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SUMMARY 
Ribbon synapses are tonically active, high-performance synapses found in the 

retina and inner ear. Morphologically, ribbon synapses are characterized by the 

presence of large electron-dense presynaptic specializations in the active zone, the 

synaptic ribbons. The synaptic ribbon is of particular importance for the physiology 

of ribbon synapses. But how the synaptic ribbon orchestrates ultra-fast synaptic 

transmission in ribbon synapses is still largely unknown. RIBEYE was identified by 

our group as a novel and major protein component of synaptic ribbons (Schmitz et al., 

2000). RIBEYE consists of a unique aminoterminal A-domain and a carboxy terminal 

B-domain which is identical to the protein CtBP2. RIBEYE(B)-domain consists of a 

NADH binding subdomain (NBD) and substrate-binding subdomain (SBD). SBD and 

NBD are connected by two flexible hinge regions, hinge 1 and hinge 2. From the 

identification and characterization of novel interaction partners of RIBEYE, we 

expect a better understanding of RIBEYE functions at ribbon synapse.  

In my theis work, I identified GCAP2 as a RIBEYE-interacting protein at 

photoreceptor ribbon synapses using various independent approaches. The guanylate 

cyclase activating protein 2 (GCAP2) is a recoverin-like neuronal Ca2+-sensor protein 

highly expressed in photoreceptors. Three members of the GCAP family (GCAP1, 2 

and 3) are known in the mammalian retina. GCAP2 contains four EF-hands from 

which the first EF-hand is non-functional and an aminoterminal myristoylation signal. 

GCAP2 is well known to modulate the activity of photoreceptor guanylate cyclases in 

a Ca2+-dependent manner in photoreceptor outer segments. But GCAPs are not 

restricted to outer and inner segments but are also present in the presynaptic terminals 

of photoreceptors. In immunolabelling analyses of the  bovine retina with GCAP2 

antibodies, I showed the presence of GCAP2 in the presynaptic terminals at the 

ribbon sites as well as close to the synaptic ribbon. The significance of GCAP2 in the 

presynaptic terminals was initially unknown. 

The GCAP2 prey clone that I obtained by the YTH screening with 

RIBEYE(B) as bait coded for the two carboxyterminal EF-hands (EF-hands 3 and 4) 

and the carboxyterminal region (CTR) of GCAP2. In the YTH system, I showed that 

the C-terminal region of GCAP2 is responsible for the interaction with hinge 2 region 

of RIBEYE. I corroborated the GCAP2-RIBEYE interaction using various 
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independent approaches. In bacterial GST pull-down assays, GCAP2 directly 

interacts with RIBEYE(B)-domain. In order to prove the GCAP2-RIBEYE 

interaction in vivo, I co-immunoprecipitated RIBEYE and GCAP2 from the bovine 

retina. Since RIBEYE is exclusively present at the synaptic ribbons in the mature 

retina, the co-immunoprecipitation experiments suggested that GCAP2 may be a 

component of synaptic ribbons. This hypothesis is further supported by biochemical 

assays,  high resolution confocal microscopy and Proximity-Ligation Assays. 

 The hypothesis that hinge 2 region of RIBEYE(B) represents the core 

docking region for GCAP2 is further supported by point mutants of the hinge 2 region 

that completely abolished RIBEYE-GCAP2 interaction. Binding of NAD(H) to 

RIBEYE promotes RIBEYE/GCAP2 interaction. We suggest that binding of GCAP2 

to the hinge 2 region requires the NAD(H)-induced, closed conformation of 

RIBEYE(B). The formation of the NAD(H)-induced closed conformation requires 

considerable structural rearrangements in the SBD and movement of both SBDa and 

SBDb. Based on the analyses of RIBEYE mutants we propose that an enhanced 

structural flexibility of the SBD in RE(B)C899S favors a conformation of the flexible 

hinge 2 region that is able to bind GCAP2 similar to the NAD(H)-bound 

conformation. Further investigations will be necessary to understand the complex 

regulation of GCAP2-RIBEYE interaction and how it is mediated by structural 

changes in the protein. 

Synaptic ribbons are known to disassemble via spherical disassembly 

intermediates in response to illumination in the mouse retina when intracellular Ca2+ 

is low. Interestingly, photoreceptor terminals that were infected with GCAP2-EGFP 

virus typically displayed a loss of synaptic ribbons as analyzed by co-immunolabeling 

with anti-RIBEYE and at the electron microscopic level. GCAP2 overexpression in 

the synapse works similar on ribbon dynamics as chelating Ca2+ inducing a reduction 

in the number of synaptic ribbons. Therefore GCAP2 was ideal candidate to mediate 

these Ca2+- dependent changes of synaptic ribbons. 

Interesting, GCAP2 knockout mice have a disturbance in synaptic 

transmission as measured by reduced b-waves in ERG analyses. The above results 

will help to understand i) which synaptic mechanisms are targeted by RIBEYE-

GCAP2 interaction, ii)  what are the GCAP2 effector proteins, iii) how the GCAP2- 

effector interaction is affected by intracellular Ca2+ concentrations iv)  how the 

recruitment of NADH to RIBEYE is regulated. 
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ZUSAMMENFASSUNG 
 

Ribbonsynapsen sind tonisch aktive Hochleistungssynapsen in der Retina und 

im Innenohr. Morphologisch sind Ribbonsynapsen durch die Anwesenheit von 

großen elektronendichten Strukturspezialisierungen in der aktiven Zone, den 

sogenannten Synaptic Ribbons, gekennzeichnet. Der Synaptic Ribbon ist von 

besonderer Bedeutung für die Physiologie der Ribbonsynapse. Aber wie genau der 

Synaptic Ribbon auf molekularer Ebene arbeitet, ist noch unbekannt. Das Protein 

RIBEYE wurde von unserer Gruppe als ein Hauptprotein der Synaptic Ribbons 

identifiziert (Schmitz et al., 2000). RIBEYE besteht aus einer aminoterminalen A-

Domäne und einer carboxyterminalen B-Domäne, die identisch mit dem Protein 

CtBP2 ist. Die B-Domäne lässt sich wiederum weiter untergliedern in eine NAD(H)-

bindende Subdomäne (NBD) sowie in die Substratbindungsdomäne (SBD). NBD und 

SBD sind durch zwei flexible Scharnierregionen, Scharnier 1 und Scharnier 2, 

miteinander verbunden. Von der Identifizierung und Charakterisierung von neuen 

Interaktionspartnern von RIBEYE erwarten wir ein besseres Verständnis vom Aufbau 

und der Rolle der Synaptic Ribbons in der Ribbonsynapse. 

