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1. Abbreviations 

4EBP1    4E-binding protein 1 

ACC-region   Antiparallel coiled-coil region 

AGC This name is related to the cAMP dependent protein kinas 

(PKA), cGMP dependent protein kinase and protein kinase C 

(PKC) 

Ala Alanine 

Akt/PKB Akt/Protein kinase B 

AR Androgen receptor 

Arg    Arginine 

Asn    Asparagine 

Asp    Aspartic acid 

ATP    Adenosine triphosphate 

BAD    Bcl-XL/Bcl-2-associated death promoter  

Bcl-2    B-cell lymphoma 2 

BH3    Bcl-2 homology domain 3 

cAMP    Cyclic adenosine monophosphate 

CaCl2    Calcium chloride 

CAM-KK   Ca2+/cal-modulin-dependent protein kinase 

Cav-1    Caveolin-1 

CCI-779   Temsirolimus 

Cdc    Cell division cycle 

Cdk    Cyclin-dependent kinase 

CE    Crude extract 

CGMP    Cyclic guanosine monophosphate 

CISK    Cytokine-independent survival kinase 

CO2    Carbon dioxide 

CSF    Colony stimulating factor 

Cys    Cysteine 

CZ    Charges aa and Leu-zipper-like sequence 

DMEM   Dulbecco’s modified Eagle’s medium 

DMSO    Dimethyl sulfoxide 

EDTA    Ethylenediamine tetraacetic acid  

EGF    Epidermal growth factor 
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EGFR    Epidermal growth factor receptor, also known as ErbB1 

EGTA    Ethylene glycol tetraacetic acid 

ErbB1    Erythroblastoma B1; also known as EGFR 

ERK    Extracellular signal-regulated kinases 

FGF    Fibroblast growth factor  

FHL2    Four and a half LIM domains 2 

FL    Full length 

FKBP12   FK506-binding protein 12 

FKHR    Forkhead (Drosophila) homolog (rhabdomyosarcoma) 

FKHRLI   Forkhead (Drosophila) homolog (rhabdomyosarcoma) like 1 

FOXO3a   Forkhead box O3A 

GDP    Guanosine diphosphate 

GEFs    Guanine nucleotide exchange factors 

GFAP    Glial fibrillary acidic protein 

GFP    Green fluorescent protein 

Gln    Glutamine 

Glu    Glutamic acid 

Gly    Glycine 

GRB2    Growth factor receptor-bound protein 2 

GSK3    Glycogen synthase kinase-3 

GST    Glutathione S-transferase 

GST-CT-PRK2  C-terminal fragment of PRK2 conjugated to GST 

GTP    Guanosine triphosphate 

HBS    Hepes buffered saline 

HEK293 cells   Human embryonic kidney 293 cells 

HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HER-2    EGF receptor 2, also known as ErbB2 

HER-2/neu   Protooncogen for the receptor Her2 

HM    Hydrophobic motif 

His    Histidine 

HR    Homology region 

HRP    Horseradish peroxidase 

Hsp    Heat shock protein 

IGF-1    Insulin-like growth factor 1 
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IGF-1R   Insulin-like growth factor-1 receptor 

IkB    I-kappa-B kinase 

Ile    Isoleucine 

IRS-1    Insulin receptor substrate-1 

JMJD2C   Jumonji domain containing 2C 

KLK2    Kalikrenin-related peptidase 2 

Leu    Leucine 

Lys    Lysine 

MAP    Mitogen-activated protein 

MAPK    Mitogen-activated protein kinase 

MDM2   Murine double minute 2 oncogene 

MEKK-1 Mitogen-activated protein kinase/extracellular signal-regulated 

kinase kinase kinase 1 

Met    Methionine 

MSK    Mitogen-and stress-activated protein kinase 

mTOR    Mammalian target of rapamycin 

mTORC   mTOR complex 

Na2HPO4   Disodium hydrogen phosphate 

NaCl    Sodium chloride  

NF    Neurofilament 

Ni-NTA   Nickel-nitrilotriacetic acid 

PAGE    Polyacrylamide gel electrophoresis 

PAK    Protease activated kinase 

PC-3 cells   PTEN-/- prostate cancer cells 

PDGF    Platelet-derived growth factor 

PDK1    3-phosphoinositide-dependent protein kinase 1 

PH    Pleckstrin homology 

Phe    Phenylalanine 

PHLPP   PH domain and Leucine rich repeat Protein Phosphatase 

PI3K    Phosphatidylinositol 3-kinase 

PIF    PDK1-interacting fragment 

PKA    cyclic AMP dependent protein kinase 

PKB    Protein kinase B 

PKC    Protein kinase C 
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PKG    cyclic GMP dependent protein kinase 

PKN    Protein kinase N 

PP1    Protein phosphatase 1 

PP2A    Protein phosphatase 2A  

PRK    Protein kinase C-related kinase  

Pro    Proline 

PSA    Prostate specific antigene 

PtdIns    Phosphatidylinositol 

PtdIns(4)P   Phosphatidylinositol (4) monophosphate 

PtdIns(3,4)P2   Phosphatidylinositol (3,4) bisphosphate 

PtdIns(4,5)P2   Phosphatidylinositol (4,5) bisphosphate 

PtdIns(3,4,5)P3  Phosphatidylinositol (3,4,5) trisphosphate 

PTEN    Phosphatase and tensin homolog deleted on chromosome ten 

PTKs    Protein-tyrosine kinases 

PTP-BL   Protein tyrosine phosphatase-basophil like 

RAD001   Everolimus 

RBD    Rho binding domain of ROCK-1 

ROCK    Rho-associated coiled-coil containing protein kinase 

ROK    RhoA-binding kinase 

RSK    p90 ribosomal S6 kinase 

RTK    Receptor tyrosine kinases 

S6K    p70 ribosomal S6 kinase 

Ser    Serine 

SH Src homology (Src as it is short for sarcoma) 

SHPTP2   Src Homology 2 Protein Tyrosine Phosphatase 

SDS    Sodium dodecyl sulfate 

SGK    Serum- and glucocorticoid-inducible protein kinase 

SH2    Src homology 2 

SHIP    Src homology 2 domain-containing inositol 5-phosphatase 

Src family kinases Family of proto-oncogenic tyrosine kinases  

Syp Synaptophysin 

TAU-5    Transactivation unit 5 

TEMED   N,N,N’,N’-Tetramethylethylendiamin 

Thr    Threonine 
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TNF    Tumor necrosis factor 

Tris-HCl   Tris-hydrochloric acid 

Trp    Tryptophan 

TSC-2    Tuberous sclerosis complex 2 

Tyr    Tyrosine 

Val    Valine 

Wt    Wild type  
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2. Abstract 

2.1. English version 

The members of the AGC group of kinases often have three phosphorylation sites regulating 

their activity: The activation loop, the Z-/turn motif and the hydrophobic motif (HM) 

phosphorylation site.  

At least 23 protein kinases of this group are activated through phosphorylation of their 

activation loop by their upstream kinase, the phosphoinositide-dependent protein kinase 1 

(PDK1). Phosphorylation of the HM in a subset of AGC-kinases such as the p90 ribosomal S6 

kinase (RSK), the p70 ribosomal S6 kinase (S6K), the Serum- and glucocorticoid-inducible 

protein kinase (SGK), leads to the docking of the phosphoHM to the HM/PIF-binding pocket 

and the bordering phosphate binding site on PDK1. The docking of the substrate then allows 

its phosphorylation at the activation loop by PDK1. 

The protein kinase C related protein kinase 2 (PRK2) is a member of the AGC-group 

of kinases. However, in contrast to other members of this family, PRK2 possesses an acidic 

residue in the position of the HM phosphorylation site mimicking a phosphorylation at this 

site. Therefore, the docking of PRK2 to PDK1 cannot be regulated by HM phosphorylation. 

The present thesis had the objective to evaluate the mechanisms that control PRK2 interaction 

with PDK1. 

Since PRK2 is phosphorylated at the Z-/turn motif, we wanted to characterize the 

influence of this phosphorylation on the interaction of PRK2 with PDK1 in this study. In this 

sense, we mutated the Z-/turn motif phosphorylation site within the C-terminal segment of 

PRK2 and the residues forming part of the PRK2 Z-/turn motif phosphate-binding site and 

examined the effects on the activity and on the interaction with PDK1. We could show that 

the mutation of the Z-/turn motif phosphorylation site to Alanine (Ala) or the destruction of 

the Z-/turn motif phosphate binding site by mutating it to Glutamic acid (Glu), led to a similar 

increase in the binding of PRK2 to PDK1, suggesting that this phosphorylation could 

negatively regulate the interaction with PDK1. 

Additionally, for further characterization of the role of the N-terminus, we observed 

that ∆N-PRK2 had greatly increased ability to interact with PDK1. This result suggested that 

the N-terminal segment of PRK2 inhibits the interaction of PRK2 with PDK1. During these 

studies our biochemical assays suggested that the autoinhibitory regulation of PRK2 activity 

by its N-terminal segment may not be mediated by an intra-molecular but by an inter-

molecular interaction. In this sense, using co-transfection and pull-down assays, we also 

provide evidence that the N-terminal region of PRK2 participates in an inter-molecular 
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interaction with another PRK2 molecule. We then tested the effect of the FL-PRK2 

TST/AAA inactive mutant on the activity of FL-PRK2 or ∆N-PRK2, and found that FL-

PRK2, but not ∆N-PRK2 activity, was inhibited in trans by the inactive PRK2 protein. In this 

context, our results indicate that PRK2 molecules are able to form oligomers via their N-

terminal extensions and that this interaction causes an inter-molecular inhibition. 

Furthermore, it is known that PRK2 is a Rho effector target. Admittedly, PRK2 is 

described to be activated in a nucleotide-dependent or -independent way. However, in our 

study, Rho, Rho-GDP and Rho-GTP did not affect the in vitro activity of PRK2. 

As the C-terminus of PRK2 interacts with a very high affinity with PDK1, we further 

mutated other non-conserved motifs within the C-terminus of PRK2 and studied if they could 

also play a role in the high affinity interaction with PDK1. Here, we could show that a novel 

hydrophobic patch affects the interaction with PDK1 and a novel acidic patch was important 

for the stability of PRK2 itself. 

Altogether the present study sheds light on the molecular mechanism that regulates the 

interaction between PRK2 and its upstream kinase PDK1. In addition, our results show for the 

first time that the inhibition of PRK2 is related to an inter-molecular interaction mediated by 

the N-terminal domain. This was surprising because the mechanism of inhibition of all closely 

related protein kinases (PKCs) is thought to be mediated by an intra-molecular interaction.  
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2.2. German version/Deutsche Version 

Die Mitglieder der AGC-Kinase-Familie teilen die Eigenschaft, 3 Phosphorylierungsstellen zu 

besitzen, welche ihre Aktivität regulieren: Die Activation loop-, die Z-/turn motif- und die 

hydrophobic motif (HM) Phosphorylierungsstelle.  

Die meisten Proteinkinasen dieser Familie werden über die Phosphorylierung ihres Activation 

loops durch die ihnen vorgeschaltete Kinase 3-Phosphoinositide-dependent Protein Kinase 1 

(PDK1) aktiviert. 

Die Phosphorylierung des HM derjenigen AGC-Kinasen, die in diesem Bereich eine 

Phosphorylierungsstelle besitzen, führt zur Bindung des phosphorylierten HM (phosphoHM) 

an eine HM/PIF-Bindungstasche (HM/PIF-binding pocket) und an die angrenzende 

Phosphatbindungsstelle von PDK1. 

Die Protein Kinase C Related Protein Kinase 2 (PRK2) sowie die Protein Kinase Cζ 

(PKCζ) sind ebenfalls Mitglieder dieser AGC-Kinase-Famile. Im Gegensatz zu anderen 

Mitgliedern der Familie wie beispielsweise die p90 Ribosomal S6 Kinase (RSK), die p70 

Ribosomal S6 Kinase (S6K) oder die Serum- and Glucocorticoid-inducible Protein Kinase 

(SGK), besitzen diese beiden Kinasen jedoch einen sauren Aminosäurerest an der Position der 

HM Phosphorylierungsstelle, der durch die Ladung in diesem Bereich eine Phosphorylierung 

imitiert.  

Da PRK2 und PKCζ am Z-/turn motif phosphoryliert werden, war es in dieser Arbeit 

unser Ziel, den Einfluss dieser Phosphorylierung auf die Interaktion von PRK2 mit PDK1 zu 

untersuchen. Daher mutierten wir die Z-/turn motif Phosphorylierungsstelle innerhalb des C-

terminalen Segments von PRK2 und die Aminosäurereste, welche die PRK2 Z-/turn motif 

Phosphatbindungsstelle formen, und untersuchten den dadurch erzeugten Effekt auf die 

Aktivität und Interaktion mit PDK1. Wir konnten zeigen, dass die Mutation der Z-/turn motif 

Phosphorylierungsstelle zu Alanin (Ala) sowie die Destruktion dieser Stelle durch die 

Mutation zu Glutamat (Glu) jeweils zu einer ähnlichen Steigerung der Bindung von PRK2 an 

PDK1 führte. Dies ließ uns annehmen, dass diese Phosphorylierung die Interaktion mit PDK1 

negativ regulieren könnte.  

Um darüber hinaus die Rolle des N-Terminus genauer zu charakterisieren, 

beobachteten wir, dass ∆N-PRK2 eine wesentlich höhere Fähigkeit besaß, mit PDK1 zu 

interagieren. Dieses Ergebnis ließ vermuten, dass das N-terminale Segment von PRK2 die 

Interaktion von PRK2 mit PDK1 inhibiert. Weitere Untersuchungen des N-Terminus zeigten, 

dass die autoinhibitorische Regulation der PRK2 Aktivität durch das N-terminale Segment 
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nicht durch eine intra-molekulare, sondern durch eine inter-molekulare Interaktion reguliert 

wird. 

In diesem Sinne zeigen wir, dass die N-terminale Region von PRK2 an einer inter-

molekularen Interaktion mit einem anderen PRK2 Molekül beteiligt ist. Dazu testeten wir den 

Effekt der inaktiven Mutante FL-PRK2 TST/AAA auf die Aktivität von FL-PRK2, 

beziehungsweise auf die Aktivität von ∆N-PRK2. Es zeigte sich, dass die Aktivität von FL-

PRK2, jedoch nicht die von ∆N-PRK2, durch die Zugabe inhibiert wird. In diesem 

Zusammenhang weisen unsere Ergebnisse darauf hin, dass PRK2-Moleküle über ihren N-

Terminus untereinander Oligomere bilden könnten und dass diese Bindung eine inter-

molekulare Inhibition verursacht. 

Des Weiteren ist bekannt, dass PRK2 ein Rho Effektor ist. Allerdings wird kontrovers 

beschrieben, ob PRK2 nukleotid-abhängig oder –unabhängig aktiviert wird. In unserer Studie 

jedenfalls beeinflussten Rho, Rho-GDP und Rho-GTP die in vitro-Aktivität von PRK2 nicht. 

Da der C-Terminus von PRK2 mit einer sehr hohen Affinität mit PDK1 interagiert, 

untersuchten wir des Weiteren, ob andere, nicht konservierte, Motive innerhalb des PRK2 C-

Terminus ebenfalls an dieser hoch affinen Interaktion beteiligt sein könnten. Diesbezüglich 

konnten wir zeigen, dass eine neuartig beschriebene hydrophobe Stelle die Interaktion mit 

PDK1 beeinflusst und dass eine neuartig beschriebene saure Stelle für die Stabilität von PRK2 

selbst von Bedeutung ist. 
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3. Introduction 

3.1. The PI3K signalling pathway 

The phosphatidylinositol 3-kinase (PI3K) signalling pathway occupies a crucial role in a 

variety of biological processes. In this manner, it is involved for example in glucose 

metabolism, glycogen, lipid and protein synthesis, gene expression, cell growth and cell 

differentiation. As PI3K is assumed to play a main regulatory role in these pathways, the 

misregulation of this system is implicated in the development of diabetes, many forms of 

human cancer and heart failure.  

One key effector of the PI3K signalling pathway is PDK1. In turn, this kinase is 

involved in the downstream activation of other AGC-kinase substrates like isoforms of 

Akt/Protein kinase B (Akt/PKB), SGK, S6K, PKC and PRK. 

PI3K is a heterodimeric enzyme, meaning that this protein consists of two polypeptide 

chains (two subunits), differing in the composition of their amino acid residues and their 

structure, namely the p85 regulatory subunit and the p110 catalytic subunit. While the p85 

regulatory subunit is essential for the interlinkage to special substrates, the p110 catalytic 

subunit - after recruitment to the membrane phosphorylates phosphatidylinositol (PtdIns), 

phosphatidylinositol-4-monophosphate (PtdIns(4)P), and phosphatidylinositol-4,5-

bisphosphate (PtdIns(4,5)P2) in each case at its D3-position, resulting in phosphatidylinositol-

3-monophosphate (PtdIns(3)P), phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2), and 

phosphatidylinositol-3,4,5 trisphosphate (PtdIns(3,4,5)P3). PtdIns(3,4,5)P3 is a major second 

messenger, that triggers most of known downstream effects of PI3K, for example. 

downstream of insulin and growth factor (GF) signalling [21, 37]. 

This activation step is turned off through the action of the lipid phosphatase 

Phosphatase and TENsin homologue deleted on chromosome TEN (PTEN), that converts 

PI(3,4,5)P3 back to PtdIns(4,5)P2 via a dephosphorylation at the D3 position [148]. Other 

phosphatases that are able to dephosphorylate the second messenger PtdIns(3,4,5)P3 are SH2-

containing inositol phosphatases (SHIP1 and SHIP2). These 5-phosphatases convert 

PtdIns(3,4,5)P3 back to PtdIns(3,4)P2 [118]. 

 

3.1.1. Insulin and growth factors activate the PI3K signalling pathway 

Playing a crucial role in intracellular growth and metabolism, insulin induces signals that are 

amongst others involved in glucose uptake and disposal, transport of amino acids, 

transcription of specific genes and DNA synthesis [21, 68, 127] (see Figure 1). These signals 

are mediated by the binding of insulin to its cell surface receptor that comprises an 
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intracellular tyrosine kinase domain. Through this binding, the receptor is activated and 

subsequently autophosphorylated on tyrosine residues and further recruites and rapidly 

phosphorylates an immediate downstream substrate molecule, insulin receptor substrate 1 

(IRS-1) [72, 148]. IRS-1 is a high-molecular-weight cytosolic protein, containing 20 potential 

tyrosine phosphorylation sites and over 40 potential Ser/Thr phosphorylation sites [21]. Some 

of the tyrosine phosphorylation sites are located in peptide sequences that are known to 

associate with proteins containing Src-homology 2 (SH2) domains, like PI3K [135]. 

Additionally, the IRS-1 is not only a major substrate of insulin receptors but also of 

insulin-like growth factor -1 (IGF-1) receptors [120, 135]. When phosphorylated and recruited 

to the membrane, IRS-1 functions as a docking protein, forming a signalling complex with 

PI3K, Syp (the phosphotyrosine phosphatase SHPTP2) and the Growth factor receptor-bound 

protein 2 (GRB-2). GRB-2 is a molecule that links IRS-1 to another pathway, the p21ras 

signalling system [92, 120, 135]. Importantly, the interlinkage of IRS-1 with proteins 

containing a SH2-domain, like the p85 regulatory subunit of PI3K, leads to their activation. 

Further, PI3K is able to interact directly with and is stimulated by several activated 

growth factor receptors and nonreceptor tyrosine kinases like the platelet-derived growth 

factor (PDGF), colony-stimulating factor 1 (CSF1) receptors and the Src-like kinases [27, 71, 

131, 141].  

 

3.1.2. Role of the PI3K-PDK1-Akt/PKB  pathway in cell survival and cell growth 

The best characterized function of PI3K is the activation of Akt/PKB. Akt/PKB is a member 

of the subfamily of AGC-kinases and a downstream target of the PI3K-PDK1 pathway. 

The Akt/PKB family of proteins consist of a central kinase domain with specificity for Ser or 

Thr residues in substrate proteins, the N-terminus with a pleckstrin homology (PH) domain, 

that is essential for lipid-protein or protein-protein interactions, and finally the C-terminus, 

containing an HM that has homology to other protein kinases from the AGC family.  

The Akt/PKB family of Ser/Thr protein kinases consists of three members, namely 

Akt1/PKBα, Akt2/PKBβ, and Akt3/PKBγ, which possess a high homology (>85%) in their 

sequence and are largely expressed in several human tissues. They all share a similar 

mechanism of activation: All three isoforms require the phosphorylation of two sites for full 

activation, one located at the activation loop and one located at the HM [32] (reviewed in 

[94]). A third phosphorylation site, the Z-/turn motif, is constitutively phosphorylated in 

Akt/PKB isoforms.  
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Stimulation of PI3K via tyrosine kinase receptors or other cell surface receptors in 

response to ligands such as insulin, PDGF, epidermal growth factor (EGF), or fibroblast 

growth factors (FGFs), results in the development of the second messengers PtdIns(3,4,5)P3 

and PtdIns(3,4)P2. These second messengers bind to the PH-domain of Akt/PKB and recruit 

Akt/PKB to the plasma membrane. This binding also results in a conformational change of 

Akt/PKB, which promotes PDK1 to phosphorylate Akt/PKB at Thr308 in the kinase’s 

activation loop. PI3K also enables the phosphorylation at the HM phosphorylation site of the 

C-terminus at position Ser473 by a kinase complex known as the mammalian target of 

rapamycin complex 2 (mTORC2) [43, 89, 143]. 

Activation of Akt/PKB itself is controlled by the tumor suppressor gene PTEN, that 

negatively regulates the Akt/PKB activation. Interestingly, genetic mutations that inactivate 

PTEN are known to result in a variety of tumors like endometrium, prostate, lung, and head 

and neck tumors [94]. 

Basically, Akt/PKB arises its cell surviving effects by blocking the function of 

proapoptotic proteins and processes. In this sense, Akt/PKB negatively regulates the function 

or expression of several Bcl-2 homology domain 3 (BH3)-only proteins. These proteins 

normally show their proapoptotic effects by binding to and inactivating prosurvival Bcl-2 

family members. Akt/PKB does not only inactivate these proteins by phosphorylation, but 

also inactivates them indirectly via inhibition of their expression. So, Akt/PKB inactivates the 

BH3-only protein BAD in a direct and an indirect way [33, 138] and inhibits MDM2 (or 

HDM2 in humans), an E3 ubiquitin ligase that triggers p53 degradation in order to inhibit the 

proapoptotic function of the transcription factor p53 [98] (reviewed in [94]). 

 Further, Akt/PKB phosphorylates and inactivates forkhead family of transcription 

factors (FKHRLI or Foxo3a) [9] and Glycogen Synthase kinase 3 (GSK3) [28], proteins that 

have a proapoptotic effect, to fulfil its antiapoptotic function. In order to inactivate GSK3, 

Cross et al. described that Akt/PKB phosphorylates GSK3 isoforms on a highly conserved N-

terminal regulatory site (GSK3α-S21, GSK3β-S9), resulting in the inactivation of the kinases 

[28]. 

Moreover Akt/PKB acts as an indirect inhibitor of the apoptosis via regulation of a 

human telomerase reverse transcriptase subunit [70] and regulation of IkB kinase [32]. 

Another target of Akt/PKB in its antiapototic function is caspase-9, a protein that has to be 

proteolytically processed and activated by its procaspase to gain its proapoptotic effect. 

However, activation of Akt/PKB prevents the processing of procaspase-9 via Bcl-2 family 

members (reviewed in [94]). 
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These antiapoptotic effects make understandable, why the PI3K-PDK1-Akt/PKB-

signalling pathway also plays a crucial role in the regulation of cancer cell growth, invasion, 

survival and tumor progression and it is not surprising that this pathway has been described to 

be activated in several forms of human cancers [44]. Further, these effects point out PI3K-

PDK1-Akt/PKB as important survival factors that contribute resistance to apoptotic signals 

(reviewed in [69]). 

