Berufsbedingte Atemwegserkrankungen: Studie zur Prävalenz, Diagnostik bis hin zur Erfassung von Expositionsprofilen und Risikoberufen

Sabrina Coroneo

-2010-
Für meine Eltern
Berufsbedingte Atemwegserkrankungen: Studie zur
Prävalenz, Diagnostik bis hin zur Erfassung von
Expositionsprofilen und Risikoberufen

Dissertation
zur Erlangung des Grades eines Doktors der Medizin
der Medizinischen Fakultät
der Universität des Saarlandes
2010

vorgelegt von

Sabrina Coroneo
geb. am 01.05.1981
in Haselünne
1 ZUSAMMENFASSUNG .. 1

1 SUMMARY ... 4

2 EINLEITUNG ... 6

2.1 BERUFSBEDINGTE ATEMWEGSERKRANKUNGEN ... 6

2.2 BERUFLICHE EXPOSITIONEN.. 7

2.3 DEFINITIONEN DER VERSCHIEDENEN KRANKHEITSBILDER DIESER STUDIE 9

2.3.1 Chronisch obstruktive Lungenerkrankung (COPD) ... 9

2.3.2 Asthma bronchiale .. 9

2.3.3 Silikose .. 10

2.3.4 Exogen allergische Alveolitis (EAA).. 10

2.3.5 Asbestose .. 11

2.3.6 Rhinitis .. 11

2.3.7 Hyperreagibles Bronchialsystem ... 11

2.3.8 Lungenfibrose ... 12

2.3.9 Sick-Building-Syndrom (SBS) ... 12

2.3.10 Lungenemphysem ... 13

2.4 MELDE- BZW. BERUFSKRANKHEITENVERFAHREN .. 13

3 ZIELSETZUNG .. 14

4 PATIENTEN UND METHODEN .. 15

4.1 PATIENTEN ... 15

4.2 VORGEHENSWEISE IM VORFELD ... 15

4.3 METHODIK ... 15

4.4 ERHOBENE PARAMETER: ... 17

5 ERGEBNISSE ... 19

5.1 CHRONISCH OBSTRUKTIVE LUNGENERKRANKUNG (COPD) ... 19

5.2 ASTHMA BRONCHIALE ... 23

5.3 SILIKOSE ... 26

5.4 EXOGEN ALLERGISCHE ALVEOLITIS .. 29

5.5 ASBESTOSE .. 32

5.6 RHINITIS, KONJUNKTIVITIS, SINUSITIS .. 35

5.6.1 Chronische Rhinitis .. 36

5.7 HYPERREAGIBLES BRONCHIALSYSTEM .. 39

5.8 SICK-BUILDING-SYNDROM ... 42

5.9 LUNGENFIBROSE ... 44
5.10 LUNGENEMPHYSEM ... 46

6 DISKUSSION .. 48

6.1 DISKUSSION DER METHODE .. 48

6.2 DISKUSSION DER ERGEBNISSE ... 48

6.2.1 Aufteilung der Patienten in die jeweiligen Krankheitsgruppen .. 49

6.2.2 Erfassung der Risikoberufe ... 49

6.2.3 Berufsgruppen und die damit am häufigsten assoziierten Erkrankungen 52

6.2.4 Darlegung der Gefährdungen und Allergene mit daraus resultierender Diagnostikempfehlung bezüglich der patientenstärksten Krankheits-gruppen........ 54

6.2.5 Analyse der Diskrepanz zwischen Symptombeginn und Diagnosezeitpunkt, sowie der Expositionzeit im Median ... 63

6.2.6 Asbestose und Silikose im Vergleich ... 65

6.2.7 Asthma bronchiale und Chronisch obstruktive Lungenenerkrankung im Vergleich 70

6.2.8 Expositionen innerhalb ausgewählter Berufsgruppen ... 73

7 DANKSAGUNG .. 76

8 LITERATUR ... 77
Abkürzungsverzeichnis

Abb. = Abbildung
AG = Arbeitsgemeinschaft
BK = Berufskrankheit
BSG = Blutkörperchensenkungsgeschwindigkeit
bzw. = beziehungsweise
ca. = circa
COPD = Chronisch obstruktive Lungenkrankung
DGUV = Deutsche Gesetzliche Unfallversicherung
EAA = Exogen allergische Alveolitis
ELISA = Enzymgekoppelter Immunadsorptionstest
FEV₁ = Forciertes exspiratorisches Volumen in 1 Sekunde
GeStoffV = Gefahrenstoffverordnung
HRB = Hyperreagibles Bronchialsystem
HRCT = Hochauflösende Computertomographie
IgE = Immunglobulin E
IgG-AK = Immunglobulin G Antikörper
ILO = International Labour Organisation
KHK = Koronare Herzkrankheit
Kfz = Kraftfahrzeug
KSS = Kühlschmierstoffe
MAK = maximale Arbeitsplatzkonzentration
Max = Maximum
MdE = Minderung der Erwerbsfähigkeit
Min = Minimum
NO₂ = Stickstoffdioxid
OEL = berufliche Expositionslimits
PAK = Polycyclische aromatische Kohlenwasserstoffe
PU = Polyurethan
PVC = Polyvinylchlorid
RAST = Radioallergosorbent Test
SBS = Sick-Building-Syndrom
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGB</td>
<td>Sozialgesetzbuch</td>
</tr>
<tr>
<td>VOC</td>
<td>leichtflüchtige organische Verbindungen</td>
</tr>
<tr>
<td>v.a.</td>
<td>vor allem</td>
</tr>
<tr>
<td>WS-Beschwerden</td>
<td>Wirbelsäulenbeschwerden</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>6MWD</td>
<td>6-Minuten-Gehstrecke</td>
</tr>
</tbody>
</table>
1 Zusammenfassung

Dem für diese Berufsgruppen konsistent erhöhten Risiko für Atemwegserkrankungen sollte nachgegangen werden, besonders im Hinblick auf die Schutzmaßnahmen am Arbeitsplatz vor Ort. Eine genaue Erfassung der qualitativen und quantitativen Expositionen am Arbeitsplatz wird für die Zukunft unabdingbar sein.
Zusammenfassung

1 Summary

Occupational lung diseases are among the most frequent work related diseases. The main goal of this retrospective study was the patient description from the catchment of the institute for occupational health of Homburg/Saar and point out the high-risk professions with symptom prevalence in order to create check lists for an optimised diagnosis. Suggestions for the diagnosis resulting from hazards and allergens should be made. In addition, exposures within the investigated occupations should be analysed to make a screening of the irritants possible.

The most numerous diagnosis of this study is COPD with 56 patients (18%), followed by asthma bronchiale with 49 (16%) and silicosis with 45 patients (14%). The results point out that miners, fitters, motor mechanics and carpenters demonstrate an elevated risk of suffering from occupational lung diseases. In example, motor mechanics sustain most frequently from a COPD, miners from a silicosis. Hairdressers most often undergo an asthma bronchial induced by bleaching material, whereas nurses and secretaries exhibit a sick building syndrome primarily. In general the high-risk professions of this study correspond to data from the literature. However, it could be illustrated, that nail designers also suffer from lung diseases, often asthma bronchiale induced by acrylates, in addition to the known cases of allergic skin reactions. The consistent high-risk professions, particular with regard to the precautions at workplaces, should be pursued. In the future a detailed data acquisition of the qualitative and quantitative exposures at the working places, which are mentioned above, will be inevitable.

Concerning the hazards and allergens within the commonest diseases of this study the data is matching the literature. However, the data analysis of the EAA revealed, that, contrary to the literature, the patients of this study are employed in the motor and fitter industry primarily, eventually caused by a regional profession distribution. These patients were exposed invariably to cooling lubricants, populated by moulds and mould-like growing bacteria.

A comparison of this study with data from the DGUV obtained in 2008 concerning age and gender distribution could show that especially the studied patients with silicosis, asbestosis and exogen allergic alveolitis fall ill distinctable earlier in the median. Whether this development is induced by an increasingly improved prevention, a better health care system or the growing health awareness
must remain unclear. Interestingly, the onset of asthma bronchiale occurred seven years earlier compared to the patients of this study. This is probably due to the fact the number of asthmatics has doubled within the last 20 years.

Furthermore, this study could show that early diagnostics are necessary within the diseases with a long latency, even before the emergence of symptoms, to prevent chronification, long absence from work and therefore growing expenses for the health care system. Preventive medical checkups within the occupations with high risk of suffering from asbestosis, silicosis, COPD and asthma bronchiale should become routine. Due to a difficult context between occupational exposure and discomforts regular medical examinations by company doctors are necessary.

The comparison of the silicosis and asbestosis patients and the evaluation of the data concerning asthma bronchiale and COPD illustrate a similarity concerning the early symptoms and the secondary in a way that it is hard to create check lists for an optimized and specific diagnosis. Additionally, it is challenging to find an association between occupational exposure and illness because of exposure and local independent discomforts and the late onset of the disease (four years after end of exposure). Consequently, a detailed exposure anamnesis including actual and former employments, a list of working procedures, materials and accidental exposures is of increased importance. In order to create check lists following research should include guideline diagnostics especially concerning tests for hazardous substances, possibly in an occupationally specific study to obtain more significant data. Regularly performed health checks, which can already often be observed within many firms, could open up the possibility to create an individual health profile for every employee. Consequently it would be possible to recognize health related changes and specific symptoms, which could be associated with the corresponding exposures in a next step. The mentioned exposures within the chosen occupation groups should display workplace allergens and toxic exposures by a screening of pollutants and can serve to take prevention measures. This study could finally show that the number of occupational lung diseases is still rising and will be found in diversified occupation groups in the future.
2 Einleitung

2.1 Berufsbedingte Atemwegserkrankungen

Bei berufsbedingten Erkrankungen handelt es sich laut BUCHTER et al. (2003) um Erkrankungen, welche beruflich verursacht, teilweise verursacht oder in ihrer Dynamik durch den Beruf verursacht werden.[1] Lungen- und Atemwegserkrankungen machen den Großteil der Berufskrankheiten aus, sie bestimmen etwa 40\% des Berufskrankheitengeschehens.[2]

Berufsbedingte Atemwegserkrankungen können in verschiedenen Schweregraden auftreten und den Patienten nicht nur in seiner Lebensqualität enorm einschränken und zur Aufgabe seines Berufes zwingen, sondern auch zum Tode führen. Fehlzeiten, Berufsunfähigkeit und dadurch bedingte Umschulungen bedeuten für Gesellschaft, Wirtschaft und Gesundheitssystem enorme Kosten.[4,5,6] Größtenteils handelt es sich bei den berufsbedingten Atemwegserkrankungen um chronische Erkrankungen, welche sich bei fehlender Expositionskairenz aggravieren. Erst kürzlich konnten LE MOUAL et al. zeigen, dass die Exposition gegenüber beruflichen Auslösern bei schwerem Asthma Bronchiale einen vielfach deletären Einfluss hat.[7]

Mit etwa 60-80 neuen Erkrankungsfällen pro Jahr zählt die exogen allergische Alveolitis zwar nicht zu den häufigsten pneumologischen Berufskrankheiten, bei steigender Tendenz ist es jedoch auch hier wichtig, geeignete Früherkennungsmaßnahmen zu entwickeln. Aufgrund der großen Vielfalt von Expositionsmöglichkeiten gegenüber organischen Stäuben gestaltet sich die Prävention schwierig.[2] Bei den berufsbedingten anorganischen Pneumokoniosen wie Silikose und Asbestose, verursacht durch Inhalation von Faserstäuben, ist trotz Realisierung von weitreichenden Schutzmaßnahmen, auch zukünftig mit einer erheblichen Zahl von Neuerkrankungen im medizinischen Alltag zu rechnen,
bedingt durch die lange Latenzzeit zwischen Beginn der Exposition und pulmonaler fibrosierender Umbauvorgänge.[1,8,9] P. STIEFELHAGEN beschreibt dieses Phänomen trefflich als eine tickende Zeitbombe.[10]

Prinzipiell sind diese Krankheitsbilder heute vermeidbar, doch es gilt, die dafür verantwortlichen Expositionen an den jeweiligen Arbeitsplätzen aufzudecken und einzuschränken, oder gar ganz zu beseitigen, um so krankheitsbegünstigende Faktoren zu minimieren und durch frühzeitige Diagnosen das Chronifizieren einer Krankheit zu unterbinden.[12] Denn Gesundheit und Wohlbefinden sind nach \textit{Buchter et al.} (2003) langfristige Voraussetzung für Leistungsfähigkeit, Motivation, Qualität der Arbeit und Produktivität.[1]

\subsection{2.2 Berufliche Expositionen}

„Mit dem Inkrafttreten der Gefahrstoffverordnung (GefStoffV) im Jahr 1986 wurden in der Bundesrepublik Deutschland MAK-Werte (maximale Arbeitsplatz-Konzentrationen) rechtsverbindlich festgelegt. Die GefStoffV definiert den MAK-Wert als “Konzentration eines Stoffes in der Luft am Arbeitsplatz, bei der im Allgemeinen die Gesundheit der Arbeitnehmer nicht beeinträchtigt wird”.[...]