In meiner Dissertationsarbeit, identifizierte ich das Protein Guanylatcyclase-

aktivierende Protein 2 (GCAP2) als ein RIBEYE-interagierendes Protein in der 

Photorezeptorsynapse. GCAP2 ist ein Recoverin-verwandtes Ca2+-Sensorprotein, das 

in Photorezeptoren stark exprimiert wird. Drei Proteine aus der GCAP Familie sind 

bei Säugern bekannt (GCAP1, 2 und 3). GCAP2 enthält 4 EF-Hände, von denen die 

erste nicht-funktionell ist GCAPs enthalten ein aminoterminales 

Myristoylierungssignal. Von GCAP2 ist bekannt, dass es in den Außensegmenten der 

Photorezeptoren auf eine Ca2+-abhängige Weise die Aktivität membranständiger 

Guanylatcyclasen reguliert. GCAPs sind aber nicht nur auf das Außensegment 

beschränkt, sondern finden sich auch in der präsynaptischen Terminale von 

Photorezeptoren. In Immunfluoreszenzanalysen zeigte ich die Anwesenheit von 

GCAP2. Dort ko-lokalisiert GCAP2 mit RIBEYE und findet sich auch in der 

unmittelbaren Nachbarschaft von Synaptic Ribbons. Die funktionelle Bedeutung von 

GCAP2 in den präsynaptischen Terminalen war vor Beginn meiner 

Dissertationsarbeit noch komplett unbekannt.  
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In einem Hefe-Zwei-Hybridscreen (YTH) „fischte“ ich unter Verwendung von 

RIBEYE(B) als Köderprotein GCAP2 als potentiellen Interaktionspartner von 

RIBEYE. Der  GCAP2 Beuteklon kodierte dabei für die beiden carboxyterminalen 

EF-Hände sowie den Carboxyterminus von GCAP2 (CTR). Im YTH System zeigte 

ich, dass die CTR Region von GCAP2 mit der Scharnierregion 2 von RIBEYE(B) 

interagiert. Diese Hefebefunde wurden mit verschiedenen anderen unabhängigen 

Untersuchungsmethoden weiter abgesichert und bestätigt. Unter Verwendung von 

bakteriell exprimierten und gereinigten Fusionsproteinen konnte ich zeigen, dass 

RIBEYE(B) und GCAP2 auch in-vitro interagieren. Um die Bedeutung dieser 

Interaktion auch in-situ zu zeigen,stellte ich Co-Immunopräzipitationsuntersuchungen 

an. Ich konnte RIBEYE mit GCAP2 ko-präzpitieren (und umgekehrt), was für die 

physiologische Relevanz der gefundenen Interaktion spricht. Da RIBEYE in der 

Retina praktisch aüsschließlich an den Synaptic Ribbons vorhanden ist, sind diese 

Ko-Immunpräzipitationsdaten ein starker Hinweis darauf, dass GCAP2 eine 

Komponente der Synaptic Ribbons darstellt. Diese Hypothese wird weiter durch 

biochemische assays, hochauflösende konfokale Laserscanning-Untersuchungen 

sowie durch Proximity-Ligation-Assays unterstützt. 

Die Scharnierregion 2 stellt die Hauptbindungsstelle für GCAP2 dar, was ich 

durch die Analyse entsprechender Punktmutanten weiter bestätigen konnte, die die 

Interaktion mit GCAP2 komplett unterbanden. Aufgrund Struktur-Funktions-

Untersuchungen schlage ich vor, dass die Bindung von GCAP2 an die hochflexible 

Scharnierregion eine geschlossene Konformation der B-Domäne von RIBEYE 

benötigt. Die Bildung der NAD(H)-induzierten geschlossenen Konformation von 

RIBEYE erfordert umfassende Umstrukturierungen auch in der SBD sowie eine 

Rotation der SBD relativ zur NBD. Basierend auf der Analyse von RIBEYE 

Punktmutanten schlage ich vor, dass die erleichterte strukturelle Flexibilität einzelner 

RIBEYE-Punktmutanten (z.B. RIBEYEC667S und RIBEYE(C899S) eine 

Konformation der Scharnieregion 2 erleichtert, die für die Bindung von GCAP2 

benötigt wird. Weitere zukünftige Untersuchungen sind notwedig, um zu verstehen, 

wie diese Interaktion in-situ reguliert wird.  
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Synaptic Ribbons sind keine statischen Strukturen, sondern können sich in 

Abhängigkeit externer und interner Faktoren vergrößern oder verkleinern. Synaptic 

Ribbons können sich als Antwort auf verringertes intrazelluläres Ca2+ über 

sphärische Zwischenstufen (synaptic spheres) verkleinern. Interessanterweise konnten 

wir zeigen, dass die Infektion von Photorezeptoren mit GCAP2 ebenfalls zu einer 

Reduktion der Zahl der Synaptic Ribbons führen, so dass GCAP2 ein wichtiger 

Mediator dieser Ca2+-abhängigen Plastizität der Synaptic Ribbons sein könnte. 

Interessanterweise zeigen GCAP2 Knockout-Mäuse eine Störung in der 

synaptischen Transmission, die sich im ERG in einer Reduktion der b-Welle äussert. 

Diese Störung der synaptischen Transmission in den GCAP2 Knockout-Mäusen 

könnte auf eine gestörte Funktion der Synaptic Ribbons zurück zu führen sein. Die 

oben beschriebenen Daten werden helfen, weitere wichtige Fragestellungen zu 

beantworten: 1.) welche synaptische Prozesse werden durch die RIBEYE/GCAP2 

Interaktion targetiert; 2.) was sind die GCAP2-Effektorproteine in der Synapse; 3.) 

Welche Rolle spielt Ca2+ bei der  RIBEYE/GCAP2 Interaktion; 4.) wie wird in-situ 

die Bindung von GCAP2 an RIBEYE vermittelt?  
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Vision is a highly complex task that involves several steps of parallel 

information processing in various areas of the central nervous system. The eye, a 

remarkable photo-sensor, can detect a single photon and transmit its signal to the 

higher brain center. Complex processing in the different classes of retinal neurons 

(photoreceptors, bipolar cells, horizontal cells, amacrine cells and ganglion cells) are 

the cellular substrates for visual signal processing. Conventional neurons encode 

information by changes in the rate of action potentials; this limits the amount of 

information transfer. However, sensory neurons such as photoreceptors in the retina 

and hair cells in the cochlea transmit light and sound signals, over a dynamic range of 

several orders of magnitude in intensity by graded changes in transmitter release. 

Graded synaptic output requires the release of several hundreds to several thousands 

of synaptic vesicles per second (for review, see Parsons and Sterling, 2003; Sterling 

and Matthews, 2005). To accomplish this high level of performance, the sensory 

neurons of the eye and cochlea maintain large pools of fast releasable synaptic 

vesicles and are equipped with a special type of chemical synapse, the ribbon synapse 

(for review, see Parsons and Sterling, 2003; Sterling and Matthews, 2005). 