 However, PI3K-PDK1-Akt/PKB pathway not only inhibits apoptosis but also 

stimulates cellular growth. It is activated by a variety of growth factors as IGF-1, EGF, basic 

FGF, insulin, interleukin 3, interleukin 6 and macrophagecolony stimulating factor [32].  

Interestingly, there are also PI3K-independent mechanisms of Akt/PKB-activation. On this 

note, under cellular stress conditions, Akt/PKB activation can also be achieved by kinases like 

the Ca2+/calmodulin-dependent protein kinase (CAM-KK) and the cAMP-dependent protein 

kinase (PKA) [94], as the activation of Akt/PKB by these two kinases (CAM-KK and PKA) 

seems not to require phosphorylation of the Ser473 phosphorylation site. 
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3.1.3. Dysregulation and role of the PI3K-PDK1 signalling pathway in cancer 

The PI3K upstream regulators include the Epidermal Growth Factor Receptors (EGFR), 

170kDa transmembrane glycoproteins, expressed constitutively throughout the body and 

found in many epithelial tissues. EGFR are a subfamily of the receptor tyrosine kinases 

(RTK) that regulate a wide range of cell-functions like cell growth and survival as well as 

adhesion, migration, differentiation and other cellular processes. Importantly, EGFR (also 

known as ErbB1) is overexpressed in a number of human cancers including head and neck, 

bladder, pancreas and breast tumors. 

 

 

Figure 1: Taken from: Liu et al.: Targeting the phosphoinositide 3-kinase pathway in cancer, Nature Reviews 
Drug Discovery 8, 627-644 (August 2009). The figure provides a schematic overview of the complex Insulin and 
growth factor down-stream pathway with a focus on PI3K and its effector targets [91]  

The fact that the PI3K pathway is a key signal transduction system linking oncogenes 

and multiple receptor classes to many essential cellular functions and that it is suggested to be 

one of the most commonly activated signalling pathway in human cancer, highlights the 

opportunity for cancer therapy by inhibitors that target PI3K isoforms and other major nodes 

in the PI3K downstream pathway like PDK1, Akt/PKB or mTOR (reviewed in [91]). 
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Relating to this, it was found that PI3K is mutated in a wide range of human tumors 

like breast, endometrial, colon and pancreas cancer. Additionally, especially lung cancers 

show amplifications of a subunit of PI3K. It was possible to demonstrate that two of the most 

frequent PI3K mutations increase PtdIns(3,4,5)P3 levels resulting in an activation of Akt/PKB 

signalling and inducing cellular transformation (reviewed in [91]). 

Akt/PKB is the best characterized downstream target of the PI3K signalling pathway, 

while the relative importance of other downstream protein kinases has not been studied in 

such detail. Akt/PKB can be found mutated in breast, colon, ovarian and lung cancer, while 

amplification of Akt/PKB has been reported in various tumour types like gastric, ovarian  

pancreas, head and neck and breast cancer.  

As far as the less characterized PDK1 is concerned, mutations of this enzyme are 

rarely found in human cancer, while amplification or overexpression of PDK1 was found in 

up to 20% of breast cancers (reviewed in [91]). 

The primary negative regulator of the PI3K-PDK1-Akt/PKB pathway is apparently 

PTEN [31, 36]. PTEN, an important tumour suppressor, functionally antagonizes PI3K 

activity through its intrinsic lipid phosphatase activity that reduces the cellular pool of 

PtdIns(3,4,5)P3 by converting it back to PtdIns(4,5)P2. Loss of PTEN results in unrestrained 

signalling by the PI3K pathway, thereby leading to cancer (reviewed in [91]). 

Other regulators of Akt/PKB activity are the Ser/Thr protein phosphatases PP1 and 

PP2A. These phosphatases are involved in many different cellular processes like glycogen 

metabolism, cell cycle regulation, protein synthesis and intracellular transport, RNA splicing, 

and signal transduction (reviewed in [89]). Especially in advanced prostate cancer, elevated 

levels of cav-1 (caveolin 1) may play an important role in limiting PP2A and PP1 activities, 

leading to the maintenance of activated Akt/PKB [143]. The PHLPP phosphatase has been 

more recently described to play a role in Akt/PKB regulation, as it terminates Akt/PKB 

signaling by directly dephosphorylating and inactivating Akt/PKB [18]. 

The above mentioned Ser/Thr protein kinase mTOR plays a crucial part in the 

regulation of cell growth and proliferation, for example by monitoring nutrient availability, 

cellular energy levels, oxygen levels and mitogenic signals. With respect to its biological 

functions, it is obvious that dysregulation of the mTOR-pathway is related to cancer. At this 

point, it is worth mentioning that mTOR exists in two distinct complexes, namely mTORC1 

and mTORC2, which is described in more detail in chapter 3.1.4. 

In relation to the present thesis, there is one report showing that activity of the PDK1-

phosphorylated protein kinase C related protein kinase 1 (PRK1), which is phosphorylated by 
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PDK1, can be inhibited by PI3K inhibitors. This finding indicates that PRK1 is also activated 

downstream of PI3K [46]. However, as they used an activation loop phospho-specific 

antibody to detect a phosphorylated activation loop of endogenous PRK1, it is also possible 

that, in addition, they detected the level of activation loop phosphorylation of endogenous 

PRK2, since PRK1 and PRK2 have the same amino acid sequence in this region (peptide 

antigen for the antibody: RTST(P)FCG, PRK2 (T816): RTS T FCG, PRK1 (T774) RTS T 

FCG). This shows that PRK1 and perhaps PRK2 activity may be affected by PI3K 

dysregulation. The PDK1-, PRK- and other PI3K-pathways will be specified in later chapters. 

Altogether, this pathway is seen as a very promising therapeutic target for cancer 

treatment. On the other hand, it is involved in a variety of normal cellular processes, 

demonstrating that it is a challenge to find a drug strategy that has the most possible success 

and the fewest side effects at the same time. 

 

3.1.4. Therapeutic potential of targeting the PI3K pathway  

Pharmaceutical companies and academic laboratories are currently undergoing a number of 

different therapeutic strategies to develop drugs to PI3K and other key components in its 

signalling pathway.  

With the knowledge that EGFR/ErbB1 is overexpressed in a number of human 

cancers, a highly effective therapy was established by treating these growth factor dependent 

neoplasias with antibodies against the overexpressed growth factor receptor. So, for example 

in some human epidermal growth factor-2-positive (EGFR-2/HER-2) breast cancer patients, 

the anti-HER-2 humanized monoclonal antibody trastuzumab (Herceptin) was found to be 

effective (reviewed in [47]). According to the German Cancer Society (DKG, Deutsche Krebs 

Gesellschaft), trastuzumab is currently established by default as an adjuvant therapy after 

operation or polychemotherapy in HER-2-positive breast cancers. In some cases, trastuzumab 

is also applied in parallel with the chemotherapy. 

To target PI3K, numerous PI3K inhibitor chemotypes have been developed. While the 

inhibitors wortmannin and LY294004 show just little or no selectivity for individual PI3K 

isoforms and cannot be used therapeutically because of their considerable toxicity, newer 

inhibitors are in development and in clinical trials (like IC87114).  

Inhibitors targeting both mTOR and the p110α subunit in PI3K have been developed. 

An example for such an inhibitor is BEZ235 (also BKM120, GDC-0941, BGT226 and 

SF1126). BEZ235 works via binding to the ATP-binding pocket and provides a strong anti-

proliferative activity against tumour xenografts that show abnormal PI3K signalling, 
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including loss of PTEN function or gain of function PI3K mutations. These pharmaceuticals 

are intended to be used in the therapy of advanced solid tumors (reviewed in [91]). 

Another attractive target is Akt/PKB. Various classes of inhibitors have been 

developed, e.g. lipid-based phosphatidylinositol analogues, ATP competitive inhibitors and 

allosteric inhibitors. The most clinically advanced substance is the lipid-based 

phosphatidylinositol analogue perifosine. This inhibitor targets the PH domain of Akt/PKB, 

which prevents Akt/PKB from binding to PtdIns(3,4,5)P3 and thereby anticipates the 

membrane translocation. It stands presently in clinical trials to treat multiple types of cancers 

(reviewed in [91]). 

mTOR is the first kinase of the PI3K pathway that was targeted in the clinic. Known 

as an antifungal agent, rapamycin was found to have immunosuppressive and antineoplastic 

properties. Rapamycin associates with its intracellular receptor, FK506-binding protein 12 

(FKBP12), which then binds directly to mTORC1 and suppresses mTOR-mediated 

phosphorylation of its downstream substrates, S6K (at the HM phosphorylation site) and 

4EBP1. Later, analogues of rapamycin working with the same mechanism and offering better 

pharmacological properties, such as temsirolimus (CCI 779) and everolimus (RAD001), were 

developed as anti-cancer drugs. These inhibitors only inhibit mTOR when this kinase is part 

of the mTORC1 complex and not when it is part of the mTORC2 complex. 

Interestingly, mTOR also presents a potential second target: the mTORC2 complex. 

mTOR as part of the mTORC2 complex phosphorylates the HM site (Ser473) at the C-

terminus of Akt/PKB (reviewed in [91]). Remarkably, it was recently shown that mTORC2 is 

required for the development of prostate tumors that are induced by PTEN loss [55]. 

Therefore, a kinase inhibitor of mTOR that can target both mTORC1 and mTORC2, could 

block the activation of the PI3K pathway more effectively than rapamycin does. Recent 

studies have described torkinibs and torin1, potent and selective ATP competitive inhibitors 

of mTOR, to inhibit both mTORC1 and mTORC2 complexes and to impair cell growth and 

proliferation more effectively than rapamycin. In addition, two ATP competitive mTOR 

inhibitors, OSI027 and AZD8055, are presently in clinical trials in patients with advanced 

solid tumours and lymphoma (reviewed in [91]). 

Interestingly, it was shown that reduced expression of PDK1 can suppress tumor 

formation in animal models [8]. This suggests that it might be possible to inhibit 

tumorigenesis by inhibiting 80% of PDK1 activity (reviewed in [91]). 
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3.2. PDK1 and its substrates 

3.2.1. Regulation of PDK1 and the role of the PIF-pocket 

PDK1 is a key protein kinase that regulates the activity of its substrates through phosphor-

ylation. Amongst others, isoforms of Akt/PKB [17, 129], S6K [144], RSK [48] and SGK [82] 

belong to these substrates. Like its substrates, PDK1 belongs to the group of AGC protein 

kinases.This name is related to the cAMP dependent protein kinase (PKA), cGMP dependent 

protein kinase (PKG) and protein kinase C (PKC) [12]. 

 PDK1 possesses an N-terminal kinase catalytic domain and a C-terminal pleckstrin 

homology (PH) domain [1, 12] and activates its substrates by phosphorylating these kinases at 

their activation loop [137] (reviewed in [3]). Like all protein kinases, the catalytic core of 

PKA, the first AGC kinase whose crystal structure has been solved [136], possesses an N-

terminal lobe, consisting mainly of β-sheet chains, and a predominantly α-helical C-terminal 

lobe [60, 136]. The ATP-binding site is located in between the two lobes [67, 78]. At the C-

terminal end, PKA contains an extended loop that ends with the sequence Phe-Xaa-Xaa-Phe 

(where Xaa is any amino acid, FXXF) which is similar to the first part of the HM 

phosphorylation site of S6K and SGK (Phe-Xaa-Xaa-Phe-Ser/Thr-Tyr, FXXFS/TY) in which 

the Ser/Thr is the phosphorylated residue [10]. When phosphorylated, this HM folds back 

onto the catalytic domain and binds to a hydrophobic pocket located between β-4, β-5, α-C 

and α-B in the small lobe [67, 78]. Phosphorylation of the activation loop bridges the α-C 

helix in the small lobe with the catalytic and Mg2+ positioning loops, and is required (although 

often not sufficient) for stabilizing active conformations of AGC kinases [13]. Therefore, 

structurally, the activation of AGC kinases like Akt/PKB, SGK, S6K and others is explained 

by the coupled action of the phosphorylation at the HM and at the activation loop, that, 

together, stabilize the α-C helix, which in turn helps to position the ATP binding site residues 

for catalysis. 

In the structure of PKA, the FXXF motif does not contain a phosphorylation site and is 

buried in a hydrophobic pocket in the small lobe of the PKA catalytic domain [78]. 

Importantly, mutation of either Phe residues drastically reduces PKA activity towards a 

peptide substrate [7, 42]. In PKA, the FXXF motif is constitutively bound to its pocket and 

does not participate in the regulation of the activity. 

Remarkably, PDK1 does not possess an HM C-terminal to its catalytic domain like 

other AGC kinases do. However, PDK1 possesses the equivalent hydrophobic pocket that can 

be found in the small lobe of its catalytic domain similar to that in PKA. Interstingly, 

occupancy of the PDK1-interacting fragment pocket (PIF-pocket) activates PDK1. This can 
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be recognized because peptides that encompass the HM of PRK2 and RSK induce a 4- to 6-

fold activation of PDK1 [10, 12, 49]. The PIF-pocket is characterized in more in the chapters 

3.3.5.1. and 3.3.5.2. Furthermore, it was shown that mutation in PDK1of residues predicted to 

form part of this pocket result in reduced or abolished interaction of PDK1 with four of its 

substrates, namely S6K1, SGK1, PKCζ and PRK2 [6, 11]. Thus, in contrast to PKA, the PIF-

pocket of PDK1 plays an important regulatory role.  

Interestingly, previous work pointed out that PDK1 could act as a sensor of protein 

conformation. In this way, the PIF-pocket would allow PDK1 to interact with its substrates 

when they are in an inactive conformation [13]. 

As already mentioned, PTEN is frequently mutated in human cancers. This leads to 

elevated levels of PtdIns(3,4,5)P3 and to increased Akt/PKB and S6K activity. A study by 

Bayascas et al. showed that reducing the expression of PDK1 in PTEN+/− mice, markedly 

protects these animals from developing a wide range of tumors. In this sense, they could show 

that PDK1 is a key effector in mediating neoplasia as a response to the loss of PTEN [8]. 
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Figure 2A: Taken from: Leslie, Biondi and Alessi: Phosphoinositide-regulated kinases and phosphoinositide 
phosphatises Chem Rev. 101(8):2365-80.(August 2001) [86]: Summary of the model by which PDK1 can 
recognize, interact, and then phosphorylate different AGC kinase substrates. As described in more detail in 
chapter 3.2.2., Akt/PKB does not require the PIF-binding pocket on PDK1 to become phosphorylated by PDK1. 
In contrast, it is the binding of PDK1 and Akt/PKB to the second messenger PtdIns(3,4,5)P3 and PtdIns(3,4)P2 
at the membrane of cells that prompts their co-localization, enabling PDK1 to phosphorylate Akt/PKB. The 
interaction of SGK and S6K with PDK1 is further described in chapter 3.2.3. SGK is a poor substrate for PDK1 
until it is phosphorylated at its HM. This converts it into a form that can interact with the PIF binding pocket of 
PDK1 and hence permits PDK1 to interact with it and to phosphorylate SGK at its activation loop site. S6K is 
similarly converted into a form that can interact with the PIF binding pocket of PDK1 through a combination of 
the phosphorylation of the C-terminal Ser-Pro/Thr-Pro in its autoinhibitory domain1 and by phosphorylation of 
its HM. Thus, for SGK and S6K, it is the phosphorylation of these enzymes at their C-terminal residues that is 
rate limiting for the phosphorylation of these kinases at their activation loop by PDK1.  
As it is specified in chapter 3.2.4.1.2., the atypical isoform PKCζ, in contrast, might be constitutively 
phosphorylated at its activation loop motif in cells as the HM of PKCζ, which possesses a Glu residue instead of 
a Ser/Thr residue at the site of phosphorylation, can in principle interact with the PIF binding pocket on PDK1, 
as soon as it is expressed in a cell, resulting in PKCζ becoming phosphorylated at its activation loop site. Blue 
circles indicate phosphorylation of activation loop residue, red circles phosphorylation of the HM, and green 
circles phosphorylation of the Ser-Pro/Thr-Pro residues in the C-terminal autoinhibitory domain of S6K. HMs 
are marked with two triangles. 
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Figure 2B: Taken from Biondi et al: Identification of a pocket in the PDK1 kinase domain that interacts with 
PIF and the C-terminal residues of PKA; EMBO J.;19(5):979-88 (March 2009) [10];This figure shows the 
ribbon structure of the PKA–PKI–ATP ternary complex [153] PKI (Protein kinase A inhibitor) is shown in 
yellow, and the ATP molecule is highlighted. The C-terminal Phe347 and Phe350 are shown in red. The position 
of phospho-Thr197 (the PDK1 phosphorylation site) in the activation loop is indicated. The C-terminal Phe347-
Xaa-Xaa-Phe350 residues of PKA interact with a hydrophobic pocket on the PKA kinase domain, predicted to 
be conserved in PDK1. 
 

3.2.2. Interaction of Akt/PKB with PDK1 

Different substrates of PDK1 are phosphorylated and activated by distinct regulatory 

mechanisms. For the interaction of Akt/PKB with PDK1, PtdIns(3,4,5)P3 is required, as 

PDK1 can only phosphorylate Akt/PKB efficiently in vitro in the presence of lipid vesicles 

containing PtdIns(3,4,5)P3 or PtdIns(3,4)P2 [2, 134]. Both Akt/PKB and PDK1 interact with 

PtdIns(3,4,5)P3 via their PH-domains. Thus, the PH domains play a crucial role in co-

localizing these kinases at the plasma membrane and thereby enabling PDK1 to phosphorylate 

and activate Akt/PKB [104]. While it is established that Akt/PKB is recruited to the plasma 

membrane due to PI3K activation [147], it remains open if PDK1 is also translocated to the 

membrane or if a constant pool of PDK1, that is not further increased by agonists, is 

constitutively associated with the plasma membrane in unstimulated cells (reviewed in [104]). 

 The binding of PtdIns(3,4,5)P3 to the PH-domain does not directly activate Akt/PKB 

or PDK1 [2, 64], but it seems that binding of PtdIns(3,4,5)P3 to Akt/PKB induces a large 



 26

conformational change (reviewed in [104]). In turn, changing of conformation increases the 

rate at which Akt/PKB can be phosphorylated by PDK1 [1, 133]. 

Even though it is not finally resolved, it is possible that the conformational change 

could result in the exposure of the activation loop residue and/or in the creation of a specific 

PDK1-binding/docking site. 

Interestingly, although PDK1 means „3-phosphoinositide-dependent protein kinase“, 

all known substrates of PDK1, except Akt/PKB, are phosphorylated efficiently in a 

phosphoinositide-independent manner in vitro [140] (reviewed in [13]). 

 

3.2.3. Interaction of SGK and S6K with PDK1 

The AGC kinases S6K and SGK do not have a PH-domain and are phosphorylated by PDK1 

in vitro in a phosphoinositide-independent manner. With substrates other than Akt/PKB, 

PDK1 specifically interacts with a substrate sequence from the region that is located C-

terminally to the catalytic domain within the conserved FXXF HM. As already mentioned, 

S6K and SGK have a Ser/Thr residue at the HM site. In addition to the phosphorylation of the 

activation loop phosphorylation site, this HM site also has to be phosphorylated in order to 

achieve maximal activation [13, 104]. Additionally, there is a temporal difference between 

Akt/PKB phosphorylation (which is more rapid) and the phosphorylation of SGK and S6K by 

PDK1. The current model also explains this feature since S6K and SGK require the HM 

phosphorylation to gain maximal activation [13]. 

Moreover, further work, where the residue Arg131 of PDK1, that is located in the 

phosphate-binding pocket of PDK1, was replaced by a Met residue [25, 50], could show that 

S6K activation is not only related to the phosphorylation of its HM, but also to the additional 

phosphorylation of the C-terminal residues Ser/Thr-Pro, which is regulated by mTOR [62] 

and occurs independently of PDK1 [99]. 

Interestingly, previous work reported that Akt/PKB is indirectly involved in the 

stimulation of phosphorylation of the HM of S6K by mTORC1 through phosphorylation. This 

phosphorylation leads to the inactivation of the tuberous sclerosis complex-2 (TSC2).  

In contrast, recent studies showed that mTORC2, but not mTORC1, plays a vital role in 

controlling the HM phosphorylation and activity of SGK [52].  
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3.2.4. PKC and PRK isoforms 

3.2.4.1. The PKC family 

PKCs (protein kinase C) compose a family of isoenzymes grouped into three subclasses, 

based on the composition of domains and membrane targeting modules of the N-terminal 

regulatory tail that determines the co-factor-dependence of the isoenzyme [111]. Two 

important components are the C1 domain, acting as the diacylglycerol sensor, and the C2 

domain, representing the Ca2+ sensor. Each of these comes either in a form that binds ligand 

or in a form that is lacking determinants that allow ligand binding [23, 59]. On this note, 

PKCs are divided into conventional, novel and atypical forms. All isoenzymes have an 

autoinhibitory “pseudosubstrate” sequence N-terminal to a C1 domain. 

 Conventional PKCs contain functional C1 as well as functional C2 domains, enabling 

them to respond to diacylglycerol and Ca2+ signals. Novel PKCs contain a functional C1 

domain, but not a non-ligand-binding C2 domain resulting in the fact that they respond to 

diacylglycerol, but not to Ca2+ signals. In contrast, atypical PKCs contain a non-ligand-

binding C1 domain and no C2 domain and consequently, they neither respond to 

diacylglycerol nor to Ca2+ signals (reviewed in [112]). The ten mammalian PKCs contain four 

conventional isoenzymes (α, βΙΙ and the alternatively spliced βΙ, which differs only in the last 

43 residues, and γ) four novel PKCs (δ, ε, η/Λ and θ), and two atypical PKCs (ζ and ι/λ) 

[100, 113]. 

The mechanism of regulation of PKCs has been mostly studied in classical PKCs. So 

it is known, that PKCs are phosphorylated just after synthesis, a process called “maturation”. 

PKC is then kept in an inactive conformation via binding of the pseudosubstrate sequence to 

the substrate-binding cavity in the sense of a pickup sensor (reviewed in [112]). Thus, in this 

model, the pseudosubstrate binds intra-molecularly and blocks the active site. 

The generation of diacylglycerol and Ca2+ and the resulting engagement of the C1 and 

the C2 domains on the membrane lead to the recruitment of PKC to the membrane. Through 

this membrane interaction, the energy to release the pseudosubstrate from the substrate-

binding cavity is provided, allowing substrate binding and phosphorylation [110, 111].  
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3.2.4.1.1. Interaction of classical PKCs with PDK1 

The PKC family members have three conserved phosphorylation sites in common: The 

activation loop site, the Z-/turn motif phosphorylation site and the HM phosphorylation site. 

For the PKC members, phosphorylation is a basic requirement to allow adjacent substrate 

phosphorylation. Without these preceding phosphorylations, the kinases do not show catalytic 

activity [112]. The kinase that provides this priming phosphorylation of PKCs at the 

activation loop is PDK1.  

In previous work, PDK1 was shown to be the upstream kinase for conventional [40, 

83], novel [20, 83] and atypical [24, 83] PKC family members. In contrast to the PI3K-

dependent phosphorylation of SGK, S6K, Akt/PKB and other AGC kinases, the 

phosphorylation by PDK1, which makes the PKCs catalytically compentent, is a constitutive 

process for classical PKC family members [112]. These constitutively phosphorylated 

substrates of PDK1 acquire the active conformation soon after synthesis and their regulation 

is achieved by other means, such as diacylglycerol and Ca2+ binding in classical PKCs 

(reviewed in [13]). Studies on this topic let suggest that upon synthesis, PKC isoforms interact 

with PDK1 by means of their dephosphorylated HM and become subsequently 

phosphorylated at their unmasked activation loop by PDK1. The HM provides a docking site 

for PDK1 [49] via the PDK1’s PIF-binding pocket [12]. A model that has not been proven 

experimentally suggests that in the active conformation, the C-terminus of substrates is 

released from the PIF-binding docking site on PDK1. The liberated C-terminus (with the HM) 

is now accessible for phosphorylation and the phosphorylated HM interacts with the enzyme’s 

own catalytic core (reviewed in [13]). 