Entsprechend werden “Grenzwerte berufsbedingter Exposition” (Occupational Exposure Limits, OEL) zunehmend auch auf europäischer Ebene begründet.“ [13] Die berufliche Exposition gegenüber potenziell atemwegsgefährdenden Stoffen findet sich an zahlreichen Arbeitsplätzen und ist in den jeweiligen Berufen sehr unterschiedlich. Tätigkeiten mit Staubexposition finden sich beispielsweise in der Abfallwirtschaft, im Bergbau, in der Baubranche, in der Landwirtschaft, Glasproduktion, Textilindustrie und Steinbearbeitung, sowie in der Gießerei und Metallverarbeitung.[14] Intensität und Dauer der Einwirkung, sowie der zeitliche Zusammenhang zwischen Exposition und Krankheitsbeginn gilt es zu berücksichtigen.[15]

Die Vielfalt der am Arbeitsplatz vorkommenden Staubarten lässt sich nach folgenden Wirkprinzipien gliedern:

- chemisch irritative Wirkung, wie z. B. durch Formaldehyd, Chlor und nitrose Gase
- allergene Wirkung, wie beispielsweise bei Mehl, Holz, Haaren und Pflanzenteilen
- fibrogene Wirkung, u. a. durch Stäube aus Quarz, Asbest oder Hartmetall[12]
- karzinogene Wirkung, wie z. B. durch Benzpyren oder Nitrosamine

2.3 Definitionen der verschiedenen Krankheitsbilder dieser Studie

2.3.1 Chronisch obstruktive Lungenerkrankung (COPD)

Die COPD ist klinisch durch eine Kombination aus chronischem Husten, gesteigerter Sputumproduktion, Atemnot, Atemwegsobstruktion und eingeschränktem Gasaustausch charakterisiert. Es handelt sich um eine chronische Lungenkrankheit mit permanenter meist progredienter, nach Gabe von Bronchodilatatoren und/oder Glukokortikoiden nicht vollständig reversibler Atemwegsobstruktion, auf dem Boden einer chronischen Bronchitis und/oder eines Lungenemphysems. Die COPD ist die häufigste Erkrankung der Atmungsorgane, sowie die häufigste Ursache des Cor pulmonale und der respiratorischen Insuffizienz. „Ca. 1/3 aller Erwerbsunfähigkeiten sind durch Lungenenerkrankungen verursacht, die Hälfte davon betreffen COPD“. Es ist unklar, ob es sich bei der COPD um eine einzige oder um eine Gruppierung verschiedener Lungenerkrankungen handelt. Sicher ist jedoch die multifaktorielle Genese mit genetischer Komponente.[15,17,18]

2.3.2 Asthma bronchiale

Hierbei handelt es sich um eine chronisch-entzündliche Erkrankung der Atemwege. Infolge variabler und reversibler Bronchialverengung, sowie bronchialer Hyperreagibilität kommt es zu anfallsweisen Auftreten von Atemnot. Asthma bronchiale betrifft ca. 4-5% der Bevölkerung bei insgesamt zunehmender Inzidenz. Bei berufsbedingtem Asthma bronchiale lassen sich zwei Formen unterscheiden. Zum einen das immunologisch bedingte Asthma, welches nach einer ein- bis dreijährigen Latenzzeit gegenüber einem Allergen auftritt (z. B. das Bäckerasthma), zum anderen das irritative Asthma, welches ohne Latenzzeit Minuten bis Stunden nach einmaliger Atemwegsexposition auftritt, häufig ausgelöst durch Chlor, Ammoniakgase und Rauche.[15,19,20]

Asthma bronchiale und COPD gehören heute mit ca. 8 bzw. 5 Millionen Erkrankten zu den Volkskrankheiten. 20.000 Menschen sterben jährlich an einer COPD (statistisches Bundesamt, 2001), welche in 15 Jahren bereits die dritthäufigste Todesursache weltweit sein wird. In Deutschland sterben bis zu 1.000 Personen jährlich an Asthma bronchiale, obwohl sich dies durch eine frühzeitige und konsequente Behandlung weitgehend vermeiden ließe.[21]
2.3.3 **Silikose**

2.3.4 **Exogen allergische Alveolitis (EAA)**
2.3.5 Asbestose
2.3.6 Rhinitis

Bei der Rhinitis allergica handelt es sich um eine symptomatische Überempfindlichkeitsreaktion der Nase, induziert durch eine IgE-vermittelte Entzündung der Nasenschleimhaut infolge Allergenexposition. Dabei handelt es sich entweder um eine saisonale allergische Rhinopathie, verursacht durch Pflanzen- bzw. Schimmelpilzsporen, oder um eine allergische Rhinopathie durch häusliche Allergene wie Hausstaubmilben bzw. berufsbedingt durch Arbeitsplatzallergene wie z. B. Mehll-, Holz- oder Pflanzenstäube.\[25,26]\n
2.3.7 Hyperreagibles Bronchialsystem
Hierunter versteht man eine gesteigerte Reaktionsbereitschaft der Bronchien gegenüber potentiell bronchokonstriktorisch wirkenden exogenen Reizen, wie z. B. Kälte, Änderung von Luftfeuchtigkeit oder Luftdruck, chemische Irritantien und Tabakrauch, welche beim gesunden Bronchialsystem keine Reaktion
hervorrufen, oder gegenüber endogenen Reizen infolge chronischer Entzündungsprozesse durch Infekte, permanente Allergenexposition oder inhalativer Noxen. Als Folge davon kommt es zu Reizhusten, Hyperkrinie und evtl. Dyspnoe oder Laryngospasmus.\[15\]

2.3.8 **Lungenfibrose**

2.3.9 **Sick-Building-Syndrom (SBS)**

2 Einleitung

2.3.10 Lungenemphysem

2.4 Melde- bzw. Berufskrankheitenverfahren

Die sog. „Öffnungsklausel“ (§9, 2 SGB VII) ermöglicht im Ausnahmefall die Anerkennung von Erkrankungen, die noch nicht in der aktuellen Berufskrankheitenliste aufgeführt sind.[30,31,32]
3 Zielsetzung

Schwerpunkte werden gelegt auf:

1. Deskriptive Darstellung des vorselektionierten Patientenkollektivs
2. Erfassung der Risikoberufe für Atemwegserkrankungen innerhalb des vorselektionierten Patientenkollektivs
3. Darlegung der Gefährdungen und Allergene mit daraus resultierender Diagnostikempfehlung
4. Darstellung der Symptomprävalenzen und Anfertigung möglicher Checklisten für Asthma bronchiale, COPD, exogen allergische Alveolitis und Lungenfibrose
5. Expositionen innerhalb ausgewählter Berufsgruppen
4 Patienten und Methoden

4.1 Patienten

4.2 Vorgehensweise im Vorfeld

4.3 Methodik
Das Aktenstudium erfolgte im Zeitraum Ende April bis Ende Juli 2006. Es wurde überprüft, ob bei den Patienten, gemäß der durchgeführten Diagnostik,
Atemwegs- und Lungenerkrankungen vorliegen. War dies der Fall, wurden diese erfasst und ausgewertet. Dabei wurde wie folgt verfahren:
4.4 Erhobene Parameter:

Die folgende Tabelle zeigt anhand eines Patientenbeispiels alle in dieser Studie erhobenen Parameter auf.

Tabelle 1: Patientenbeispiel

<table>
<thead>
<tr>
<th>Name</th>
<th>Geschlecht</th>
<th>Geburtsdatum</th>
<th>Alter bei Vorstellung</th>
<th>Datum der Vorstellung</th>
<th>Beschwerden</th>
<th>Hauptdiagnose</th>
<th>Diagnostik</th>
<th>Nebendiagnose</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>m</td>
<td>06.05.1931</td>
<td>73</td>
<td>30.06.2004</td>
<td>Atemnot, Auswurf, Wirbelsäulenbeschwerden</td>
<td>berufsbefindliche Silikose</td>
<td>Bodyplethysmographie</td>
<td>Hypertonie, Herzinsuffizienz WS-Syndrom, Lärmschwerhörigkeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Differentialdiagnose</th>
<th>Histologie</th>
<th>Alter zum Diagnosezeitpunkt</th>
<th>Erkrankungszeit</th>
<th>Latenzzeit</th>
<th>Beruf</th>
<th>Tätigkeit</th>
<th>Stoffe</th>
<th>Anwendung</th>
<th>Expositionszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td>73</td>
<td>58</td>
<td>42</td>
<td>Steinmetz</td>
<td>Steinmetz</td>
<td>Sandstein, Quarzstaub, Schwarzpulver</td>
<td>Sandsteinbearbeitung (Meisseln, Schleifen)</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expositionsermittlung</th>
<th>Pack-years</th>
<th>Additives Risiko</th>
<th>Überweisung durch…</th>
<th>Verlauf</th>
<th>Gutachten ja/nein</th>
<th>Anzeige einer Berufskrankheit</th>
<th>Zuständige Berufsgenossenschaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht bekannt</td>
<td>Bis 1996: 18</td>
<td>Nikotin</td>
<td>Innere Medizin V (Uni-Klinik Homburg)</td>
<td>progredient</td>
<td>nein</td>
<td>4101, 2108, 2109, 2110, 2301, 4107</td>
<td>Südwestl. Bau-BG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rückmeldung der Berufsgenossenschaft</th>
<th>Vorstellung beim Betriebsarzt</th>
<th>Präventionsempfehlung durch das Institut für Arbeitsmedizin</th>
</tr>
</thead>
<tbody>
<tr>
<td>nein</td>
<td>Nein</td>
<td>Keine, Patient ist seit 1991 berentet</td>
</tr>
</tbody>
</table>
5 Ergebnisse

Nach der Durchsicht von 2097 Patientenakten wurden 313 Patienten in diese Studie aufgenommen, 28 dieser Patienten ließen sich nicht eindeutig einem der Krankheitsbilder zuordnen, so dass 285 Patienten wie folgt den verschiedenen Atemwegs- und Lungenerkrankungen zugeteilt werden konnten (siehe Abb. 1).

Abb. 1: Anzahl der Patienten in Bezug auf die diagnostizierten Atemwegserkrankungen

<table>
<thead>
<tr>
<th>Krankheit</th>
<th>Anzahl der Patienten</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD</td>
<td>56</td>
</tr>
<tr>
<td>Asthma bronchi ale</td>
<td>49</td>
</tr>
<tr>
<td>Silikose</td>
<td>45</td>
</tr>
<tr>
<td>EAA</td>
<td>33</td>
</tr>
<tr>
<td>Asbestosen</td>
<td>28</td>
</tr>
<tr>
<td>Rhin., Konj., Sin.</td>
<td>25</td>
</tr>
<tr>
<td>HRB</td>
<td>20</td>
</tr>
<tr>
<td>Lungenfibrose</td>
<td>19</td>
</tr>
<tr>
<td>SBS</td>
<td>6</td>
</tr>
<tr>
<td>Lungenemphysem</td>
<td>4</td>
</tr>
<tr>
<td>Rest</td>
<td>28</td>
</tr>
</tbody>
</table>

5.1 Chronisch obstruktive Lungenerkrankung (COPD)

Bei 56 Patienten, fünf Frauen und 51 Männern, davon insgesamt 42 Rauchern, wurde eine Chronisch obstruktive Lungenerkrankung verifiziert.

Abb. 2: Erhobene Parameter bei Patienten mit Chronisch obstruktiver Lungenerkrankung

Tabelle 2: Tätigkeiten und Expositionsprofile der Patienten mit Chronisch obstruktiver Lungenerkrankung

<table>
<thead>
<tr>
<th>Tätigkeiten</th>
<th>Personenzahl</th>
<th>Expositionsprofil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schweißer, Schlosser, Kfz-Mechaniker</td>
<td>20</td>
<td>Metallstäube, Schweißrauche, KSS, Lösungsmittel, Polyethylen</td>
</tr>
<tr>
<td>Bergbau Untertage</td>
<td>9</td>
<td>silikogener Staub, Asbest</td>
</tr>
<tr>
<td>Kunststoffverarbeitung</td>
<td>3</td>
<td>Polyvinylchlorid (PVC), Polystyrol</td>
</tr>
</tbody>
</table>
Wie bereits im Patientenbeispiel aufgezeigt gehört zu den erhobenen Parametern unter anderem die am Patienten durchgeführte Diagnostik. Die Häufigkeit und Art der Diagnostik wurde separat für jedes Krankheitsbild erhoben und folgend graphisch in Form eines Diagrammes dargestellt. In Abbildung 3 wird diese für die Chronisch obstruktive Lungenerkrankung, das patientenstärkste Krankheitsbild dieser Studie, absolut und prozentual dargestellt. Die diagnostischen

<table>
<thead>
<tr>
<th>Berufsträger</th>
<th>Anzahl</th>
<th>Gefährdungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maler und Lackierer</td>
<td>3</td>
<td>Farben, Lacke, Tenside</td>
</tr>
<tr>
<td>Schreiner, Sägewerkarbeiter</td>
<td>3</td>
<td>Holzstäube, Holzschutzmittel</td>
</tr>
<tr>
<td>Dreher</td>
<td>3</td>
<td>Ölnebel, KSS, Hartmetallstäube</td>
</tr>
<tr>
<td>Landwirt</td>
<td>3</td>
<td>Stäube, Endotoxine, tierische Allergene</td>
</tr>
<tr>
<td>Kokerei</td>
<td>3</td>
<td>Teer, Rauchgase</td>
</tr>
<tr>
<td>Arbeiter in Goldfabrik, Goldschmied</td>
<td>2</td>
<td>Quarzstäube, Quecksilber, Cadmium</td>
</tr>
<tr>
<td>Gießer</td>
<td>2</td>
<td>Lösungsmittel, Metallstäube</td>
</tr>
<tr>
<td>Schuhfabrikant</td>
<td>2</td>
<td>Imprägnierspray (aliphatische Kohlenwasserstoffe, Propan, Butan, Isopropanol, Fluorcarbonharze), Lederfarbe</td>
</tr>
<tr>
<td>Galvaniseur</td>
<td>1</td>
<td>Aerosole, Tenside, Phosphorsäure, Epoxidharze</td>
</tr>
<tr>
<td>Chemo- und Verfahrenstechniker</td>
<td>1</td>
<td>Stäube, PVC, Kleber</td>
</tr>
<tr>
<td>Fliesenleger</td>
<td>1</td>
<td>Zementstäube, Kleber</td>
</tr>
<tr>
<td>Maurer</td>
<td>1</td>
<td>Asbest, polyzyklische aromatische Kohlenwasserstoffe (PAK)</td>
</tr>
<tr>
<td>Schornsteinfeger</td>
<td>1</td>
<td>Ruß, Vanadium</td>
</tr>
<tr>
<td>Frisör</td>
<td>1</td>
<td>Bleich- und Färbemittel, Haarsprays</td>
</tr>
<tr>
<td>Edelsteinschleifer</td>
<td>1</td>
<td>anorganische Stäube</td>
</tr>
<tr>
<td>Krankenschwester</td>
<td>1</td>
<td>Desinfektionsmittel</td>
</tr>
</tbody>
</table>
Parameter werden im Folgenden für jedes Krankheitsbild speziell noch einmal aufgeführt und bedürfen daher keiner weiteren Erläuterung.

Abb. 3: Diagnostik bei Patienten mit Chronisch obstruktiver Lungenerkrankung

Abbildung 4 gibt einen anteilmäßigen Überblick über die bei den Patienten mit Chronisch obstruktiver Lungenerkrankung aufgetretenen Symptome. Wie bei den bisherigen Abbildungen wird auch die Darstellung der angegebenen Symptome für jedes Krankheitsbild individuell aufgeführt und daher nicht weiter erläutert.

Abb. 4: Symptome der Patienten mit Chronisch obstruktiver Lungenerkrankung
5.2 Asthma bronchiale

An Asthma bronchiale litten weitere 49 Patienten des Kollektivs, 22 Frauen und 27 Männer, davon insgesamt 19 Raucher.