 

1. 1. Structure and function of retina 
 The eye is a fluid-filled sphere enclosed by three layers of tissue. The outer 

layer is the sclera and this opaque layer is transformed into the cornea, a specialized 

transparent tissue that permits light rays to enter the eye. The middle layer of tissue 

includes three distinct but continuous structures: the iris, the ciliary body, and the 

choroid. The innermost layer of the eye, the retina, contains neurons that are sensitive 

to light and are capable of transmitting visual signals to higher brain centre via optic 

nerve. Despite its peripheral location, the retina or neural portion of the eye is actually 

part of the central nervous system (for review, see Purves et al., 2001). 

 Although it has the same types of functional elements and neurotransmitters found in 

other parts of the central nervous system, the retina comprises only a few classes of 

neurons, and these are arranged in a manner that has been less difficult to unravel 

than the circuits in other areas of the brain. There are five main types of neurons in 

the retina: photoreceptors, bipolar cells, ganglion cells, horizontal cells, and amacrine 

cells. The cell bodies and processes of these neurons are stacked in five alternating 

layers, with the cell bodies located in the inner nuclear, outer nuclear, and ganglion 
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cell layers, and the processes and synaptic contacts located in the inner plexiform and 

outer plexiform layers. A direct three-neuron chain  photoreceptor cell to bipolar cell 

to ganglion cell is the major route of information flow from photoreceptors to the 

optic nerve (for review, see Purves et al., 2001).    

 

                       

              
Figure  1. Ribbon synapses of the mammalian retina   
A. Toluidine blue-stained vertical cryostat section of a mammalian retina showing the various retinal layers (OS/IS 
outer and inner segments of the rod and cone photoreceptors, ONL outer nuclear layer containing the somata of the 
photoreceptors, OPL outer plexiform layer or first synaptic region, INL inner nuclear layer containing the somata 
of the second order neurons, i.e. horizontal, bipolar and amacrine cells, IPL inner plexiform layer or second 
synaptic region, GCL ganglion cell layer containing the somata of the ganglion cells and of displaced amacrine 
cells) (Tom Dieck et al., 2006). (B) Diagram of the basic circuitry of the retina (obtained from NCBI). A three-
neuron chain—photoreceptor, bipolar cell, and ganglion cell—provides the most direct route for transmitting 
visual information to the brain. Horizontal cells and amacrine cells mediate lateral interactions in the outer and 
inner plexiform layers, respectively.  
 

 

 

 

 

 

 

B 
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There are two types of light-sensitive elements in the retina: rods and cones. Both 

types of photoreceptors have an outer segment that is composed of membranous disks 

that contain photo-pigment and lies adjacent to the pigment epithelial layer and an 

inner segment that connects to the soma with the cell nucleus. The cell body gives 

rise to synaptic terminals that contact bipolar and horizontal cells. Absorption of light 

by the photo-pigment in the outer segment of the photoreceptors initiates a cascade of 

events that changes the membrane potential of the receptor, and therefore the amount 

of neurotransmitter released by the photoreceptor synapses on to the cells they 

contact. The synapses between photoreceptor terminals and bipolar cells (and 

horizontal cells) occur in the outer plexiform layer. More specifically, the cell bodies 

of photoreceptors make up the outer nuclear layer, whereas the cell bodies of bipolar 

cells lie in the inner nuclear layer. The axonal processes of bipolar cells make 

synaptic contacts in turn on the dendritic processes of ganglion cells and amacrine 

cells in the inner plexiform layer. The much larger axons of the ganglion cells form 

the optic nerve and carry the information about retinal stimulation to  lateral 

geniculate nucleus of thalamus (for review, see Purves et al., 2001). The  other two 

types of neurons in the retina, horizontal cells and amacrine cells, have their cell 

bodies in the inner nuclear layer and are primarily responsible for lateral interactions 

within the retina. These lateral interactions between receptors, horizontal cells, and 

bipolar cells in the outer plexiform layer are mostly responsible for the visual 

system's sensitivity to luminance contrast over a wide range of light intensities (for 

review, see Purves et al., 2001). 

 
1.2. Ribbon synapse of retina 
   Ribbon synapses of the vertebrate retina are unique chemical synapses 

characterized by pre-synaptic specializations, the synaptic ribbons. Synaptic ribbons 

are sheet-like organelles with a lamellar organization (Dowling, 1987; Sterling,1998; 

Schmitz,2009). The photoreceptor ribbon is a plate like, ~ 30nm thick structure, 

which extends perpendicular to the plasma membrane. The ribbon juts ~200nm into 

the cytoplasm, varies in length from 200-1000nm Photoreceptor ribbons are usually 

longer than bipolar cells ribbons. The ribbon anchors along its base to an electron-

dense structure (arciform density) that in turn anchors to the pre-synaptic membrane.  
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Figure  2. Transmission electron micrograph of the photoreceptor ribbon synapse 
Abbreviations: sv, synaptic vesicle; bc, postsynaptic dendrites of bipolar cells; hc, postsynaptic dendrites of 
horizontal cells; black arrows-synaptic vesicle; bold arrow head- endocytosis; arrow head- postsynaptic density 
(Schmitz, 2009). 

 

Physiologically ribbon synapses are characterized by a high rate of tonic 

neurotransmitter release mediated by continuous synaptic vesicle exocytosis 

(Dowling, 1987; Sterling, 1998). It is generally thought that ribbon synapses are 

specialized for rapid supply of synaptic vesicles for release and that this is achieved 

by fast delivery of synaptic vesicles to the active zone on the ribbon, analogous to a 

conveyor belt (for review, see Sterling and Matthews, 2005; tom Dieck et al., 2006). 