It is then suggested that phosphorylation of the C-terminus locks this segment on the 

small lobe of the kinase domain, stabilizing the active conformation and enabling it to bind 

the N-terminal pseudosubstrate sequence. Further analysis that identified, next to the PIF-

pocket, a phosphate binding site that interacts with the phosphate from the phosphorylated 

HM [50]. This binding pocket has two basic residues that are conserved through AGC kinases 

that have HM phosphorylation sequences (notably PKC and Akt/PKB, but not PKA) 

(reviewed in [112]). 

As described in more detail under item “The PKC family”, in classical PKCs, in order 

to target PKC to the membrane, generation of Ca2+ and diacylglycerol is required. Alexandra 

Newton suggests that the binding of the C1 and C2 domains on the membrane delivers the 

energy to release the pseudosubstrate from the substrate-binding cavity, enabling the 



 29

downstream signalling. However the molecular details of PKC activation have never been 

studied to a molecular detail.  

Nevertheless, once reaching this active conformation, PKC is thought to be 

dephosphorylated at its activation loop after agonist stimulation, before degradation (reviewed 

in [112]). To complete the life circle of PKCs, binding of the molecular chaperone Hsp70 to 

the dephosphorylated Z-/turn motif stabilizes PKC and enables it to become rephosphorylated 

and allows it to re-enter the pool of signalling-competent PKCs (reviewed in [112]). 

Remarkably, while some PDK1 substrates, as described above in this chapter in more 

detail, seem to exist in inactive and active conformations crossing their life cycle, other 

substrates, such as conventional PKC isoforms, appear to be phosphorylated by PDK1 upon 

synthesis and seem to exist in vivo exclusively in stable active conformations [13]. 

As already mentioned, it was thought that the HM in conventional PKC isoforms 

would be an autophosphorylation event. However, recent work reported that mTORC2 is 

required for phosphorylation of the conventional PKCα at its HM (Ser657) [15, 41, 128]. 

 

3.2.4.1.2. Atypical PKC isoforms  

Atypical PKC isoforms (aPKCs), such as PKCζ, are activated and stabilized by 

phosphorylation of their activation loop site like other members of the AGC-subfamily of 

protein kinases. Atypical PKC isoforms (PKCζ and PKCι/λ) possess a Thr residue in a region 

equivalent to Thr308 (Thr410 in PKCζ [24, 83]) of Akt/PKB in the activation loop. The 

phosphorylation of this residue is crucial for kinase activation. However, while the other 

members of the AGC subfamily of kinases possess a phosphorylatable Ser/Thr in their HM, 

the phosphorylatable Ser/Thr residue is replaced in atypical PKCs by an acidic residue, for 

example Glu579 in PKCζ. The negatively charged amino acids are able to mimic the 

phospho-Ser/phospho-Thr residue [121].  

As mentioned above, the kinase that phosphorylates the activation loop residue of 

conventional, novel and atypical PKC isoforms is PDK1 [39, 46]. The kinase domain of 

PDK1 interacts with a region of atypical PKCs encompassing its HM [5]. Previous work 

demonstrated that these C-terminal fragments of atypical PKC isoforms (PKCζ and PKCι/λ) 

interact significantly with the PIF-binding pocket of PDK1 [6]. It was shown that mutation of 

the conserved aromatic residues in the PKCζ HM inhibits or greatly weakens the interaction 

of PKCζ with PDK1 and prevent the phosphorylation of PKCζ at its activation loop in vivo. 

This is also the case for PRK2. Interestingly, while mutation of the phosphorylation 
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mimicking residue of PRK2 (Asp978) to either Ala or Ser importantly diminishes the 

interaction of PIF and PRK2 with PDK1 [5], a mutation of the equivalent residue in PKCζ 

(Glu579) did not considerably affect the interaction between PKCζ and PDK1.  

Further work showed that the specific activity of the mutant Glu579Ala in PKCζ is 

only slightly lower compared to PKCζ wild type, suggesting that a negatively charged residue 

in the HM of the atypical PKC isoform is not required for maximal activity [6].  
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3.3. Protein kinase C-Related protein Kinases (PRKs) 

In addition to the three major classes of PKC isoenzymes, another family of PKC-related 

protein kinases has been identified, termed the protein kinase C-related kinase (PRK) family. 

PRK was first described biochemically, as a protein kinase that showed increased 

activity upon limited proteolysis and was termed PAK, for Protease Activated Kinase [51]. 

The activity was also independently termed Protein Kinase N (PKN) [105] and also cloned 

and found to possess a catalytic domain very similar to PKC isoforms, and named “Protein 

kinase C-Related protein Kinase” PRK1 and PRK2 [119]. There are at least three different 

isoforms of PKN (PKNα /PRK1/PAK-1, PKNß/PKN3 and PKNγ/PRK2/PAK-2) in mammals, 

each of which shows different enzymological properties, tissue distribution, and varied 

functions [107, 119]. While PRK1 and PRK2 seem to be expressed in all tissues, expression 

of PKN3 is low in normal adult tissue, but increased in human cancer cells [116] and in early 

mouse embryonic stages.  

Remarkably, the kinase domain fragments of PRK1 and PRK2 represent constitutively 

active forms, while the corresponding PKN3 fragment exhibited significantly less catalytic 

activity than the full-length molecule [85]. While PKN3 needs the N-terminal domain for full 

enzymatic activity, this is not the case for PRK1 and PRK2. Whereas PRK1 and 2 are 

effectors of small Rho GTPases, as described in more detail below, it has not been clarified 

yet, if PKN3 is also regulated by these proteins [85]. 

The kinase that phosphorylates the activation loop of PRKs is PDK1 [39, 46]. As 

already mentioned previously, the kinase domain of PDK1 interacts with a region of PRK2 

encompassing its HM termed the PDK1-interacting fragment (PIF) [5]. Previous work 

demonstrated that these C-terminal fragments (PIF) of PRK1 and PRK2 interact significantly 

with the PIF-binding pocket of PDK1 [6]. 

It is not much known about the regulation of the activation of PRKs. However, work 

by Flynn et al. provided strong hints, that the activation of PRK1 and PRK2 is 

phosphoinositide-dependent. They could show that inhibition of PI3K by LY294002 led to a 

diminished activation loop phosphorylation of PRK1 at its Thr774 residue. As described 

above under the item “Dysregulation and role of the PI3K signalling pathway in cancer“, it is 

possible that this is also the fact for PRK2. Interestingly, they could show in addition, that the 

PRK activation loop phosphorylation induced by PDK1∆PH (residues 51–404) was also seen 

to be dependent upon PI3K products, as it was inhibited by LY294002. For this reason they 

suggested that a separate pathway exists between PI3K and PRK other than through PDK1, 

perhaps through endogenous GTPases [46]. 
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As they could also show that PDK1 was recruited to the early endosomal compartment in a 

PRK-dependent manner and that the resulting ternary complex of RhoB-PRK-PDK1 was 

unaffected by PI3K inhibition, they suggested that the recruitment of the kinases to this 

membrane compartment is independent of PI3K products, but that the subsequent activation 

step requires PtdIns(3,4,5)P3 or PtdIns(3,4)P2 [46].  

 The role of PRKs as effectors downstream of Rho have been, on the other hand, better 

characterized. 

 
Figure 3: Taken from Frödin et al.: A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 
mediates activation by hydrophobic motif phosphorylation; The EMBO Journal (2002) 21, 5396 – 5407 [50]; 
Structural view of PRK2. The graphic illustrates two regulatory features: phosphorylation of the activation loop 
(stippled area) and phosphorylation of a hydrophobic motif (blue box), located in a tail region (red box) C-
terminal to the kinase domain. PRK2 contains a phosphate-mimicking aspartic acid residue. 
 

3.3.1. PRK2 is an effector target of Rho-GTPases 

3.3.1.1. Signalling pathways downstream of Rho 

PRKs and Rho-associated coiled-coil containing protein kinases (ROCKs) are widely 

considered to be the protein kinases that mediate phosphorylations downstream of Rho and are 

both inhibited by the highly specific protein kinase inhibitor Y27632 [34].  

The Ras-related Rho subgroup of small GTPases consists of nine Rho-like proteins: 

RhoA, RhoB, RhoC, Rac1, Rac2, cdc42, g25k, RhoG and TC10. Each of these proteins is at 

least 50% identical in amino acid sequence to any other in the subgroup and about 30% 

identical to Ras. Rho-like proteins act as molecular switches, changing from an inactive state 

when bound to GDP and to an active state when bound to GTP [114], regulated by guanine 

nucleotide exchange factors (GEFs). These factors control the relation of the GDP-bound to 

the GTP-bound form [16]. Rho and Rac regulate signalling pathways linking growth factor 

receptors to the assembly and organization of the actin cytoskeleton [114, 125]. Cdc42 is also 

involved in the formation of actin-based structures. Rho, Rac and Cdc42 stimulate the 

assembly of focal adhesion complexes at the plasma membrane and are involved in 
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controlling cell polarity [125]. Activation of Cdc42 leads to the activation of Rac and Rho in 

vivo [81, 115, 125]. Additionally, Rho controls the assembly of actin stress fibers and focal 

adhesion complexes, Rac regulates actin filament accumulation at the plasma membrane to 

produce lamellipodia and membrane ruffles and Cdc42 stimulates the formation of filopodia 

[117]. 

Furthermore, the Ras-related Rho family of proteins mediates signalling pathways 

involved in changes in nuclear gene expression. So, RhoA, Rac1 and Cdc42 activate 

transcription by activating transcription factors [26, 58, 103]. Rho, Rac, and Cdc42 control 

signal transduction pathways that are essential for cell growth [117]. 

Rho is also involved in mitosis and cytokinesis. In this sense, RhoA plays a critical 

role in G1-S progression of the cell cycle [56, 63, 150] and Rho, Rac and Cdc42 stimulate cell 

cycle progression through G1 and subsequent DNA synthesis (reviewed in [117]).  

Previous studies showed that the GTP-bound form of RhoA is able to bind and 

activate PRKs [4, 146]. Other effector targets of activated Rho-GTPases are ROCK-I [14], 

that is homologous to myotonic dystrophy kinase [4], as well as ROCK-II [87, 88, 96].  

 

3.3.1.2. PRK2 as an effector target of Rho 

Recent studies highlighted PRK2 as the major Rho-associated kinase in most tissues. In 

contrast to the other kinases mentioned above, PRK2 is a potential effector target of both Rho 

and Rac. The interaction between PRK2 and Rho is nucleotide-independent, while GTP is 

needed for the interaction with Rac and in both cases, the interaction results in a considerable 

increase of kinase activity. In contrast, ROCK-I and ROCK-II do not appear to be activated 

substantially upon binding to Rho [61, 87, 96]. 

Moreover, as mentioned above, PRK1 and PRK2 activity is found in most tissues and 

cell lines, while expression of the other Rho effectors seems to be limited. However, PRK2 

was described as „the predominant Rho-associated kinase“ and was detected at substantially 

greater levels than PRK1 [142]. 

Like PRK1 and PKN3, PRK2 has a Rho binding domain, named HR1 (homology 

region 1, also called CZ region (charges aa and Leu-zipper-like sequence) or ACC-region 

(antiparallel coiled-coil region), that is highly charged and sufficient for the interaction with 

Rho. HR1 consists of three tandem copies of a 60-70 amino acid sequence and is located at 

the N-terminus of PRK1 and PRK2 (HR1a, b, c). Primarily, RhoA-GTP interacts with the at 

the very N-terminus HR1 repeat (HR1a) [154]. Comparable data is available for PRK1 [45]. 

At the present, it is assumed that the binding of RhoA-GTP to HR1 disrupts an autoinhibitory 
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intra-molecular interaction in PRKs, consequently increasing PRK phosphorylation by PDK1 

and resulting in further activation [107, 142, 146].  

Although there is only little information of how Rho GTPases interact with PRKs, 

today it is considered that the binding of RhoA-GTP to the HR1 domain of PRKs is required 

for optimal activation of PRKs by RhoA [90]. Now it is suggested that PRK2 behaves as most 

other Rho effectors, meaning that it is activated by the active GTP-bound form of Rho to 

mediate its effect [90]. This finding fits into a model proposed by Flynn et al. in 1998: the 

binding of a GTPase to PRK enables the interaction of its C-terminal region with PDK1, 

which consequently phosphorylates PRK at the activation loop in the presence of 

PtdIns(3,4,5)P3. In turn, this fits to the findings of Flynn et al. in 2000, that the 

phosphorylation of the activation loop of PRK2 seems to depend on PI3K [46]. Additionally, 

RhoA-GTP is also able to bind to the Rho-binding motif of other Rho kinases (ROCK-I and 

ROCK-II), termed RBD (Rho binding Kinase of ROCK-I) [154]. 

 

3.3.1.3. Function of the Rho-PRK2 pathway  

A crucial function of the Rho-PRK2 pathway is the regulation of actin cytoskeletal 

organisation, corresponding to the observation that cells expressing the kinase-deficient PRK2 

protein showed a disruption of fibroblast actin stress fibers and an increased level of sub-

cortical actin [142]. Moreover, Rho GTPases regulate PRK2 to control entry into mitosis and 

exit from cyto-kinesis [130].  

Controlled by Rho GTPases, PRK2 is involved in the abscission of the midbody at the 

end of the cell division cycle and in the activation of mitotic cyclin/Cdk1 complexes at the 

G2/M transition via activation of a phosphatase, named Cdc25B. In this sense, PRK2-depleted 

cells have been shown to be delayed in G2/M progression and to fail to undergo abscission, 

finally resulting in binucleated cells [130]. 

 

3.3.1.4. Role of Rho in the PDK1-PRK2 affair 

It was shown that the in vivo and in vitro activation of PRK1 and PRK2 involves the 

activation loop phosphorylation by PDK1. As mentioned above, the interaction of PRK1 and 

PRK2 with PDK1 is thought to be dependent upon Rho, as Rho influences the activation loop 

phosphorylation by controlling the ability of PRKs to bind to PDK1 resulting in an increased 

activation loop phosphorylation of endogenous PRKs in the presence of Rho [46].  
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Interestingly, previous work showed that transfection of both PRK kinases with either 

PDK1 or the GTPase-deficient-RhoA or -RhoB significantly elevated the activation loop 

phosphorylation level of endogenous PRK1 and PRK2 in HEK293 cells. Remarkably, the 

level of phosphorylation of PRK was not further increased through co-transfection of Rho and 

PDK1, even if a high stoichiometry of phosphorylation had been excluded, implying that 

further requirements are needed in PRK phosphorylation [46].  

To explain these findings Flynn et al. proposed the following model: the binding of a 

GTPase to PRK enables the interaction of its C-terminal region with PDK1, which 

consequently phosphorylates PRK at the activation loop in the presence of PtdIns(3,4,5)P3 

[46]. After activation loop phosphorylation, PRK is able to autophosphorylate and to be 

further activated. However, the formation of the Rho-PRK-PDK1 complex and the resulting 

PRK activation loop phosphorylation in vivo can only occur after modification of Rho through 

prenylation, indicating that for the PtdIns(3,4,5)P3-dependent phosphorylation of PRK a prior 

assembly on a membrane is necessary. By contrast, in vitro, the HR1 domains of PRK1 and 

PRK2 are capable of binding to bacterially expressed and thus non-prenylated Rho-GTP [45]. 

Altogether, while the recruitment and the maintenance of the RhoB-PRK-PDK1 complex is 

independent of PtdIns(3,4,5)P3 or PtdIns(3,4)P2 and is rather regulated by protein-protein 

interaction, these PI3K products are necessary in vivo for the activation of PRK2 by PDK1 

through activation loop phosphorylation upon binding of the C-terminal fragment of PRK2 to 

PDK1 [46]. 

 

3.3.2. Biological functions of PRK2 

Of major interest, PRK1 has been shown to activate androgen receptors (AR) [101], to 

phosphorylate histone H3 at Thr11 [102] and to regulate transcription. Interestingly, inhibition 

of PRK1 blocks AR-induced tumour cell proliferation, making PRK1 a promising therapeutic 

target. Similarly, PRK2 also induces H3 phosphorylation [102] and PKN3 is required for 

malignant prostate cell growth [85]. The most notable role described for PRK2, on the other 

hand, may be to control entry into mitosis and exit from cytokinesis [130]. 

 

3.3.2.1. PRK2 is required for hepatitis C virus replication 

It was found in 2004 that PRK2 is the specific cellular kinase phosphorylating the hepatitis C 

Virus (HCV) NS5B protein. NS5B protein is the viral RNA-dependent RNA polymerase 

required for replication of the HCV RNA genome, suggesting that HCV RNA replication is 

regulated by NS5B phosphorylation through PRK2 [74]. Subsequent work on this could show 
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that suppressing PRK2 activation by HA1077 (also known as Fasudil) and Y27632, two 

kinase inhibitors which exhibit a high selectivity for PRK2 and rho-kinase (ROCKII), block 

the phosphorylation of the HCV RNA-dependent RNA polymerase and lead to reduced HCV 

RNA levels. These findings identify PRK2 inhibitors as potential antiviral drugs that act by 

suppressing HCV replication via inhibition of viral RNA polymerase phosphorylation [75]. 

 

3.3.2.2. A wide field of functions with attention to apoptosis 

PRK2 is involved in many cellular pathways like cytoskeletal regulation, cell adhesion, 

apoptosis, regulation of meiotic maturation, regulation of entry into mitosis and exit from 

cytokinesis and in signalling to the cell nucleus [107].  

PRK2 is required for actin reorganisation in a Rho-GTPase dependent manner [142]. 

In lamellipodia-like structures, regions of large actin turnover, it was shown that PRK2 has a 

strong co-localization with protein Tyr phosphatase-basophil like (PTP-BL), a large non-

transmembrane protein Tyr phosphatase implicated in the modulation of the cytoskeleton, that 

binds to PRK2 [54]. Further, PRKs are involved in the regulation of organization of 

intermediate filaments, like the subunits of neurofilament (NF), vimentin, and glial fibrillary 

acidic protein (GFAP) [97, 106]. Interestingly, PRKs are also found in degenerative neurites 

within senile plaques implicating that PRKs could be involved in the Alzheimer disease [73]. 

In keratinocytes, PRK2 is found to be involved in the control of cell-cell adhesion. It 

links the activation of Rho and the activation of Fyn, a regulator of cell-cell-adhesion [19]. 

PRK2 is also embraced in the apoptotic model. PRK2 is cleaved in the early stages of 

apoptosis and it was shown in vitro that PRK2 binds Akt/PKB and prevents its 

phosphorylation at both Ser473 (located at the HM) and Thr308 (located at the activation 

loop) [80]. It is further suggested that this inhibits the full activation of Akt/PKB and thereby 

the Akt/PKB downstream signalling and consecutively its anti-apoptotic effects, like the 

protection against TNF-induced apoptosis [80]. 

The execution of apoptosis is mediated in a decisive manner by caspases which consist 

in a family of cysteine proteases with aspartate specificity. Normally, caspases exist in cells as 

catalytically inactive proenzymes. During the induction of apoptosis, they are proteolytically 

processed and activated, what is a crucial event in apoptosis. Previous work showed that full-

length human PRK2 is rapidly and specifically proteolyzed by caspase-3 at Asp117 (in the N-

terminal regulatory domain) and Asp700 (in the C-terminal kinase domain) in vitro during the 

induction of apoptosis. Interestingly, with respect to the development of cancer, mutations of 

the aspartic residues Asp700 to glutamic acid and Asp117 to alanine prevented cleavage at 
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these sites. Further, proteolysis at this N-terminal site (Asp117) probably facilitates 

subsequent cleavage at Asp700. In addition, PRK2 is cleaved rapidly during Fas- and 

staurosporine-induced apoptosis in vivo by caspase-3 or a caspase-3-like subfamily member 

(reviewed in [29]).  

Based on the result that distinct protein kinases, like the PKC isoforms PKCδ and 

PKCθ, the p21-activated kinase PAK2 and MEKK-1 are cleaved and activated by caspase-3 

during apoptosis, it has been suggested that PRK2 cleavage during apoptosis might deregulate 

its activity, since the two PRK isoforms PRK1 and PRK2 have been reported to be activated 

by limited tryptic proteolysis, possibly by removal of their N-terminal inhibitory domain 

(reviewed in [29]). According to the model described above, absence of the N-terminal 

cleavage site (Asp117) would also hinder the cleavage at Asp700 at the C-terminus in a PRK 

enzyme lacking the N-terminus.  

PRK2 proteolysis at aspartate residues by caspases during apoptosis induces the 

creation of a 36-kDa C-terminal fragment (corresponding to the amino acid residues 700-984, 

named C1). One report suggests that the C-terminal region of PRK2 that is cleaved from the 

inhibitory N-terminal region in vitro can bind Akt/PKB [80]. However, the C1 fragment does 

not contain a complete kinase domain structure required for protein Ser/Thr kinase activity 

and therefore cleavage at this site does not activate PRK2. Koh et al. suggest that the protein-

protein interaction between the C1 fragment region and Akt/PKB is critical and that this 

binding leads to the inhibition of the growth factor-induced Akt/PKB activity [80]. The 

authors found that the interaction of the C-terminal region of PRK2 with Akt/PKB inhibits the 

phosphorylation of Akt/PKB at the residues Ser473 and Thr308, leading to a specific down-

modulation of the protein kinase activities. In turn, this inhibition causes the inhibition of the 

downstream signalling of Akt/PKB. So, the Akt/PKB-mediated phosphorylation of BAD, a 

pro-apoptotic Bcl-2 family protein, is highly inhibited by the PRK2 C-terminal fragment. This 

fragment blocks the anti-apoptotic activities of Akt/PKB in vivo, while Akt/PKB 

translocation to the membrane is unaffected. Further, in additional experiments, Akt/PKB-

mediated protection against TNF-induced apoptosis was significantly abolished in the 

presence of wild type PRK2 or C-terminal PRK2 [80]. On the other hand, this fragment 

comprises the C-terminal region of PRK2 including the PIFtide region which consists of the 

residues 908-984 [5] and has been described above to interact with the PIF-binding pocket of 

PDK1. 

However, the conclusions drawn by Koh et al [80] did not consider that the C-

terminus of PRK2 interacts with PDK1. In addition, posterior work showed that the affinity of 
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PIF to Akt/PKB is extremely low. Based on current knowledge, we can now hypothesize that 

the cleavage of PRK2 during apoptosis would prompt the selective blockage of the PIF-

binding pocket of PDK1 by the C-terminal PIFtide region of PRK2. In this way, cleavage of 

PRK2 along apoptosis would affect PDK1 downstream signalling. 

With respect to further biological functions of PRK2, it was shown that this enzyme is 

also involved in meiosis. During early development, oocytes arrest late in G2 of the first 

meiotic cell cycle. Hormonal stimulation results in the resumption of meiosis, known as 

meiotic maturation [95] (reviewed in [107]). 