Abb. 5: Erhobene Parameter bei Patienten mit Asthma bronchiale

Tabelle 3: Tätigkeiten und Expositionsprofile der Patienten mit Asthma bronchiale

<table>
<thead>
<tr>
<th>Tätigkeiten</th>
<th>Personenzahl</th>
<th>Expositionsprofil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frisör/in</td>
<td>5</td>
<td>Friseurallergene, Haarfestiger, Haarsprays, Blondier- und Färbemittel</td>
</tr>
<tr>
<td>Schlosser</td>
<td>4</td>
<td>Metallstäube, Lösungsmittel, Asbest</td>
</tr>
<tr>
<td>Kfz-Mechaniker</td>
<td>4</td>
<td>KSS, Lösungsmittel, Metallstäube, Lacke</td>
</tr>
<tr>
<td>Schreiner</td>
<td>4</td>
<td>Holzstäube</td>
</tr>
<tr>
<td>Berufsbildung</td>
<td>Anzahl</td>
<td>Gefährdungsbildung</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Maler und Lackierer</td>
<td>4</td>
<td>Lacke, Farben, Lösungsmittel</td>
</tr>
<tr>
<td>Bäcker</td>
<td>3</td>
<td>Mehlstaub, Allergene, Schimmelpilze</td>
</tr>
<tr>
<td>Elektriker/Elektromonteur</td>
<td>2</td>
<td>Chrom, Nickel, Epoxidharz, Polymer, Kalk</td>
</tr>
<tr>
<td>Stahlgerüstbauer/Betonsanierer</td>
<td>2</td>
<td>Betonersatzmittel (Methacrylatharze, Silikat), Zementstaub</td>
</tr>
<tr>
<td>Maurer</td>
<td>2</td>
<td>silikogene Stäube, Isocyanate</td>
</tr>
<tr>
<td>Verkäufer/in</td>
<td>2</td>
<td>Schimmelpilze, Mehlstäube (in Bäckerei)</td>
</tr>
<tr>
<td>Raumpfleger/in</td>
<td>2</td>
<td>Desinfektionsmittel, Tenside, feuchte Luft</td>
</tr>
<tr>
<td>Gießer</td>
<td>1</td>
<td>Rauche, Stäube, Asbest</td>
</tr>
<tr>
<td>Dreher</td>
<td>1</td>
<td>KSS, Öle, Kaltentfettungsmittel</td>
</tr>
<tr>
<td>Schädlingsbekämpfer</td>
<td>1</td>
<td>Pestizide: Pyrethrum, Kieselgure</td>
</tr>
<tr>
<td>Lehrerin</td>
<td>1</td>
<td>Innenraumbelastung: Holzschutzmittel</td>
</tr>
<tr>
<td>Metzger</td>
<td>1</td>
<td>Buchenholzrauch</td>
</tr>
<tr>
<td>Möbelverpacker/in</td>
<td>1</td>
<td>Papierstäube, Innenraumallergene</td>
</tr>
<tr>
<td>Fotograf/in</td>
<td>1</td>
<td>Ammoniakdämpfe, Formaldehyd, Phenol</td>
</tr>
<tr>
<td>Zahntechnikerin</td>
<td>1</td>
<td>Gipsstaub, Kunststoffdämpfe</td>
</tr>
<tr>
<td>Schuhsohlenfabrikant/in</td>
<td>1</td>
<td>Isocyanate</td>
</tr>
<tr>
<td>Servicekraft im Café</td>
<td>1</td>
<td>Ofendämpfe, Passivrauch</td>
</tr>
<tr>
<td>Zerspannungsmechaniker</td>
<td>1</td>
<td>Amine, KSS</td>
</tr>
<tr>
<td>Kunststoffherstellung</td>
<td>1</td>
<td>PVC, Lösungsmittel</td>
</tr>
<tr>
<td>Umweltmedizinischer Fall</td>
<td>1</td>
<td>Wohngifte: Teppichkleber (D941), häusliche Allergene</td>
</tr>
<tr>
<td>Angestellter im Callcenter</td>
<td>1</td>
<td>unbestimmte Allergene</td>
</tr>
</tbody>
</table>
Welche Diagnostik bei den Patienten im Einzelnen durchgeführt wurde, wird in Abbildung 6 gezeigt.

Abb. 6: Diagnostik bei Patienten mit Asthma bronchiale

<table>
<thead>
<tr>
<th>Diagnostik</th>
<th>Personen</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodyplethysmographie</td>
<td>28</td>
<td>38%</td>
</tr>
<tr>
<td>CO-Diffusionskapazität</td>
<td>12</td>
<td>17%</td>
</tr>
<tr>
<td>BSG</td>
<td>7</td>
<td>10%</td>
</tr>
<tr>
<td>Provokationsmedikation</td>
<td>7</td>
<td>10%</td>
</tr>
<tr>
<td>Ruhespirographie</td>
<td>5</td>
<td>7%</td>
</tr>
<tr>
<td>Residualvolumenmessung</td>
<td>4</td>
<td>6%</td>
</tr>
<tr>
<td>Peak-Flow-Messung</td>
<td>3</td>
<td>4%</td>
</tr>
<tr>
<td>RAST</td>
<td>3</td>
<td>4%</td>
</tr>
<tr>
<td>toskologische Analyse</td>
<td>3</td>
<td>4%</td>
</tr>
</tbody>
</table>

Die Symptome der Patienten mit Asthma bronchiale werden anteilmäßig in Abbildung 7 dargestellt.

Abb. 7: Symptome bei Patienten mit Asthma bronchiale

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Personen</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belastungsdyspnoe</td>
<td>22</td>
<td>26%</td>
</tr>
<tr>
<td>trockener Reizhusten</td>
<td>20</td>
<td>24%</td>
</tr>
<tr>
<td>Ruhedyspnoe</td>
<td>15</td>
<td>18%</td>
</tr>
<tr>
<td>retrosternales Brennen</td>
<td>7</td>
<td>8%</td>
</tr>
<tr>
<td>Husten mit Auswurf</td>
<td>6</td>
<td>7%</td>
</tr>
<tr>
<td>Rötung der Augen, Niesen</td>
<td>5</td>
<td>6%</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td>4</td>
<td>5%</td>
</tr>
<tr>
<td>Brechreiz, Schnupfen</td>
<td>3</td>
<td>4%</td>
</tr>
<tr>
<td>behinderte Nasenatmung</td>
<td>2</td>
<td>2%</td>
</tr>
<tr>
<td>Nasenbluten</td>
<td>1</td>
<td>1%</td>
</tr>
</tbody>
</table>
5.3 Silikose

Bei 45 Patienten ausschließlich männlichen Geschlechts wurde eine Silikose diagnostiziert. 69% dieser Männer waren Raucher.

Abb. 8: Erhobene Parameter bei Patienten mit Silikose

Tabelle 4: Tätigkeiten und Expositionsprofile der Patienten mit Silikose

<table>
<thead>
<tr>
<th>Tätigkeit</th>
<th>Personenzahl</th>
<th>Expositionsprofil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bergbau Untertage</td>
<td>33</td>
<td>Quarzstaub</td>
</tr>
<tr>
<td>Steinmetz</td>
<td>3</td>
<td>Quarzstaub, Sandstein</td>
</tr>
<tr>
<td>Kristallschleifer</td>
<td>2</td>
<td>Quarzstaub</td>
</tr>
<tr>
<td>Gießer</td>
<td>2</td>
<td>Quarzstaub</td>
</tr>
<tr>
<td>Gussputzer</td>
<td>2</td>
<td>Eisenstaub, Quarzstaub, Lösungsmittel</td>
</tr>
<tr>
<td>Mineur</td>
<td>1</td>
<td>Quarzstaub</td>
</tr>
</tbody>
</table>
5 Ergebnisse

<table>
<thead>
<tr>
<th>Fachberufe</th>
<th>Anzahl</th>
<th>Expositionsursachen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dreher</td>
<td>1</td>
<td>kobalthaltiges Sinterhartmetall, Quarzstaub</td>
</tr>
<tr>
<td>Bodenverleger</td>
<td>1</td>
<td>Quarzstaub</td>
</tr>
</tbody>
</table>

Abbildung 9 gibt einen anteilmäßigen Überblick über die durchgeführte Diagnostik.

Abb. 9: Diagnostik bei Patienten mit Silikose

<table>
<thead>
<tr>
<th>Diagnostik</th>
<th>Personen</th>
<th>Anteil (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodyplethysmographie</td>
<td>7</td>
<td>40%</td>
</tr>
<tr>
<td>CO-Diffusionskapazität</td>
<td>3</td>
<td>18%</td>
</tr>
<tr>
<td>Ruhespirographie</td>
<td>3</td>
<td>18%</td>
</tr>
<tr>
<td>Blutgasanalyse</td>
<td>2</td>
<td>12%</td>
</tr>
<tr>
<td>Residualvolumenmessung</td>
<td>2</td>
<td>12%</td>
</tr>
</tbody>
</table>

Anzahl der Personen absolut und in Prozent

Abbildung 10 zeigt die angegeben Symptome der Patienten mit Silikose in anteilmäßiger Reihenfolge.

Abb. 10: Symptome der Patienten mit Silikose

<table>
<thead>
<tr>
<th>Symptome</th>
<th>Personen</th>
<th>Anteil (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruhedyspnoe</td>
<td>21</td>
<td>25%</td>
</tr>
<tr>
<td>Husten mit Auswurf</td>
<td>17</td>
<td>21%</td>
</tr>
<tr>
<td>Belastungsdyspnoe</td>
<td>13</td>
<td>16%</td>
</tr>
<tr>
<td>Gewichtsverlust</td>
<td>6</td>
<td>8%</td>
</tr>
<tr>
<td>trockener Husten</td>
<td>6</td>
<td>8%</td>
</tr>
<tr>
<td>thorakales Engefühl</td>
<td>5</td>
<td>6%</td>
</tr>
<tr>
<td>Hämoptysen</td>
<td>4</td>
<td>5%</td>
</tr>
<tr>
<td>Nachtschweiß</td>
<td>4</td>
<td>5%</td>
</tr>
<tr>
<td>Fieber</td>
<td>2</td>
<td>3%</td>
</tr>
<tr>
<td>Kribbelpärlähesien</td>
<td>2</td>
<td>3%</td>
</tr>
</tbody>
</table>

Anzahl der Personen absolut und in Prozent
Abbildung 11 gibt einen anteilmäßigen Überblick über die aufgezeigten Nebendiagnosen der Patienten mit Silikose.

Abb. 11: Nebendiagnosen bei Patienten mit Silikose

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Anzahl</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertonie</td>
<td>18</td>
<td>36%</td>
</tr>
<tr>
<td>Koronare Herzkrankheit</td>
<td>10</td>
<td>20%</td>
</tr>
<tr>
<td>WS-Syndrom</td>
<td>6</td>
<td>12%</td>
</tr>
<tr>
<td>Lärmschwerhörigkeit</td>
<td>6</td>
<td>12%</td>
</tr>
<tr>
<td>Hypercholesterinämie</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>Hyperurikämie</td>
<td>5</td>
<td>10%</td>
</tr>
</tbody>
</table>

Anzahl der Patienten **absolut** und **in Prozent**
5.4 Exogen allergische Alveolitis

Bei 33 Patienten, 8 weiblichen und 25 männlichen Geschlechts, davon insgesamt 22 Raucher, wurde eine exogen allergische Alveolitis diagnostiziert.

Abb. 12: Erhobene Parameter der Patienten mit exogen allergischer Alveolitis

Tabelle 5: Tätigkeiten und Expositionsprofile der Patienten mit exogen allergischer Alveolitis

<table>
<thead>
<tr>
<th>Tätigkeiten</th>
<th>Personenzahl</th>
<th>Expositionsprofil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heizungsbau, Installation,</td>
<td>8</td>
<td>Kühlwasser, Schweißrauch, KSS, Metallstäube, Stickoxide, Phosgen</td>
</tr>
<tr>
<td>Schweißer, Schlosser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landwirt, Gärtner</td>
<td>4</td>
<td>Schimmelpilze</td>
</tr>
<tr>
<td>Schuster</td>
<td>3</td>
<td>Leder und Klebstoffe</td>
</tr>
<tr>
<td>Drucker</td>
<td>3</td>
<td>Farb- und Lösungsmittel</td>
</tr>
<tr>
<td>Arbeit in Bekleidungsboutique</td>
<td>2</td>
<td>Staub</td>
</tr>
</tbody>
</table>
5 Ergebnisse

<table>
<thead>
<tr>
<th>Beruf / Tätigkeit</th>
<th>Wert</th>
<th>Allergene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forstarbeiter, Schreiner</td>
<td>2</td>
<td>Holzstäube, Schimmel</td>
</tr>
<tr>
<td>Taubenzüchter</td>
<td>2</td>
<td>Taubenkot und Federn</td>
</tr>
<tr>
<td>Werkzeugschleifer/Maschinenbau</td>
<td>2</td>
<td>Schleifwasseraerosole, KSS, Dämpfe, Rauch</td>
</tr>
<tr>
<td>Fräser</td>
<td>1</td>
<td>Kupfer, Eisen, Kunststoffe, KSS</td>
</tr>
<tr>
<td>Student</td>
<td>1</td>
<td>Schimmelpilze</td>
</tr>
<tr>
<td>Otoplastik</td>
<td>1</td>
<td>Acrylate, Phthalate</td>
</tr>
<tr>
<td>Arzt</td>
<td>1</td>
<td>Tierhaare bzw. tierische Allergene</td>
</tr>
<tr>
<td>Imbissverkäufer</td>
<td>1</td>
<td>Öldämpfe</td>
</tr>
<tr>
<td>Pfleger</td>
<td>1</td>
<td>Schimmelpilze</td>
</tr>
<tr>
<td>Dreher</td>
<td>1</td>
<td>Polierpaste (Aluminiumoxid gebunden in Fetten und Wachsen)</td>
</tr>
<tr>
<td>Folienverarbeitung</td>
<td>1</td>
<td>Kunststoffstäube, Isocyanate, Pyrolyseprodukte</td>
</tr>
<tr>
<td>Maurer</td>
<td>1</td>
<td>Asbest, Steinstäube</td>
</tr>
</tbody>
</table>

Die weiterführende Diagnostik ist anteilmäßig in Abbildung 13 dargestellt.

Abb. 13: Diagnostik bei Patienten mit exogen allergischer Alveolitis

Anzahl der Patienten **absolut** und **in Prozent**
Die angegeben Symptome der Patienten mit exogen allergischer Alveolitis sind in Abbildung 14 dargestellt.

Abb. 14: Symptome bei Patienten mit exogen allergischer Alveolitis

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Anzahl</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyspnoe</td>
<td>25</td>
<td>38%</td>
</tr>
<tr>
<td>Husten</td>
<td>20</td>
<td>30%</td>
</tr>
<tr>
<td>morgendlicher Auswurf</td>
<td>6</td>
<td>9%</td>
</tr>
<tr>
<td>Gewichtsverlust</td>
<td>3</td>
<td>4%</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td>3</td>
<td>4%</td>
</tr>
<tr>
<td>Leistungsschwächen</td>
<td>3</td>
<td>4%</td>
</tr>
<tr>
<td>Müdigkeit</td>
<td>3</td>
<td>4%</td>
</tr>
</tbody>
</table>

Anzahl der Patienten **absolut** und **in Prozent**
5 Ergebnisse

5.5 Asbestose

Eine Asbestose konnte bei 28 ausschließlich männlichen Patienten verifiziert werden. 23 dieser Patienten (82%) waren Raucher.

Abb. 15: Erhobene Parameter bei Patienten mit Asbestose

Im Median wurde die Diagnose fünf Jahre nach Erkrankungsbeginn und 21,5 Jahre nach Expositionsende gestellt. Die mediane Expositionzeit beträgt 19,5 Jahre, die maximale 46 Jahre und die minimale ein Jahr. Das maximale Alter bei Symptombeginn, sowie das maximale Alter zum Diagnosezeitpunkt betragen jeweils 74 Jahre.