The ribbon’s surface is studded with small particles (~5nm diameter) to which 

synaptic vesicles tether via fine filaments (~5nm thick and ~40nm long). Usually 

there are several filaments per vesicle (Usukura et al., 1987). Vesicles tethered along 

the base of the ribbon directly contact the presynaptic membrane and thus are 

considered ‘docked’. Detailed studies of the distribution of various presynaptic 

proteins in ribbon synapses demonstrated that they generally contain the same 

proteins as conventional synapses (for review, see Sterling and Matthews, 2005; 

Schmitz, 2009). Only minor differences were observed, such as the use of syntaxin 3 

instead of syntaxin 1 for fusion and of L-type Ca2+ channels instead of N-, P/Q-, or R-

type channels for Ca2+ influx. Furthermore, rabphilin and synapsins are absent from 

ribbon synapses in some but not all species (for review, see Sterling and Mathews, 

2005).  
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1.3. Synaptic vesicle cycle at ribbon synapses 
 Exocytosis at the bipolar ribbon synapse has been observed directly. The 

synaptic vesicles labelled by the dye FM1-43 are seen to pause at the membrane and 

then, upon opening of Ca2+ channels, all the dye released promptly within 

milliseconds.  This process can observed by total internal reflection microscopy 

(Zenisek et al., 2000). The de-staining is consistent with full fusion (Zenisek et al., 

2000).  The bipolar cell active zone can release neurotransmitter continuously for 

hundreds of milliseconds during strong stimulation. This release exhibits two 

kinetically distinct components: a small fast pool (20% of the total vesicle pool) is 

released in 1 ms, and a large sustained pool (80%) is released over several hundred 

milliseconds (for review, see Sterling and Matthews, 2005). The fast pool matches the 

number of vesicles docked at the base of the ribbon, and the sustained pool matches 

the number of vesicles tethered to the ribbon in higher rows, more distant from the 

plasma membrane (for review, see Sterling and Matthews , 2005). The neat 

correspondence between the pool of tethered vesicles and the pool for sustained 

release in both rods and bipolar cells suggests that the ribbon might serve as a 

platform where vesicles can be primed to allow sustained release (for review, see 

Sterling and Matthews , 2005) 

 The large amount of exocytosis during sustained vesicle exocytosis requires 

equally high-capacity endocytosis to retrieve the added membrane. In cone 

photoreceptors, fused membrane is directly recycled into small synaptic vesicles, 

without intermediate pooling into endosomes (Rea et al., 2004). The recycled vesicles 

are mobile and, diffusing as fast as similarly sized microspheres and rapidly replenish 

the releasable pool (Rea et al., 2004). Surprisingly, bipolar cells rely on a different 

mechanism for rapid retrieval, in which membrane is endocytosed in large bites that 

only later give rise to recycled synaptic vesicles (Paillart et al., 2003).  Unlike cones, 

where newly recycled vesicles rapidly appear in the pool tethered to ribbons, recycled 

vesicles make up only 10% of the vesicles on bipolar cell ribbons, even after 10 min 

of activity (Rea et al., 2004).Thus, the bipolar cell relies on its large reserve of 

synaptic vesicles to replenish the releasable pool, whereas cone photoreceptors 

evidently have no large reserve pool and rely instead on rapid recycling. In this 

regard, the cone ribbon synapse resembles the conventional amacrine cell synapse, 
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where extensive labelling of recycled synaptic vesicles was observed, without 

significant labelling in larger endosomes (Paillart et al., 2003).  

 
 
Figure  3. 3D representation of synaptic ribbons (Von Gersdorff et al., 2001). 
Vesicles (yellow color) are reserve, vesicles (blue color) bound to synaptic ribbons are considered as tethered, 
vesicles tethered along the base of synaptic ribbon (red vesicles) are considered as docked (Sterling et al., 2005). 
A typical bipolar contains 5-7 calcium channels in the preactive zone. 
 

1. 4. RIBEYE- a major component of synaptic ribbon 
1.4.1. The molecular structure of RIBEYE 

The major component of synaptic ribbons from retina was identified as 

RIBEYE (Schmitz et al., 2000). RIBEYE is composed of unique N-terminal A - 

domain specific for ribbons, mediates assembly of RIBEYE into large structures, and 

a B - domain identical with CtBP2, a transcriptional repressor that in turn is related to 

2-hydroxyacid dehydrogenases. RIBEYE(B)-domain binds to NADH/NAD with high 

affinity (Schmitz et al., 2000). The A-domain contains 563 aa residues and B-domain 

contains 425 aa residues. The A-domain is not significantly homologous to any of the 

currently described proteins and it contains abundance of serine and proline residues 

(Schmitz et al., 2000). The B-domain is identical to CtBP2, a nuclear protein and 

together with CtBP1 constitutes a family of transcriptional co - repressors except to  

the first 20 amino terminal amino acids. CtBP1 was originally identified as  “C 

terminal binding protein” for the adenovirus E1A protein (Schaeper et al, 1995), and 

CtBP2 was subsequently identified as close structural and functional homolog of 
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CtBP1(Katsanis et al., 1998). The RIBEYE(A)-domain is not present in D. 

melanogastor, C. elegens and other lower vertebrates and invertebrates. This is 

supporting the notion that RIBEYE are an evolutionary innovation of vertebrates 

(Schmitz et al., 2000).  

The teleosts fish, Fugu and zebra fish have two ribeye genes, ribeye a and 

RIBEYE(B). Depletion of RIBEYE in zebra fish (by the use of morpholino antisense 

oligonucleotides) has been shown to result in shorter synaptic ribbons (Wan et al., 

2005). Fish deficient in ribeye a lacks an optokinetic response. It has shorter synaptic 

ribbons in photoreceptors and fewer synaptic ribbons in bipolar cells (Wan et al., 

2005). 

 

Figure  4. Schematic domain structure of RIBEYE 
RIBEYE contains of a large amino-terminal A-domain and a carboxyterminal B-domain. The B-domain of 
RIBEYE contains the NADH-binding subdomain (NBD, depicted in yellow) and the substrate-binding subdomain 
(SBD, denoted in red).The A domain comprises of 563 aa and B domain comprises of 425 aa (adapted from 
Magupalli et al., 2008). 

 The design of RIBEYE as a fusion protein of a novel domain with a pre-

existing transcription factor suggests an intriguing evolutionary history, an accidental 

origin of RIBEYE in the vertebrate lineage by serependipitous addition of an exon 

encoding the A-domain to the pre-existing CtBP2 gene. However, further analyses 

indicate that the evolutionary history of RIBEYE may be even more complex and 

give a clue to the possible function of the B - domain (Schmitz et al., 2000). CtBP1 

and CtBP2 themselves are not novel in terms of sequence but are significantly 

homologous to enzymes of the family of NAD+-dependent 2-hydroxyacid 

dehydrogenases (Schmitz et al., 2000). In the nucleus the CtBP family protein plays a 

role in transcription repression and in the cytosol, they perform diverse functions 

associated with membrane trafficking, central nervous system synapses and in 

regulation of the microtubule cytoskeleton (for review, see Chinnadurai, 2003). 

Several studies indicated that RIBEYE is the major component of synaptic ribbons 
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(Schmitz et al., 2000; Zenisek et al., 2002; Wan et al., 2005; Magupalli et al., 2008; 

for review see Schmitz, 2009). Thus RIBEYE can be expected to exert a major 

influence on the function of synaptic ribbons. 

