem Wasser stattfindet, ist auch ein geringer Anteil der Abnutzung der Materialien durch Korrosionsverschleiß bedingt.

Wie bereits im vorangegangenen Kapitel (5.2.1) angesprochen, gilt die Agglomeration von Füllstoffen generell als unerwünscht (Schmitt et al., 2009). Die unzureichende Kopplung zur Polymermatrix bildet eine Schwachstelle (Lim et al., 2002). Bei den entstandenen Ausbrüchen von LC APA Seal könnte es sich also um herausgebrochene Cluster aus Fluorapatit handeln. Es muß jedoch berücksichtigt werden, dass es sich bei LC APA Seal ½ um ein Flowkomposit handelt, dass ja bekannterweise nicht für kaulasttragende Indikationsbereiche eingesetzt werden sollte. Unter diesem Aspekt sind die Ergebnisse diesbezüglich zu relativieren.

Die Verschleißfestigkeit von Flows ist aufgrund des niedrigen Gehalts an Füllstoffen per se gering, denn es ist dokumentiert, dass eine hoher Füllkörpergehalt und eine geringe Partikelgröße zu einer erhöhten Verschleißresistenz führten (Condon and Ferracane, 1997b; Lim et al., 2002).

Clelland stellte fest, dass Komposite weniger verschleißen als Flowmaterialien (Clelland et al., 2005). In der hier vorliegenden Studie waren die Dimensionen der Veränderungen der Oberflächenmorphologie zwischen Kompositen und fließfähigen Materialien etwa vergleich-bar. Dies steht also im Widerspruch zur Studie von Clelland. Dies liegt wahrscheinlich darin begründet, dass Clelland den quantitativen Verschleiß von Kompositen und Flowmaterialien untersucht hat, wohingegen in der hier vorliegenden Studie jedoch eine qualitative Ver-schleißanalyse durchgeführt wurde.

5.2.3 Ergebnisse der REM-Analyse nach Säurekonditionierung
Um die Auswirkungen eines Säureangriffs auf die fluorapatithaltigen Materialien zu untersu-chen, wurden die Oberflächen der Prüfkörper für 15 bzw. 30 Sekunden mit Phosphorsäure behandelt und anschließend rasterelektronenmikroskopisch untersucht.

Bekräftigt wird diese Annahme durch Untersuchungen von Xia et al. und Lim 2002 et al., die besagen, dass eine Clusterung von Füllstoffen sich generell negativ auf die Materialeigenschaften auswirkt (Lim et al., 2002; Schmitt et al., 2009; Xia et al., 2008). Die vermeintlich schlechte Verbindung der Agglomerate zur Polymermatrix stellt möglicherweise einen bevorzugten Angriffspunkt für eine Säureattacke dar.

Da die Größe der entstandenen Fehlstellen oder Poren oft mit der Größe der in den Materialien enthaltenen Füllkörper übereinstimmte, ging man davon aus, dass diese durch den Verlust von
Füllstoffen aufgrund einer Schädigung der Verbundphase zwischen Füllkörper und Matrix enstanden sind (Gomec et al., 2004; Yap et al., 2000).

Mittels rasterelektronenmikroskopischer Untersuchungen konnte dargelegt werden, dass organische Lösungen wie Ethanol eher die Eigenschaft besitzen, die Matrix eines Komposites anzugreifen, während Wasser und Säuren die anorganischen Füllstoffe schädigen (McKinney and Wu, 1985; Yap et al., 2000). Nach Einwirkung von Ethanol traten die Füllkörper deutlicher aus der Matrix heraus, was auf den Verlust der Matrix durch die chemische Auflösung zurückzuführen ist. Ähnliche mikrostrukturelle Veränderungen beobachtete Kao, nachdem er Komposite in unterschiedlichen Konzentrationen von Ethanol lagert (Kao, 1989).

Im Gegensatz dazu resultierten aus der Exposition in sauren Lösungen die Enstehung von Poren und Fehlstellen (Yap et al., 2000). Der Verlust von Füllerpartikeln durch Säurekonditionierung kann also auf Degradierungsprozesse der Füllkörper selbst (Gomec et al., 2004) oder Schädigungen der Silanschicht zurückgehen (Mohamed-Tahir et al., 2005). Infolge der Stresskorrosion gehen Bestandteile von Füllkörnern in Lösung (Söderholm, 1983). Die Gläser, die Zink und Barium enthalten, sind dabei anfälliger als diejenigen, die Quartz enthalten (Söderholm et al., 1984). Die Lösung von Füllstoffanteilen kann dabei die Enstehung von Mikrorissen an der Verbundphase zur organischen Matrix bewirken, was wiederum das Material schwächt (Roulet and Wälti, 1984; Söderholm et al., 1984; Yap et al., 2000).