Tabelle 6: Tätigkeiten und Expositionsprofile der Patienten mit Asbestose

<table>
<thead>
<tr>
<th>Tätigkeiten</th>
<th>Personenzahl</th>
<th>Expositionsprofil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heizungsbau und Sanitär</td>
<td>4</td>
<td>Asbest, Dichlordifluormethan, Trichlorethylen</td>
</tr>
<tr>
<td>Bergbau Untertage</td>
<td>4</td>
<td>Asbest, Quarzstaub</td>
</tr>
<tr>
<td>KfZ-Mechaniker</td>
<td>4</td>
<td>Asbest, Isocyanate, Acrylate, Lacke, Lösungsmittel, Benzin, Schweißrauche, Kohlenmonoxid, Schimmelpilze</td>
</tr>
<tr>
<td>Schlosser</td>
<td>4</td>
<td>Asbest</td>
</tr>
</tbody>
</table>
5 Ergebnisse

<table>
<thead>
<tr>
<th>Beruf</th>
<th>Personalstärke</th>
<th>Exposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektriker</td>
<td>3</td>
<td>Asbest</td>
</tr>
<tr>
<td>Maurer</td>
<td>3</td>
<td>Asbest, Stäube, Isocyanate</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>3</td>
<td>Asbest</td>
</tr>
<tr>
<td>Fernmeldeingenieur</td>
<td>2</td>
<td>Asbest, Aluminium</td>
</tr>
<tr>
<td>Wasseraufbereiter in einer Papierfabrik</td>
<td>1</td>
<td>Asbestfaserstaub</td>
</tr>
<tr>
<td>Asbestmattenherstellung</td>
<td>1</td>
<td>Asbestfaserstaub</td>
</tr>
<tr>
<td>Gießer</td>
<td>1</td>
<td>Asbeststäube, Quarzstaub</td>
</tr>
<tr>
<td>Stukkateur</td>
<td>1</td>
<td>Asbest</td>
</tr>
<tr>
<td>LKW-Fahrer</td>
<td>1</td>
<td>Asbest</td>
</tr>
<tr>
<td>kaufmännischer Ange-stellter (Ausgabe von Asbesthandschuhen)</td>
<td>1</td>
<td>Asbest, Lacke, Lösungsmittel</td>
</tr>
<tr>
<td>Fensterbau</td>
<td>1</td>
<td>Asbestfaserstäube, Lösungsmittel</td>
</tr>
</tbody>
</table>

Die durchgeführte Diagnostik zeigt sich in Abbildung 16 zu folgenden Anteilen.

Abb. 16: Diagnostik bei Patienten mit Asbestose

Abbildung 17 zeigt anteilmäßig die angegebenen Symptome der Patienten, welche an einer Asbestose erkrankt sind.
Abb. 17: Symptome bei Patienten mit Asbestose

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Anzahl</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belastungsdysspnoe</td>
<td>12</td>
<td>28%</td>
</tr>
<tr>
<td>Ruhe dyspnoe</td>
<td>10</td>
<td>24%</td>
</tr>
<tr>
<td>Husten mit Auswurf</td>
<td>8</td>
<td>20%</td>
</tr>
<tr>
<td>Husten</td>
<td>3</td>
<td>8%</td>
</tr>
<tr>
<td>Gewichtsverlust</td>
<td>3</td>
<td>8%</td>
</tr>
<tr>
<td>retrosternales Brennen</td>
<td>2</td>
<td>6%</td>
</tr>
<tr>
<td>Beinödem</td>
<td>2</td>
<td>6%</td>
</tr>
</tbody>
</table>

Anzahl der Personen absolut und in Prozent

Abbildung 18 gibt einen anteilmäßigen Überblick über die häufigsten Nebendiagnosen.

Abb. 18: Nebendiagnosen bei Patienten mit Asbestose

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Anzahl</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterielle Hypertonie</td>
<td>13</td>
<td>35%</td>
</tr>
<tr>
<td>WS- oder Gelenkbeschwerden</td>
<td>7</td>
<td>19%</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>6</td>
<td>16%</td>
</tr>
<tr>
<td>Adipositas</td>
<td>5</td>
<td>14%</td>
</tr>
<tr>
<td>Fettleber</td>
<td>3</td>
<td>8%</td>
</tr>
<tr>
<td>Koronare Herzkrankeit</td>
<td>3</td>
<td>8%</td>
</tr>
</tbody>
</table>

Anzahl der Personen absolut und in Prozent

Kontakt zu Asbest hatten die Patienten in Form von Tätigkeiten mit Asbestplatten, Asbestzementrohren, -dichtungen, -schnüre, -schutzkleidung, -handschuhen, sowie beim Brennerwechsel und dem Arbeiten mit asbesthaltigem Putz, Brems- und Kupplungsbelägen (unter anderem auch im Rahmen der Arbeit an der Schrämmaschine).
5.6 Rhinitis, Konjunktivitis, Sinusitis

Abb. 19: Absolute Anzahl der Patienten mit chronischer Rhinitis, Konjunktivitis, Anosmie, Sinusitis und Laryngitis
5 Ergebnisse

5.6.1 Chronische Rhinitis
Hierbei handelt es sich um ein Patientenkollektiv von 20 Personen, 10 Frauen und 10 Männer, davon insgesamt 11 Raucher. In 13 Fällen ist die chronische Rhinitis allergisch, in den restlichen sieben Fällen toxisch bedingt.

Abb. 20: Erhobene Parameter der Patienten mit chronischer Rhinitis

Im Median wurde die Diagnose ein Jahr nach Erkrankungsbeginn gestellt, die Patienten waren sechs Jahre den verschiedenen Irritantien exponiert, davon zwei Jahre nach Erkrankungsbeginn. Die maximale Expositionsduer beträgt 34 Jahre, die Minimale ein Jahr. Das mediane Erkrankungs- sowie Diagnosealter beträgt 30 bzw. 31 Jahre, die Patienten dieser Krankheitsgruppe gehören somit zu den Jüngsten dieser Studie.

Tabelle 7: Tätigkeiten und Expositionsprofile der Patienten mit chronischer Rhinitis

<table>
<thead>
<tr>
<th>Tätigkeiten</th>
<th>Personenzahl</th>
<th>Expositionsprofil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krankenpfleger/in</td>
<td>2</td>
<td>Latex</td>
</tr>
<tr>
<td>Sekretär/in</td>
<td>2</td>
<td>Raumklima, Zigarettenrauch, Druckeremissionen</td>
</tr>
<tr>
<td>Maschinenarbeiter</td>
<td>1</td>
<td>Innenraumallergene</td>
</tr>
<tr>
<td>Bankangestellte</td>
<td>1</td>
<td>Schimmelpilze, Klimaanlage</td>
</tr>
<tr>
<td>Arzthelfer/in</td>
<td>1</td>
<td>Druckeremissionen</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Arbeit an einer Verpackungsmaschine</td>
<td>1</td>
<td>Pyrolyseprodukte, aromatische Aldehyde</td>
</tr>
<tr>
<td>Herstellung von medizinischen Produkten</td>
<td>1</td>
<td>Cyanacrylat-Kleber, Cyclohexanol, Butan, Kaltentfetter</td>
</tr>
<tr>
<td>Schlosser</td>
<td>1</td>
<td>Schweißbrauche, Metalloxide, Eisen, Stickstoffdioxid</td>
</tr>
<tr>
<td>Holzbau</td>
<td>1</td>
<td>Holzstäube, Lösungsmittel</td>
</tr>
<tr>
<td>Frisörin</td>
<td>1</td>
<td>Haarfestiger, Bleich- u. Färbemittel</td>
</tr>
<tr>
<td>Heizer, Dreher</td>
<td>1</td>
<td>Kühlschmierstoffe</td>
</tr>
<tr>
<td>Gießer, Sattler</td>
<td>1</td>
<td>Pferdehaare, Rinderepithelien</td>
</tr>
<tr>
<td>Siebdruckergehilfin</td>
<td>1</td>
<td>Farben, Lacke, Lösungsmittel, Kunststoffdämpfe</td>
</tr>
<tr>
<td>Biomüllkompostierung</td>
<td>1</td>
<td>Biomüllstäube</td>
</tr>
</tbody>
</table>

Abbildung 21 und 22 geben einen Überblick über die durchgeführte Diagnostik und die aufgetretenen Symptome bei Patienten mit chronischer Rhinitis.

Abb. 21: Durchgeführte Diagnostik an Patienten mit chronischer Rhinitis

<table>
<thead>
<tr>
<th>Methode</th>
<th>Anzahl</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodyplethysmographie</td>
<td>8</td>
<td>36%</td>
</tr>
<tr>
<td>Ruhespirographie</td>
<td>4</td>
<td>18%</td>
</tr>
<tr>
<td>Peak-Flow-Messung</td>
<td>3</td>
<td>13%</td>
</tr>
<tr>
<td>Provokationsmediaktion</td>
<td>3</td>
<td>13%</td>
</tr>
<tr>
<td>allergologische Laboranalyse</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>Arbeitsplatzbegehung</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>Blutgasanalyse</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>BSG</td>
<td>1</td>
<td>4%</td>
</tr>
<tr>
<td>Residualvolumenmessung</td>
<td>1</td>
<td>4%</td>
</tr>
</tbody>
</table>

Anzahl der Patienten **absolut und in Prozent**
Abb. 22: Symptome bei Patienten mit chronischer Rhinitis

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Anzahl</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augenränder</td>
<td>8</td>
<td>22%</td>
</tr>
<tr>
<td>Dyspnoe</td>
<td>8</td>
<td>22%</td>
</tr>
<tr>
<td>Niesattacken</td>
<td>8</td>
<td>22%</td>
</tr>
<tr>
<td>Husten</td>
<td>5</td>
<td>14%</td>
</tr>
<tr>
<td>trockene Schleimhäute</td>
<td>3</td>
<td>8%</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td>2</td>
<td>6%</td>
</tr>
<tr>
<td>Fieber</td>
<td>1</td>
<td>3%</td>
</tr>
<tr>
<td>Müdigkeit</td>
<td>1</td>
<td>3%</td>
</tr>
</tbody>
</table>

Anzahl der Patienten **absolut** und **in Prozent**
5 Ergebnisse

5.7 Hyperreagibles Bronchialsystem

Bei insgesamt 20 Patienten, 10 Frauen und 10 Männern, davon vier Rauchern wurde ein hyperreagibles Bronchialsystem diagnostiziert.

Abb. 23: Erhobene Parameter der Patienten mit hyperreagiblem Bronchialsystem

Die Diagnose wurde im Median 1,5 Jahre nach Erkrankungsbeginn gestellt, die Expositionszeit beläuft sich auf 7,5 Jahre, davon 3,5 Jahre über den Erkrankungsbeginn hinaus. Die maximale Expositionszeit beträgt 32 Jahre, die Minimale ein Jahr.

Tabelle 8: Tätigkeiten und Exposionsprofile der Patienten mit hyperreagiblem Bronchialsystem

<table>
<thead>
<tr>
<th>Tätigkeiten</th>
<th>Personenzahl</th>
<th>Exposionsprofil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frisörin</td>
<td>3</td>
<td>Haarfestiger/Haarsprays, Bleich- und Färbemittel</td>
</tr>
<tr>
<td>Reinigungskraft im Schwimmbad,</td>
<td>3</td>
<td>Putzmittel, feucht-heiße Luft</td>
</tr>
<tr>
<td>Raumpfleger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schlosser</td>
<td>2</td>
<td>Ethylacrylat, Metallstäube, KSS, Schweißrauche, Eisen, Chrom, Kohlenmonoxygen, NO₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Profession</th>
<th>Wert</th>
<th>Arbeitsstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Büroangestellter</td>
<td>2</td>
<td>Toner, Ozon, Staub, trockene Luft</td>
</tr>
<tr>
<td>Angestellte im Hygieneinstitut</td>
<td>1</td>
<td>Lösungsmittel</td>
</tr>
<tr>
<td>Keramikträgerherstellung</td>
<td>1</td>
<td>Keramikfasern, Lacke, Kohlenmonoxid, Lösungsmittel</td>
</tr>
<tr>
<td>Zahntechnikerin</td>
<td>1</td>
<td>Stäube, reizende und allergene Arbeitsstoffe (Methacrylate)</td>
</tr>
<tr>
<td>Schleiferei</td>
<td>1</td>
<td>Schleifwasseraerosole, Ölnebel, Schimmelpilze</td>
</tr>
<tr>
<td>Industriemechaniker</td>
<td>1</td>
<td>Lösungsmittel, Tenside, Salzsäure, Kohlenmonoxid, Kohlendioxid, nitrose Gase</td>
</tr>
<tr>
<td>Schreiner</td>
<td>1</td>
<td>Holz, Lösungsmittel</td>
</tr>
<tr>
<td>Ölfeldtechniker</td>
<td>1</td>
<td>Lösungsmittel, Schmierstoffe, Gase</td>
</tr>
<tr>
<td>Heizöl- und Baustoff-verarbeitung</td>
<td>1</td>
<td>Heizölaerosole, Asbest, Stäube</td>
</tr>
<tr>
<td>Feinkostabteilung</td>
<td>1</td>
<td>Schimmelpilze, Allergene</td>
</tr>
<tr>
<td>Stahlkocher</td>
<td>1</td>
<td>verschiedene Metalle, Rauche, Hitze, Gase</td>
</tr>
</tbody>
</table>

5 Ergebnisse

Abb. 24: Durchgeführte Diagnostik an Patienten mit hyperreagiblen Bronchialsystem

<table>
<thead>
<tr>
<th>Diagnostik</th>
<th>Anzahl</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodyplethysmographie</td>
<td>18</td>
<td>46%</td>
</tr>
<tr>
<td>Provokationsmedikation</td>
<td>4</td>
<td>11%</td>
</tr>
<tr>
<td>CO-Diffusionskapazität</td>
<td>4</td>
<td>11%</td>
</tr>
<tr>
<td>Ruhespirometrie</td>
<td>3</td>
<td>8%</td>
</tr>
<tr>
<td>Residualvolumenmessung</td>
<td>2</td>
<td>5%</td>
</tr>
<tr>
<td>Peak-Flow-Messung</td>
<td>2</td>
<td>5%</td>
</tr>
<tr>
<td>Blutgasanalyse</td>
<td>2</td>
<td>5%</td>
</tr>
<tr>
<td>spezifische IgG-AK-Messung</td>
<td>1</td>
<td>3%</td>
</tr>
<tr>
<td>RAST</td>
<td>1</td>
<td>3%</td>
</tr>
<tr>
<td>Arbeitsschutzbeobachtung</td>
<td>1</td>
<td>3%</td>
</tr>
</tbody>
</table>

Anzahl der Patienten absolut und in Prozent

Abb. 25: Symptome bei Patienten mit hyperreagiblen Bronchialsystem

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Anzahl</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyspnöe</td>
<td>14</td>
<td>30%</td>
</tr>
<tr>
<td>Husten</td>
<td>12</td>
<td>26%</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td>4</td>
<td>9%</td>
</tr>
<tr>
<td>Augenirritationen</td>
<td>4</td>
<td>9%</td>
</tr>
<tr>
<td>Schwindel</td>
<td>3</td>
<td>7%</td>
</tr>
<tr>
<td>Hautirritationen</td>
<td>3</td>
<td>7%</td>
</tr>
<tr>
<td>Niesattacken</td>
<td>2</td>
<td>4%</td>
</tr>
<tr>
<td>Müdigkeit</td>
<td>2</td>
<td>4%</td>
</tr>
<tr>
<td>Geruchsempfindungsstörung</td>
<td>2</td>
<td>4%</td>
</tr>
</tbody>
</table>

Anzahl der Patienten absolut und in Prozent
5.8 Sick-Building-Syndrom

Abb. 26: Erhobene Parameter der Patienten mit Sick-Building-Syndrom

Die Diagnose wurde im Median zwei Jahre nach Erkrankungsbeginn gestellt, die Expositionszeit beläuft sich auf 7,5 Jahre, davon 3,5 Jahre über den Erkrankungsbeginn hinaus. Die maximale Expositionszeit beträgt 13 Jahre, die Minimale ein Jahr.