1.4.2. The structural model of RIBEYE(B) - domain 

The RIBEYE(B)-domain contains two globular subdomains, the NADH-

binding subdomain (NBD) and substrate-binding subdomain (SBD). The 

dinucleotide-binding domain with an evolutionarily conserved structure forms the 

core homology domain among these proteins (for review, see Chinnadurai, 2003). 

The NAD(H)-binding fold consists of two units of a mononucleotide-binding motif 

termed the Rossmann fold. The Rossmann fold is a conserved structural domain 

composed of three parallel β strands interconnected by α helices, forming a parallel 

twisted β sheet flanked by α helices with a βαβαβ topology. In the dehydrogenase 

domain, each repeated βαβαβ structural element binds a mononucleotide component 

of the NAD(H) coenzyme (for review, see Chinnadurai, 2003). Like other 

dehydrogenases, these structures demonstrate that CtBPs, CtBP1, CtBP2 and 

RIBEYE(B)-domain (Kumar et al., 2002; Nardini et al.,2003., Magupalli et al.,2008) 

homodimerize through the dinucleotide-binding domain, forming an extensive, 

largely hydrophobic dimerization interface (for review, see Chinnadurai, 2003; 

Magupalli et al., 2008). 

      
 Figure  5. Predicted RIBEYE(B) domain structure using homology modelling with CtBP1 
A,B) Structure model of the B-domain of RIBEYE based on the crystal structure of tCtBP1 (Kumar et al., 2002; 
Nardini et al., 2003; see also Magupalli et al., 2008; Alpadi et al., 2008). The structure model covers large parts of 
the B-domain (RE(B)575-905). The B-domain of RIBEYE consists of a NAD(H)-binding subdomain (NBD) and a 
substrate-binding subdomain (SBD) which are connected by two flexible hinge regions, hinge 1 and hinge 2 
(colored in blue). The dotted lines indicate the extensions of the hinge 1 and hinge 2 constructs tested in the YTH 
system. 
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1.4.2.1. Substrate - binding domain of RIBEYE(B) 

 In these structures, a deep cleft separates the SBD from the NBD, 

corresponding to a putative active site and the dinucleotide-binding pocket. For the 

D-2-hydroxyacid dehydrogenases, catalytic activity apparently proceeds through a 

“proton shuttle” between a histidine and a carboxylic acid residue (i.e., glutamate or 

aspartate) with the transfer of hydride ion between the substrate and coenzyme. An 

arginine residue located within proximity to the active site in 3PGDH interacts with 

the substrate carboxylic acid during catalysis. These residues are conserved in all D-

2-hydroxyacid dehydrogenases (for review, see Chinnadurai, 2003 & 2005). All 

mammalian CtBP orthologues as well the Drosophila CtBP homologue also include 

these residues (hCtBP1 residues H315, E295, R266; corresponding residues in 

BARS/CtBP1 include H304, E284, and R255) indicating CtBP might retain oxo-

reductase enzymatic activity (for review, see Chinnadurai, 2003 & 2005). 

Interestingly, most of the residues in the dehydrogenase consensus sequence are 

conserved in CtBPs and RIBEYE, including in particular the four residues that are 

involved in binding NAD+ (GXGXXG-18-D) and the three amino acids that function 

in catalysis (R-30-E-19-H) (Schmitz et al., 2000). This conservation suggests that 

RIBEYE and CtBPs may still be partly or completely enzymatically active (Schmitz 

et al., 2000; Kumar et al., 2002). 

 

1.4.2.2. NADH/NAD+ - binding domain of RIBEYE(B) 

   In addition to a central essential role in metabolism as a carrier of reducing 

equivalents, the nicotinamide adenine dinucleotide coenzymes (NAD and NADP) 

play a pivotal role in cellular signalling (for review, see Chinnadurai, 2003 & 2005). 

They also serve as substrates for covalent protein modifications as well as precursors 

to the synthesis of intracellular calcium mobilizing second messenger molecules i.e. 

cyclic - ADP ribose(cADPR) (for review, see Chinnadurai, 2003 & 2005).                  

RIBEYE(B) - domain binds to NADH and NAD+(Schmitz et al.,2000). Strong and 

specific binding of 14C-labeled NAD+ was also observed. Scatchard analysis 

uncovered a single class of binding site in RIBEYE/CtBP2 with an affinity of 1.3 µM 

NAD+. 14C-NAD+ binding was completely inhibited by a 100-fold excess of 

unlabeled NAD+ or by cibacron blue, which serves as a common ligand for NAD+ 

binding site in many proteins but was unaffected by serine (Schmitz et al.,2000).  
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Figure 6. Binding of NAD+ to the B Domain of RIBEYE/CtBP2 The Specificity of NAD+ binding to the B 
domain of RIBEYE. Binding of 10 µM 14C-labeled NAD+ in the absence of competitor (column 1, 100%) is 
displaced completely by 1 mM cold NAD+ (column 2) or 1 mM Cibacron blue 3GA, an NAD+ analog (column 3) 
but not by 1 mM serine (column 4).Column 5 shows binding to GST alone as background binding (Schmitz et al., 
2000).  

These results suggest that the homology of the RIBEYE(B) domain/CtBP2 to 

NAD+-dependent 2-hydroxyacid dehydrogenases is functionally important, and that 

the domain may serve as an enzyme in synaptic vesicle priming on synaptic ribbons 

and in transcriptional repression (Schmitz et al., 2000).  

 

1.4.3. The proposed functional role of RIBEYE in ribbon synapse 

 According to the model proposed by Schmitz et al., 2000,  the N-terminal A 

domain is involved in the formation of the synaptic ribbon. RIBEYE alone is not 

sufficient to organize bar shaped ribbons but requires at least one additional protein 

component indicated in the model as an inner-core protein. The presence of such a 

protein component is suggested by the finding of a second unique protein in the 

biochemically purified ribbon fraction, which has not yet been identified (Schmitz et 

al., 2000). Recently we have demonstrated that RIBEYE is a scaffolding protein with 

ideal properties to explain the assembly of synaptic ribbons as well as its ultra-

structural dynamics via the modular assembly mechanism (Magupalli et al., 2008). 