Another cellular pathway where PRK2 is involved is signalling to the nucleus. The 

kinase translocates from the cytoplasm to germinal vesicles during the meiotic maturation in 

starfish oocytes [132]. There, PRK2 may regulate the early events during meiotic maturation 

and the potential roles of PRK2 are the activation of Cdc2/CyclinB, translation initiation and 

actin cytoskeletal changes. Several reports showed that PRK2 is also embraced in the 

regulation of transcription [22, 124] (see also 3.3.3.1.). In this context, PRKs could be 

implicated as a downstream effector of Rho in transcriptional responses in cardiomyocytes, 

which is associated with cardiac hypertrophy [107]. Interestingly, in addition to PI3K, cAMP 

may be an upstream regulator of PRK2, as the increase of intracellular elevation of cAMP 

blocks PRK2 [107]. 
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3.3.3. PRKs in prostate cancer 

3.3.3.1. Involvement of PRKs in prostate cancer 

Recent work by Metzger et al. showed that PRK1 and PRK2 are involved in the genesis of 

prostate cancer. To understand how these kinases influence cellular pathways leading to a 

malignant growth, it is necessary to have a look on the androgen receptors (ARs). Again Rho 

plays an important role in AR activation and there are two different ways how the Rho 

signalling pathway induces the activation of the ARs.  

On one hand, stimulation of the Rho signalling pathway leads to a translocation of the 

coactivator FHL2, a protein that contains a highly conserved double zinc finger motif, to the 

nucleus, resulting in the activation of the AR by FHL2 [108]. Moreover, activation of the Rho 

signalling pathway induces also a FHL2-independent PRK-mediated transcriptional activation 

of the AR. This pathway results in a ligand-dependent superactivation of AR-regulated genes. 

Further, the PRK1 signalling additionally induces the transcriptional activity of 

mineralocorticoid receptors, progesterone receptors and p160 co-activators [101]. 

Investigating the role of PRK1 in this context, Metzger et al. showed in 2008 that 

PRK1 is further involved in posttranslational modifications of histones. It phosphorylates 

histone H3 at threonine 11 (H3T11) upon ligand-dependent recruitment to AR target genes. 

The phosphorylation of H3T11 serves as a chromatin mark for transcriptional regulation and 

enhances demethylation of H3K9 by JMJD2C via removing repressive methyl marks during 

AR-dependent transcription. Enhancing the JMJD2C-dependent demethylation plays a 

supporting role in activating the AR-dependent transcription (reviewed in [102]). In short, the 

phosphorylation of H3T11 leads to an increase of the AR-dependent transcription. 

The AR belongs to the steroid hormone receptor family of ligand-activated 

transcription factors. It has diverse biological functions like cell growth and differentiation, 

development, homeostasis and various organ functions in the adult [93], for example 

differentiation, development and maintenance of male reproductive functions and non-

reproductive organs [65, 139]. Remarkably, PRK activates the AR both in the presence of 

adrenal androgens and in the presence of the AR antagonist cyproterone acetate, supporting a 

novel modell that suggests that the AR activity is controlled by PRK signalling (reviewed in 

[102]). 

In the prostate, the AR is expressed in secretory epithelial cells that respond to 

androgens. According to the current model of prostate cancer, the AR plays an important role 

in the development of prostate cancer that mainly originates from epithelial cells.  
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As described in 1998 by Gregory et al., growth and survival of primary prostate cancer cells is 

critically dependent on androgens [53]. Nevertheless, despite reduced circulating androgen 

levels and even in the presence of AR antagonists, most prostate cancers recur and progress to 

a terminal stage [30]. 

 Evidence that PRK1 is essential for the AR function is supported by the finding that an 

inhibition or knock-out of PRK1 diminishes the AR-dependent transcription. PRK1 and AR 

form a complex on chromatin in a ligand-dependent manner resulting in an increased gene 

expression. Abrogating the PRK1 function overweighs the AR induced phosphorylation of 

histone 3 at threonine 11 and further inhibits the androgen-induced demethylation of histone 

H3. According to this, PRK1 is seen as a “gatekeeper of androgen receptor-dependent 

transcription” [102]. Interestingly, Metzger et al. further describe that in the N-terminus of the 

AR the transactivation unit 5 (TAU-5) is located, that suffices for activation by PRK1 [101]. 

Former work already pointed out that Rho family effectors such as PRK1 are overexpressed 

in human prostate tumors [53, 108]. Metzger et al. showed that in tissue sections obtained 

from radical prostatectomies there is a significant increase of PRK levels compared to the 

secretory epithelium of normal prostate tissue and normal basal compartment, where PRK1 is 

immunhistochemically hardly detected [84, 101]. This increase was shown in all different 

cancer specimens that were examined. At the same time the expression of the AR in the same 

cancer specimens is not altered [101]. 

Having a look on the clinical relevance, the levels of phosphorylated H3T11 and 

PRK1 correlate with malignancy of prostate cancer and with the Gleason scores [102]. High 

levels indicate aggressive biology of the tumors. It was shown, that the inhibition of PRK1 

drastically reduces androgen induced proliferation of prostate tumor cells. Further, 

downregulation of PRK1 levels in prostate tumor cells leads to a diminished androgen-

induced expression of endogenous androgen receptor target genes like prostate-specific 

antigen (PSA) or kalikrenin-related peptidase 2 (KLK2). 

The remarks above underline the important role of PRK1 in the control of AR-

dependent growth of tumour cells and marks PRK1 as a potential target in prostate cancer 

therapy. Although the studies were centered on PRK1, the authors showed that transfection of 

cells with PRK2 also had similar effects [101]. 
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3.3.3.2. Involvement of PKN3 in prostate cancer 

Not only PRK1 and PRK2 are involved in prostate cancer, but also the third member of the 

PRK subfamily, PKN3, seems to participate in this cancer. In 2004, Leenders et al. published 

that PKN3 is required for malignant prostate cell growth. They could show that PKN3 is an 

effector of chronically active PI3K, that appears to contribute to invasive prostate cancer [85].  

PKN3 is regulated by PI3K not only at the level of expression but also at the level of 

catalytic activity. The loss of PTEN function leads to a chronic activation of PI3K, leading in 

turn to the chronic activation of PKN3 and is also correlated to an increased metastatic 

behaviour [145] and further to an increased invasiveness or growth in semi-solid matrices [66, 

77, 79]. 

Like PRK1 and PRK2, PKN3 contains an activation loop phosphorylation site. In the 

case of PKN3 it is located at position Thr718. In contrast to PRK1 and PRK2, the FL-PKN3 

has a considerably higher kinase activity compared to the isolated catalytic domain fragment. 

In this context, deficiency of the N-terminus causes an inactivity of the kinase. The reason for 

that seems to be the fact, that the N-terminus overlaps with the kinase domain fragment. This 

kinase domain fragment is active by itself and phosphorylated at Thr718. It seems that the 

catalytic domain of PKN3 has a negative regulatory function that is decreased in the presence 

of the N-terminus in the full-length protein. [85]. 

Interestingly, relating to the above mentioned involvement of PRK1 and PRK2 in 

prostate cancer, Leenders et al. suggested that PKN3, but not PRK1 or PRK2, is required for 

PC-3 (PTEN-/- prostate cancer cells) growth on matrigel (a substrate for cell culture) [109, 

123]; cells with increased malignant potential have a growth advantage on matrigel matrix. 

As adduced before, PKN3 is expressed in a PI3K-dependent manner and PKN3 

expression is upregulated in patient prostate tumor samples. In addition, induced inhibition of 

PKN3 expression interferes with the formation of lymph node metastases in an orthotopic 

mouse prostate tumor model. Experiments with mice showed that a decreased level of PKN3 

in the primary tumor is related to reduced formation of metastases [85]. PKN3 can be 

regulated by various signal transduction pathways that mediate cell growth and 

transformation. In human breast epithelial cells containing the Ras oncogene, PKN3 can 

contribute to their invasive potential. RasV12, an oncogenic form of Ras, causes an enhanced 

phosphorylation of MAP kinase, resulting in an increased expression of PKN3, but it has no 

effect on the PRK1 and PRK2 expression. This shows that PKN3 can also be regulated in a 

PI3K-independent way by signals that mediate malignant growth in certain cell types 

(reviewed in [85]). 
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3.3.4. The structure of PRK2 

PRK2 consists of a catalytic domain, formed by a small and a large lobe, flanked by two 

structurally distinct domains: the N-terminal regulatory domain and the C-terminal tail. PRK2 

is a Ser/Thr protein kinase that has a catalytic domain with approximately 50% sequence 

identity to that of the PKCs and 87% sequence identity to that of PRK1. The ATP-binding site 

is located between the two lobes of the catalytic domain [13]. As it is known for other kinases, 

N- and C-terminal regions are important for regulation of the kinase activity. 

As already described in more detail under item “PRK2 as an effector target of Rho”, 

PRK2 has a special regulatory region containing the HR1-region, that is thought to be 

required for interaction with Rho GTPases [154]. This HR1-region is highly charged and is 

sufficient for the interaction with Rho. HR1 consist of three homologous stretches of a 60-70 

amino acid sequence and is located at the N-terminus of PRK1 and 2 (HR1a, b, c). These 

stretches are followed by a Leu zipper-like sequence [154] (reviewed in [107]). Between the 

HR1 region and the catalytic domain, the HR2 region is located, a stretch of about 130 amino 

acids that has a weak homology to the C2-region of PKC ε and η.  

The C-terminal part of this C2-like/HR2 region is thought to have an autoinhibitory 

effect. It is sensitive to arachidonic acid, leading to an activation of PRK1/2 and PKN3 in 

vitro, relating to the fact, that in addition to GTPases, PRKs can also be activated by fatty 

acids in vitro [151]. Admittedly, the kinase activity of PRK2 and PKN3 is significantly less 

sensitive to arachidonic acid than that of PRK1 [116, 152]. However, the HR1 and the C2-

like/HR2-region are conserved among the isoforms PRK1, PRK2 and PKN3 among different 

organisms (reviewed in [107]).  

At the C-terminus of PRK2 and all other members in the PKC superfamily, there is a 

segment of approximately 70 amino acid residues that possesses the lowest sequence 

similarity among the PKC superfamily members compared to any other domain. Although 

there is this low similarity at this domain,  the region contains a conserved Z-/turn motif and 

the HM (Phe-Xaa-Xaa-Phe-Ser/Thr(P)-Phe/Tyr, where Xaa is any amino acid) (reviewed in 

[90]). As already mentioned, instead of a phosphoacceptor Ser/Thr residue, the HM of 

atypical PKC- and PRK-subgroups have a negatively charged Asp/Glu residue (Asp978 in 

PRK2 [121]) mimicking a phosphate. Interstingly, in 2008, Lim et al. referred that at the 

extreme C-terminus of PRKs, there is a segment of 10–15 amino acids beyond the HM, that is 

least conserved both in terms of amino acid sequence identity and the length of sequence 

amongst all members of the PKC superfamily. They suggested that the extreme C-terminal 

tail plays a role in the catalytic competence of PRK2 and in the regulation of PRK2 by Rho, 
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as they could show that the extreme C-terminal segment is critical for the full activation of 

PRK2 by RhoA in cells ina GTP-dependent manner. A part of the sequence with high 

relevance is the HM, that is located C-terminally to the catalytic domain.  

 

3.3.5. Mechanism of activation of PRKs and other AGC kinases 

The members of the AGC family of kinases have in common, that they have three 

phosphorylation sites regulating more or less their activity: The activation loop, the Z/turn-

motif phosphorylation site and the HM phosphorylation site. While the activation loop and the 

HM phosphorylation sites are well investigated, the Z-/turn motif phosphorylation site has just 

been characterized in recent work by Hauge et al. [57].  

Most protein kinases of the AGC family are activated through phosphorylation of their 

activation loop by their upstream kinase PDK1. 

These AGC kinases phosphorylate a considerable amount of cellular proteins and in 

doing so they regulate cellular division, survival, metabolism, transmembrane ion flux, 

migrative behaviour and differentiation. The kinases are activated by partly distinct signalling 

pathways. Akt/PKB, S6K and SGK are for example downstream mediators of PI3K, while 

RSK and MSK are effectors of ERK and ERK/p38 mitogen-activated protein (MAP) kinases 

and PRK2 is an effector target and controlled by Rho GTPase (reviewed in [46]). The 

differential responsiveness to upstream pathways partly depends on the fact that the kinases 

contain different signalling modules flanking the kinase domain. These are for example a PH 

domain in Akt/PKB, a Rho-binding domain in PRK, a special inhibitory domain in S6K and a 

MAP kinase activated kinase domain in RSK and MSK [50]. 

However, although the AGC kinases have divergent regulation mechanisms, they all 

require phosphorylation of a Ser or Thr residue in the activation loop within the kinase 

domain and they all require phosphorylation of the HM [50]. As described before, this HM is 

characterized by three aromatic amino acids surrounding the Ser/Thr residue that becomes 

phosphorylated: Phe-X-X-Phe-Ser/Thr-Phe/Tyr. In PRK and atypical PKCs the HM contains 

a negatively charged amino acid (aspartic acid or glutamic acid) that mimics the phospho-

Ser/phospho-Thr [50, 121]. The phosphorylation of the HM promotes the interaction of the 

HM of substrates with the PIF binding pocket of PDK1 thereby activating PDK1 to 

phosphorylate the activation loop phosphorylation site. Thus, in distinct AGC-kinases, the 

phosphorylation of the HM creates a specific docking site that recruits and activates PDK1, 

which then phosphorylates the activation loop. For an efficient interaction with PDK1, the 

HM must be phosphorylated or it must contain a phosphate mimicking acidic residue [6, 11, 
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49, 50]. Interestingly, Akt/PKB and MSK require phosphorylation in their HM, although 

Akt/PKB does not appear to use the motif for PDK1 docking [13] and MSK is not a target of 

PDK1 [50, 149]. 

By homology with other AGC kinases it can be speculated that in the active 

conformation the HM of PRK2 would fold back onto the catalytic domain and bind to a 

hydrophobic pocket located between β-4, β-5, α-C and α-B (the PIF-pocket) in the small 

lobe. Furthermore, as in PKA, it is expected that the activation loop phosphorylation further 

bridges together the α-C helix in the small lobe with the catalytic and Mg2+ positioning loops 

and is participates on the stabilisation of active conformation of PRK2 [67, 78]. Biochemical 

experiments suggest that the Z/turn-motif phosphate of PRK2 binds to a phosphate binding 

site on the small lobe of the kinase domain [57]. 

 

3.3.5.1 The hydrophobic motif (HM) and the the PDK1-interacting fragment (PIF) 

As a result of yeast two-hybrid screening, Antonio Casamayor found that PDK1 interacts with 

a certain region of PRK2, the PDK1-interacting fragment (PIF) [10]. This fragment includes 

the 77 amino acids lying immediately C-terminal to the kinase catalytic domain of PRK2 

[119]. In this region there is a moderate sequence homology between members of the AGC-

family including the HM (Phe–Xaa–Xaa–Phe–Ser/Thr–Phe/Tyr). The C-terminal HM of 

PRK2 (Phe-Xaa-Xaa-Phe-Asp-Tyr) is similar to that found in Akt/PKB, except that the 

residue equivalent to Ser473 is an aspartic acid (Asp978). Importantly, mutations of 

conserved aromatic residues of the HM or mutations of the Asp978 to Ala or Ser greatly 

diminish the affinity between PIF and PDK1 [5]. 

Most notably, the authors suggested that the binding of PIF to PDK1 converted this enzyme 

into a protein kinase that could phosphorylate, not only the activation loop, but also the HM 

of Akt/PKB and therefore suggested that the Akt/PKB HM- kinase could be PDK1 [5]. 

However, it was not noted by the authors at the time that PIF also interacted with Akt/PKB. 

Reinterpretation of the data and further experiments established that PIF did not convert 

PDK1 into a HM-kinase but that PIF prompted the autophosphorylation of Akt/PKB at the 

HM [10]. Therefore, most of the experiments from the Balendran et al. paper [5] require re-

interpretation and the main conclusion of the paper is not correct. 

On the other hand, it was later found that the isolated HM of PRK1, PKCζ and PKCι 

also interacted with the kinase domain of PDK1 [6]. More interestingly, mutation of HM 

residues affected the interaction between PRK2 and PDK1. This result provided evidence that 
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PRK2 binds to PDK1 via these residues. As mentioned above, PDK1 activates PRK2 by 

phosphorylating the activation loop residue. Mutation of the HM residues affect their 

phosphorylation by PDK1 [6]. Thus, it was concluded that the HM of PRK2 (PIF) acts as a 

docking site that enables the recruitment of PDK1 and the posterior phosphorylation of the 

substrates [6]. 

Interestingly, using a peptide substrate (T308tide), it was possible to show that PDK1 

is activated directly by PIF [10]. It was also shown that PIF does not alter the Km of PDK1 for 

ATP [10]. 

 

3.3.5.2. The HM-/PIF-bindining pocket of PDK1 

By modelling based on the structure of PKA, it was found that PIF interacts with a 

hydrophobic pocket on the small lobe of the kinase domain of PDK1 [10]. The pocket is 

different from s the ATP- and substrate-binding sites. The PIF-binding pocket at the kinase 

domain of PDK1 acts as a “docking site”, enabling it to interact with and enhance the 

phosphorylation of its substrates like PRK2 [11]. Using molecular biolgy and biochemistry 

tools it was first characterized that the PIF-pocket comprises Lys115, Ile119, Gln150 and 

Leu155. This assumption is supported by the fact that mutations of these residues lead to a 

either abolished or significantly diminished affinity of PDK1 for PIF. The residues Lys115 

and Leu155 of PDK1 participate in an hydrophobic interaction with the residues Phe974 and 

Phe977 of PIF [10]. Mutants of PDK1 at Leu155 do not interact with the HM of PRK2 [10] 

and are also unable to form a complex with the C-terminal fragments of PRK1, PKCζ and 

PKCι [6]. The crystal structure of PDK1 further allowed the detailed characterization of the 

PIF-pocket [12]. 

Interestingly, follow up work using the kinases in cell lines, confirmed that the PIF-

binding pocket of PDK1 is essential for activation of S6K and SGK, but not for Akt/PKB 

[11]. Phosphorylation of the HM of S6K and SGK promotes their interaction with the PIF-

binding pocket of PDK1 and their activation loop phosphorylation by PDK1. On the other 

hand, this pocket is not needed for the phosphorylation of Akt/PKB, showing that the PIF-

binding pocket functions as a substrate recognition site that is only required for distinct 

substrates [11]. Further, the phosphorylation of S6K and SGK at both their activation loop 

and HM, like that of Akt/PKB, is dependent on PI3K activation. S6K and SGK do not possess 

a PH domain and do not interact with PtdIns(3,4,5)P3/PtdIns(3,4)P2 like Akt/PKB does [11]. 

This fact underlines the variety of ways of activation within a family of kinases, while it is 
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pointed out that the interaction of the PIF-binding pocket and the C-terminal part of many 

AGC-kinases plays a crucial role in the course of activation. 

A phosphate-binding site next to the hydrophobic pocket of PDK1 recognizes the 

phospho-Ser/phospho-Thr in the HM [12, 50]. Frödin et al. could further show that RSK2, 

S6K, Akt/PKB, MSK1 and SGK contain a similar phosphate-binding pocket in their kinase 

domain and that they use the phosphate-binding pocket to interact with their own 

phosphorylated HM, resulting in large stimulation of kinase activity in synergy with 

activation loop phosphorylation [50]. They also suggested that the phosphate-binding pocket 

is a key regulatory feature of the >40 human AGC kinases in which it is conserved. Teh study 

extended the possibility of using the PIF-pocket and its associated phosphate binding site as 

an potential target for drugs aimed to activate or inhibit AGC kinases, as an alternative to the 

commonly targeted ATP-binding site [50]. 

 

3.3.5.3. Role of the Z-/turn motif phosphorylation site in the mechanism of AGC kinase 

activation 

The Z-/turn motif phosphorylation site is located in the middle of the C-terminal tail region in 

the AGC-kinases Akt/PKB, S6K, RSK, MSK, PRK and PKC. It got its name because PKA, 

the first AGC-kinase whose structure was solved, also contains a phosphorylation site in the 

middle of its tail region, that was called “turn motif” because the phosphate binds nearby 

residues within the tail and thereby stabilizes a turn in the tail. Anyhow, the PKA “turn motif” 

phosphate does not interact with the catalytic core.  

However, this tail phosphorylation site of the growth-factor activated AGC-kinases 

mentioned above is not equivalent to the turn motif of PKA, since the “Z” phosphate binds 

specifically to a phosphate binding site on the catalytic core in other AGC kinases. The 

phosphorylation sites of the turn motif and of the activation loop work in a cooperative 

manner, as the turn motif phosphate binds to a phospho-Ser/Thr-binding site above the 

glycine-rich loop within the kinase domain. This binding promotes an association of the tail 

with the kinase domain and serves to deliver the HM to its binding site in a zipper-like 

manner, inducing stabilization of the HM in its kinase-activating binding site. This 

stablilization directly leads to stimulation of the kinase activity. Because of the zipper-like 

function of the tail phosphate and the dissimilarity to the turn motif of PKA, Hauge et al. 

provided the name “Z (zipper) site” for it. In the growth-factor-activated AGC-kinases, the 

tail phosphate binds a phospho-Ser/Thr-binding site in the kinase domain next the 
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hydrophobic pocket [57]. Nevertheless, since the site in AGC kinases has been traditionally 

named “turn motif”, along this thesis we name the site “Z-/turn motif”. 

The AGC-kinases are allosterically activated by the Z-/turn motif phosphate via HM-

mediated stabilisation of the αC-helix. There are hints that in a subset of the growth-factor 

activated kinases the tail phosphate also controls the phosphorylation state of the HM. 

Moreover, the Z-/turn motif phosphate is found to protect S6K and MSK from 

dephosphorylation. Mutations of this site significantly reduce kinase activity and in some 

AGC-kinases also the HM-phosphorylation (reviewed in [57] and [121]). 

Taken together, the three conserved phosphorylation sites cooperate with each other in 

the stimulation of AGC kinase activity during stimulus-induced activation by coordinating the 

shift of the AGC kinase catalytic domain from the inactive, open conformation to the active, 

closed conformation and vice versa. Though, the Z-/turn motif phosphate alone or in 

combination with the activation loop phosphate does not have an activating effect. Rather, it 

synergistically enhances the stimulation of kinase activity mediated by the HM phosphate in 

collaboration with the activation loop phosphate [57]. 
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3.3.5.3.1. PRK2 and PKCζ are phosphorylated at the activation loop and Z-site in vivo 

and mutation of the Z-/turn motif phosphorylation site in PRK2 increases the 

interaction with PDK1 

The Z-/turn-motif phosphorylation site is functionally conserved in many AGC kinases. 

Further, the HM serves for docking to PDK1, although in PRK2, PKCζ, S6K and SGK the 

alignment of the C-terminal region of different AGC kinases shows a low degree of identity 

along this segment of the kinases (see Figure 4). 

 

Figure 4.: Alignment of the C-terminal amino acid sequence of PRK2 with the equivalent region of selected 
AGC subfamily kinases. Taken from Dettori et al. Regulation of the interaction between protein kinase C-related 
protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1). J Biol 
Chem;284(44):30318-27; (October 2009) [35]: The Z/Turn-motif phosphorylation sites are in boldface, the 
hydrophobic motif phosphorylation site is underlined and shown in boldface. The hydrophobic residues 
Ile965/Leu966 and the negatively charged residues Glu968-Glu969-Glu970 of the C-terminal fragment of PRK2 
are underlined. The residues Thr389 in S6K1 and Ser113 in SGK1 correspond to the hydrophobic motif 
phosphorylation sites as Thr412 in S6K1 and Ser422 in SGK1, respectively. The numbering differs according to 
the long and short S6K1 splice variants. 