Tabelle 9: Tätigkeiten und Expositionsprofile der Patienten mit einem Sick-Building-Syndrom

<table>
<thead>
<tr>
<th>Tätigkeiten</th>
<th>Personenzahl</th>
<th>Expositionsprofil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationshilfe, Zimmerreinigung, Krankenpfleger</td>
<td>3</td>
<td>Desinfektionsmittel, trockene Luft</td>
</tr>
<tr>
<td>Sekretärin</td>
<td>2</td>
<td>Kohlendioxid, Schimmelpilze</td>
</tr>
<tr>
<td>Sachbearbeiterin bei einem Bücherverlag</td>
<td>1</td>
<td>Laserdruckeremissionen, Schimmelpilze</td>
</tr>
</tbody>
</table>
Bei fünf der sechs Patienten wurde folgende Diagnostik durchgeführt:

Abb. 27: Diagnostik bei Patienten mit Sick-Building-Syndrom

<table>
<thead>
<tr>
<th>Diagnostik</th>
<th>Anzahl</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSG</td>
<td>3</td>
<td>33%</td>
</tr>
<tr>
<td>Ruhespirographie</td>
<td>3</td>
<td>33%</td>
</tr>
<tr>
<td>Bodyplethysmographie</td>
<td>2</td>
<td>22%</td>
</tr>
<tr>
<td>toxisologische Analyse</td>
<td>1</td>
<td>11%</td>
</tr>
</tbody>
</table>

5 Ergebnisse

5.9 Lungenfibrose

Bei insgesamt 19 Patienten, sechs Frauen und 13 Männer, ließ sich die Diagnose einer Lungenfibrose stellen, wobei 13 Patienten einen Nikotinabusus betrieben.

Abb. 28: Erhobene Parameter bei Patienten mit Lungenfibrose

Im Median wurde die Diagnose 13 Jahre nach Erkrankungsbeginn und fünf Jahre nach Expositionsende gestellt. Die Patienten waren 25 Jahre diversen Noxen ausgesetzt, die maximale Expositionszeit beträgt 40 Jahre, die Minimale ein Jahr.

Tabelle 10: Tätigkeiten und Expositionsprofile der Patienten mit Lungenfibrose

<table>
<thead>
<tr>
<th>Tätigkeiten</th>
<th>Personenzahl</th>
<th>Expositionsprofil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bergmann</td>
<td>4</td>
<td>Steinkohlestaub</td>
</tr>
<tr>
<td>Dreher, Schleifer</td>
<td>3</td>
<td>Aluminium, Stahl, KSS, Terpentin</td>
</tr>
<tr>
<td>Schreiner</td>
<td>2</td>
<td>Stäube, PU, PAKs, Asbest</td>
</tr>
<tr>
<td>Schweißer</td>
<td>2</td>
<td>Chrom, Nickel, Kohle, Quarz</td>
</tr>
<tr>
<td>Gummiwerk</td>
<td>2</td>
<td>Gummi- und Pyrolyseprodukte, Isocyanate</td>
</tr>
<tr>
<td>Schuhindustrie</td>
<td>1</td>
<td>Leder, Textilien, Kleber</td>
</tr>
<tr>
<td>Paketzusteller</td>
<td>1</td>
<td>Papierstaub, Schimmelpilze</td>
</tr>
<tr>
<td>Glasmacher</td>
<td>1</td>
<td>Staub, Isocyanate, Lösungsmittel</td>
</tr>
<tr>
<td>Maler</td>
<td>1</td>
<td>Farben, Lacke</td>
</tr>
</tbody>
</table>
In Abbildung 29 und 30 ist dargestellt, welche Diagnostik bei den Patienten mit Lungenfibrose durchgeführt wurde und welche Symptome aufgetreten sind.

Abb. 29: Diagnostik bei Patienten mit Lungenfibrose

<table>
<thead>
<tr>
<th>Diagnostik</th>
<th>Anzahl</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodyplethysmographie</td>
<td>3</td>
<td>25%</td>
</tr>
<tr>
<td>Blutgasanalyse</td>
<td>3</td>
<td>25%</td>
</tr>
<tr>
<td>IgG-AK-Bestimmung</td>
<td>3</td>
<td>25%</td>
</tr>
<tr>
<td>CO-Diffusionskapazität</td>
<td>1</td>
<td>8%</td>
</tr>
<tr>
<td>Residualvolumenmessung</td>
<td>1</td>
<td>8%</td>
</tr>
<tr>
<td>Ruhespirographie</td>
<td>1</td>
<td>8%</td>
</tr>
</tbody>
</table>

Anzahl der Personen **absolut** und **in Prozent**

Abb. 30: Symptome bei Patienten mit Lungenfibrose

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Anzahl</th>
<th>Prozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belastungsdyspnoe</td>
<td>10</td>
<td>31%</td>
</tr>
<tr>
<td>Ruhedyspnoe</td>
<td>7</td>
<td>22%</td>
</tr>
<tr>
<td>Husten mit Auswurf</td>
<td>6</td>
<td>19%</td>
</tr>
<tr>
<td>trockener Auswurf</td>
<td>6</td>
<td>19%</td>
</tr>
<tr>
<td>retrosternale Schmerzen</td>
<td>2</td>
<td>6%</td>
</tr>
<tr>
<td>Andere wie Müdigkeit, Fieber o.ä.</td>
<td>1</td>
<td>3%</td>
</tr>
</tbody>
</table>

Anzahl der Personen **absolut** und **in Prozent**
5 Ergebnisse

5.10 Lungenemphysem

Bei vier Patienten, zwei Frauen und zwei Männern, wurde ein Lungenemphysem diagnostiziert. Zwei dieser Patienten rauchten.

Abb. 31: Erhobene Parameter bei Patienten mit Lungenemphysem

Die Diagnose wurde im Median zeitgleich mit dem Erkrankungsbeginn gestellt, die Expositionszeit beträgt sich auf 26 Jahre, davon ein Jahr über den Erkrankungsbeginn hinaus. Die maximale Expositionszeit beträgt 43 Jahre, die Minimale sechs Jahre.

Tabelle 11: Tätigkeiten und Expositionsprofile der Patienten mit Lungenemphysem

<table>
<thead>
<tr>
<th>Tätigkeiten</th>
<th>Personenzahl</th>
<th>Expositionsprofil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schuhfertigerin</td>
<td>2</td>
<td>Klebstoffe, Stäube, Aerosole</td>
</tr>
<tr>
<td>Bergmann Untertage</td>
<td>1</td>
<td>Steinkohlestaub</td>
</tr>
<tr>
<td>Lötarbeiterin</td>
<td>1</td>
<td>Lötdämpfe, Rauche, flüssige Kunststoffe</td>
</tr>
</tbody>
</table>
Aufgrund der geringen Patientenzahl wurde auch hier auf Darstellungen im Diagramm verzichtet. Luftnot und Husten, teilweise mit Auswurf, zählten zu den Hauptsymptomen. Bei einem Patienten (25%) wurden eine Bodyplethysmographie und eine Blutgasanalyse durchgeführt.
6 Diskussion

Das Ziel der vorliegenden Studie ist zum einen, das Patientenkollektiv mit berufsbegleitenden Atemwegserkrankungen, stammend aus dem Einzugsgebiet des Instituts für Arbeitsmedizin Homburg, zu beschreiben. Zum anderen sollen die diversen Schadstoffexpositionen innerhalb der Berufsgruppen ermittelt und Risikoberufe aufgedeckt werden, um so ein gezieltes Screening der Gefahrenstoffe zu ermöglichen.

Die bei den Patienten aufgetretenen Frühsymptome sollen dazu dienen, Checklisten für eine optimale Diagnostik zu erstellen, und diese mit den bisher üblichen Standards zu vergleichen.

6.1 Diskussion der Methode

Wie oben bereits erwähnt, handelt es sich im vorliegenden Fall um eine retrospektive Studie, und somit um eine von der Gegenwart ausgehende Untersuchung der Vorgeschichte. Nachteile einer retrospektiven Studie sind die schlecht kontrollierbare Patientenselektion, und die Tatsache, dass Patientengruppen schwer vergleichbar sind. Die Vorteile dieser Studienform sind zum einen, dass sie zeitlich und im Umfang unbegrenzt und explorativ vielfältig gestaltbar sind, zum anderen sind sie ethisch nicht umstritten und ubiquitär anwendbar.

6.2 Diskussion der Ergebnisse

Da nach Durchsicht der Akten eine Diskrepanz zwischen Symptombeginn und Diagnosezeitpunkt auffiel, erfolgt dazu eine genaue Analyse.

Ein Vergleich zwischen Asbestose und Silikose, sowie zwischen Asthma bronchiale und COPD soll zeigen, ob sich die patientenstärksten Krankheitsbilder beispielsweise hinsichtlich der Symptome gegeneinander ausreichend differenzieren lassen. So wären eine gezielte weiterführende Diagnostik und
Früherkennungsmaßnahmen mittels sich nach Frühsymptomen richtenden Checklisten möglich.

6.2.1 Aufteilung der Patienten in die jeweiligen Krankheitsgruppen
Mit 18% am häufigsten vertreten waren Patienten mit Chronisch obstruktiver Lungenerkrankung. An zweiter Stelle mit 16% stand die Diagnose Asthma bronchiale, gefolgt von der Silikose mit 14%. Bei 11% der Patienten konnte eine exogen allergische Alveolitis diagnostiziert werden, an Asbestose waren 9% der Studienpatienten erkrankt.

6.2.2 Erfassung der Risikoberufe
Nach Zusammenschau der Ergebnisse wird deutlich, dass sich die am häufigsten ausgeübten Berufe bei den Patienten fast aller Krankheitsgruppen wiederfinden. Patienten mit einer chronischen Rhinitis waren meist Büroangestellte (10%) oder Krankenpfleger (10%), ein hyperreagibles Bronchialsystem zeigte sich vorrangig bei Frisören (15%), Büroangestellten (15%) oder Raumpflegern (15%). Patienten mit einer exogen allergischen Alveolitis waren vornehmlich Schlosser (21%) oder Landwirte (12%) von Beruf, wohingegen die Patienten mit einem Sick-Building-Syndrom, ähnlich wie bei der chronischen Rhinitis, im Bereich der Krankenpflege (50%) tätig waren.
Die Patienten mit einer Chronisch obstruktiven Lungenerkrankung übten an erster Stelle den Beruf des Schlossers (25%) aus, gefolgt vom Bergbau Untertage (16%), während die Asthma bronchiale Patienten vorrangig als Frisör (10%) tätig waren, gefolgt von Schlosser (8%), Schreiner (8%) und Maler/Lackierer (8%). In der kleinen Patientengruppe der Lungenemphysematiker waren 2 Patienten Schuhfabrikanten (50%). Sowohl bei der Lungenfibrose (21%) als auch bei der Silikose (73%) zeigte sich der Bergbau Untertage führend, gefolgt vom Dreher (16%) bei der Lungenfibrose und vom Steinmetz (7%) bei der Silikose. Bei der Asbestose zeigten sich die Patienten sehr gleichmäßig auf die verschiedenen Berufsgruppen verteilt, vornehmlich in Bereichen wie Kfz-Mechanik (14%), Heizungsbau (14%), Bergbau Untertage (14%), Schlosser (14%) und Maurer (11%).
Es wird somit deutlich, dass sich die Risikoberufe dieser Studie nicht eindeutig bestimmten Krankheitsbildern zuordnen lassen, bzw. die einzelnen Krankheitsbilder nicht ausschließlich durch das Expositionsprofil einer bestimmten Tätigkeit bedingt sind, sondern heterogen verteilt in fast allen Branchen vorkommen. Lediglich bei der Silikose zeigt sich ein signifikanter Bezug zum Bergbau Untertage und der damit verbundenen silikogenen Feinstaubexposition.

Abb. 32: Darstellung der Risikoberufe dieser Studie

![Diagramm der Risikoberufe dieser Studie]

Insgesamt waren 49 Patienten (17%) Untertage im Bergbau beschäftigt, 30 Patienten (11%) übten den Beruf des Schlossers und 10 Patienten (4%) den des Kfz-Mechanikers aus.

9 Patienten (3%) waren von Beruf Schreiner, 8 Patienten (3%) waren als Maurer oder Steinmetz tätig und ebenfalls 8 Patienten (3%) gingen der Tätigkeit als Frisör nach. Als Schuster/Schuhfabrikant waren sieben Patienten (2%) tätig. Es handelt sich somit vorrangig um handwerkliche Berufe und Branchen, bei denen die Staubexposition am Arbeitsplatz entweder durch den Umgang mit staubenden oder staubförmigen Materialien hervorgerufen wird, oder die Stäube durch das jeweilige Handwerk erst entstehen wie z.B. Bergbau, Naturstein-, Kies- und Sandindustrie, Metallverarbeitung, Holz-, Papier- und Kunststoffindustrie. Weiterhin bemerkenswert ist, dass den Beruf des Schlossers, sowie die Tätigkeit...