The RIBEYE(B) domain binds NAD+ with high affinity indicating that its 

homology with NAD+-dependent dehydrogenases is functionally relevant and it may 

in fact serve as an enzyme. It is interesting that the CtBP1, a close homolog of CtBP2, 

was recently also suggested to function in membrane traffic under the name of 

“BARS” (brefeldin A-ADP ribosylated substrate) (Weigert et al., 1999). CtBP1, as 

BARS, functioning as a  lysophophatidic acid coenzyme A acyltransferase in 

membrane fission in the Golgi complex (Weigert et al., 1999). The structural 
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similarity of CtBPs with NAD+-dependent dehydrogenases well known that CtBP is 

ADP ribosylated in an NAD+-dependent reaction in parallel with GAPDH (another 

NAD+-dependent dehydrogenase (Girolama et al., 1995). However, this assimilation 

also makes it difficult to judge how CtBP1 could function as a coenzyme A–

dependent acyltransferases, since there is few similarity between the mechanisms of 

acyltransferases and dehydrogenases,  raising questions about the precise enzymatic 

role of CtBP1 in Golgi membrane traffic (Schmitz et al., 2000). In large number of 

organisms CtBPs are transcriptional repressors and it shows that their NAD+ binding 

and enzymatic function may be enclose to perform this function (Schmitz et al., 

2000). PXDLS motif characterized as a consensus sequence which  is the binding 

sequences for CtBPs in their target proteins . By analogy, Schmitz et al., 2000 

suggested on the surface of the ribbons array of  B domain of RIBEYE (which is 

identical with CtBP2) is present. This RIBEYE is intend to interact with a target 

sequence containing the consensus motif PXDLS of CtBPs. This hypothesis shows 

that this interaction of synaptic vesicle protein which may contain target sequence and 

that may be involved in docking and/or translocation of vesicles and unnown 

enzymatic reaction of the B domain may be involved in priming. Identification of the 

binding partners for the B domain on the ribbon surface and the role of NAD+ binding 

in their function will give valuable insight into how this domain might perform this 

proposed function (Schmitz et al., 2000). In Recent shown that RIBEYE, the main 

component of synaptic ribbons, binds to Munc119, the mammalian ortholog of the C. 

elegans protein unc119 (Alpadi  et al., 2008). Munc119 in turn binds toCaBP4 which 

is an important regulator of L-type Ca2+ channels (Haeseleer and others 2004; 

Haeseleer 2008). Data provided further evidence for a molecular link between the 

synaptic ribbons and presynaptic Ca2+ channels.  Ca2+ - buffering systems in the 

presynaptic ribbon terminal have been recently reviewed (Thoreson 2007; Zanazzi 

and Matthews 2009). 

 

1.5. GCAP2 - a photoreceptor enriched protein 

The guanylate cyclase activating protein 2 (GCAP2) is a recoverin-like 

neuronal Ca2+-sensor protein highly expressed in photoreceptors (for review, see 

Koch et al., 2002; Palczewski et al., 2004). Three members of the GCAP family 

(GCAP1, 2 and 3) are known in the mammalian retina: GCAP 1 and 2 are expressed 

both in rod and cone photoreceptors whereas GCAP3 is exclusively found in cone 
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photoreceptors (Imanishi et al., 2002). GCAP2 contains four EF-hands from which 

the first EF-hand is non-functional. GCAP2 contains an aminoterminal myristoylation 

signal and is myristoylated in-situ (Olshevskaya et al., 1997). GCAP2 is well known 

to modulate the activity of photoreceptor guanylate cyclases in a Ca2+-dependent 

manner (for review, see Koch et al., 2002). GCAPs are not restricted to outer and 

inner segments of photoreceptors but are also present in the presynaptic terminals 

(Otto-Bruc et al., 1997; Duda et al., 2002, Pennesi et al., 2003; Makino et al., 2008). 

The significance of GCAP2 in the presynaptic terminals is unknown. 

 

 
Figure 7. The schematic drawing of GCAP2(aa1-204). The 4 EF- hands of GCAP2 are indicated in color. EF-
hand 1 (colored in yellow) is non-functional and does not bind Ca2+; EF-hands 2-4 (colored in green) are 
functional and bind Ca2+. Glycine G2 is myristoylated in-situ. 

1.6. Mechanisms of GCAP 

The mechanism of modulation of retinal Guanylate cyclases (RetGCs) by 

GCAPs is now better understood, less is known about the significance of multiple 

RetGCs and GCAPs. In vitro, GCAPs display some preferences toward RetGCs. For 

example, GCAP1 stimulates RetGC1 more efficiently than RetGC2, while GCAP2 

and GCAP3 effectively stimulate both RetGC1 and RetGC2. RetGC1 and GCAP1 are 

important for cone and rod function in humans. Mutations in the RetGC1 gene have 

been linked to Leber's congenital amaurosis type I (Perrault et al., 1996) and to 

autosomal dominant cone rod dystrophy (adCORD)(Kelsell et al., 1998) and defects 

in the GCAP1 gene have been linked to adCORD (Downes et al., 2001). A naturally 

occurring null mutation in RetGC1 in chickens, which have cone dominated retinas, 

leads to the loss of cones and rods. However, disruption of RetGC1 expression in 

mice leads to the degeneration of cones primarily (Yang et., 1999) indicating that 

RetGC2 may substitute for the loss of RetGC1 in murine rods. It is not clear why 

photoreceptors express two GCAP proteins with very similar biochemical behavior. 

The ratio of GCAP1 to GCAP2 in bovine retinas has been estimated at between 3:1 

and 4:1 (OttoBruc et al., 1997) and the GC activity stimulation attributable to GCAP2 
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has been estimated at about 30%. Based on this data, the question was raised of 

whether GCAP2 would have a physiological role in phototransduction (OttoBruc et 

al., 1997).  The compartmentalization of GCAP2 differs from that of GCAP1 in rods 

and cones of retinas from higher species (OttoBruc A et al., 1997). GCAP1 appears to 

be more abundantly expressed in the cone outer segments of human, monkey and 

bovine retinas. 

1.7. GCAP2 in visual cascade 

Visual excitation in retinal photoreceptor cells is mediated by a cascade that 

leads to the enzymatic hydrolysis of cGMP and the subsequent closure of cGMPgated 

channels in the plasma membrane. Recovery of the dark state requires the resynthesis 

of cGMP, which is catalyzed by particulate (membrane-associated) guanylate 

cyclases (RetGCs). RetGC activity has long been known to be stimulated with high 

cooperativity by the decrease in cytosolic [Ca2+] that follows light exposure (Koch et 

al., 1998). This cyclase stimulation has been proposed to be the major mechanism by 

which photoreceptors adjust their sensitivity according to background illumination 

(Koutalos et al., 1996). The soluble regulators that confer Ca2+sensitivity to RetGCs 

have been cloned and identified as 23kDa Ca2+binding proteins from the calmodulin 

superfamily (Koutalos et al., 1995) the guanylate cyclase-activating proteins 

(GCAPs).Two isoforms of RetGCs are expressed in mammalian retinas, RetGC1 and 

RetGC2 (Shyjan et al., 1992). RetGC1 localizes to the outer segments and synaptic 

terminals of rods and cones, (Liu et al., 1994) whereas the distribution of RetGC2 

within photoreceptors is less well known. Three isoforms of mammalian GCAPs, 

namely GCAP1, GCAP2 and GCAP3 have been isolated (Haeseleer et al., 

1999)GCAP1 and GCAP2 have both been localized to photoreceptors in numerous 

studies, (Howes et al., 1998) although reports of the distribution of GCAPs between 

rods and cones in different species have been more ambiguous (Howes et al., 1998). 