 

In previously unpublished work, Ricardo M. Biondi and Nik Morrice (with support 

from Dario Alessi) found that PRK2 and PKCζ were phosphorylated in vivo at two sites, the 

activation loop and the Z-/turn motif phosphorylation site. Moreover, they found that 

phosphorylation of PRK2 or PKCζ is not dependent on IGF1, as cells stimulated with IGF1 

and cells without this stimulation showed an identical phosphorylation pattern. They further 

found that no other phosphorylation sites could be identified. Because of this fact, we wanted 

to evaluate, whether the Z-/turn motif phosphorylation could regulate the interaction with 

PDK1 in these kinases. In addition, Rosalia Dettori et al. found that mutation of the Z-/turn 

motif phosphorylation site of PRK2 (Thr958Ala) increased the interaction of PRK2 with 

PDK1. In contrast, parallel experiments with PKCζ mutated at the Z-/turn motif 

phosphorylation site (Thr560Ala) did not show an effect on the binding of PKCζ to PDK1, 

suggesting that phosphorylation at this site did not play a role in regulating PKCζ interaction 

with PDK1. 
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3.3.5.4. How is the interaction of atypical PKCs and PRKs with PDK1 regulated? 

In our laboratory, we were interested to know how atypical PKCs and PRKs regulate the 

interaction with PDK1. In this line, Rosalia Dettori and myself have studied the role of the N-

terminal region and the C-terminal region in the regulation of these kinases. 

As part of the studies on the regulation of the interaction between PRK2 and PDK1, 

Rosalia Dettori transfected HEK 293 cells and performed pull-down assays, in vitro protein-

protein interaction assays, SDS PAGE gel electrophhoresis and immunoblotting. She 

additionally performed  in vitro interaction assays in the presence of  low molecular weight 

compounds and purification of GST-fusion proteins expressed in HEK293 cells. I designed 

oligonucleotides to perform the mutagenesis, performed DNA transformation into chemically 

competent E. coli, the mini plasmid preps and the subsequent sequencing to verify the 

mutations. I further performed transfection of HEK 293 cells and purification of GST-fusion 

proteins and in vitro interaction assays. Finally, I performed all PRK2 activity assays. The 

studies on the regulation of the interaction between PRK2 and PDK1 were published in 2009 

[35]. The present thesis also provides first evidence that PRK2 forms oligomers and that this 

oligomerization is mediated by N-terminal regions. Furthermore, I provide evidence that 

PRK2 activity is inhibited intermolecularly by N-terminal regions (manuscript in preparation). 
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4. Materials and Methods 

4.1. Materials 

4.1.1. Buffers and solutions 

We obtained all chemical products from the companies Sigma-Aldrich (St. Louis, United 

States), Roth (Karlsruhe, Germany), Fluka (St. Louis, United States), Merck (Darmstadt, 

Germany), BIO-RAD (Hercules, United States), GeneTex, Inc. (San Antonio, United States). 

Antibodies were obtained from Upstate Biotechnologies (Millipore, Billerica, United States) 

and Santa Cruz Biotechnology (Santa Cruz, United States). 

 

The buffers and solutions we used were prepared with high quality water from Braun 

(Melsungen, Germany). 

 

Table 1: Buffers and solutions 

Buffer/Solution Ingredients Concentration of ingredients/ 
Amount of ingredients 

Coomassie Brilliant Blue 
(Staining solution) 

Coomassie Brilliant Blue R250 
Methanol:H2O (1:1) 
Glacial acetic acid 

0,25 g 
90 ml 
10 ml 

Destaining solution 
 

Acetic acid 
Methanol 
Deionised/distilled H2O 

10 ml 
30 ml 
60 ml 

Electrophoresis buffer TRIS 
Glycine (electrophoresis grade) 
pH 8,3 
SDS 

25 mM 
250 mM 
 
0,1% 

HBS (2X) NaCl  
Na2HPO4 
HEPES 

275 mM 
2,8 mM 
55 mM 

Lysis Buffer Tris-HCl pH 7.5 
Sucrose 
Sodium Ortho-Vanadate pH 10 
EDTA 
EGTA 
Sodium B glycerophosphate 
Sodium fluoride   
Sodium pyrophosphate 
Triton X-100 
β-mercaptoethanol 
protease inhibitor mixture  

50 mM 
270 mM 
1 mM 
1 mM 
1 mM 
10 mM 
50 mM 
5 mM 
1% by mass 
0,1 % by mass 
1 tablet per 50 ml of lysis 
buffer 

SOC Media * Tris-HCl pH 7.5 
Tryptone 
Yeast Extract 

900 ml  
20 g 
5 g 
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5M NaCl 
1M KCl 
1M MgCl2 

1M MgSO4 

1M glucose 
Deionised/distilled H2O 
Then autoclaved 

2 ml 
2,5 ml 
10 ml 
10 ml 
20 ml 
Adjusted to 1 L 

TBS/Tween Tris-HCl (pH 8.0) 
NaCl 
Tween-20 

10 mM 
150 mM 
0,05 % 

Towbin transfer buffer (1X) Tris 
Glycine 
Methanol 

24 mM 
192 mM 
20% 

Wash Buffer A Tris pH 7.5 
EGTA 

50 mM 
0,1 mM 

 

* For preparation of this, 0.5 g NaCl, 5 g yeast extract and 20 g tryptone were added to 950 ml 

of deionized H2O. Upon shaking, we added 10 ml of a 250 mM solution of KCl and adjusted 

the pH to 7.0 with NaOH. Then, we filled up the solution to 1 liter with deionized H2O and 

sterilized by autoclaving it for 20 minutes at 15 psi (1.05 kg/cm2) on liquid cycle. Upon 

autoclaving and cooling to 60 °C or less, we added 20 mM of glucose and 5 ml of a sterile 

solution of 2 M MgCl2. Then, we aliquoted SOC medium in 1 ml eppendorf tubes and kept 

them at -20°C until required. 

 

4.1.2. Antibodies 

 

Primary and secondary antibodies employed 

All primary antibodies used for immunoblotting detection, together with their corresponding 

secondary antibody, are detailed below. 

 
Epitope: Anti-phospho-activation-loop:  
 
 Primary Antibody: Anti-phospho-PRK (rabbit antiserum) 
  
  (dilution): 1:1000 
  Company: Upstate Biotechnologies (Millipore, Billerica, United States) 
 
 Secondary Antibody: Goat anti-Rabbit HRP Conjugate 
 
  (dilution): 1:5000 
  Company: BIO-RAD (Hercules, United States) 
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Epitope: Anti-Z-/turn-motif phosphorylation site 
 

Primary antibody: PKC beta 2 (phospho T641) antibody 
 

  Probed in Pull-down (dilution): 1:1000 
  Company: GeneTex, Inc. (San Antonio, United States)  
 
 Secondary antibody: Goat anti-Rabbit HRP Conjugate 
 
  (dilution): 1:5000 
  Company: BIO-RAD (Hercules, United States) 
 
Epitope: FLAG-tag 
 

Primary antibody: Anti-Flag M5 monoclonal antibody (mouse) 
 

To probe Flag in Crude Extracts (dilution): 1: 800 
  To probe Flag in Pull-down (dilution): 1:400 
  Company: Sigma-Aldrich (St. Louis, United States) 
 
 Secondary antibody: Anti-Mouse IgG (Whole Molecule) Peroxidase Conjugate 

 
  To probe Flag in Crude Extract (dilution): 1:10000 
  To probe Flag in Pull-down (dilution): 1:5000 
  Company: BIO-RAD (Hercules, United States) 
 
Epitope: GST-tag 
 

Primary antibody: GST (B-14): sc-138 
 

  To probe GST in Pull-down (dilution): 1:1000 
  Company: Santa Cruz Biotechnology (Santa Cruz, United States) 
 

Secondary antibody: Anti-Mouse IgG (Whole Molecule) Peroxidase Conjugate 
 
  (dilution): 1:5000 
  Company: BIO-RAD (Hercules, United States) 
 
Epitope: Myc-tag 
 

Primary antibody: c-Myc (9E10): sc-40 
 
To probe Myc in Crude Extract (dilution):  1:800 

  To probe Myc in Pull-down (dilution): 1:400 
  Company: Santa Cruz Biotechnologies (Santa Cruz, United States) 
 
 Secondary antibody: Anti-Mouse IgG (Whole Molecule) Peroxidase Conjugate 

 
  To probe Myc in Crude Extract (dilution): 1:10000 
  To probe Myc in Pull-down (dilution): 1:5000 
  Company: Sigma-Aldrich (St. Louis, United States) 



 53

4.1.3. Equipment 

Fluorescent microscope (Carl Zeiss AG, Jena, Germany) 

DU 800 Spectrophotometer (Beckman Coulter, Fullerton, United States)  

Thermocycler (PE Applied Biosystems, Foster City, United States) 

Applied Biosystems 3100 Genetic Analyzer (PE Applied Biosystems, Foster City, United 

States) 

Typhoon 9410 high performance gel and blot imager (GE Healthcare, Chalfont St Giles, Great 

Britain) 

epMotion automated pipetting system (Eppendorf AG, Hamburg, Germany) 

Hoefer miniVE Vertical Electrophoresis System (Amersham Biosciences, Freiburg, Germany) 

- electrophoresis module with tank 

- Blot module  

- Hoefer Multiple Gel Caster   

- Gel sandwich (Glass plate, notched alumina plate, side spacers) 

Refrigerated microcentrifuges  

- for 1,5/2 ml tubes: Mikro 22R (Hettich Zentrifugen, Tuttlingen, 

Germany) 

- for 15/50 ml tubes: Centrifuge 5804R (Eppendorf AG, Hamburg, 

Germany) 

 

4.1.3. Peptides 

The polypeptides T308tide, Crosstide and PIFtide were synthesized by Dr Wolfgang 

Nastainczyk (Medicinal Biochemistry, Homburg) and the purity verified by HPLC. 

Polypeptides used were at least 75% pure. The identity of polypeptides was confirmed by N-

terminal sequencing and mass spectrometry.The polypeptides PIFtide EEE/AAA: 

REPRILSAAAQEMFRDFDYIADWC and PIFtide IL/AA: 

REPRAASEEEQEMFRDFDYIADWC (>75% purity) were synthesized by JPT Peptide 

technologies (Berlin, Germany). 

4.1.3.1. T308tide 

T308tide is a synthetic dodecapeptide, corresponding to the sequences surrounding the PDK1 

phosphorylation site of Akt/PKB. The sequence encompasses the residues 307-320 of PKBα 

with two arginine residues added to the C-terminus to make the petide bind to p81 paper (aa 

code KT*FCGTPEYLAPEV-RR) [38]. T308tide is phosphorylated by PDK1 at the residue 

equivalent to Thr308 of PKBα. In the presence of PIFtide, PDK1 activity towards T308tide is 
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increased up to 4-fold. This increase in PDK1 activity is observed with either FL-PDK1 or 

forms lacking the N- or C-terminal non-catalytic regions [10]. This peptide is a poor substrate 

for PDK1, but a peptide comprising T308tide fused to the PDK1-binding motif of PIF is a 

vastly superior substrate for PDK1 [10]. Mutations of K115 or L155 lead PDK1 to 

phosphorylate T308tide 3- to 5-fold more rapidly compared to wt PDK1 (in the absence of 

PIF), while these mutants are not activated by PIF. T308tide: KTFCGTPEYLAPEVRR 

 

4.1.3.2. PIFtide 

Previous work by Biondi et al. demonstrated that a 24 amino acid fragment of PIF (termed 

PIFtide) that encompasses the HM of PRK2 which binds to a hydrophobic pocket on the 

small lobe of the kinase domain of PDK1, termed the `PIF-binding pocket'. PIFtide interacted 

with the PIF-binding pocket of PDK1 with >1000-fold higher affnity than the S6K1, SGK1 

and PKB hydrophobic motif peptides [11]. PIFtide: REPRILSEEEQEMFRDFDYIADWC 

The polypeptides PIFtide EEE/AAA: REPRILSAAAQEMFRDFDYIADWC and PIFtide 

IL/AA: REPRAASEEEQEMFRDFDYIADWC (>75% purity) were synthesized by JPT 

Peptide technologies. 

 

4.1.3.3. Crosstide 

Crosstide: GRPRTSSFAEG  

 

4.1.4. Oligonucleotides  

Here I list the “forward” and “reverse” (-r) oligonucleotides that I designed to make site-

directed mutagenesis of the residues indicated within square brackets. All oligonucleotides 

were obtained from Operon (Huntsville, United States): 

 

PRK2 mutations: 

PRK2[Thr958Ala]:  

5´ GAAGCACCTATTCTGGCTCCACCTCGAGAACC 3´ 

PRK2[Thr958Ala]-r: 

5´ GGTTCTCGAGGTGGAGCCAGAATAGGTGCTTC 3´ 
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PRK2[Lys670Glu]: 

5´ GAAGAGGACATTTTGGAGAGGTGCTTTTAGCTGAATATAAAAACAC 3́  

PRK2[Lys670Glu]-r:  

5´ GTGTTTTTATATTCAGCTAAAAGCACCTCTCCAAAATGTCCTCTTC 3́ 

 

PRK2[Lys686Met]:  

5´ GAGATGTTTGCTATAATGGCCTTAAAGAAAGGAG 3´ 

PRK2[Lys686Met]-r: 

5´ CTCCTTTCTTTAAGGCCATTATAGCAAACATCTC 3´ 

 

PRK2[Lys689Ser]: 

5´ GTTTGCTATAAAAGCCTTAAGCAAAGGAGATATTGTGGCTCG 3´ 

PRK2[Lys689Ser]-r: 

5´ CGAGCCACAATATCTCCCTTTGCTTAAGGCTTTTATAGCAAAC 3´ 

 

PRK2[TST814-816AAA] (Thr-Ser-Thr sequence mutated all to Ala):  

5´ GGGATATGGAGATAGAGCAGCCGCATTTTGTGGCACTCCTG 3´ 

PRK2[TST814-816AAA]-r: 

5´ CAGGAGTGCCACAAAATGCGGCTGCTCTATCTCCATATCC 5´ 

 

PRK2[Ile-Leu965-966Ala-Ala]: 

5´ CACCTCGAGAACCAAGGGCAGCTTCGGAAGAGGAGCAGG 3´ 

PRK2[Ile-Leu965-966Ala-Ala]-r: 

5´ CCTGCTCCTCTTCCGAAGCTGCCCTTGGTTCTCGAGGTG 3´ 

 

PRK2[EEE968-970AAA] (Glu-Glu-Glu sequence mutated all to Ala): 

5´ CCAAGGATACTTTCGGCAGCGGCGCAGGAAATGTTCAGAG 3´ 

PRK2[EEE968-970AAA]-r: 

5´CTCTGAACATTTCCTGCGCCGCTGCCGAAAGTATCCTTGG 3´ 

 

SGK mutation: 

For this mutation, I performed the mutagenesis with the HM mutated plasmid  

pEBG2T-∆N-SGK[Ser422Asp], that we already had in stock. 
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SGK[Ser422Asp-Ser401Ala]: 

5´ CCAACTCCATTGGCAAGGCCCCTGACAGCGTCCTC 3´ 

SGK[Ser422Asp-Ser401Ala]-r: 

5´GAGGACGCTGTCAGGGGCCTTGCCAATGGAGTTGG 3´ 

 

S6K mutation: 

For this mutation, I performed the mutagenesis with the HM mutated plasmid 

pEBG2T-T2-S6K[Thr412Glu], that we already had in stock 

 

S6K[Thr412Glu-Ser394Ala]: 

5´CCAAGTTTACACGTCAGGCACCTGTCGACAGCCCAG 3´ 

S6K[Thr412Glu-Ser394Ala]-r: 

5´CTGGGCTGTCGACAGGTGCCTGACGTGTAAACTTGG 3´ 

 

4.1.5. Sequencing Primers 

In order to design our primers, we chose sequences with a length of about 18-30 nucleotides, 

depending on the melting temperature and the ability to build hydrogen bonds (number of G-

C base pairs respectively A-T base pairs). To calculate the melting temperature (Tm), we used 

the Wallace rule: Tm= 2x (A+T) + 4x (G+C).  

The Tm was intended to be in between 55°C and 65°C for our primers. 

GST600F:  5´ TAGCATGGCCTTTGCAGGGCTG 3´ 

S6K-439F:  5´ GCTCATACAAAAGCAGAACGG 3´ 

S6K-1151F:  5´ CTGAAGAGGATGTAAGTCAG 3´ 

SGK-415F:  5´ GAGGAGAAGCATATTATGTCG 3´ 

SGK-850F:  5´ GGAGCTGTCTTGTATGAGATG 3´ 

PRK2-380F:  5´ TCCAAATAATGACCCTCGTTGTTC 3´ 

PRK2-380R:  5´ GAACAACGAGGGTCATTATTTGGAG 3´ 

PRK2-1080F  5´ GGTTGGAGTCCAAGTGAAACCAG 3´ 

PRK2-1662F:  5´ CCCTCAACTAGCACCTCCA 3´ 

PRK2-2299F:  5´ GCTTGTGTAGTTCTTGGGTTG 3´ 

PRK2-2439F:  5´ GGAGATAGAACAAGCACATTTTGTGGCACTCC 3´ 

PRK2-2439R:  5´ GGAGTGCCACAAAATGTGCTTGTTCTATCTCC 3´ 3 

PRK2-2820R:  5´ TGGTAGGTATAAATGGTGGC 3´ 

PRK2-2882F:  5´ CTCCACCTCGAGAACCAAG 3´  
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Sequence of PRK2 with primers and oligonucleotides: the first 3 nucleotides the primer binds 
to and the mutated amino acids are written in bold type: 
 

ggagcgcaaatggcgtccaaccccgaacggggggagattctgctcacggaactgcagggg 
 G  A  Q  M  A  S  N  P  E  R  G  E  I  L  L  T  E  L  Q  G  
 
gattcccgaagtcttccgttttctgagaatgtgagtgctgttcaaaaattagacttttca 
 D  S  R  S  L  P  F  S  E  N  V  S  A  V  Q  K  L  D  F  S  
 
gatacaatggtgcagcagaaattggatgatatcaaggatcgaattaagagagaaataagg 
 D  T  M  V  Q  Q  K  L  D  D  I  K  D  R  I  K  R  E  I  R  
 
aaagaactgaaaatcaaagaaggagctgaaaatctgaggaaagtcacaacagataaaaaa 
 K  E  L  K  I  K  E  G  A  E  N  L  R  K  V  T  T  D  K  K  
 
agtttggcttatgtagacaacattttgaaaaaatcaaataaaaaattagaagaactacat 
 S  L  A  Y  V  D  N  I  L  K  K  S  N  K  K  L  E  E  L  H  
 
cacaagctgcaggaattaaatgcacatattgttgtatcagatccagaagatattacagat 
 H  K  L  Q  E  L  N  A  H  I  V  V  S  D  P  E  D  I  T  D  
         �PRK2-380F   PRK2-380R 
tgcccaaggactccagatactccaaataatgaccctcgttgttctactagcaacaataga 
 C  P  R  T  P  D  T  P  N  N  D  P  R  C  S  T  S  N  N  R  
 
ttgaaggccttacaaaaacaattggatatagaacttaaagtaaaacaaggtgcagagaat 
 L  K  A  L  Q  K  Q  L  D  I  E  L  K  V  K  Q  G  A  E  N  
 
atgatacagatgtattcaaatggatcttcaaaggatcggaaactccatggtacagctcag 
 M  I  Q  M  Y  S  N  G  S  S  K  D  R  K  L  H  G  T  A  Q  
 
caactgctccaggacagcaagacaaaaatagaagtcatacgaatgcagattcttcaggca 
 Q  L  L  Q  D  S  K  T  K  I  E  V  I  R  M  Q  I  L  Q  A  
 
gtccagactaatgaattggcttttgataatgcaaaacctgtgataagtcctcttgaactt 
 V  Q  T  N  E  L  A  F  D  N  A  K  P  V  I  S  P  L  E  L  
 
cggatggaagaattaaggcatcattttaggatagagtttgcagtagcagaaggtgcaaag 
 R  M  E  E  L  R  H  H  F  R  I  E  F  A  V  A  E  G  A  K  
 
aatgtaatgaaattacttggctcaggaaaagtaacagacagaaaagcactttcagaagct 
 N  V  M  K  L  L  G  S  G  K  V  T  D  R  K  A  L  S  E  A  
 
caagcaagatttaatgaatcaagtcagaagttggaccttttaaagtattcattagagcaa 
 Q  A  R  F  N  E  S  S  Q  K  L  D  L  L  K  Y  S  L  E  Q  
 
agattaaacgaagtccccaagaatcatcccaaaagcaggattattattgaagaactttca 
 R  L  N  E  V  P  K  N  H  P  K  S  R  I  I  I  E  E  L  S  
 
cttgttgctgcatcaccaacactaagtccacgtcaaagtatgatatctacgcaaaatcaa 
 L  V  A  A  S  P  T  L  S  P  R  Q  S  M  I  S  T  Q  N  Q  
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tatagtacactatccaaaccagcagcactaacaggtactttggaagttcgtcttatgggc 
 Y  S  T  L  S  K  P  A  A  L  T  G  T  L  E  V  R  L  M  G  
 
tgccaagatatcctagagaatgtccctggacggtcaaaagcaacatcagttgcactgcct 
 C  Q  D  I  L  E  N  V  P  G  R  S  K  A  T  S  V  A  L  P  
�PRK2-1080F 
ggttggagtccaagtgaaaccagatcatctttcatgagcagaacgagtaaaagtaaaagc 
 G  W  S  P  S  E  T  R  S  S  F  M  S  R  T  S  K  S  K  S  
 
ggaagtagtcgaaatcttctaaaaaccgatgacttgtccaatgatgtctgtgctgttttg 
 G  S  S  R  N  L  L  K  T  D  D  L  S  N  D  V  C  A  V  L  
 
aagctcgataatactgtggttggccaaactagctggaaacccatttccaatcagtcatgg 
 K  L  D  N  T  V  V  G  Q  T  S  W  K  P  I  S  N  Q  S  W  
 
gaccagaagtttacactggaactggacaggtcacgtgaactggaaatttcagtttattgg 
 D  Q  K  F  T  L  E  L  D  R  S  R  E  L  E  I  S  V  Y  W  
 
cgtgattggcggtctctgtgtgctgtaaaatttctgaggttagaagattttttagacaac 
 R  D  W  R  S  L  C  A  V  K  F  L  R  L  E  D  F  L  D  N  
 
caacggcatggcatgtgtctctatttggaaccacagggtactttatttgcagaggttacc 
 Q  R  H  G  M  C  L  Y  L  E  P  Q  G  T  L  F  A  E  V  T  
 
ttttttaatccagttattgaaagaagaccaaaacttcaaagacaaaagaaaattttttca 
 F  F  N  P  V  I  E  R  R  P  K  L  Q  R  Q  K  K  I  F  S  
 
aagcaacaaggcaaaacatttctcagagctcctcaaatgaatattaatattgccacttgg 
 K  Q  Q  G  K  T  F  L  R  A  P  Q  M  N  I  N  I  A  T  W  
 
ggaaggctagtaagaagagctattcctacagtaaatcattctggcaccttcagccctcaa 
 G  R  L  V  R  R  A  I  P  T  V  N  H  S  G  T  F  S  P  Q  
         �PRK2-1662F 
gctcctgtgcctactacagtgccagtggttgatgtacgcatccctcaactagcacctcca 
 A  P  V  P  T  T  V  P  V  V  D  V  R  I  P  Q  L  A  P  P  
 
gctagtgattctacagtaaccaaattggactttgatcttgagcctgaacctcctccagcc 
 A  S  D  S  T  V  T  K  L  D  F  D  L  E  P  E  P  P  P  A  
 
ccaccacgagcttcttctcttggagaaatagatgaatcttctgaattaagagttttggat 
 P  P  R  A  S  S  L  G  E  I  D  E  S  S  E  L  R  V  L  D  
 
ataccaggacaggattcagagactgtttttgatattcagaatgacagaaatagtatactt 
 I  P  G  Q  D  S  E  T  V  F  D  I  Q  N  D  R  N  S  I  L  
 