Die Risikoberufe dieser Studie decken sich mit denen aus der Literatur. Neu hingegen ist die Tatsache, dass Nageldesigner/innen neben den bereits bekannten allergischen Hautreaktionen zunehmend auch an Atemwegsbeschwerden leiden. In dieser Studie fanden sich drei Nageldesignerin/innen, bei denen eine Lungenfibrose oder allergische Atemwegsbeschwerden, bei Verdacht auf eine Typ IV-Sensibilisierung gegenüber Acrylaten, diagnostiziert werden konnte. Acrylaten werden in einer großen Produktvielfalt als Lösungsmittel, Kleber, Farben, Porzellannägeln oder in Form von Methacrylaten beim Zahnarzt oder Orthopäden in Form von Füllungen oder Prothesen verwendet.\(^{34}\) Der genaue Sensibilisierungsmechanismus ist unbekannt. Es konnte jedoch ein Kausalzusammenhang zwischen der Acrylatexposition und den Symptomen von Rhinitis und Asthma bronchiale mittels Peak-flow-Messungen unter Arbeitsplatzbedingungen und fern vom Arbeitsplatz gestellt werden. Neben bronchialer Hyperreaktivität, zeigten sich bei den getesteten Patienten Beeinträchtigungen des Atemstromes und ein Anstieg der Eosinophilen im Sputum.\(^{35}\) Seit 1985 wurden mehrere Fälle von Acrylat-induziertem Asthma bronchiale berichtet, wobei es sich vorrangig um zahnmedizinisches Personal handelte.\(^{36}\)

Infolge der Latenzzeit zwischen Exposition und Auftreten der Symptome wird von einem Sensibilisierungsmechanismus ausgegangen.\(^{37}\) Aufgrund der physikalischen Eigenschaften der Acrylaten ist es jedoch nicht möglich, einen Prick-Test oder eine spezifische IgE-Messung durchzuführen.\(^{38}\) Als diagnostische Methode der Wahl gilt daher weiterhin der Arbeitsplatz simulierende bronchiale Provokationstest mit anschließend messbarer reduzierter Einsekundenkapazität (FEV1) als Parameter für eine Obstruktion der unteren (intrathorakalen) Atemwege und Erhöhung der Eosinophilen im Sputum.\(^{35}\)

Aufgrund der steigenden Nachfrage und Anzahl der ausgebildeten Nageldesigner/innen ist in Zukunft mit einer steigenden Anzahl an berufsbedingten

6.2.3 Berufsgruppen und die damit am häufigsten assoziierten Erkrankungen

In der folgenden Tabelle ist noch einmal aufgeführt, welche Erkrankungen in den jeweiligen Berufsgruppen am häufigsten diagnostiziert wurden. In Klammern die Personenanzahl absolut.

| Tabelle 12: Darstellung der Berufsgruppen und damit assoziierten Erkrankungen |
|---------------------------------|---|
| Kfz-Mechaniker, Schlosser, Schweißer | COPD (20), Asbestose (8), Asthma bronchiale (8), EAA (8), Lungen-fibrose (2), Hyperreagibles Bronchial-system (2), chronische Rhinitis (1) |
| Bergbau Untertage | Silikose (33), COPD (9), Lungen-fibrose (4), Asbestose (4), Lungenemphysem (1) |

52
<table>
<thead>
<tr>
<th>Beruf</th>
<th>Erkrankungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schreiner, Holzverarbeitung</td>
<td>Asthma bronchiale (4), COPD (3), Lungenfibrose (2), EAA (2), chronische Rhinitis (1), Hyperreagibles Bronchialsystem (1)</td>
</tr>
<tr>
<td>Dreher, Schleifer</td>
<td>Lungenfibrose (3), COPD (3), chronische Rhinitis (1), EAA (3), Asthma bronchiale (1), Hyperreagibles Bronchialsystem (1), Silikose (1)</td>
</tr>
<tr>
<td>Frisör</td>
<td>Asthma bronchiale (5), Hyperreagibles Bronchialsystem (3), COPD (1), chronische Rhinitis (1)</td>
</tr>
<tr>
<td>Landwirt</td>
<td>EAA (4), COPD (3)</td>
</tr>
<tr>
<td>Sekretär</td>
<td>Sick-Building-Syndrom (2), Hyperreagibles Bronchialsystem (2), chronische Rhinitis (2)</td>
</tr>
<tr>
<td>Krankenpfleger</td>
<td>Sick-Building-Syndrom (2), chronische Rhinitis (2), Lungenfibrose (1), COPD (1), EAA (1)</td>
</tr>
<tr>
<td>Maler und Lackierer</td>
<td>Asthma bronchiale (4), COPD (3)</td>
</tr>
<tr>
<td>Raumpfleger</td>
<td>Hyperreagibles Bronchialsystem (3), Asthma bronchiale (2), Sick-Building-Syndrom (1)</td>
</tr>
<tr>
<td>Gießer</td>
<td>Silikose (2), COPD (2), Asbestose (1), Asthma bronchiale (1), chron. Rhinitis (1)</td>
</tr>
<tr>
<td>Maurer</td>
<td>Asbestose (3), Asthma bronchiale (2), COPD (1), EAA (1)</td>
</tr>
<tr>
<td>Heizungsbau und Sanitär</td>
<td>Asbestose (4)</td>
</tr>
<tr>
<td>Bäcker</td>
<td>Asthma bronchiale (3)</td>
</tr>
<tr>
<td>Steinmetz</td>
<td>Silikose (3)</td>
</tr>
<tr>
<td>Schuster</td>
<td>EAA (3), COPD (2), Lungenemphysem (2), Asthma bronchiale (1), Lungenfibrose (1)</td>
</tr>
</tbody>
</table>

6.2.4 Darlegung der Gefährdungen und Allergene mit daraus resultierender Diagnostikempfehlung bezüglich der patientenstärksten Krankheitsgruppen

gleichbleibender Altersverteilung. Nach Angaben des Statistischen Bundesamts Deutschland hat die Zahl der berufstätigen Frauen in den letzten 25 Jahren erheblich zugenommen. Im Jahr 2003 waren 47% aller Erwerbstätigen in Deutschland Frauen, was den oben genannten Anstieg erklären könnte.

Für die Erkennung, Beurteilung und das Management der COPD ist die Spirometrie essentiell und sollte nur von geschultem Personal durchgeführt werden. Eine dabei gemessene erniedrigte FEV₁ (Forced Expiratory Volume in 1 second) von < 80% trotz viermaliger Inhalation eines kurz wirksamen beta₂-Agonisten, lässt eine COPD als Diagnose sehr wahrscheinlich werden. Die Spirometrie sollte dabei vor und 20 Minuten nach Anwendung des Bronchodilatators durchgeführt werden. Je größer die Verbesserung der FEV₁ nach oben genannter Inhalation, desto stärker die Vermutung, dass stattdessen Asthma bronchiale als Diagnose vorliegt. Eine weitere Methode der Diagnosestellung bei Patienten mit schweren obstruktiven Ventilationsstörungen ist die orale Steroideinnahme über 14 Tage mit anschließender Lungenfunktionsmessung. 40 mg Prednisolon werden dabei über 14 Tage täglich verabreicht und die FEV₁ sowie die 6-Minuten-Gehstrecke (6MWD) vor und nach Testende gemessen. Eine Verbesserung der FEV₁ auf >80% und eine damit verbundene Verbesserung der 6MWD bestätigt die Diagnose eines Asthma bronchiale. Geringfügige bis ausbleibende Verbesserungen der FEV₁ hingegen unterstreichen eine irreversible Atemwegsobstruktion und lassen eine COPD vermuten.

Die bekannten Risikoberufe für Asthma bronchiale zeigten sich mit den in der Literatur bekannten Berufen wie Schweißer, Bäcker, Frisör, Maler und Lackierer, Bauarbeiter, Krankenpfleger und Forstarbeiter übereinstimmend. Die Feststellung, dass aktives Rauchen das Risiko an Asthma bronchiale zu erkranken verdoppelt, lässt sich durch einen 39%igen Raucheranteil bei den Asthma bronchiale Patienten in unserer Studie unterstreichen. Der in dieser Studie angegebene Frauenanteil der an Asthma bronchiale erkrankten Patienten mit 44% zeigte sich mit den Daten zu den anerkannten Berufskrankheiten 2008 mit einem Verlust von 3% beinahe übereinstimmend. Interessanterweise zeigte sich jedoch im Vergleich zu unseren Daten ein um 7 Jahre deutlich jüngeres Erkrankungsalter. Mitentscheidend dafür ist vermutlich, dass sich die Zahl der Astmatiker...
innerhalb der letzten 20 Jahre mehr als verdoppelt hat.54 In Studien konnte weiterhin gezeigt werden, dass 90\% aller Fälle von berufsbedingtem Asthma bronchiale vom hypersensitiven Typ stammen, charakterisiert durch eine Latenzzeit zwischen Exposition gegenüber einer Substanz bei der Arbeit und der Entwicklung von Symptomen.55 Auch diese Aussage konnte anhand unserer erhobenen Daten belegt werden, wobei die mediane Latenzzeit in dieser Studie bei 4,5 Jahren liegt.

10–15\% der im Erwachsenenalter neu aufgetretenen Fälle von Asthma bronchiale sind durch berufliche Expositionen bedingt.56,57 25\% der erwachsenen Asthmatiker sind durch ihre Arbeit in irgendeiner Weise beeinflusst.58 Klinische Erfahrungen jedoch zeigten, dass nur wenige Fälle von Asthma bronchiale den strengen Kriterien einer berufsbedingten Erkrankung genügen.59 Leider gibt es bisher keinen überzeugenden Nachweis, dass die Inzidenz von berufsbedingtem Asthma bronchiale in den letzten Jahren gefallen ist.56 Es zeigte sich in Studien, dass eine Reduktion oder Entfernung der Expositionen der effektivste Schritt seitens des Arbeitgebers ist, um das Erkrankungsrisko zu senken.60 Der Einsatz von weniger gefährlichem Material sollte gefördert und ein Wechsel zu einer weniger inhalierbaren Form des Materials durchgesetzt werden. Abgedichtete Arbeitsprozesse, eine Bereitstellung von adäquaten Absaugvorrichtungen und eine schützende Ausrüstung für jeden Arbeitnehmer sollten zur Grundausstattung eines jeden Arbeitsplatzes gehören.61 An vielen Arbeitsplätzen gibt es bereits Fragebögen zu den Symptomen sowie Lungenfunktionsmessungen bei jedoch fragwürdiger Sensitivität und Spezifität.62 Serielle endexspiratorische Peak-flow-Messungen bei und fern von der Arbeit stellen eine brauchbare Methode dar, um ein berufsbedingtes Asthma bronchiale zu bestätigen oder auszuschließen und Veränderungen in der Schwere der Symptomatik in Abhängigkeit zur beruflichen Exposition darzustellen. Es ist jedoch zu beachten, dass diese Messungen von Technik abhängig und manipulierbar sind. Spezifische inhalative Provokationstests kommen daher dem Gold-Standard der Diagnostik des berufsbedingten Asthma bronchiales am nächsten.56 Das Risiko, eine ernste Reaktion mit beispielsweiser Verlegung der Atemwege hervorzurufen, sollte dabei jedoch nicht außer Acht gelassen werden. Die Interpretation eines solchen inhalativen Provokationstestes ist nicht einfach. Ein negatives Testergebnis
vermag die Diagnose eines berufsbedingten Asthma bronchiales nicht auszuschließen. Es zeigen sich beispielsweise falsch negative Ergebnisse, wenn der Arbeitnehmer am Arbeitsplatz mehr als einem Agens ausgesetzt ist und beim Test die falschen asthmagenen Stoffe verwendet werden.63

Die aktuellen Diagnosekriterien der EAA nach Lacasse und Mitarbeiter gelten wie folgt:
1. Antigen-Exposition
2. Expositions- und/oder zeitabhängige Symptome
3. Spezifische IgG-Antikörper im Serum (ELISA)
4. Sklerophonie (Knisterrasseln) \(^\text{[67]}\)
5. Röntgen-Zeichen der EAA, ggf. im HRCT (diffuse milchglasartige Trübung aller Lungenabschnitte bei akuter EAA und in den mittleren und apikalen Lungenabschnitten bei chronischer EAA) \(^\text{[68]}\)
6. \(pO_2\) in Ruhe und/oder bei Belastung erniedrigt oder eine eingeschränkte Diffusionskapazität (DCO) \(^\text{[69]}\)

Es liegt eine EAA vor, wenn alle sechs Kriterien erfüllt sind. Fehlt eines der oben genannten Kriterien, kann dieses durch eines der folgenden ersetzt werden:

- Lymphozytose in der bronchoalveolären Lavage \(^\text{[70,71]}\)
- Histopathologischer Befund der Lunge, welcher mit einer EAA zu vereinbaren ist (die Trias Masson-Körperchen bzw. BOOP-Reaktion, intramurale Alveolitis und Granulome entsprechen dem Vollbild einer EAA) \(^\text{[72]}\)
- Positiver Karenztest
- Positive inhalative Expositions- oder Provokationstestung (Re-Exposition am Arbeitsplatz oder realitätsähnliche Provokation durch Inhalation der verdächtigen Substanzen unter stationären Bedingungen wenn keine Kontraindikationen in Form von \(pO_2 < 60\) mmHg, Vitalkapazität und Totalkapazität < 50% des Sollwerts oder anderer schwerer Begleiterkrankungen) \(^\text{[73,74]}\)

CAPLAN beschrieb 1953 das sog. „rheumatische Pneumokoniosesyndrom“, definiert als chronisch rheumatoide Arthritis, in Verbindung mit einem charakteristischen Lungenröntgenbefund bei walisischen Arbeitern im Steinkohle-Bergbau. Als Lungenveränderungen wurden, v. a. im Lungenmantel vor-
kommen, zahlreiche von 0,5 bis 5 cm durchmessende Rundherde beschrieben, welche sich teilweise gleichzeitig mit einer rheumatóiden Arthritis, teilweise aber auch zeitlich davon unabhängig entwickeln. Laut Norbert Thumb entwickeln 30% der Patienten die chronische Polyarthritis erst Monate bis Jahre nach Auftreten der pulmonalen Symptome.\[81\] Grundlage für die Erkenntnis des rheumatischen Pneumokoniosesyndroms war die Untersuchung von ca. 14000 Bergleuten, wobei Caplan in 51 Fällen dieses Syndrom diagnostizieren konnte.

Die Ursache für das gleichzeitige Auftreten von Lungenrundherden bei Staubbildenerkrankungen und der rheumatóiden Arthritis ist bis heute noch ungeklärt, und auch in der aktuellen Literatur wird dieses Thema noch kontrovers diskutiert. Der immunologischen Genese, bei zusätzlich entsprechender Exposition (Quarz, Asbest, Mischstaub oder andere organische Substanzen) ist man sich jedoch sicher (Rheumafaktor in mehr als 80% der Fälle nachweisbar).\[83\]

Das Caplan-Syndrom wurde nicht nur im Kohlebergbau, sondern auch in der asbestverarbeitenden Industrie, bei Gießereiarbeitern und Goldmineuren, sowie in der keramischen Industrie beobachtet.

Durch die verbesserten Arbeitsbedingungen und Schutzmaßnahmen von Bergleuten Untertage ist das Caplan-Syndrom zunehmend aus dem klinischen Alltag verschwunden. Bisher ist weltweit nur ein Fall CT-morphologisch aufgearbeitet worden. Dabei fanden sich mehrere bis zu 5 cm große, vorwiegend subpleurale Knotenbildungen, bei nur wenig silikotischen Veränderungen der Lunge.\[84\]

Auch bei den Asbestosepatienten unserer Studie zeigt ein Vergleich mit den Daten der DGUV aus dem Jahr 2008 ein um 18 Jahre jüngeres Erkrankungsalter bei gleichbleibend verschwindend geringem Frauenanteil.\[49\] Auch hier ist
vermutlich eine verbesserte Prävention, sowie das in Deutschland 1993 eingeführte Asbestoseverbot maßgeblich an dieser Entwicklung beteiligt.