In the human, monkey and bovine species, GCAP1 immunoreactivity appears 

stronger in the cone outer segments, whereas GCAP2 immunostaining is seen in the 

entire region of rods and cones (Kachi et al., 1999). GCAP3 expression seems to be 

limited to humans (Haeseleer et al., 1999)  and zebrafish (Imanishi et al., 2002) 

localizing to all cone types in human retinas (Imanishi et al., 2002).  Whether 

individual GCAPs might play distinct roles in phototransduction is not known.  
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In photoreceptor cells, photoactivation of rhodopsin or cone visual pigment 

results in a transient decrease in the concentrations of Ca2+ and cGMP. These 

receptors and second messengers are linked through a cascade of specific activation/ 

inactivation reactions in phototransduction  The levels of Ca2+ and cGMP are strictly 

controlled and interconnected. cGMP is a gating ligand of the plasma membrane 

cation channels that are permeable to Ca2+ ions. After cGMP is hydrolyzed, the efflux 

of Ca2+ exceeds the influx, resulting in decreased [Ca2+] within the cell. The lowering 

of [Ca2+] triggers production of cGMP through activation of a photoreceptor-specific 

particulate guanylate cyclase (GC).                                     

                            

Figure 8. Domain structure of Guanylate Cyclase and their interaction with GCAP proteins (image 
from homepage of Prof.Dr. KW Koch; University of Oldenburg) 

The Ca2+ sensitivity of GC (e.g., the higher activity at low levels of [Ca2+]) is 

mediated by guanylate cyclase-activating proteins (GCAPs). When Ca2+ is low, 

GCAP proteins  activate GC activity, when Ca2+ is high GCAP proteins inactivate GC 

activity. Light sensitivity of vertebrate photoreceptor cells is controlled by multiple 

feedback loops that Ca2+ independent mechanisms (Dizhoor et al., 1996). 
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1.8.Working hypothesis 

In the biological system most of the protein, function with other proteins to 

build a functional cellular task depending upon certain external stimuli and stage of 

the cell. Synaptic vesicle cycles are orchestrated by protein-protein interactions in 

every step of exocytosis and endocytosis. In order to better understand the function of 

synaptic ribbons at a molecular level I performed a YTH screen using RIBEYE(B) as 

a bait and obtained the neuronal Ca2+- sensor protein GCAP2 as a potential prey. This 

interaction has been analyzed at the molecular and functional level in the following 

Ph.D. thesis work. 
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2.1. Bacterial strains  

Strain                          Genotype Source & Reference 

DH10B 

 

F- mcrA ∆(mrr-hsdRMS-mcrBC) 

φ80lacZ∆M15 ∆lacX74 recA1 endA1 

araD139 ∆ (ara, leu)7697 galU galK λ- 

rpsL nupG  

Invitrogen, 

Grant, S. et al. (1990)  

BL21(DE3) F- ompT hsdSB (rB
-mB

-) gal dcm (DE3) Invitrogen , 

Grodberg und Dunn, (1988)  

 

 

2.2. Yeast strains  

Strain                                 Genotype Source & 

Reference 

AH109 MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, 

Gal4∆, gal80∆, LYS2::GAL1UAS-GAL1TATA-

HIS3,GAL2UAS-GAL2TATA-ADE2, URA3::MEL1UAS-

MEL1TATA-lacZ 

Clontech, 

James et al. 1996 

 

 Y187 MATα, ura3-52, his3-200, ade2-101, trp1-901, 

leu2-3, 112, gal4∆,. met, gal80∆, 

URA3:GAL1UAS-GAL1TATA-lacZ 

Clontech, 

Harper et al. 1993 
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2.3. Vectors 

                 

Vectors 

   

                                      Description 

 

  References 

 

 

 

 

 

pACT2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

pGBKT7 

 

 

 

 

 

 

 

 

 

 

The pACT2 vector expresses a hybrid protein by a fusion 

of the GAL4-activation domain (AD), at high levels in 

yeast host cells from the constitutive ADH1 promoter 

(P); transcription is terminated at the ADH1 transcription 

termination signal. It also contains an HA epitope tag 

and a MCS. The protein is targeted to the yeast nucleus 

by the nuclear localization sequence from SV40 T-

antigen. It is a shuttle vector that replicates 

autonomously in both E. coli and S. cerevisiae and 

carries the bla gene, which confers ampicillin resistance 

in E. coli.  It also contains the LEU2 nutritional gene that 

allows yeast auxotrophs to grow on limiting synthetic 

media.  

 

The pGBKT7 vector expresses proteins fused to GAL4 

DNA binding domain (DNA-BD). In yeast, fusion 

proteins are expressed at high levels from the 

constitutive ADH1 promoter (PADH1); transcription is 

terminated by the T7 and ADH1 transcription 

termination signals (TT7 & ADH1). It also contains the 

T7 promoter and a c-Myc epitope tag, It is a shuttle 

vector replicates autonomously in both E. coli and S. 

cerevisiae from the pUC and 2 µ ori, respectively. It the 

Kan
r 

for selection in E. coli and the TRP1 nutritional 

marker for selection in yeast.  

 

 

  

 

 

 

Clontech 

Laboratories 

Inc. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Clontech 

Laboratories 

Inc. 
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pSE1111 

 

 

 

 

 

pSE1112 

 

 

 

 

 

 

 

pGEX-KG 

 

 

 

 

 

 

 

 

 

 

pMAL-C2 

  

 

 

 

 

 

The pSE1111 vector expresses proteins fused to GAL4 

activation domain. It used as negative control vector 

(prey vector) for checking auto-activation of prey 

constructs. 

 

The pSE1112 vector expresses proteins fused to GAL4 

DNA binding domain. It used as negative control vector 

(bait vector) for checking auto-activation of bait 

constructs 

 

The pGEX-KG vector contains coding sequence for 

Glutathione S Transferase (GST), MCS, pBR322 origin, 

and ampicillin resistance, Ptac is transcription promoter 

for the expression of the GST or GST Fusions proteins, 

chemically inducible by IPTG, high-level expression. An 

internal lac Iq gene for use in any E. coli host. Very mild 

elution conditions for release of fusion proteins from the 

affinity matrix, thus minimizing effects on antigenicity 

and functional activity. PreScission™, thrombin, or 

Factor Xa protease recognition sites for cleaving the 

desired protein from the fusion product. 