Ebenso wie die thermische Belastung manifestiert sich eine erosive Belastung durch Säure besonders an Füllstoffen bzw. deren Grenzflächen zur Polymermatrix. Aufgrund der gesteigerten spezifischen Oberflächen bei Nanomaterialien liegt also die Vermutung nahe, dass erosive Effekte sich deutlicher auswirken. In der vorliegenden Untersuchung traf dies jedoch nur im Fall von LC APA Seal zu.

5.2.4 Ergebnisse der Mikrohärtemessungen

Diskussion

Dies stimmt überein mit den Erkenntnissen von Schmitt et al., die ebenfalls bei Flowkompositen im Vergleich zu Hybridkompositen geringere Mikrohärten feststellten (Schmitt et al., 2009). Ikejima et al. konnten eine Korrelation zwischen Vickershärte und Füllkörpergehalt nachweisen, wobei mit zunehmendem Gehalt an Füllstoffen erhöhte Härtewerte erreicht wurden (Ikejima et al., 2003). Da der Gesamtfüllstoffgehalt bei Flows zugunsten der Viskosität reduziert ist, werden dementsprechend geringere Härte gemessen. Auch andere Untersuchungen haben verdeutlicht, dass die physikalischen Eigenschaften von Flowmaterialien im Vergleich zu den höher gefüllten Kompositen um 10-40% reduziert sein können (Bayne et al., 1998).

Nach der Applikation von Phosphorsäure ist bei allen untersuchten Materialien bis auf wenige Ausnahmen ein Rückgang der Vickershärten zu beobachten.

Durch REM-Untersuchungen konnten an Materialoberflächen entstandene Fehlstellen und Poren auf den Verlust von Füllkörpern zurückgeführt werden. Treten diese Veränderungen in großem Ausmaß auf, so kann das zur Reduktion der Mikrohärte führen (Chadwick et al., 1990; Gomec et al., 2004; Yap et al., 2000).

Da Studien eine positive Korrelation zwischen Härte und Füllkörpergehalt nachgewiesen haben (Chung, 1990), ist bei einer Schädigung bzw. einem Verlust von Füllerpartikeln mit einer Beeinträchtigung der Mikrohärte zu rechnen (Say et al., 2003).

Die Ergebnisse stimmen auch überein mit anderen Untersuchungen, in denen Kompositproben nach Lagerung in phosphorsäurehaltigen Softdrinks nur mäßige Härteabnahmen zeigten (Aliping-McKenzie et al., 2004; Yanikoglu et al., 2009).

Diese Ergebnisse sind konsistent mit Studien von Yap et al., die feststellten, dass Ethanol im Vergleich zu Säure zu einer massiveren Erweichung von Kompositen führt (Yap et al., 2000; Yap et al., 2001a).

Generell kann die Alterung von Kompositen in wässrigen Lösungen zur Auswaschung von Materialbestandteilen, Degradationsprozessen der vernetzten Polymerstruktur und zur Hydrolyse des chemischen Haftverbundes zwischen Füllkörpern und Matrix führen (Hahnel et al., 2010). Dabei ist das Ausmaß dieser Schädigung einerseits abhängig von der Diffusionsrate und damit dem Molekulargewicht des eindringenden Lösungsmittels (McKinney and Wu, 1985). Auf der anderen Seite bestimmen verschiedene Faktoren, die mit der Chemie und Struktur des Polymernetzwerks eines Komposites zusammenhängen, wie stark ein Material angegriffen wird (Ferracane, 2006). Wichtige chemische Charakteristika sind dabei die
Hydrophilie des Polymers sowie die Differenz der Löslichkeitsparameter zwischen dem Polymernetzwerk und dem Lösungsmittel. Außerdem spielt auch die Art der chemischen Bindungen innerhalb des Polymergerüstes eine wichtige Rolle (Bagheri et al., 2007; Ferracane, 2006). Der Löslichkeitskoeffizient des Lösungsmittels ist in diesem Zusammenhang von elementarer Bedeutung und bestimmt in welchem Ausmaß das Lösungsmittel aufgenommen wird (McKinney and Wu, 1985; Wu and McKinney, 1982).