Grad I: Radiologisch nicht sichtbare Verdickung von Alveolarsepten und Bronchiolen (Minimalasbestose)

Grad II: radiologisch erkennbare pathologische Veränderungen

Grad III: radiologisch erkennbarer Fibrosierungsprozess

Grad IV: radiologisch erkennbare Honigwabenlunge

Mittels HRCT können asbestverursachte Lungenfibrosierungen sensitiver erfasst werden als durch eine Thoraxübersichtsaufnahme. Sogar einzelne Lobuli können zugeordnet werden.\[88\] Es ist jedoch zu beachten, dass die mittels HRCT nachgewiesenen Parenchymveränderungen zwar typisch aber nicht pathognomonisch für eine Asbestose sind. Die konkrete Asbestfaserstaubexposition muss daher immer mit einbezogen werden. Die Durchführung von Low-dose-Volumen-HRCT-Untersuchungen zur Reduktion der Strahlendosis gilt auch für Vorsorgeuntersuchungen bei gefährdeten Personengruppen als rechtfertigende Indikation. Als Rechtfertigung gilt dabei die Klärung eines Berufskrankheitenverdachts aufgrund einer vorher durchgeführten Thoraxübersichtsaufnahme.\[89,90\]

Folgende Meldekriterien gilt es dabei nach der ILO zu berücksichtigen:

- Diffuse Pleuraverdickung (Pleuradicke ≥ 3 mm)
- Unverkalkte Plaques mit ≥ 2 cm Länge ≥ 3 mm Dicke
- Verkalkte Plaques
- Pleuraerguss oder Zustände nach Pleuritis (Hyalinosis complicata)

Bei geringen Fibrosierungszeichen werden Auskultationsbefunde und Lungenfunktion berücksichtigt.\[76\]
6.2.5 Analyse der Diskrepanz zwischen Symptombeginn und Diagnosezeitpunkt, sowie der Expositionszeit im Median

Wie zu Beginn der Diskussion bereits erwähnt, fiel bei Erhebung der Daten eine Diskrepanz zwischen Symptombeginn und Diagnosezeitpunkt auf, welche im Folgenden analysiert wird.

Tabelle 13: Darstellung der Zeit zwischen Erkrankungsbeginn und Diagnose, sowie der Expositionszeit insgesamt und über den Erkrankungsbeginn hinaus

<table>
<thead>
<tr>
<th>Krankheitsbild</th>
<th>Zeit zwischen Erkrankungsbeginn und Diagnose</th>
<th>Expositionszeit insgesamt</th>
<th>Expositionszeit über den Erkrankungsbeginn hinaus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhinitis</td>
<td>1 Jahr</td>
<td>6 Jahre</td>
<td>2 Jahre</td>
</tr>
<tr>
<td>Hyperreagibles Bronchialsystem</td>
<td>1,5 Jahre</td>
<td>7,5 Jahre</td>
<td>3,5 Jahre</td>
</tr>
<tr>
<td>Exogen allergische Alveolitis</td>
<td>6 Jahre</td>
<td>19 Jahre</td>
<td>2 Jahre</td>
</tr>
<tr>
<td>Sick-Building-Syndrom</td>
<td>2 Jahre</td>
<td>7,5 Jahre</td>
<td>3,5 Jahre</td>
</tr>
<tr>
<td>Asthma bronchiale</td>
<td>3 Jahre</td>
<td>7 Jahre</td>
<td>2,5 Jahre</td>
</tr>
<tr>
<td>Lungen-emphysem</td>
<td>0 Jahre</td>
<td>26 Jahre</td>
<td>1 Jahr</td>
</tr>
</tbody>
</table>
Tabelle 14: Darstellung der Zeit zwischen Erkrankungsbeginn und Diagnose, sowie der Expositionszeit insgesamt und der Zeit zwischen Expositionsende und Diagnosestellung

<table>
<thead>
<tr>
<th>Krankheitsbild</th>
<th>Zeit zwischen Erkrankungsbeginn und Diagnose</th>
<th>Expositionszeit insgesamt</th>
<th>Zeit zwischen Expositionsende und Diagnose</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPD</td>
<td>8 Jahre</td>
<td>22 Jahre</td>
<td>4 Jahre</td>
</tr>
<tr>
<td>Lungenfibrose</td>
<td>13 Jahre</td>
<td>25 Jahre</td>
<td>5 Jahre</td>
</tr>
<tr>
<td>Silikose</td>
<td>3,5 Jahre</td>
<td>29 Jahre</td>
<td>14 Jahre</td>
</tr>
<tr>
<td>Asbestose</td>
<td>5 Jahre</td>
<td>19,5 Jahre</td>
<td>21,5 Jahre</td>
</tr>
</tbody>
</table>

Wie anhand dieser zwei Tabellen ersichtlich, lassen sich die Krankheitsgruppen noch einmal aufteilen in solche, bei denen die Exposition noch über den Erkrankungsbeginn hinaus anhält (s. Tab. 13), und Krankheitsbilder, welche sich erst Jahre nach Expositionsende bemerkbar machen (s. Tab. 14).

Die im Median ältesten und mit 29 Jahren am längsten exponierten Patienten dieser Studie leiden an Silikose, die jüngsten und mit sechs Jahren am kürzesten exponierten Patienten sind an chronischer Rhinitis erkrankt. Bedingt ist dies durch die lange Latenzzeit bei der Silikose, in welcher die Patienten noch lange beschwerdefrei sind und durch die frühzeitigen klinischen Beschwerden bei der chronischen Rhinitis, welche die Betroffenen wesentlich eher zu einer Meidung der Exposition bewegt.

Beide Patienten mit Lungenfibrose lagen 13 Jahre zwischen Erkrankungsbeginn und Diagnosezeitpunkt, was die längste Zeitspanne in diesem Bereich darstellt.
Da es sich hierbei um einen langsam fortschreitenden Umbauprozess des Lungengerüstes handelt, treten Beschwerden anfangs nur unter Belastung auf, was es erschwert, ohne Bronchoskopie oder Computertomographie eine Diagnose zu stellen. Lediglich bei den Patienten mit einem Lungenemphysem fällt der Erkrankungsbeginn mit dem Diagnosezeitpunkt zusammen, was vermutlich durch die frühzeitig auftretende akute Atemnot bedingt ist.

Der Bedarf an verbesserten Methoden der Früherkennung ist somit offensichtlich. Zum einen, da mit Ausnahme der Patienten, welche an einem Lungenemphysem erkrankten, die Diagnose der jeweiligen Krankheit erst bis zu 13 Jahre nach Erkrankungsbeginn gestellt wurde; zum anderen auch die Tatsache, dass Krankheitsbilder wie Silikose und Asbestose sich über Jahre und Jahrzehnte, auch nach Ende der gefährdenden Exposition, entwickeln und fortschreiten. Aufgrund der somit langen Beschwerdefreiheit mit anschließender Chronifizierung ist eine Verbesserung der Prävention dringend notwendig.\cite{1,2,91}

6.2.6 Asbestose und Silikose im Vergleich

Es stellt sich die Frage, ob durch verbesserte Früherkennungsmaßnahmen, beispielsweise in Form von sich nach Frühsymptomen richtenden Checklisten, Fälle, von über den Erkrankungsbeginn hinaus stattfindender schädigender Exposition vermeidbar wären. Um dies zu analysieren, werden im Folgenden die mitunter patientenstärksten Krankheitsbilder Asbestose, Silikose, Chronisch obstruktive Lungenerkrankungen und Asthma bronchiale einander gegenüber gestellt und noch einmal gesondert betrachtet.

Tabelle 15: Vergleich zwischen Asbestose und Silikose in Bezug auf Erkrankungsalter, Diagnosezeitpunkt, Latenz- und Expositionszeit im Median

<table>
<thead>
<tr>
<th></th>
<th>Asbestose</th>
<th>Silikose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Erkrankungsalter</td>
<td>55 Jahre</td>
<td>63 Jahre</td>
</tr>
<tr>
<td>Median Diagnosezeitpunkt</td>
<td>60 Jahre</td>
<td>66,5 Jahre</td>
</tr>
<tr>
<td>Median Latenzzeit</td>
<td>41 Jahre</td>
<td>43 Jahre</td>
</tr>
<tr>
<td>Median Expositionszeit</td>
<td>19,5 Jahre</td>
<td>29 Jahre</td>
</tr>
</tbody>
</table>

Tabelle 16: Vergleichende Darstellung der jeweils ausgeübten Tätigkeiten bei Asbestose- und Silikosepatienten

<table>
<thead>
<tr>
<th>Asbestose</th>
<th>Personenzahl</th>
<th>Silikose</th>
<th>Personenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kfz-Mechaniker</td>
<td>4</td>
<td>Bergbau Untertage</td>
<td>33</td>
</tr>
<tr>
<td>Heizungsbau und Sanitär</td>
<td>4</td>
<td>Steinmetz</td>
<td>3</td>
</tr>
<tr>
<td>Hauer Untertage</td>
<td>4</td>
<td>Gießer</td>
<td>2</td>
</tr>
<tr>
<td>Schlosser</td>
<td>3</td>
<td>Kristallschleifer</td>
<td>2</td>
</tr>
<tr>
<td>Maurer</td>
<td>3</td>
<td>Gussputzer</td>
<td>2</td>
</tr>
<tr>
<td>Elektriker</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

73% der Silikosepatienten, und somit die absolute Mehrheit, sind im Bergbau Untertage tätig, was dem Hauptsikoeruf für das Krankheitsbild der Silikose entspricht.\[75\]

Patienten mit der Diagnose Asbestose sind zu 29% in den Bereichen Kfz-Mechanik, Heizungsbau und Sanitär tätig, 25% arbeiten als Maurer oder Hauer Untertage und 21% als Schlosser oder im Maschinenbau, wobei stets ein Kontakt zu asbesthaltigen Materialien stattfand. Diese Heterogenität der Berufsgruppen zeigt deutlich, in welcher Vielfalt Asbest, bis zum Herstellungs- und Verwendungsverbot 1993, zum Einsatz kam.\[1\]
Tabelle 17: Darstellung der Symptomprävalenzen bei Asbestose und Silikose

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Asbestose</th>
<th>Silikose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belastungsdyspnoe (27%)</td>
<td>Ruhedyspnoe (25%)</td>
<td></td>
</tr>
<tr>
<td>Ruhedyspnoe (23%)</td>
<td>Belastungsdyspnoe (16%)</td>
<td></td>
</tr>
<tr>
<td>Husten mit Auswurf (19%)</td>
<td>Husten mit Auswurf (21%)</td>
<td></td>
</tr>
<tr>
<td>trockener Husten (7%)</td>
<td>trockener Husten (8%)</td>
<td></td>
</tr>
<tr>
<td>Gewichtsverlust (7%)</td>
<td>Gewichtsverlust (8%)</td>
<td></td>
</tr>
<tr>
<td>retrosternales Brennen (5%)</td>
<td>thorakales Engefühl (6%)</td>
<td></td>
</tr>
<tr>
<td>Beinödeme (5%)</td>
<td>Hämoptysen (5%)</td>
<td></td>
</tr>
<tr>
<td>Nachtschweiß (5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kribbelparästhesien (3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fieber (3%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

27% der Patienten mit der Diagnose Asbestose gaben als Symptom eine Belastungsdyspnoe, 23% eine Ruhedyspnoe an. Bei den Silikosepatienten verhielt sich die Ausprägung dieser beiden Symptome umgekehrt: 25% gaben an, in Ruhe bereits dyspnoeisch zu sein, während 16% erst unter körperlicher Belastung Atemnot verspürten. Bei beiden Krankheitsbildern jedoch gleich ist die Reihenfolge der darauf folgenden Symptome wie produktiver Husten, trockener Husten, Gewichtsverlust und thorakale bzw. retrosternale Beschwerden. Auch die prozentuale Aufteilung dieser Symptome (s. o.) weicht nur um ein bis zwei Prozent zwischen den Krankheitsbildern ab.

Anhand dieser Früh- und Spätsymptome, die beinahe identisch sind, ist es somit nicht möglich, zwischen den beiden Krankheiten zu differenzieren, bzw. krankheitsspezifische Checklisten für eine optimierte frühe Diagnosestellung zu entwickeln.

Tabelle 18: Durchgeführte Diagnostik bei Asbestose und Silikose

<table>
<thead>
<tr>
<th>Diagnostik</th>
<th>Asbestose</th>
<th>Silikose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodyplethysmographie (31%)</td>
<td></td>
<td>Bodyplethysmographie (40%)</td>
</tr>
<tr>
<td>Blutkörperchensenkungsgeschwindigkeit (15%)</td>
<td></td>
<td>CO-Diffusionskapazität (18%)</td>
</tr>
</tbody>
</table>
6 Diskussion

<table>
<thead>
<tr>
<th>Blutgasanalyse (16%)</th>
<th>Ruhespirographie (18%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruhespirographie (11%)</td>
<td>Blutgasanalyse (12%)</td>
</tr>
<tr>
<td>Residualvolumenmessung (11%)</td>
<td>Residualvolumenmessung (12%)</td>
</tr>
<tr>
<td>CO-Diffusionskapazität (11%)</td>
<td></td>
</tr>
<tr>
<td>Provokationsmedikation (5%)</td>
<td></td>
</tr>
</tbody>
</table>

Wie zu ersehen wurde an Diagnostik hauptsächlich die Bodyplethysmographie durchgeführt. Mit dieser Methode lassen sich obstruktive und restriktive Ventilationsstörungen gegeneinander abgrenzen. Zudem lassen sich Aussagen über das thorakale Gasvolumen und den Atemwegswiderstand machen. Die Durchführung der Bodyplethysmographie ist von der Mitarbeit der Patienten weitgehend unabhängig und zudem belastungsfrei, so dass auch bei Patienten mit schwerer Dyspnöe Aussagen über Lungenvolumina und Strömungswiderstände gemacht werden können.\[^{92}\] Um der Tumorprävention entgegen zu kommen, werden bereits Stufenprogramme wie folgt diskutiert:\[^{93}\]

1. Raucherentwöhnung
2. Sputumanalyse
3. CT
4. Bronchoskopie

Tabelle 19: Nebendiagnosen bei Asbestose und Silikose im Vergleich

<table>
<thead>
<tr>
<th>Asbestose</th>
<th>Silikose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterielle Hypertonie (35%)</td>
<td>Arterielle Hypertonie (36%)</td>
</tr>
<tr>
<td>Wirbelsäulen- oder</td>
<td>Koronare Herzerkrankheit (KHK) (20%)</td>
</tr>
<tr>
<td>Gelenkbeschwerden (19%)</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus (16%)</td>
<td>Wirbelsäulenbeschwerden (12%)</td>
</tr>
<tr>
<td>Adipositas (14%)</td>
<td>Lärmschwerhörigkeit (12%)</td>
</tr>
<tr>
<td>Koronare Herzerkrankheit (KHK) (8%)</td>
<td>Hypercholesterinämie (10%)</td>
</tr>
<tr>
<td>Fettleber (8%)</td>
<td>Hyperurikämie (10%)</td>
</tr>
</tbody>
</table>
Es zeigt sich, dass die arterielle Hypertonie, einmal mit 35% und einmal mit 36%, die Hauptnebendiagnose der Patienten mit Asbestose und Silikose darstellt. Ebenfalls in einem sich annähernden Prozentsatz, bei der Asbestose mit 19%, bei der Silikose mit 12%, finden sich Wirbelsäulenschmerzen bei beiden Krankheitsbildern.