ccaaaatctcaatctgaatacaagcctgatactcctcagtcaggcctagaatatagtggt 
 P  K  S  Q  S  E  Y  K  P  D  T  P  Q  S  G  L  E  Y  S  G  
 
attcaagaacttgaggacagaagatctcagcaaaggtttcagtttaatctacaagatttc 
 I  Q  E  L  E  D  R  R  S  Q  Q  R  F  Q  F  N  L  Q  D  F  
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aggtgttgtgctgtcttgggaagaggacattttggaaaggtgcttttagctgaatataaa 
 R  C  C  A  V  L  G  R  G  H  F  G  K  V  L  L  A  E  Y  K  
                                    670E 
aacacaaatgagatgtttgctataaaagccttaaagaaaggagatattgtggctcgagat 
 N  T  N  E  M  F  A  I  K  A  L  K  K  G  D  I  V  A  R  D  
       686M      689S 
gaagtagacagcctgatgtgtgaaaaaagaatttttgaaactgtgaatagtgtaaggcat 
 E  V  D  S  L  M  C  E  K  R  I  F  E  T  V  N  S  V  R  H  
 
ccctttttggtgaacctttttgcatgtttccaaaccaaagagcatgtttgctttgtaatg 
 P  F  L  V  N  L  F  A  C  F  Q  T  K  E  H  V  C  F  V  M  
 
gaatatgctgccggtggggacctaatgatgcacattcatactgatgtcttttctgaacca 
 E  Y  A  A  G  G  D  L  M  M  H  I  H  T  D  V  F  S  E  P  
                  �PRK2-2299F 
agagctgtattttatgctgcttgtgtagttcttgggttgcagtatttacatgaacacaaa 
 R  A  V  F  Y  A  A  C  V  V  L  G  L  Q  Y  L  H  E  H  K  
 
attgtttatagagatttgaaattggataacttattgctagatacagagggctttgtgaaa 
 I  V  Y  R  D  L  K  L  D  N  L  L  L  D  T  E  G  F  V  K  
       �PRK2-2439F     
attgctgattttggtctttgcaaagaaggaatgggatatggagatagaacaagcacattt 
 I  A  D  F  G  L  C  K  E  G  M  G  Y  G  D  R  T  S  T  F  
PRK2-2439R         814AAA816 
tgtggcactcctgaatttcttgccccagaagtattaacagaaacttcttatacaagggct 
 C  G  T  P  E  F  L  A  P  E  V  L  T  E  T  S  Y  T  R  A  
 
gtagattggtggggccttggcgtgcttatatatgaaatgcttgttggtgagtctcccttt 
 V  D  W  W  G  L  G  V  L  I  Y  E  M  L  V  G  E  S  P  F  
 
cctggtgatgatgaagaggaagtttttgacagtattgtaaatgatgaagtaaggtatcca 
 P  G  D  D  E  E  E  V  F  D  S  I  V  N  D  E  V  R  Y  P  
 
aggttcttatctacagaagccatttctataatgagaaggctgttaagaagaaatcctgaa 
 R  F  L  S  T  E  A  I  S  I  M  R  R  L  L  R  R  N  P  E  
 
cggcgccttggggctagcgagaaagatgcagaggatgtaaaaaagcacccatttttccgg 
 R  R  L  G  A  S  E  K  D  A  E  D  V  K  K  H  P  F  F  R  
         PRK2-2820R   
ctaattgattggagcgctctgatggacaaaaaagtaaagccaccatttatacctaccata 
 L  I  D  W  S  A  L  M  D  K  K  V  K  P  P  F  I  P  T  I  
 
agaggacgagaagatgttagtaattttgatgatgaatttacctcagaagcacctattctg 
 R  G  R  E  D  V  S  N  F  D  D  E  F  T  S  E  A  P  I  L  
 �PRK2-2882F 
actccacctcgagaaccaaggatactttcggaagaggagcaggaaatgttcagagatttt 
 T  P  P  R  E  P  R  I  L  S  E  E  E  Q  E  M  F  R  D  F  
                    965AA966  968AAA970 
gactacattgctgattggtgttaa 
 D  Y  I  A  D  W  C  -  
Figure 5: Nucleotide and amino acid sequence of PRK2 with starting points of the primers we used and the 
mutations we created 
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4.1.6. Other 

Complete protease inhibitor cocktail tablets were from Roche (Basel, Switzerland). 

Protein concentration was estimated using Coomassie Brilliant Blue R250 from Perbio 

(Waltham, United States). 

Glutathione sepharose 4B was from Amersham Pharmacia Biotech (Amersham Biosciences, 

Freiburg, Germany). 

Chemiluminescent substrate used for western-blot (Roti-lumin) was from Roth (Karlsruhe, 

Germany).  

Western-blot stripping buffer (Restore) was from Pierce (Waltham, United States). 

Dulbecco’s modified Eagle’s medium (DMEM) was from Sigma-Aldrich (St. Louis, United 

States). 

Fetal bovine serum was from Gibco (Carlsbad, United States).  

Okadaic acid was from Calbiochem, Orthovanadate from Sigma-Aldrich (St. Louis, United 

States), LY294002 and Y27632 from Sigma-Aldrich (St. Louis, United States). 

Purified human Rho (Rho-GST) was from Chemicon International (Temecula, United States). 

Pfu turbo was from Stratagene (San Diego, United States). 

DpnI was from New England BioLabs (Ipswich, United States). 

Luria Broth medium was from Sigma-Aldrich (St. Louis, United States). 

Prestained Protein Molecular Weight Marker (MW: 118 kDa, 90 kDa, 48kDa, 36 kDa, 27 

kDa, 20 kDa) was from Fermentas (Burlington, Canada). 

CaCl2, for molecular biology, approx. 99 %, was from Sigma-Aldrich (St. Louis, United 

States). 

QIAprep Spin Miniprep Kit was from QIAgen (Venlo, Netherlands). 

14 ml-PP-tubes were from Greiner bio-one (Kremsmuenster, Austria). 

DyeEx product purification kit was from QIAgen (Venlo, Netherlands). 

Mega plasmid purification kit was from QIAgen (Venlo, Netherlands). 

Antibiotics/Antimycotics (AA) solution (1000x concentrated) was from Sigma-Aldrich (St. 

Louis, United States). 

Trypsin was from Sigma-Aldrich (St. Louis, United States). 

Spin columns with Collection tube were from Sigma-Aldrich (St. Louis, United States). 

Chromatography paper p81 was from Whatman (Maidstone, Kent, United Kingdom). 
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4.2. Methods 

4.2.1. Mutagenesis for plasmids with approximately 1-2 Kb insert  

For mutagenesis of small plasmids like pCMV5, we used a standard protocol. First, we 

prepared a mix following the protocol (Table 2): 

 
Table 2 
10x concentrated Pfu buffer 2,5 µl 

Template (plasmid) DNA 1 µl 

Oligonucleotide 1 (10uM) 1,25 µl 

Oligonucleotide 2 (10uM) 1,25 µl 

10uM dNTPs 0,5 µl 

H20 18 µl 
 
Then the PCR was started. After reaching 94°C, we added 0,5 µl Pfu Turbo as a Hot-Start. 

The PCR was processed according to the following protocol (Table 3): 

 
Table 3 

Temperature 
(°C) 

Time (min) Cycles 

94 2 1 

94 
55 
68 

0,5 
1 

12-14 

 
16-18 

4 infinite/hold  
 
For large plasmids, such as pEBG2T vector, we used the following protocol (Table 4): 
 
Table 4 
10x concentrated Pfu buffer 2,5 µl 

Template (plasmid) DNA 1 µl 

Oligonucleotide 1 (10uM) 1,25 µl 

Oligonucleotide 2 (10uM) 1,25 µl 

10uM dNTPs 0,5 µl 

H20 17,5 µl 
 
Then the PCR was started. After reaching 94°C, we added 1 µl Pfu Turbo as a Hot-Start for 

the larger plamids and used the following PCR protocol (Table 5): 
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Table 5 

Temperature 
(°C) 

Time (min) Cycles 

94 2 1 

94 
55 
68 

0,5 
1 

22-25 

 
18 

4 infinite/hold  

 

4.2.2. Transformation and Miniprep 

After PCR for mutagenesis, we added 0,5 µl of DpnI to the PCR product and incubated it at 

37°C for at least 1h. 40 µl of chemically competent E. coli DH5α bacteria were added in an 

1,5 ml-tube and placed it on ice. We then added 1 µl of the PCR product/DpnI mix from 

mutagenesis and incubated it on ice for approximately 30 minutes. After that, I applied a heat 

shock at 42°C for 40 seconds. Then the mix was put on ice again for 2 minutes before adding 

450 µl of 42°C warm SOC-media. Now, this mix was shaken for 1 hour at 37°C. After that, 

we plated the mixture on agar plates containing carbenicillin and incubated these plates at 

37°C over night. Then, we picked one colony of bacteria from the according agar plate and 

added it to the PP-tube containing 4 ml of LB medium (25 g of Luria Broth in 1 l of deionized 

H2O, then autoclaved) and 4 µl of carbenicillin (concentration: 50 mg/ml) and incubated it for 

at least 8 h at 37°C at a speed of 220 rpm. The following day we performed a mini plasmid 

prep following the QIAprep Spin Miniprep Kit protocol. 

 

4.2.3. Sequencing 

For sequencing the Miniprep DNA, we established the following mix listed at table 6: 

Table 6 

Miniprep DNA 1,25 µl 

Sequencing primer 1 µl 

H2O 5,75 µl   

Big Dye seq solution 2 µl 
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Then the purified mix was amplified using the following PCR protocol:  

Table 7 

Temperature 
(°C) 

Time (min) Cycles 

96 1 1 

96 
50 
60 

0,5 
0,05 

4 

 
35 

4 infinite/hold  
 

After sequencing PCR, the PCR product was purified by using DyeEx product purification kit 

and the DNA sequences were analysed using an automatic DNA sequencing (Applied 

Biosystems 3100 Genetic Analyzer).  

After verifying the sequences, the plasmids required for the transfection of HEK293 

cells were prepared using a mega plasmid purification kit following the QIAgen protocol.. 

Afterwards, we measured the DNA concentration of the plasmids by setting the 

spectrophotometer at UV-light at a wavelength of 260 nm. Then, we pipetted 3 µl of DNA 

and 1 ml of high quality water in a quartz cuvette and measured the absorbance. The DNA 

concentration of the plasmid was calculated by considering that 1 Abs corresponds to 50 µg/ 

ml of DNA. 

 

4.2.4. Cell culture  

HEK293 cells were maintained in culture in a humidified 5% CO2 atmosphere at 37°C in 

complete medium consisting of DMEM (Invitrogen) supplemented with 10% fetal bovine 

serum (GIBCO) and 1% of Antibiotics Antimycotics (AA). 

When the cells were 80-90% confluent, we trypsinised and transferred them to cell 

culture dishes or to fresh cell culture flasks. The splitting of the cell culture dishes began by 

aspirating the cell media from the cell flask (175 cm2), adding 3 ml of trypsin and leaving the 

flask for 5 min at 37°C in the incubator in order to let  the cells detach from the flask. 

Then, we repeatedly aspirated and released the cells in 10 ml media in order to disrupt 

clumps of cells and re-plated single cells. After that, we added the necessary volume of cell 

media to the suspension, mixed well and distributed the cell suspension in the corresponding 

flask or dish, resulting in a final dilution of the cells in each flask or dish of 1/10 (25 ml for 

175 cm2 flasks or 10 ml for 10 cm diameter 20 cm2 Petri-dishes).  
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4.2.5. Transient transfection of HEK 293 cells using CaCl2 protocol 

For the transfection of  293 cells, we used 10 cm dishes (medium: 10ml).  

We splitted cells 5 to 6 h before transfection to give them 10-20% confluence at the moment 

of transfection.  

In a next step, in order to prepare the CaCl2 /HBS/DNA precipitate, we added 0.5 ml 

HBS (2X) to individual 15 ml tubes. In separate tubes we added 60 µl of 2M CaCl2, 10 µg of 

DNA and enough high quality water to bring the total volume to 0.5 ml. Then, we added the 

CaCl2/DNA mix to the HBS (2X) dropwise with a pipette while carefully mixing. After that, 

we slowly added the mix drop by drop on the cells. The dishes were then placed at 37°C in 

the 5% CO2 incubator. 16-24 h later, we changed the media of the dishes with fresh 

preewarmed media and incubated further for another 16-24 h. Then, the cells were placed on 

ice and lysed. To this end, we first aspirated the cell media from the dishes. Then, we 

immediately added 800 µl of cold lysis buffer on each dish. After that, cells were scraped with 

a cell scraper and the mix was aspirated and transferred to a 1,5 ml tube. 

In order to verify the transfection efficiency, we additionally transfected two dishes 

with a plasmid coding for the green fluorescent protein (GFP). After 16 h we could already 

observe the level of flourescence of the transfected cells using a fluorescent microscope. 

Maximal fluorescence was observed after 36 h. In our experiments, the level of transfection 

varied between 50 and 90%. 

 

4.2.6. Protein-Protein interaction assay (GST pull-down) 

We co-transfected HEK293 cells with a plasmid coding for a GST-fusion protein and a 

plasmid coding for a protein fused with another tag. As the glutathione Sepharose resin shows 

a specific binding to GST, we were able to purify the GST-fusion protein. After washing, we 

evaluated the specific binding to the co-expressed protein by separating the GST-pull-down 

samples on SDS-PAGE and detection of the interacting protein by immunoblotting with a 

specific antibody against the tag (epitope e.g. Flag).  

The following procedures were  performed at 4° C. 36 h after co-transfection, we lysed 

the cells in 0.8 ml of 4°C lysis buffer from each 10 cm2 dish. Then, the lysates were 

centrifuged at 14,000 x g for 10 min in order to clear it. After that, 30 µl of the supernatant 

(crude extract, CE) were diluted with 30 µl of SDS-PAGE loading buffer (2X; Roti-load 1 

from Roth (1X: 50 mM Tris-Cl, (pH 6.8), 100 mM dithiothreitol, 2% SDS (electrophoresis 

grade), 0.1% bromophenol blue, 10% glycerol)). In a next step, we heated this dilution at 

95°C for 3 minutes.  
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The remaining crude extract (approximately 0.8 ml) was incubated with 30 µl of pre-

washed glutathione Sepharose resin (pipetted from resin solution containing equal volumes of 

lysis buffer and resin) on a platform shaker for 2 h. After this incubation the washing of the 

beads was performed in batch. Therefore, the mix was centrifuged at 14,000 x g for 1 minute 

and the supernatant was removed. The resin was mixed with 1 ml of wash buffer and 

immediately centrifuged again at 14,000 x g for 1 minute. After that, the wash buffer was 

aspirated. We repeated this procedure 4 times: two washes with lysis buffer containing 0,5 

mM NaCl and then two washes with 50 mM Tris pH 7.5 and 1 mM EDTA.  

In a following step, we resuspended the beads in 30 µl of SDS-PAGE loading buffer (2X; 

Roti-load 1 from Roth) and heated it for 3 minutes at 95°C.  

 

4.2.7. SDS-PAGE 

SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis, is a technique that is 

widely used in molecular biology to separate proteins according to their electrophoretic 

mobility (a function of length of polypeptide chain or molecular weight). So, SDS gel 

electrophoresis of samples having an identical charge per unit mass due to binding of SDS 

results in fractionation by size. The SDS (Sodium dodecyl sulfate) contained in the SDS-

PAGE loading buffer is a dissociating agent used to denature native proteins to individual 

polypeptides. That means that when a protein mixture is heated to 95°C in presence of SDS, 

the detergent wraps around the polypeptide backbone. It binds to polypeptides in a constant 

weight ratio of 1.4 g/g of polypeptide. In this process, the intrinsic charges of polypeptides 

becomes negligible when compared to the negative charges contributed by SDS. Thus, after 

treatment, polypeptides get a rod like structure possessing a uniform charge density, that is the 

same net negative charge per unit length. Mobilities of these proteins will be a linear function 

of the logarithms of their molecular weights. To this end, the negatively charged proteins 

would be ready for SDS/polyacrylamide gel electrophoresis and the following steps consisting 

in either staining with Coomassie Blue or immunoblot. 

In a first step we prepared the SDS-PAGE gels. These gels generally consist of 

acrylamide, bisacrylamide, SDS and a Tris-Cl buffer with an adjusted pH. Importantly, the 

total percent of acrylamide in the resolving gel determines the pore size, which is responsible 

for the separation of the proteins. Actually, smaller proteins migrate more easily through the 

pores of the gel, while larger proteins come across with more resistance and consequently 

remain closer to the starting point. The separating or resolving gel (for our gels consisting of 

1,6ml of H2O, 2,0ml of 30% acrylamide/0,8% bisacrylamide, 0,4ml of 0,625 M Tris /HCl pH 
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6,8, 0,4ml of 0,5% SDS, 10ul of 10% ammonium persulfate and 2ul of TEMED (N,N,N’,N’-

Tetramethylethylendiamin) for 10% acrylamide in total) is usually more basic and has a 

higher polyacrylamide content than the stacking gel (for our gels consisting of 0,87 ml of 

H2O, 0,33 ml of 30% acrylamide/ 0,8% bisacrylamide, 1,2ml of 1,88 M Tris/HCl pH 8,8, 

1,2ml of 0,5% SDS, 30 µl of 10% ammonium persulfate and 5 l of TEMED for 10% 

acrylamide in total). The gels were polymerized in a gel caster. First, the separating gel was 

poured and allowed to polymerize. Then, a thin layer of isopropanol was added. After a 20 

minute waiting period to allow the gel solution to polymerize, we discharged the isopropanol, 

the stacking gel was poured and a comb was placed to create the wells. After the stacking gel 

was polymerized, the comb was removed and the gel was ready for electrophoresis. 

For electrophoresis, we put the electrophoresis module with the secured gel in a tank 

filled with electrophoresis buffer. Then, we loaded the designated amount of each sample in 

the pocket of the stacking gel. Additionally, we loaded a prestained protein molecular weight 

marker in one pocket to allow an estimation of the molecular weight of our loaded proteins in 

the subsequent workflow. We ran our gels for about 40 minutes with at a current of 25 

mA/gel. This current created an electric field across the gel, initiating the negatively charged 

proteins to migrate across the gel towards the anode. After a certain time (40 minutes in our 

experiments), the proteins had differentially migrated based on their size: smaller proteins 

traveled further down the gel, while larger ones remained closer to the starting point.  

 

4.2.8. Immunoblot 

In order to make the proteins accessible to antibody detection, we transferred the separated 

proteins after SDS-PAGE electrophoresis from the gel onto a membrane made of 

nitrocellulose. To this end, we first prepared the Towbin transfer buffer (1X) and assembled a 

transfer stack on the black half of the Hoefer Blot module following a strict order: sponge, 

filter paper, gel, nitrocellulose membrane, filter paper and sponges. After that, we closed the 

module, filled it with Towbin transfer buffer (1X) and positioned it in the tank, which had to 

be filled with distilled water. Then, the proteins were transferred via electrophoresis transfer 

(conditions for blotting proteins in Towbin buffer were 300 mA and 25 V for 1h). Through 

this procedure, the molecules in the gel migrated to the nitrocellulose membrane by moving 

from the cathode towards the anode of the module. In a next step, we incubated the membrane 

in a blocking solution (TBS/Tween and 2.5% of non-fat dry milk) for 1h and subsequently 

incubated it for another 1 h with the monoclonal primary antibody (diluted in TBS/Tween 

containing 2.5% non-fat dry milk). During the following 45 minutes, the membrane was 
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washed 4 times with TBS/Tween. Then, the membrane was incubated for 1 h with the 

secondary antibody. This secondary antibody recognized and bound to the primary antibody. 

When we used phospho-specific antibodies, we exchanged the 2.5% dry milk-non-fat 

for 2.5% Albumin, Bovine (Fraction V, Sigma), while the rest of the protocol was kept. 

Then, we performed another 4 washes with TBS/Tween. After that, we performed the 

antibody detection with a kit from Roti-Lumin from Roth.  

Roti-lumin is a luminol-based chemiluminescent substrate. This chemiluminescent 

detection method depends on incubation of the immunoblot with a substrate that will 

luminance when exposed to the peroxidase-labeled (HRP, horseradish peroxidase) reporter 

molecules on the secondary antibody. In the presence of hydrogen peroxide, HRP converts 

luminol to an excited intermediate anion. Converting back to its initial state, the anion emits 

light. This light is then detected on chemiluminescence films. The maximal intensity is 

reached after 5 minutes and is kept for 1-2 h on a high level. 

 

4.2.10. Purification of GST-fusion proteins expressed in HEK293 cells 

Protein purification is a series of processes intended to isolate a single type of protein from a 

complex mixture and was essential for us to perform quantitative protein kinase assays and in 

vitro interaction assays with our proteins of interest. 

In order to purify GST-fusion proteins, we first transfected HEK293 cells with 

plasmids coding for the designated proteins fused to GST following the CaCl2 protocol. After 

that, we lysed the transfected HEK293 cells as it is described above under the item “Cell 

culture”. Then, we centrifuged the cell lysate at 4°C and 3700 rpm for 15 minutes. We 

discarded the pellet and incubated the supernatant at 4°C for 2 h on a platform shaker with the 

required amount of glutathione Sepharose resin (usually 1.5-2 ml of resin for the equivalent of 

20 dishes (10 cm)). This allowed the glutathione Sepharose beads to bind to GST and enabled 

us to purify the GST-fusion proteins via centrifugation. We centrifuged the resin-extract mix 

at 4°C and 3700 rpm for 2 minutes and discarded the supernatant. After that, we washed the 

GST-fusion proteins bound to the resin at 4°C according to the following protocol: 4 washes 

with Lysis buffer containing in addition 500 mM NaCl, 8 washes with Wash Buffer A 

containing 0.1% β–Mercaptoethanol and 2 washes with Wash Buffer A containing Sucrose 

0.26M and 0.1% β-Mercaptoethanol. In a next step, we poured the washed proteins in 600 µl 

of Wash Buffer A containing sucrose 0.26 M, 0.1% β-Mercaptoethanol and 400 µl of 

Glutathione (200 mM) and incubated the solution on ice for at least 30 minutes. After that, the 

purified protein fraction was filtered through Spin columns with Collection tube (Sigma-
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Aldrich) and the protein concentration was measured by Bradford. After that, the purified 

proteins were aliquotted, frozen in liquid nitrogen and stored at –80°C. Additionally, we run a 

SDS-PAGE of one sample and stained it with Coomassie Brilliant Blue in order to estimate 

the purity of the proteins. 

 

4.2.11. Estimation of protein concentration using the Bradford assay 

The Bradford assay, a colorimetric protein assay, is based on an absorbance shift in the dye 

Coomassie when the initial red form of the Coomassie reagent changes and stabilizes into 

Coomassie blue by binding to protein. During the formation of this complex, two types of 

bond interaction take place: the red form of Coomassie dye first donates its free electron to 

the ionizable groups of the protein, which causes a disruption of the protein’s native state, 

consequently exposing its hydrophobic pockets. These pockets in the protein’s tertiary 

structure bind non-covalently to the non-polar region of the dye via van der Waals forces, 

positioning the positive amine groups in proximity to the negative charge of the dye. The 

bond is further strengthened by the ionic interaction between the dye and the protein. Binding 

of the protein stabilizes the blue form of Coomassie dye which has an absorption spectrum 

maximum historically held to be at 595 nm while the cationic (unbound) forms are green or 

red. The increase of absorbance at 595 nm is proportional to the amount of bound dye and 

thus proportional to the amount (concentration) of protein present in the sample. The 

measurements we performed were done by using the reagent from “Coomassie Plus protein 

assay”(Pierce, ORT) and the spectrophotometer with visible light of awavelength of 595 nm. 