Ein maximaler Erweichungseffekt tritt dann ein, wenn der Löslichkeitskoeffizient eines Lösungsmittels demjenigen der Polymermatrix des Komposites entspricht (McKinney and Wu, 1985). Dies trifft für die zwei am häufigsten in dentalen Kompositen eingesetzten Monomere BisGMA und UDMA zu, deren Löslichkeitskoeffizienten 50 %-bzw. 75 %-igen wässrigen Lösungen von Ethanol entsprechen (Kao, 1989). Daher stellt Ethanol eines der aggressivsten Lösungsmittel für dentale Kompositnetzwerke dar (Schneider et al., 2008; Wu and McKinney, 1982).

Der Erweichungseffekt von Kompositen ist nicht allein der physikalischen oder chemischen Degradierung der organischen Matrix durch wässrige Alkohollösungen zuzuordnen. Es gibt auch Evidenz über Degradierungsprozesse von Füllkörpern und chemischem Haftverbund durch Wasser. Da es über Poren und andere Defekte in die Matrix und an Füllkörperränder diffundiert, nehmen Polymere es zu unterschiedlichen Anteilen auf. Die Menge ist dabei abhängig von molekularen und mikrostrukturalen Aspekten und führt zur Lösung von Füllerpartikeln (Kalatchandra and Wilson, 1992; Mortier et al., 2005). Wasser fungiert als Plastifizierungsstoff innerhalb der Matrix. Der Effekt auf das Polymer ist allerdings begrenzt, denn nach der hochvernetzten Struktur innerhalb des Netzwerks wird eine Sättigung erreicht. Das bedeutet, es gibt zwar einen schädigenden, aber limitierten Effekt von Wasser auf Komposite, was auch mit anderen Studien übereinstimmt (Ferracane et al., 1998).

Durch die Tatsache, dass Komposite einen geringen Prozentsatz Wasser aufnehmen, können die mechanischen Eigenschaften beeinflusst werden. Die Oberflächenhärte dentaler Komposite kann sowohl durch die Wasseraufnahme als auch die Kontaktzeit mit dem wässrigen Medium signifikant beeinträchtigt sein (Hansen, 1983).

Es können also auch Degradierungsprozesse von Wasser eine Rolle bei der Verringerung der Mikrohärte spielen. Durch die „offene“ Struktur von ionenfreisetzenden Kompositen, wie im Fall der aktuellen Untersuchung von Materialien mit Nanofluorapatit würde man also eher eine erhöhte Anfälligkeit für Degradierungsprozesse durch chemische Agenzien erwarten, was sich jedoch nicht bestätigt hat.

5.3 Schlussfolgerung

Unter den gewählten Versuchsbedingungen resultierten aus der Integration von Nano-Fluorapatitkristalliten in die organische Matrix keine negativen Effekte in Bezug auf die untersuchten werkstoffkundlichen Parameter.

Zwar wurde unter Säureeinfluß ein Herauslösen von fluorapatithaltigen Clustern beobachtet, dies hat sich jedoch nicht in der Mikrohärtemessung wiedergezeigt.

Im Hinblick auf die Weiterentwicklung der Produkte sollte eine feinere Dispersion der Partikel angestrebt werden.

Die neu entwickelten Restaurationsmaterialien auf der Basis von Nanofluorapatit sind hinsichtlich der Resistenz gegen chemische Agenzien und einer thermomechanischen Belastung in etwa mit handelsüblichen Hybridmaterialien vergleichbar. Die Fluorapatitfüllstoffe zeigten eine Tendenz zur Anordnung in Clustern, was durch die TEM-Analyse deutlich wurde. Dieses unerwünschte Phänomen liegt vor allem im Herstellungsprozeß begründet.

Das Remineralisationspotential der ionenfreisetzenden Füllstoffe bietet eine Möglichkeit der Prävention von Sekundärkaries und könnte zukünftig einen Vorteil gegenüber traditionellen
Materialien darstellen. Daher sollte die Untersuchung dieser Materialeigenschaften Gegenstand weiterer Studien sein, um möglicherweise alternative Syntheseverfahren zu entwickeln, die eine homogenere Verteilung der Apatitpartikel in der Matrix ermöglichen.

Insgesamt zeigen die Untersuchungen dieser Studie vielversprechende Materialeigenschaften, die eine weitere Forschung in diesem Bereich sinnvoll erscheinen lassen.
6 Literaturverzeichnis

- 114 -

7 Danksagung

An erster Stelle gilt mein Dank Professor Dr. M. Hannig für die freundliche Überlassung des Themas, sowie die großzügige Unterstützung und Beratung während der Anfertigung dieser Arbeit.