6.2.7 **Asthma bronchiale und Chronisch obstruktive Lungenkrankung im Vergleich**

Tabelle 20: Vergleich zwischen Asthma bronchiale und Chronisch obstruktiver Lungenkrankung in Bezug auf Erkrankungsalter, Diagnosezeitpunkt, Latenz- und Expositionszeit im Median

<table>
<thead>
<tr>
<th></th>
<th>Asthma bronchiale</th>
<th>Chronisch obstruktive Lungenkrankung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Erkrankungs-</td>
<td>36 Jahre</td>
<td>48 Jahre</td>
</tr>
<tr>
<td>Alter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Diagnosezeit-</td>
<td>39 Jahre</td>
<td>56 Jahre</td>
</tr>
<tr>
<td>punkt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Latenzzeit</td>
<td>4,5 Jahre</td>
<td>26 Jahre</td>
</tr>
<tr>
<td>Median Expositionszeit</td>
<td>8 Jahre</td>
<td>22 Jahre</td>
</tr>
</tbody>
</table>

Tabelle 21: Vergleichende Darstellung der jeweils ausgeübten Tätigkeiten

<table>
<thead>
<tr>
<th>Asthma bronchiale Personenzahl</th>
<th>Chronisch obstruktive Lungenerkrankung</th>
<th>Personenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frisörin</td>
<td>5</td>
<td>Schweißer, Schlosser, Kfz-Mechaniker</td>
</tr>
<tr>
<td>Schlosser</td>
<td>4</td>
<td>Bergbau Untertage</td>
</tr>
<tr>
<td>Maler und Lackierer</td>
<td>3</td>
<td>Kunststoffverarbeitung</td>
</tr>
<tr>
<td>Elektriker/Elektromonteur</td>
<td>3</td>
<td>Maler und Lackierer</td>
</tr>
<tr>
<td>Kfz-Mechaniker</td>
<td>3</td>
<td>Schreiner, Sägewerkarbeiter</td>
</tr>
<tr>
<td>Bäcker</td>
<td>3</td>
<td>Dreher</td>
</tr>
<tr>
<td>Schreiner</td>
<td>3</td>
<td>Landwirt</td>
</tr>
<tr>
<td>Stahlgerüstbauer/Betonsanierer</td>
<td>2</td>
<td>Kokerei</td>
</tr>
<tr>
<td>Maurer</td>
<td>2</td>
<td>Arbeiter in einer Goldfabrik, Goldschmied</td>
</tr>
<tr>
<td>Verkäuferin</td>
<td>2</td>
<td>Gießer</td>
</tr>
</tbody>
</table>

Die Gefährdung wurde hauptsächlich durch chemisch-irritative oder toxisch wirkende Arbeitsstoffe verursacht. Immunologisch wirkende Arbeitsstoffe, wie sie in der Bäckerei oder Landwirtschaft vorkommen, waren eher zweitrangig, was aufgrund der geringen landwirtschaftlich genutzten Fläche im Saarland nicht verwunderlich ist.\[95\]

Die Mehrzahl der Patienten mit Chronisch obstruktiver Lungenerkrankung waren als Schlosser (24%) und im Bergbau Untertage (16%) tätig. Schweißer, Kfz-Mechaniker, Maler und Lackierer, Schreiner, Dreher, Landwirte, sowie Arbeiter aus der Kunststoffverarbeitung und der Kokerei waren zu jeweils 5% vertreten. In
der anteilmäßig größten Patientengruppe sind somit auch die in der Studie am häufigsten vorkommenden Berufe und Branchen vertreten. Dies unterstreicht noch einmal die Risikoerhöhung für Atemwegserkrankungen, welche von diesen Berufsgruppen ausgeht.

Tabelle 22: Darstellung der Symptomprävalenzen

<table>
<thead>
<tr>
<th>Asthma bronchiale</th>
<th>Chronisch obstruktive Lungenerkrankung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belastungsdyspnoe (26%)</td>
<td>Ruhesdyspnoe (42%)</td>
</tr>
<tr>
<td>trockener Reizhusten (24%)</td>
<td>Husten mit Auswurf (17%)</td>
</tr>
<tr>
<td>Ruhedyspnoe (18%)</td>
<td>trockener Reizhusten (13%)</td>
</tr>
<tr>
<td>Husten mit Auswurf (7%)</td>
<td>Belastungsdyspnoe (11%)</td>
</tr>
<tr>
<td>retrosternales Brennen (7%)</td>
<td>thorakales Engegefühl (3%)</td>
</tr>
<tr>
<td>Rötung der Augen, Niesen (6%)</td>
<td>Augenbrennen (3%)</td>
</tr>
<tr>
<td>Kopfschmerzen (5%)</td>
<td>Leistungsknick (3%)</td>
</tr>
<tr>
<td>Fließschnupfen (4%)</td>
<td>Fließschnupfen (2%)</td>
</tr>
</tbody>
</table>

Die Symptome der COPDler und Asthma bronchiale Patienten sind, abgesehen von der prozentualen Verteilung, nahezu identisch. Während bei den Patienten mit Chronisch obstruktiver Lungenerkrankung die Ruhedyspnoe mit 42% deutlich vor den Symptomen wie produktiver Husten (17%), Reizhusten (13%) und Belastungsdyspnoe (11%) steht, leiden die Asthma bronchiale Patienten mit 26% vorrangig unter einer Belastungsdyspnoe, gefolgt von trockenem Reizhusten (24%), Ruhedyspnoe (18%) und produktivem Husten (7%). Es ist anzumerken, dass die Patienten mit Asthma bronchiale, wie oben ersichtlich, vornehmlich unter Belastung, und somit fast immer arbeitsplatzparallel, teilweise allergische Atembeschwerden angeben. Aufgabe des Arztes ist es daher, diesen vom Patienten oft nicht wahrgenommenen Kausalzusammenhang zu erfragen. Patienten mit Chronisch obstruktiver Lungenerkrankung hingegen geben diese Beschwerden expositions- und ortsunabhängig an, was es häufig schwierig gestaltet, eine Berufsabhängigkeit zu diagnostizieren.
Tabelle 23: Durchgeführte Diagnostik bei Asthma bronchiale und Chronisch obstruktiver Lungenerkrankung

<table>
<thead>
<tr>
<th>Asthma bronchiale</th>
<th>Chronisch obstruktive Lungenerkrankung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodyplethysmographie (38%)</td>
<td>Bodyplethysmographie (37%)</td>
</tr>
<tr>
<td>CO-Diffusionskapazität (17%)</td>
<td>CO-Diffusionskapazität (16%)</td>
</tr>
<tr>
<td>Blutkörperchensenkungsgeschwindigkeit (10%)</td>
<td>Ruhespirographie (13%)</td>
</tr>
<tr>
<td>Provokationsmedikation (10%)</td>
<td>Residualvolumenmessung (10%)</td>
</tr>
<tr>
<td>Ruhespirographie (7%)</td>
<td>Blutgasanalyse (8%)</td>
</tr>
<tr>
<td>Residualvolumenmessung (6%)</td>
<td>spezifische IgE-Bestimmung (7%)</td>
</tr>
<tr>
<td>toxikologische Analyse (4%)</td>
<td>Blutkörperchensenkungsgeschwindigkeit (5%)</td>
</tr>
<tr>
<td>Peak-flow-Messung (4%)</td>
<td>Peak-flow-Messung (2%)</td>
</tr>
<tr>
<td>RAST (3%)</td>
<td>Arbeitsplatzbegehung (2%)</td>
</tr>
</tbody>
</table>

Auch bei diesen beiden Krankheitsbildern wurde an Diagnostik wieder hauptsächlich die Bodyplethysmographie durchgeführt.

Persistierende, irreversible Dyspnoe, produktiver Husten, anamnestisch jahrelanges Rauchen, ein langsames Fortschreiten der Erkrankung und abnorme Spirometrieergebnisse, welche unabhängig von äußeren Einflüssen persistieren, machen die Diagnose einer COPD sehr wahrscheinlich. Ein junges Erkrankungsalter bei bekannter Atopie und/oder allergischer Rhinitis, sowie saisonale Variabilität und deutliche Verbesserung der Symptome nach Gabe eines Bronchodilatators und/oder zweiwöchiger Behandlung mit systemischen Steroiden hingegen sprechen für das Vorliegen eines Asthma bronchiales.[53]

6.2.8 **Expositionen innerhalb ausgewählter Berufsgruppen**

Zur Darstellung welcher gezielten Testung von Gefahrenstoffen es innerhalb der verschiedenen Tätigkeitsbereiche bedarf, sind im Folgenden einige ausgewählte Berufsgruppen und die entsprechenden Expositionen aufgezeigt.
<table>
<thead>
<tr>
<th>Berufsgruppe</th>
<th>Expositionen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kfz-Mechaniker, Schlosser, Schweißer</td>
<td>Kühlschmierstoffe: Emulgatoren (Alkaliseifen, Aminseifen, Sulfonate), Korrosionsinhibitoren (Benzoësäurederivate), Additive (Disulfide, Polysulfide) Mikrobiozide (Formaldehyddepot-Verbindungen, Thiazide) Lösungsvermittler (Alkohole, Glycole), Entschäumer (Silikone, Siliziumsäureester)</td>
</tr>
<tr>
<td>Frisör</td>
<td>Haarfestiger, Haarsprays: Dimethylether, denat. Alkohole, Butane, Aminomethyl, Vinylneodecanoate Copolymer, Toluol, Ethylbenzol, Propanol, Isopropyl Myristate, Panthenol, Parfum Blondier- und Färbbemittel Ammoniak, Persulfate, Wasserstoffperoxid</td>
</tr>
<tr>
<td>Raumpfleger</td>
<td>Tenside Sulfate, Acylsulfate, Chloride, Glucoside Desinfektionsmittel 2-Propanol, 1-Propanol, Glycerol, Myristylalkohol, Farbstoffe E 131</td>
</tr>
<tr>
<td>Maler und Lackierer</td>
<td>Farben und Lacke Schwermetalle, Tributylzinnhydrid (hochtoxisch), Azofarbstoffe, Holzschutzmittel, VOC (leichtflüchtige organische Verbindungen), Lösungsmittel</td>
</tr>
</tbody>
</table>
Schreiner und Holzverarbeitung

<table>
<thead>
<tr>
<th>Makromoleküle:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zellulose, Polyosen und Lignin</td>
</tr>
<tr>
<td>Allergene:</td>
</tr>
<tr>
<td>Terpene, Paraffine, Fettsäuren, Phenole, Phtalsäureester, Sterole, Flavonoide</td>
</tr>
<tr>
<td>2,6 Dimethoxy-1,4-benzochinon (wird auch von Pilzen, welche die Hölzer befallen, produziert oder entsteht bei höheren Temperaturen in der Holzverarbeitung)</td>
</tr>
<tr>
<td>Cancerogene:</td>
</tr>
<tr>
<td>Coniferaldehyd und Sinapaldehyd (Ligninbausteine) Buchen- und Eichenholzstäube gelten nach heutigem Erkenntnisstand als krebserzeugend</td>
</tr>
</tbody>
</table>

7 Danksagung

In diesem Abschnitt möchte ich allen danken, die mir in vielfältiger Art und Weise in der Zeit der Fertigstellung meiner Dissertation zur Seite gestanden haben.

Herrn Prof. Dr. med. A. Buchter danke ich für die Bereitstellung des Themas, die Unterstützung bei der Erstellung dieser Arbeit, sowie für die freundliche Aufnahme am Institut.

Ich danke meinem Betreuer, Herrn Dr. M. Müller für sein Engagement bei auftretenden Problemen und die hilfreichen Vorschläge beim Korrekturlesen.

Ein besonderer Dank geht an meine Eltern, die mir ein sorgenfreies Studium ermöglicht und immer an mich geglaubt haben. Danke für alles, Ihr seid die Besten.

Meiner Schwester Sarah und meinen Brüdern Carmine und Mario möchte ich für das offene Ohr und den tollen geschwisterlichen Zusammenhalt danken, welcher mir stets den Rücken gestärkt hat.

Anna, Sylvie, Jutti, Sandra, Julchen, Ana und Ina: bessere Freunde kann man sich nicht wünschen.

Doch mein größter Dank gilt Dir, lieber Daniel. Du hast mich immer wieder motiviert und aufgebaut, konstruktive Kritik geübt und mich stets unterstützt. Danke für die wundervolle Zeit mit Dir.
8 Literatur

[28] Präventivmedizinisches Zentrum für arbeitsbedingte Erkrankungen Homburg/Saar, Tätigkeitsbericht 1995/96

[39] Online Nagelstudioverzeichnis für Deutschland und Österreich, abgerufen am 23.03.2009 auf (www.nagelstudios.at);

8 Literatur

[49] Telefonat mit Dr. Martin Butz, Deutsche Gesetzliche Unfallversicherung (DGUV) - Spitzenverband der gewerblichen Berufsgenossenschaften und der Unfallversicherungsträger der öffentlichen Hand – Referat Berufskrankheiten-Statistik/ZIGUV

[50] Statistisches Bundesamt Deutschland, Pressemitteilung Nr. 101 vom 05.03.2004: Erwerbstätigkeit von Frauen nimmt weiter zu, abgerufen am 27.08.2010 auf www.destatis.de

[54] Larbolette O., Allergien auf dem Vormarsch, Freiburg, abgerufen am 29.08.10 auf www.wissenschaft-online.de/abo/lexikon/biok/423

[92] Ruff, L., Teschler, H., Dierkesmann, R., Hellmann, A., Barczok, M., Bodyplethysmographie bei obstruktiven Atemwegserkrankungen und ihre Wertigkeit im Vergleich zu anderen Lungenfunktionsprüfungen

[95] Landschaftsprogramm Saarland. Waldwirtschaft und Landwirtschaft. abgerufen am 23.08.09 auf http://www.saarland.de/dokumente/thema_geoportal/Wald_Landwirtschaft_Juni09.pdf
Lebenslauf

Persönliche Daten

Name Coroneo
Vorname Sabrina
Geburtsdatum 01.05.1981
Geburtsort Haselünne
Familienstand verheiratet
Nationalität deutsch

Schulbildung

1987-1991 Grundschule Holthausen-Biene
1991-2000 Gymnasium Leoninum Handrup, Abschluss Abitur

Studium

10/2000-09/2006 Universität des Saarlandes in Homburg/Saar
10/2003-03/2004 Auslandssemester an der Universita’ degli studi di Perugia; Italien
09/2002 Ärztliche Vorprüfung
09/2003 Erster Abschnitt der Ärztlichen Prüfung
03/2006 Zweiter Abschnitt der Ärztlichen Prüfung
04/2006-09/2006 Datenerhebung für die Dissertation
10/2006-09/2007 Praktisches Jahr am Universitätsklinikum Münster
Wahlfach: Dermatologie
11/2007 Dritter Abschnitt der Ärztlichen Prüfung

Berufstätigkeit

Seit 02/2008 Assistenzärztin an der Fachklinik Hornheide, Münster
(Dermatologie)