The protein amount necessary to permit a reliable measurement of the protein concentration 

by Bradford was displayed by an alteration of the dark colour of the Coomassie Plus protein 

assay solution into blue upon protein addition.  

We added the protein sample in a 1 ml plastic cuvette (Sarstedt) containing 800 µl of 

the Coomassie Plus protein assay solution. In addition, another plastic cuvette containing only 

the Coomassie Plus protein assay solution was used as the reagent blank. To calibrate the 

machine, the blank cuvette was placed in the machine and the absorbance was read and 

considered as 0.00 Abs. After that, we included known amounts of a standard protein (BSA) 

and the Absorbance ploted. The calibration curve revealed a factor of 0.055 Abs/ µg BSA.  

To quantitate the concentration of protein in our samples, I pipetted various volumes 

of our sample into the 800 µl Bradford assay solution and read the absorbance on the 

spectrophotometer. With the detected absorbance, we were able to to calculate the protein 
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concentration, as 1 µg of protein in 800 µl of Coomassie Plus reagent corresponded to 0,055 

Abs.  

 

4.2.12. Protein kinase assay (using phosphocellulose p81 papers) 

In order to test the intrinsic activity of the studied proteins we performed protein kinase 

assays. The PRK2 activity assays were performed in a 20 µl mix containing 50 mM Tris-HCl 

pH 7.5, 0.05 mg/ml BSA, 0.1% β-mercaptoethanol, 10 mM MgCl2, 100 µM ATP + 

[γ32P]ATP (5-50 cpm/pmol), 0.003% Brij, 1-200 ng PRK2 and Crosstide (100 µM) as peptide 

substrate. PDK1 activity was assayed in the same buffer containing 150 ng PDK1 and 

T308tide (100 µM) as the substrate. The linearity of the activity tests was verified routinely 

by performing the assay on serial dilutions of the enzyme. We started the reaction by adding 

the peptide substrate to a concentration of 100 µM in order to achieve the widest possible 

linearity in the assay. The peptide was diluted in dilution buffer (50 mM Tris pH 7.5, 0.1% β-

mercaptoethanol, 1 mg/ml BSA). We terminated the reaction by adding 20 µl of phosphoric 

acid (88%, 1/50). At this stage, we spotted 35 µl of the samples onto p81 phosphocellulose 

papers (Chromatography paper p81, Whatman; peptides bind to this paper according to their 

positive charge) and washed the papers 4 times during 1 h with phosphoric acid (88%, 1:200 

in deionized water). The last wash was performed with technical ethanol to support the drying 

process. Then, the next steps consisted in drying the p81 papers and exposing them to a screen 

in a cassette over night and finally in measuring the radioactivity with the “phospho imager” 

by reading the screen. Proper controls were included in the exposition to the phospho imager 

in order to estimate the specific activity of the kinase. One unit of activity was the amount of 

kinase that catalyzed the phosphorylation of 1nmol of substrate in 1 minute. 

The activity measurements were performed in duplicates and with less than 10% 

difference between duplicate pairs. All experiments were repeated at least twice, although 

most of the experiments were repeated multiple times with similar results. 
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5. Results 

5.1. Influence of phosphorylation of the Z-/turn motif site of S6K and SGK on their 

ability to interact with PDK1 

Work by Biondi et al. showed that the phosphorylation of the HM of RSK, S6K and SGK 

regulates the interaction with their upstream kinase PDK1. Most recently, our group found 

that the phosphorylation of the Z/turn-motif site could regulate the interaction of PRK2 with 

PDK1. Therefore, we wanted to evaluate if the interaction of S6K and SGK with PDK1 can 

also be regulated their interaction with PDK1 via Z-/turn-motif phosphorylation.  

In order to find out if the Z-/turn motif phosphorylation of these kinases could also 

regulate the interaction with PDK1, we generated mutants which had the HM-phosphorylation 

site mutated to Glu or Asp, respectively to mimic the phosphorylated HM. Mimicking the 

phosphorylated HM, these mutated kinases would not be affected by dephosphorylation of the 

HM, which can happen when the Z-/turn motif phosphorylation site is mutated. Against this 

background, I further mutated the Z-/turn-motif phosphorylation site to Ala (SGK 

[Ser401Ala] and S6K[Ser394Ala]). 

In further experiments performed by Rosalia Dettori , the interactions of GST-T2-

S6K[Thr412Glu] and GST-∆N-SGK[Ser422Asp] with Myc-PDK1 were compared to the 

interaction of GST-T2-S6K[Thr412Glu] further mutated at the Ser394 and GST-∆N-

SGK[Ser422Asp] mutated at the Ser401 site. The interaction was evaluated by co-transfection 

and GST pull-down experiments. Thus, HEK293 cells were transiently transfected with DNA 

constructs expressing Myc-PDK1 together with constructs expressing GST-T2-

S6K[Thr412Glu], GST-∆N-SGK[Ser422Asp] and the Z-/turn-motif double mutants GST-T2-

S6K[Thr412Glu-Ser394Ala] and GST-∆N-SGK[Ser422Asp-Ser401Ala]. After 36 h, the cells 

were lysed, the GST-fusion protein purified by affinity chromatography on glutathione-

sepharose beads, the product separated on a 10% SDS-polyacrylamide gel and stained with 

Coomassie Blue or immunoblotted using an anti-Myc antibody to detect co-purified Myc-

PDK1.  

GST-T2-S6K[Thr412Glu-Ser394Ala] and GST-∆N-SGK[Ser422Asp-Ser401Ala] 

interacted equally well with PDK1 compared to the wildtype constructs (data not shown). 

This result suggested that in the case of S6K and SGK the Z-/turn motif phosphorylation site 

did not regulate the interaction with PDK1 under these conditions, as it was described for 

PRK2. 
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5.2. Influence of mutation of the Z-/turn motif phosphorylation site within the isolated 

C-terminal segment of PRK2 on the interaction with PDK1 

As mentioned above, our group previously found out that mutation of the Z-/turn motif 

phosphorylation site of PRK2 led to an increased interaction of full length PRK2[Thr958Ala] 

with PDK1. Thus, the results clearly showed that GST-PRK2[Thr958Ala] bound  higher 

levels of PDK1 compared to the GST-PRK2 wt. However, the mechanism to explain this 

effect was not clear. 

We considered two options as explanations for the increased binding of 

PRK2[Thr958Ala] to PDK1. On the one hand an increased binding affinity of the C-terminal 

residues of PRK2 to PDK1 or, on the other hand, a decreased affinity of this C-terminal 

fragment of PRK2 to its own catalytic domain. In order to investigate these two possibilities, 

we decided to mutate the Z-/turn-motif site on the isolated C-terminal region of PRK2 and to 

test if the mutant C-terminal (C-T) region had increased affinity for PDK1. To this end, I 

prepared the appropriate mutanted GST-fusion plasmid construct (pEBG2T-CT-

PRK2[Thr958Ala]).  

The pEBG2T-CT-PRK2 and pEBG2T-CT-PRK2[Thr958Ala] plasmids were then co-

transfected with a plasmid coding for Myc-PDK1. The pull-down interaction assay that was 

performed by other members of the research group verified that both C-terminal mutations of 

PRK2 at position Thr958 were equally effective in binding  Myc-PDK1 (Figure 6A). Further 

investigation pointed out that the mutant GST-CT-PRK2 having Thr958 mutated to Glu was 

also not affected in its interaction with PDK1. As a control, using a phospho-specific 

antibody, we verified that GST-CT-PRK2, but not GST-CT-PRK2[Thr958Ala] or GST-CT-

PRK2[Thr958Glu] were phosphorylated at the Z-/turn motif phosphorylation site (Figure 6B). 

These results suggested to us that the wildtype and both of the C-terminal mutants feature 

similar affinities towards PDK1. 

I further examined the ability of GST-CT-PRK2 sequences to bind to endogenous 

PDK1. To this end, I transfected HEK293 cells (20 dishes) with either pEBG2T-CT-PRK2, 

pEBG2T-CT-PRK2[Thr958Ala] or pEBG2T-CT-PRK2[Thr958Glu] and purified the 

expressed GST-fusion proteins. I measured the concentration of the purified protein and 

confirmed the purity by SDS-PAGE followed by Coomassie staining. Then, I tested the 

presence of PDK1 in the different fractions using a PDK1 activity test. In all GST-CT-PRK2 

protein fractions PDK1 activity was detectable. Moreover, the protein kinase activity tests 

pointed out that the ability to co-purify with endogenous PDK1 was not modified in CT-

PRK2 derived polypeptides mutated at the Z-/turn motif phosphorylation site (Figure 6C). 



 72

Altogether we concluded that the Z-/turn motif phosphorylation did not alter the ability of 

PRK2 derived polypeptides to interact with PDK1. 

In summary, the increased interaction of PDK1 with GST-PRK2[Thr958Ala] was not 

mimicked by the isolated C-terminal residues of PRK2. This corresponds to the finding from 

previous plasmon resonance (Bia-Core) studies, which showed that another Z-/turn motif 

phosphorylated polypeptide had identical binding kinetics to PDK1 as the equivalent non-

phosphorylated counterpart [57]. The results thus disproved the hypothesis that the increased 

binding of PRK2 [Thr958Ala] to PDK1 could be due to an increase in affinity of teh C-

terminal region to PDK1. 
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Figure 6: The Z-/turn motif phosphorylation site does not affect the interaction between the C-terminal 
fragment of PRK2 and PDK1 as the mutation of the Z-/turn motif phosphorylation site within the isolated 
C-terminal segment of PRK2 does not affect the interaction with PDK1. A, Table of a co-transfection of 
HEK293 cells with DNA constructs expressing Myc-PDK1 together with constructs expressing either GST, 
GST-CT-PRK2[Thr958Ala] and GST-CT-PRK2[Thr958Glu]. After 36 h the cells were lysed, the GST-fusion 
protein purified by affinity chromatography on glutathione-sepharose beads, the product electrophoresed on a 
separated on a 10% SDS-polyacrylamide gel and stained with Coomassie Blue or immunoblotted using an anti-
Myc antibody to detect co-purified Myc-PDK1. 
B, Table of an immunoblot with GST-CT-PRK2 proteins with an antibody which recognizes the Z-/turn motif 
phosphorylation site only when it is phosphorylated. C, HEK293 cells were transfected with DNA constructs 
expressing GST-CT-PRK2 wt or the mutants GST-CT-PRK2[Thr958Ala] and GST-CT-PRK2[Thr958Glu] and 
the GST-fusion proteins purified by affinity chromatography. The ability of the GST-CT-PRK2 proteins to 
interact with endogenous PDK1 was analysed indirectly by measuring the PDK1 activity which was co-purified 
with the GST-fusion protein. 
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5.3. Influence of the PRK2 Z-/turn motif phosphate binding site on the interaction of 

PRK2 with PDK1. 

As shown above, the non-phosphorylatable C-terminal segment of PRK2 did not show 

increased affinity for PDK1. Thus, we took into consideration that the increased affinity of 

PRK2[Thr958Ala] could be due to the dissociation of the phosphorylated C-terminal segment 

from the catalytic domain of PRK2. Since our group previously characterized the existence of 

a Z-/turn-motif phosphate binding site on the small lobe of PRK2 [57], we decided to mutate 

the site and evaluate the effect on the interaction with PDK1. I therefore generated full length 

PRK2 constructs which had mutated Lys670 to Ser, Lys689 to Glu, and in addition, generated 

the double mutant construct PRK2[K670S,K689E]. These two Lys-residues were previously 

described on the ∆N-PRK2 construct by Hauge et al. in 2007 as key residues forming part of 

the Z-/turn motif phosphorylation site [57]. 

The Lys689 was predicted to be exposed to the solvent in the absence of Z-/turn motif 

phosphorylation. Furthermore, its mutation to Glu was planned as a way to completely 

destruct the Z-/turn motif phosphate binding site by exchanging a positive charge (Lys) for a 

negative charge (Glu).  

To analyze the ability of PRK2 wildtype and the mutants to interact with PDK1, we 

co-transfected HEK293 cells with plasmids coding for the expression of GST-PRK2 together 

with a plasmid coding for Myc-PDK1. After cell lysis, GST-PRK2 fusion proteins were 

pulled-down using glutathione-sepharose resin and analysed for the presence of Myc-PDK1 in 

the pull-down by western-blot using anti-Myc antibodies. As previously shown using this 

methodology, we observed that PDK1 interacted with GST-PRK2 and the mutated 

PRK2[Thr958Ala] showed increased interaction. Most interestingly, in agreement with our 

assumption, the exchange of charge within the phosphate binding site in PRK2[Lys689Glu], 

induced a significantly higher level of binding to PDK1 than the wild type PRK2 conterpart 

(Figure 7A). Interestingly, additional mutation of Lys670 to Ser on PRK2 did not further 

enhance such increase in binding on PRK2.  

Taken together, this experiment showed that the two mutations, on the one hand the 

mutation of the Z-/turn motif phosphorylation site to Ala and on the other hand the destruction 

of the Z-/turn motif phosphate binding site by mutating it to Glu, led to a similar increase in 

the binding of PRK2 to PDK1. These observations are compatible with a model in which the 

phosphorylation of the Z-/turn motif site can decrease the binding of PRK2 to PDK1 by 

increasing the binding of the C-terminus of PRK2 to its own Z-/turn motif binding site.  
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5.4. Influence of PRK2 kinase dead on the interaction with PDK1 

It is tempting to speculate that PDK1 substrates which tend to interact with PDK1 are the ones 

which are not phosphorylated at the PDK1 phosphorylation site or which are in an inactive 

conformation. Nevertheless, this had never been tested for any substrate of PDK1. To test this 

hypothesis I generated two mutants of PRK2 which were virtually inactive. On the one hand 

the PRK2 K686M mutant, having a Met instead of the Lys in position 686 at the catalytic site 

and on the other hand the TST/AAA mutant, which has all three activation loop 

phosphorylatable residues (Thr814, Ser815 and Thr816) mutated to Ala.  

Remarkably, these two kinase dead (K-dead) mutants were expressed at lower levels 

in cells (Figure 7B). However, we found that the two K-dead PRK2 proteins were able to bind 

higher levels of Myc-PDK1 compared to the wildtype PRK2 protein. (Figure 7B). It was 

notable that the PRK2 TST/AAA protein, although hardly expressed, still pulled-down as 

much Myc-PDK1 as PRK2 wt. These observations indicated that the inactive mutants of 

PRK2 had an increased affinity towards PDK1. 
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Figure 7: Mutation of the Z-/turn motif phosphate binding site and mutations that abolish activity of PRK2 
enhance the interaction with PDK1. HEK293 cells were transfected with DNA constructs expressing Myc-PDK1 
together with constructs expressing either GST, or the GST-PRK2 proteins mutated at the Z-/turn motif 
phosphorylation site (GST-PRK2[Thr958Ala]) or mutated within the predicted Z-/turn motif phosphate binding 
site (GST-PRK2[Lys689Glu], GST-PRK2[Lys670Ser] and the double mutant GST-PRK2[Lys689Glu; Lys670Ser] 
(A) or mutated at the active site [Lys686Met] or at the activation loop [TST-AAA] (B). 
Although the two kinase dead (K-dead) mutants were expressed to lower levels in cells, theywere able to bind  
higher levels of Myc-PDK1 
For analysing interaction, HEK293 cells were transfected with DNA constructs expressing Myc-PDK1 together 
with constructs expressing either GST, GST-PRK2-FL wt or particular mutant. After 36 h the cells were lysed, the 
GST-fusion protein purified by affinity chromatography on glutathione-sepharose beads, the product 
electrophoresed on a 10% SDS-polyacrylamide gel and stained with Coomassie Blue or immunoblotted using an 
anti-Myc antibody to detect co-purified Myc-PDK1. The Duplicates of each condition are shown. 
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5.5. Influence of the PRK2 C-terminal negatively charged patch Glu968-Glu970 and 

hydrophobic patch Ile965 /Leu966 on the interaction of PRK2 with PDK1. 

As Balendran et. al could show via the mutation of conserved residues within the C-terminus of 

PRK2 and other AGC kinases, the interaction with PDK1 requires the hydrophobic residues 

Phe974, Phe977, Tyr979 and the negatively charged residue Asp978 [5]. These residues are 

equivalent to the HM and the HM phosphorylation site in other AGC kinases. However, the C-

terminus of PRK2 interacts with PDK1 with higher affinity than the C-terminus of other AGC 

kinases [11]. Therefore, we now paid attention on other non-conserved motifs within the C-

terminus of PRK2 and wanted to examine, if such motifs could also play a role in the high 

affinity interaction with PDK1. We pursued this goal in the absence of any crystal structure 

information describing the molecular interaction between PDK1 and its docking polypeptides. 

We transfected HEK 293 cells with DNA constructs expressing Myc-PDK1 together 

with constructs expressing either GST, GST-CT-PRK2 wt or the mutants GST-CT-PRK2 

[EEE/AAA] and GST-CT-PRK2[IL/AA] mutated at an acidic or hydrophobic patch, 

respectively. After cell lysis, GST-PRK2 fusion proteins were bound to glutathione-sepharose 

resin and samples were analysed for the presence of Myc-PDK1  by western-blot using anti-

Myc antibodies. Actually, we could show by these protein-protein interaction assays that 

mutation of the three Glu residues 968-969-670 to Ala significantly diminished the interaction 

of GST-CT-PRK2 with PDK1 and similarly, when GST-CT-PRK2 was mutated at both 

hydrophobic residues, Ile965Ala and Leu966Ala, the resulting fusion proteins also lost their 

ability to interact with PDK1 (Figure 8A). The results suggested that the high affinity 

interaction of GST-CT-PRK2 with PDK1 was not only due to the HM-mediated interactions, 

but also importantly influenced by other regions within the C-terminus of PRK2.  

To further characterize the role of these motifs on the interaction with PDK1, we 

synthesized PRK2-C-terminus (PIFtide)-derived polypetides having Glu-Glu-Glu[968-970] 

and Ile-Leu[965-966] mutated to Ala. I then tested the effect of various polypetide 

concentrations on the activity of PDK1 and evaluated the data using Kaleidagraph software. 

Interestingly, the EEE/AAA mutant had greatly decreased ability to activate PDK1 (23-fold 

higher AC50), while the polypetide having the IL mutated to AA had a 3-fold higher AC50 as 

the corresponding PIFtide control (Figure 8B). We assumed that the greatly affected ability of 

EEE/AAA to activate PDK1 was caused either due to a loss of binding or to the loss of the 

ability to activate PDK1. To further analyse this, we confirmed these results by evaluating the 

binding of the polypeptides to PDK1 using surface-plasmon resonance technology (not 

shown).  
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As well as verifying the effect of the C-terminal mutations EEE/AAA and IL/AA of 

PRK2 on the interaction with PDK1, it was of interest for us to know if these mutants had 

also effect on the intrinsic activity of PRK2. To this end, I further mutated the equivalent 

residues in the full length PRK2 protein.  

Interestingly, PRK2 IL/AA was normally expressed, had decreased interaction with 

PDK1 and was active, suggesting that the IL hydrophobic patch affects the interaction with 

PDK1 but does not greatly affect the PRK2 enzyme. On the contrary, the kinase mutated at 

the three Glu residues to Ala was hardly expressed. This let us suggest that the C-terminal 

acidic patch is important for the stability of PRK2 itself. 
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Figure 8: PRK2 C-terminal negatively charged patch Glu968-Glu970 and hydrophobic patch Ile965 
/Leu966 are required for the high affinity interaction of PRK2 with PDK1A: In order to analyse if other C-
terminal residues of PRK2 were important for the interaction with PDK1, GST-CT-PRK2 wt and the mutants 
GST-CT-PRK2[Ile965Ala; Leu966Ala] and GST-CT-PRK2[Glu968Ala; Glu969Ala; GLu970Ala] were co-
expressed with Myc-PDK1 in HEK293 cells using the same protocol as it is described at figure 7. 
B: The interaction between the C-terminus of PRK2 and PDK1 was analysed indirectly by measuring the ability 
of PRK2 C-terminal polypeptides to activate PDK1. The polypeptides (C-terminus PRK2 wt and the PRK2 C 
terminus-derived polypeptides (PIFtide, REPRIL SEEEQEMFRDFDYIADWC), PIFtide IL/AA and PIFtide 
EEE/AAA were analysed for their ability to activate PDK1 in vitro. The activity of 0.2 µM PDK1 was measured 
in triplicates using the peptide T308tide as a substrate. The EEE/AAA mutant had greatly decreased ability to 
activate PDK1 (23 fold higher AC50), while the polypetide having the IL mutated to AA had a 3 fold higher 
AC50 as the corresponding PIFtide control. 
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5.6. Influence of the Z-/turn motif phosphorylation site on the intrinsic activity of full 

length PRK2 and the isolated catalytic domain of PRK2. 

The above mentioned study characterizing the role of the Z-/turn motif phosphorylation on 

PRK2 by Hauge et al. in 2007 was performed on a PRK2 mutant protein lacking 500 N-

terminal residues (∆N-PRK2) [57]. For the purpose of evaluating if the N-terminal regulatory 

region was involved in the phosphorylation of the Z-/turn motif site, I also mutated the Z-

/turn-motif phosphorylation site  of the full length (FL) PRK2. I purified the different GST-

fusion proteins and compared the effect of the mutation to the impact on the catalytic domain 

of PRK2 (∆N-PRK2) on the specific activity. 

By using purified GST-fusion proteins in in vitro activity assays, we confirmed that 

mutation of the Z-/turn motif phosphorylation site in PRK2 substantially diminished the 

activity of ∆N-PRK2. Similar effects on the activity could be observed on the corresponding 

full length-mutant protein. Thus, the proteins mutated at the Z-/turn-motif site [Thr958Ala] 

showed greatly decreased activity. These results indicated that the N-terminal region did not 

affect the Z-/turn motif phosphorylation site-mediated modulation of PRK2 activity. 

Altogether, we now confirmed that the Z-/turn-motif phosphorylation is very important for the 

activity of PRK2. In this sense, its dynamic phosphorylation may be used by nature to 

regulate the activity of PRK2 in cells. 

I further expressed, purified and tested the activity of PRK2 full length proteins 

comprising the K-dead K/M and TST/AAA mutatants as well as IL/AA and EEE/AAA C-

terminal mutants. As already mentioned both kinase dead mutants were expressed at lower 

levels compared to the wildtype and were essentially inactive. In addition, in most 

purifications, we could not detect PRK2 EEE/AAA mutant expression suggesting that the 

protein was unstable. As described for the ∆N-PRK2 construct, the Thr958Ala mutation 

within the context of the FL-protein also drastically affected the activity without significant 

changes at the level of phosphorylation at the activation loop.  

Interestingly, we also repeatedly observed that the ∆N-PRK2 construct had higher 

activity than the FL-PRK2 when measured at equal protein concentrations (e.g. 40ng) (Figure 

9). A higher specific activity had been previously observed upon limited proteolysis of PRK2 

and had been proposed to be due to the cleavage of a pseudosubstrate within the N-terminal 

extension of the kinase, as it had been described for classical PKCs [76, 107, 122]. 
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Figure 9: Comparison of specific activity of the PRK2-FL with the ∆N-PRK2 construct: This assay was 
performed in a 20 µl mix containing 50 mM Tris-HCl pH 7.5, 0.05 mg/ml BSA, 0.1% β-mercaptoethanol, 10 
mM MgCl2, 100 µM [γ32P]ATP (5-50 cpm/pmol), 0.003% Brij, 40 ng of the particular PRK2 construct and 
Crosstide (100 µM). We observed that the ∆N-PRK2 construct had higher activity than the FL-PRK2, when 
measured at equal protein concentrations (40ng in this case). The specific activity of PRK2-FL is shown to be 
100%. Compared to this, the ∆N-PRK2 construct shows a more than 1.8 fold higher (180,4%) specific activity at 
the given protein concentration.  
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5.7. Regulation of PRK2 by its N-terminal region.  