Mein weiterer Dank gilt Herrn Professor Dr. M. Balkenhol für die schnellen Korrekturen die wertvollen, konstruktiven Verbesserungsvorschläge, sowie die Hilfestellung bei der statistischen Auswertung der Ergebnisse.

Ganz besonders danke ich Herrn Oberarzt Dr. F. Al Marrawi, der durch sein umfangreiches Engagement eine wertvolle Hilfestellung während der Durchführung des praktischen Teils der Arbeit geleistet hat. Aber auch bei der Verfassung des theoretischen Teils stand er stets unterstützend und beratend zur Seite.

Bedanken möchte ich außerdem bei Oberärztin Frau Dr. Huber für die Betreuung während der ersten Versuchsphase.

Weiterhin danke ich Frau G. Kiefer für die tatkräftige Unterstützung bei der Anfertigung der TEM Aufnahmen.

Abschließend gilt mein besonderer Dank selbstverständlich meiner Familie und Herrn Steffen Wagner, die durch die entgegengebrachte Geduld und geleistete Motivation maßgeblich zur Fertigstellung dieser Arbeit beigetragen haben.
8 Lebenslauf

Persönliche Daten

Name: Hoffmann
Vorname: Tina
Anschrift: Breslauer Straße 18
66121 Saarbrücken
Geburtsdatum: 24.05.1979
Geburtsort: Saarbrücken
Familienstand: ledig
Staatsangehörigkeit: deutsch
Konfession: evangelisch

Ausbildung

1985-1989: Grundschule Fechingen
Allgemeine Hochschulreife (Note: 1,8)
1998-2005: Studium der Zahnmedizin an der Universität des Saarlandes
Medizinische Fakultät Homburg

Berufliche Tätigkeit

Ab 2005
Tätigkeit als wissenschaftliche Mitarbeiterin in der Abteilung für Zahnerhaltung und Parodontologie der Universität des Saarlandes, Homburg/Saar
9 Anhang

9.1 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP</td>
<td>Amorphes Calciumphosphat</td>
</tr>
<tr>
<td>BHT</td>
<td>Buthylhydroyltuluol</td>
</tr>
<tr>
<td>Bis EMA</td>
<td>Biphenol-A-ethoxyliertes Dimethacrylat</td>
</tr>
<tr>
<td>Bis GMA</td>
<td>Bisphenol-A-diglycidyl-methacrylat</td>
</tr>
<tr>
<td>CC</td>
<td>Campherton</td>
</tr>
<tr>
<td>DCPA</td>
<td>Dicalciumphosphat anhydriert</td>
</tr>
<tr>
<td>DCPD</td>
<td>Dicalciumphosphatdihydrat</td>
</tr>
<tr>
<td>FAP</td>
<td>Fluorapatit</td>
</tr>
<tr>
<td>γ-MPTMS</td>
<td>3-Methacryloxypropyltrimehtoxysilan</td>
</tr>
<tr>
<td>GF</td>
<td>Glasfüllstoff</td>
</tr>
<tr>
<td>HAP</td>
<td>Hydroxylapatit</td>
</tr>
<tr>
<td>HEMA</td>
<td>Hydroxy-Ethyl-Methacrylat</td>
</tr>
<tr>
<td>MCP</td>
<td>Monocalciumphosphat</td>
</tr>
<tr>
<td>MF</td>
<td>Mikrofüllstoff</td>
</tr>
<tr>
<td>NFAP</td>
<td>Nanofluorapatit</td>
</tr>
<tr>
<td>OCP</td>
<td>Octacalciumphosphat</td>
</tr>
<tr>
<td>PMMA</td>
<td>Polymethylmethacrylat</td>
</tr>
<tr>
<td>REM</td>
<td>Rasterelektronenmikroskop</td>
</tr>
<tr>
<td>TCB</td>
<td>Tetracarboxyłsäurehydroxyethyl-methacrylatester</td>
</tr>
<tr>
<td>TCP</td>
<td>Tetracalciumphosphat</td>
</tr>
<tr>
<td>TEGDMA</td>
<td>Triethylenglykol-dimethacrylat</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmissionselektronenmikroskop</td>
</tr>
<tr>
<td>TWB</td>
<td>Thermische Wechselbelastung</td>
</tr>
<tr>
<td>UDMA</td>
<td>Urethandimethacrylat</td>
</tr>
</tbody>
</table>