While performing the above mentioned PRK2 activity measurements, we observed that the 

specific activity of PRK2 FL could not be accurately measured because it was dependent on 

the protein kinase concentration in the assay. We realised that lower concentrations gave raise 

to higher specific activities. Interstingly, the same could be observed with the FL-PRK2-

Thr958Ala, but not in any of the ∆N-constructs, where the same specific activity was obtained 

when 2,5 – 50 ng PRK2 were used. Table 8 shows a comparison between the acivity assay-

measured counts of PRK2-FL and the ∆N-PRK2 construct. Remarkably, while the FL protein 

had greatly decreased activity under some conditions, this was no longer observed when low 

concentrations of FL-PRK2 were employed in the assays (1.8 nM). In this case, the FL-PRK2 

specific activity was 5,9 ± 0,5 pmol product/min/pmol, indistinguishable from the specific 

activity of ∆N-PRK2 (5,5 ± 0,3 pmol product/min/pmol).  

The biochemical characterization of PRK2 indicated that the lower specific activity of 

FL-PRK2 was clearly concentration-dependent. This was not compatible with an 

intramolecular inhibition as expected if the N-terminal extension to the catalytic domain in 

PRK2 would act intramolecularly as a pseudosubstrate as described for PKCs. Rather, the 

results were compatible with an intermolecular inhibition of activity, mediated by the N-

terminal  extension to the catalytic core of PRK2.  

For deeper investigation, we wanted to examine if PRK2 molecules could form 

oligomers. To this end, we co-transfected plasmids coding for GST-FL-PRK2 and HA-FL-

PRK2 in HEK293 cells, followed by pull-down and anti-HA immunoblotting on the pull-

down. GST-FL-PRK2 significantly interacted with HA-FL-PRK2 (Figure 10A). Interestingly, 

GST-∆N-PRK2 interaction with HA-FL-PRK2 was drastically diminished in comparison to 

the interaction between full-length proteins, suggesting that the N-terminal region of PRK2 

participated in an intermolecular interaction with another PRK2 molecule.   

In order to provide further evidence that the PRK2-PRK2 intermolecular interaction 

was responsible for the inhibition of full length PRK2, I examined the effect of the K-dead 

mutant FL-PRK2 TST/AAA on the activity of FL-PRK2 or ∆N-PRK2 by performing a 

protein kinase assay. Whereas the addition of K-dead FL-PRK2 did not have a  detrimental 

effect on ∆N-PRK2 (Figure 10B, closed circles), it inhibited FL-PRK2 activity in a 

concentration-dependent manner (open circles). Together, we concluded that the N-terminal 

region of PRK2 was responsible for the inhibition of its activity by an intermolecular 

interaction.  
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As previous work pointed out, Rho-GTP binds to a Rho-binding domain on the N-

terminal region of PRK2 and participates in PRK2 activation in cells [107]. So, we wanted to 

know if Rho-GTP could directly activate PRK2 in vitro. To analyse this possibility we tested 

the PRK2 activity in a protein kinase assay using a concentration where PRK2 is known to be  

in a partially autoinhibited form and added purified Rho-GTPase. The activity of GST-PRK2 

and the GST-∆N-PRK2  assayed at various concentrations was not affected by the addition of 

purified Rho, Rho-GDP or Rho-GTP (Figure 11). Thus, our results suggested that Rho did not 

affect the specific activity of the isolated PRK2 protein in vitro. 
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Table 8: Activity assay-measured counts of PRK2-FL and ∆N-PRK2 construct 

Enzyme Added 
amount (ng) 

Counts 
(average) 

Enzyme Added 
amount (ng) 

Counts 
(average) 

PRK2-FL-wt 40 4.957.292 PRK2-∆N-wt 40 8.875.324 
 8 2.357.580  8 2.537.639 
 2 811.882  2 667.511 

 

 
Figure 10: The PRK2 N-terminal region is required for PRK2 oligomerization and inhibits its activity in 
trans.  A: GST-PRK2 full length (FL), but not GST-∆N-PRK2 interacted with HA-FL-PRK2. HEK293 cells 
were transfected with DNA constructs expressing GST, GST-FL-PRK2, GST-∆N-PRK2 together with a 
construct expressing HA-PRK2. GST-fusion proteins were isolated and the interaction between GST-fusion 
proteins and HA-FL-PRK2 was analysed as described in the legend to Figure 6. B, Activity of FL-PRK2 (open 
circles) and ∆N-PRK2 were measured in vitro in the absence (100%) or in the presence of the indicated amounts 
of PRK2 [TST-AAA] as described in the legend of figure 9. The K-dead PRK2 [TST-AAA] mutant inhibits the 
activity of FL-PRK2 but not ∆N-PRK2. 
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Figure 11:  Effect of Rho, Rho-GDP or Rho-GTP on GST-PRK2 and ∆N-PRK2- construct. This figure 
shows the Effect of Rho, Rho-GDP or Rho-GTP on the specific activity of GST-PRK2 (left) and the ∆N-PRK2- 
construct (right). We could not observe a mentionable activity increasing effect using Rho, Rho-GDP or Rho-
GTP in the kinase assay. The specific activity of GST-FL-PRK2 and -∆N-PRK2 without adding one of the above 
mentioned GTP-ases are taken as 100%. This PRK2 activity assays were performed in a 20 µl mix containing 50 
mM Tris-HCl pH 7.5, 0.05 mg/ml BSA, 0.1% β-mercaptoethanol, 10 mM MgCl2, 100 µM [γ32P]ATP (5-50 
cpm/pmol), 0.003% Brij, 40 ng of the particular PRK2 construct, Crosstide (100 µM) and Rho (10uM), Rho-
GDP (10uM) or Rho-GTP (10uM). 
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6. Discussion 

The study of the molecular mechanism of regulation of PRK2 impinges in different aspects of 

cellular regulation and disease: 1- the mechanism of regulation of PRK2 interaction with 

PDK1 relates to the broad topic of “protein kinase docking interactions”, which are known to 

occur in many pathways (specially in the MAP kinase pathway) but the mechanisms of 

regulation of those interactions are vastly unknown. 2- Protein phosphorylation is widely used 

by nature for cellular regulation, but the mechanisms are most often not known. This thesis 

studies the role of protein phosphorylation, in particular, at the Z-/turn-motif site, a widely 

conserved phosphorylation site in AGC kinases, concluding that it participates both in the 

regulation of the activity and in the regulation of the docking to its upstream activation loop 

kinase PDK1. 3- Protein kinases appear to achieve specific regulation by means of N-terminal 

or C-terminal extensions to the catalytic core. In contrast to the present knowledge on related 

AGC kinases, this thesis reveals that the N-terminal region inhibits the docking interaction 

with PDK1 and that it also promotes the oligomerization that inhibits PRK2 activity. 4- The 

C-terminal region is known to regulate the activity of AGC kinases. In this study we further 

learned aspects of the C-terminal region of PRK2 that turn out to be important for the high 

affinity binding to PDK1. 5- The present work finally deals with the different mechanisms of 

regulation that evolve from a common theme. Thus, our comparison of the mechanism of 

regulation of PRK2 and other AGC kinases reveal that the regulation of docking interaction 

by Z-/turn-motif phosphorylation happens on PRK2 but not on other related AGC kinases. 

Also, our studies on the N-terminal and C-terminal extensions to the catalytic domain unveil a 

very particular mechanism of regulation of PRK2. Altogether, the work provides information 

on the mechanism of regulation of PRK2 that may help develop novel therapies for deseases 

where PRK2 is involved. 

Docking interactions have to be regulated and are the substance of the signalling 

specificity of PDK1 and a group of other kinases. As it is very little known about the 

regulatory mechanisms that are involved, we wanted to investigate the aspects of PRK 

regulation in detail. In this sense we examined the interaction between PRK2 and PDK1, but 

also spotted a light on the PRK2-PRK2 interaction. Actually, we found a new way of 

regulation of the interaction between these two kinases and discovered that the mechanism 

that decreases the interaction with the upstream kinase is directly linked to the mechanism of 

activation of the substrate kinase. 

In this work, we studied the N-terminal and C-terminal extensions of PRK2 and 

learned that not only the C-terminal Z-/turn motif phosphorylation site, but also the N-
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terminal segment acts as an inhibitor for the interaction of PRK2 with PDK1. Furthermore, 

with the work presented in this thesis, we provide evidence that PRK2 forms oligomers with 

other PRK2-molecules via its N-terminal extension and that this inhibits the activity of PRK2 

intermolecularly. 

It is already known that AGC-kinases need certain phosphorylation sites for the 

interaction with their upstream kinase PDK1 and for their activation. Next to the already well-

known actvation loop and the HM phosphorylation site belongs the recently characterized Z-

/turn-motif phosphorylation site. A common mechanism of activation including these three 

phosphorylation sites is assumed for up to 26 AGC kinases and was further investigated for 

Akt/PKB, S6K, RSK, MSK, PRK and PKC, as recently described by Hauge et al. [57]: The 

phosphorylation sites work in a cooperative manner, as the Z-/turn motif phosphate binds a 

phospho-Ser/phospho-Thr-binding site above the glycine-rich loop within the kinase domain. 

This binding promotes an association of the tail with the kinase domain and serves to deliver 

the HM to its binding site in a zipper-like manner, inducing the stabilization of the HM in its 

kinase-activating binding site. This stablilization directly leads to the stimulation of the kinase 

activity. 

Most AGC-kinases, like PRKs, PKCs, S6K and SGK, consist of a catalytic domain, 

formed by a small and a large loop, and N- and C-terminal extensions to the catalytic core, 

that are important for stabilizing the active conformation of the catalytic domain. Like PKC 

members, PRKs possess a large N-terminal extension, which contains a putative 

pseudosubstrate region and a C2-like domain. Further, the N-terminus possesses three HR1 

Rho-effector domains. On the C-terminal extension to the catalytic core, PRKs have a 

docking sequence that allows binding to its upstream kinase PDK1. A recent peptide array 

study suggested that another motif, termed Ade (adenosine binding) motif, may be important 

for interaction of C-terminal regions of distinct AGC-kinases with PDK1. It was shown to be 

conserved in PKA, Akt/PKB and PRK2 and it was predicted to be a PDK1-interacting site for 

most AGC kinases [126]. Although not formally proved, it is therefore possible that the Ade 

motif also participates in the interaction of PRK2 with PDK1. However, this study [126] was 

published after the work at this thesis has been finished and our publication was in revision. 

The three phosphorylation sites (HM, Z-/turn motif and activation loop) are located at certain 

regions of the kinases. The activation loop is settled in the kinase domain, while the HM and 

the Z-/turn motif are located at the C-terminal tail of the enzyme. As already established, in 

most AGC-kinases the HM is characterized by three aromatic amino acids surrounding the 

Ser/Thr residue that becomes phosphorylated: Phe-X-X-Phe-Ser/Thr-Phe/Tyr. However, in 
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PRKs and atypical PKCs the HM contains a negatively charged amino acid (aspartic acid or 

glutamic acid) that mimicks the phospho-Ser/ phospho-Thr [50, 121]. 

We know that phosphorylation of the HM of RSK, S6K and SGK regulates the 

interaction with their upstream kinase PDK1. We also know that PRK2 and PKCζ cannot be 

regulated through HM phosphorylation as they have an acidic residue instead of a HM 

phosphorylation site and that PRK2 and PKCζ are phosphorylated at the activation loop and 

Z-/turn motif site in vivo. We further know that the mutation of the Z-/turn motif 

phosphorylation site in PRK2 increases the interaction with PDK1.  

So, according to this, we wanted to verify if the interaction of S6K and SGK with 

PDK1 could also beregulated by Z-/turn motif phosphorylation. Our experiments could not 

show that the Z-/turn motif phosphorylation site regulates the interaction with PDK1 in the 

case of S6K and SGK. In addition, Rosalia Dettori’s data show that this is not the case for 

PKCζ. However, this topic is an interesting subject for further investigation, as the Z-/turn 

motif phosphorylation in PKCζ, S6K and SGK could actually play a role in the interaction 

with PDK1, while the methods we used just cannot detect it. In conclusion it can be said that 

in PKCζ, SGK and S6K, but presumably also in other AGC-kinases like Akt/PKB, 

phosphorylation of the Z-/turn motif phosphorylation site seems to be important for activaty 

but does not appear to regulate the interaction with PDK1. In contrast, the phosphorylation of 

the Z-/turn motif phosphorylation site in PRK2 can regulate the interaction with PDK1. These 

results made us suggest that the Z-/turn motif phosphorylation plays a special role in the case 

of PRK2 as a characteristic modulator of PRK2 regulation, differing from other AGC-kinases.  

Since the mutation of the Z-/turn motif phosphorylation site of PRK2 threonine 958 to 

alanine  leads to an increased interaction of PRK2 with PDK1, we wanted to further 

investigate the molecular mechanism. In order to do that we figured out two different 

explanations that could explain such behaviour. On the one hand an increased binding affinity 

of the C-terminal residues of PRK2 to PDK1 or on the other hand a decreased affinity of this 

C-terminal fragment to its own PRK2 catalytic domain. Both explanations indeed fit in a 

model, assuming that the binding of the C-terminus of PRK2 to PDK1 is in direct competition 

to the binding of the C-terminus of PRK2 intramolecularly to its own catalytic domain. When 

phosphorylated at the Z-/turn motif site, the C-terminus of PRK2 would bind to its own Z-

/turn motif binding site, while the non-phosphorylated Z-/turn motif had higher affinity to the 

PIF-binding pocket of PDK1. 

We know from PRK2-PDK1 interaction experiments in 293 cells that the increased 

affinity may not du to an increased binding avidity of the C-terminus of PRK2 towards PDK1, 
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as mutating the Z-/turn motif phosphorylation site within the isolated GST-CT-PRK2, did not 

affect the interaction with PDK1. Further, this mutant also had equivalent avidity for 

endogenous PDK1. However, we could provide evidence that there is a competition between 

the binding of the C-terminus of PRK2 to PDK1 and to the Z-/turn motif phosphate binding 

site, as we could show an increased binding of PRK2 to PDK1 when we mutated the putative 

Z-/turn motif phosphate binding site on PRK2.  

Another topic we were interested in, was the further characterization of the C-terminus 

of PRK2. In order to investigate this part of the kinase in more detail, we examined the 

negatively charged patch Glu968-Glu970 and the hydrophobic patch Ile965/Leu966 located in 

this region. We found out that these patches, which are not conserved within the AGC-

kinases, are required for the high affinity interaction between PRK2 and PDK1. However, 

because of the fact that PDK1 is still able to phosphorylate the activation loop of PRK2 

IL/AA, it is possible that there is an additional interaction site. 

Taken together, it can be said that the C-terminus of PRK2 plays a crucial role in the 

interaction and in the regulation of the interaction with PDK1, since this region contains key 

interacting determinants, HM, the Glu968-Glu970 negatively charged patch, the 

Ile965/Leu966 hydrophobic patch and the regulated Z-/turn motif phosphorylation site. As far 

as PKCζ is concerned, there must be another mechanism of regulation compared to PRK2 and 

other AGC-kinases. We could show that although it has no HM phosphorylation site like 

PRK2its interaction with PDK1  is not regulated by Z-/turn motif phosphorylation. 

Work mainly done by Newton’s and Parker’s laboratories in the nineties indicated  

that PKCs have a pseudosubstrate sequence at their N-terminal end acting as an inhibitory 

module providing a sterical blocking of the active site. Binding of the co-factor diacylglycerol 

was presented to relieve an autoinhibition through conformational changes that unmask the 

active site. This intra-molecular inhibition via a pseudosubstrate sequence was also assumed 

for PRK2. In contrast to this assumption, we provide evidence that there is an inter-molecular 

inhibition of PRK2 activity via the N-terminal extension. 

Our PRK2 activity measurements showed that the specific activity of the full length 

PRK2 could not be accurately measured because it was dependent on the protein kinase 

concentration in the assay, with lower concentrations giving raise to higher specific activities. 

In contrast, this was not the case for the PRK2 construct lacking the N-terminal extension. 

This one showed constant specific activity when tested at different concentrations, as 

expected. Interestingly, the raise to higher specific activity at lower concentration was also 

observed for the full length PRK2[Thr958Ala] mutant. These observations are not compatible 
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with an intra-molecular inhibition as expected if the N-terminal extension to the catalytic 

domain in PRK2 would act as a pseudosubstrate intramolecularly. Thus, we assumed an 

inhibition in trans with another molecule of PRK2 as the used GST-fusion proteins we 

employed were essentially pure. For further investigation we tested if PRK2 molecules could 

form oligomers. In this sense, we co-transfected plasmids encoding GST-FL-PRK2 and HA-

FL-PRK2 and in parallel plasmids coding for GST-∆N-PRK2 with HA-FL-PRK2. We could 

show that the full length PRK2 construct significantly interacted with HA-FL-PRK2, while 

the ∆N-construct showed drastical diminished interaction with HA-FL-PRK2. Thus, we could 

provide  evidence that the N-terminal region of PRK2 participated in an inter-molecular 

interaction with another PRK2 molecule. In further support, we tested the effect of the FL-

PRK2 TST/AAA inactive mutant on the activity of FL-PRK2 or ∆N-PRK2, showing that FL-

PRK2, but not ∆N-PRK2 activity was inhibited through the addition. In summary, our results 

support  indications that PRK2 molecules are able to form oligomers via their N-terminal 

extensions and that this binding causes an inter-molecular inhibition. 

It was previously described by Vincent and Settleman that PRK2 is an effector target 

of Rho-GTPases. It was shown that PRK2 was substantially activated by Rho in vitro in a 

nucleotide-independent manner, while the interaction with Rac was completely GTP 

dependent. They further showed that for activation of PRK2, Rho had to bind to an intact Rho 

effector domain [142]. Recently, Lim et al. found that the extreme C-terminal segment is 

critical for the full activation of PRK2 by RhoA in cells in a GTP-dependent manner. They 

could show in experimental procedures that the addition of GST-GTPγS-RhoA to the 

immuno-purified wild-type PRK2 resulted in an approximately 1.5-fold activation of PRK2 

[90]. However, the Rho binding domains themselves are located at the N-terminal extensions 

in PRK2. Lim et al. also described that the binding of RhoA to PRK2 could relieve an auto-

inhibitory interaction between the N- and the C-terminus of the kinase. They further showed 

that PRK2 was activated by GST-RhoA in vitro. In contrast to this, in the course of our in 

vitro studies using purified PRK2 constructs, Rho, Rho-GTP and Rho-GDP did not exert an 

effect on full length PRK2 activity. This finding supports the hypothesis that additional 

proteins may be required to mediate the Rho-dependent effects.  

Summing up all findings, we provide evidence for our hypothesis that PRK2 may 

remains inhibited because of an intermolecular interaction mediated by the N-terminal 

extension. This oligomerization blocks not only the intrinsic activity but also the interaction 

with PDK1. Based on the work by others, the model suggests that upon stimulation of Rho, 

Rho-GTP may bind to the Rho-effector domains within the N-terminal region of PRK2, 
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releasing the inter-molecular inhibition and enabling the interaction with PDK1. In order to 

explain the different requirement for Rho-GTP found by others and shown in the present 

work, we suggest that the interaction between PRK2 and Rho is supported by third proteins. 

However, this issue remains unproven and would require further investigation in the future.  

The model suggested in the past by Biondi et al. considered that the inactive substrate 

could have higer affinity for PDK1. Anyhow, this had not been previously tested 

experimentally. In support to our concept that after phosphorylation at the Z-/turn motif site, 

the C-terminus of PRK2 would bind intramolecularly to its own Z-/turn motif binding site, 

while the non-phosphorylated Z-/turn motif has higher affinity to the binding site of PDK1, 

we found that two mutants of PRK2 which were virtually inactive bound PDK1 with a higher 

affinity than  wild type PRK2 did, although they were expressed to a lower extent. In this 

sense, the complete model would suggest that once phosphorylated by PDK1, the Z/turn motif 

site of PRK2 becomes phosphorylated and PRK2  achieves the active form, which hides the 

HM from PDK1 and thus decreases the avidity to interact with PDK1. As an additional 

regulation, due to the close relationship between the activation loop and the Z-/turn motif 

phosphorylation sites, it is possible that, in the absence of activation loop phosphorylation, the 

Z-/turn motif site may becomes dephosphorylated, and with the appropriate stimulation, could 

trigger the binding to PDK1, consecutively leading to the phosphorylation at the activation 

loop. Our model further suggests that after activation loop phosphorylation, the Z-/turn motif 

site would also become phosphorylated by a yet unidentified protein kinase; after Z-/turn 

motif phosphorylation, the Z-/turn motif phosphate would interact with the Z-/turn motif 

phosphate binding site and trigger the binding of the C-terminus of PRK2 to its own catalytic 

domain, stabilizing the active conformation of PRK2. At the same time, since most 

determinants for PDK1 binding are located within this C-terminus, its intra-molecular binding 

to the PRK2 catalytic domain would release the upstream kinase PDK1 by decreasing the 

avidity of the PRK2 C-terminus for PDK1.  

This thesis illustrates the complex mechanism of regulation of AGC kinases with a 

focus on the molecular mechanisms that are involved in the control of PRK2 activation and 

interaction. As AGC kinases are found to play a crucial role in cancer development and as 

they are already a target in cancer treatment, finding out more about the regulation of their 

molecular mechanisms will hopefully specify the therapy of such diseases and increase their 

effectiveness.  

While the drugs  used today mostly target whole signalling pathways, characterization 

of special unique mechanisms of kinases will open the chance to gain a maximal success with 
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minimal side effects. An example for these special mechanisms is the role of the Z-/turn motif 

site of PRK2. We could show that this motif has a special function as a regulator of PRK2 

activity, while we could not detect this effect in closely related kinases, pointing out the Z-

/turn motif phosphorylation site as a possible pharmaceutical target in PRK2-related cancer 

subtypes. 

Another potential target could be the Rho effector domain. According to the 

hypothesis that blocking this region would hinder Rho to release the intermolecular inhibition 

with a resulting decreased PRK2 activity in cells, compounds blocking the Rho effector 

domain may block PRK2 downstream signalling. 

With respect to PRKs, especially prostate cancer came to the fore, as recent work by 

Metzger et al. showed that PRK1 and PRK2 are involved in the genesis of this type of cancer 

via activation of the androgen receptor. They could show that stimulation of the PRK 

signalling cascade results in a ligand-dependent superactivation of the AR that according to 

the current model of prostate cancer plays an important role in the development of this 

neoplasia. Normally, the AR is expressed in secretory epithelial cells and responds to 

androgens. Interestingly, although growth and survival of primary prostate cancer cells is 

critically dependent on androgens, reduced circulating androgen levels and even in the 

presence of AR antagonists, most prostate cancers recur and progress to a terminal stage [30]. 

PRKs as targets could open a new strategy in prostate cancer therapy, especially for 

prostate cancer specimen that are resistant against anti-androgens. A selective inhibition of the 

PRKs overactivating the AR could be a therapeutic route to fight the progress of such a 

disease. 

The understanding of the mechanism of regulation of PRK2 suggests ways in which 

cancers could activate this signalling pathway. Since we showed both the Z-/turn motif and 

the N-terminus act as inhibitors for PRK2 activity, it can be imagined that mutations in this 

region could be responsible for the high PRK2 activity in different cancer specimens. It is also 

possible to imagine that PRK2 could be overactive in cancer cells due to loss of its whole N-

terminus, for example because of a dysfunction of cleavage proteins or because of  mutations. 

It would be interesting to evaluate if mutations on PRKs happen in cancers where PRK 

signalling is important. Such data may help us to further understand the molecular aspects of 

PRK regulation. Most importantly, getting deeper into the mechanisms of regulation opens a 

new field of an appropriate drug therapy adapted to the particular reason of enzyme 

dysfunction for personalized treatment. 
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