 

 

The pMAL-C2 vector facilitates the expression and 

purification of foreign proteins/peptides in Escherichia 

coli by fusion to maltose-binding protein. It contains 

E.Coli male gene , Lac I and tac promoter. It has 

ampicillin resistance gene. 

 

 

 

Bai &Elledge,  

1996 

 

 

 

 

Bai & 

Elledge, 

1996 

 

 

 

Basal-vector 

from 

Pharmacia 

and pGEX-

KG gifted 

from 

T.C.Sudhof 

lab. 

 

 

 

Clontech 

laboratories 

Inc. 
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pSFV1 

 

The pSFV1 eukaryotic expression vector is a novel DNA 

expression system based on the Semliki Forest virus 

(SFV) Ashery et al.1999. It`s replicon has a broad host 

range and a high level of expression efficiency. It offers 

a proper glycosylation of the recombinant protein. The 

DNA of interest is cloned into the pSFV1 plasmid vector 

which serves as a template for in vitro synthesis of 

recombinant RNA. The recombinant RNA in the cells 

drives its own replication and capping, results in 

production of large amounts of heterologous protein in 

host cells while inhibiting host protein synthesis. The 

pSFV1 plamid has a ampicillin resistance gene 

 

 

 

Invitrogen life 

technology 

 

 

 

 

2.4. Oligonucleotides 

 
          Name 
         

 
Primer 
No 

 
              Sequence 

 
Restrication  
site 

 
GCAP2aa3-aa204 for 

 
657 

TTTTGGATCCTACAGCAGTTC
AGCTGGGAG 

 
BamHI 

 
GCAP2aa3-aa204rev 

 
633 

TTTTTCTCGAGTCAGAACATG
GCACTTTTCC 

 
XhoI 

GCAP2aa105-aa204for 677 
TTTTTGGATCCTAGGTGGCAG
CGACAAGGACCGCAATCGC BamHI 

GCAP2aa105-aa204rev 633 TTTTTCTCGAGTCAGAACATG
GCACTTTTCC XhoI 

GCAP2aa118-aa204for 678 
TTTTTGGATCCTAGGTGGCAG
CCTGGACATCGTGGAGTCC BamHI 

GCAP2aa118-aa204rev 633 TTTTTCTCGAGTCAGAACATG
GCACTTTTCC XhoI 

GCAP2aa158-aa204for 679 
TTTTTGGATCCTAGGTGGCAG
CGATGAAAATGGAGATGGTC
AG 

BamHI 
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GCAP2aa158-aa204rev 633 
TTTTTCTCGAGTCAGAACATGGC
ACTTTTCC 

 XhoI 

GCAP2aa171-aa204for 681 
TTTTTGGATCCTAGGTGGCAGCG
TTGAAGGT GCCCGTCGT 

BamHI 

GCAP2aa171-aa204rev 633 
TTTTTCTCGAGTCAGAACATGGC 
ACTTTTCC 

 XhoI 

RE(B)hinge1for 749 
TTTTCCATGGTAGGCGGTAGTGG
AATCGCCGTGTGAAC 

NcoI 

RE(B)hinge1rev 750 
TTTTGGATCCCCGCCGATACAGA
TTGAG 

BamHI 

RE(B)hinge2for 751 
TTTTCCATGGTAGGCGGTAGTGC
TCCAAATCTCATCTGGCA 

NcoI 

RE(B)hinge2rev 752 
TTTTGGATCCGCGACCTGTGATT
GCTCG 

BamHI 

RE(B)hinge2forT865S 822 
TGCACACCACACAGTGGCTGGT
ACAGC 

 

RE(B)hinge2revT865S 823 
GCTGTACCAGCCACTGTGTGGTG
TGCA 

 

RE(B)hinge2forW867E 826 
CCACACACAGCCGAATACAGCG
AACAAG 

 

RE(B)hinge2revW867E 827 
CTTGTTCGCTGTATTCGGCTGTG
TGTGG 

 

B-DOM for 
pACT2/pGBKT7 406 

TTTTCCATGGTTATCCGCCCCCA
GATCATGA 

NcoI 

B-DOM rev 
pACT2/pGBKT7 405 

TTTTCTCGAGCTATTGCTCGTTG
GGGTGCT 

XhoI 

NBD-RE(B) for 508 
TTTTGAATTCTTATCCCATCTGC
TGCAGT 

EcoRI 

NBD-RE(B) rev 509 
TTTTCTCGAGGCTGTACCAGGCT
GTGT 

 XhoI 

Moazed outward for 353 
GTTCCATGGAGATCCGCCCCCA
GATCAT 

NcoI 
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Moazed outward rev 354 GTTCTCGAGCTATTGCTCGTTGGGGT XhoI 

SBD-RE(B) for 523 
AACATCCCATCTGCTGCAGGAGGATCTT
ACAGCGAACAAGCATCA 

 

SBD-RE(B) rev 522 
TGATGCTTGTTCGCTGTTAGATCCTCCTG
CAGCAGATGGGATGTT 

 

RE(B) D758N for 866 TACTTACAGAACGGGATAGAGCGG  
RE(B) D758N rev 867 CCGCTCTATCCCGTTCTGTAAGTA  
RE(B) E844Q for 868 CATGAGTCTCAGCCCTTCAGCTTT  
RE(B) E844Q rev 869 AAAGCTGAAGGGCTGAGACTCG  

RE(B) F848W for 870 CCCTTCAGCTGGGCTCAGGGCCCA  

RE(B) F848W rev 871 TGGGCCCTGAGCCCAGCTGAAGGG  

RE(B)∆CTR for 406 
TTTTCCATGGTTATCCGCCCCCAGATCAT
GA 

NcoI 

RE(B)∆CTR rev 467 
TTTTCTCGAGCCAAGGAGTTGAAGTAAC
AA 

XhoI 

 

2.5. Plasmid Constructs 

GCAP2(95-204)pACT2. This YTH prey clone (encoding EF3, EF4 and CTR of 

GCAP2) was obtained by yeast two hybrid screening using RIBEYE(B) as bait 

(Alpadi et al., 2008). 

 

GCAP2(1-204)pACT2, encoding full-length GCAP2 cDNA. Full-length GCAP2 

was amplified by PCR with the following primers: forward primer (632): 

TTTTGGATCCTAATGGGGCAGCAGTTCAGC); reverse primer (633): 

TTTTTCTCGAGTCAGAACATGGCACTTTTCC) and retinal bovine cDNA as 

template. The PCR product was cloned into the BamHI/XhoI sites of pACT2. 

 

GCAP2(1-204)G2ApACT2, encoding full-length GCAP2 with a point-mutated 

myristoylation signal. The insert was amplified by PCR using following primers: 

point mutant-encoding forward primer (1072): 

TTTTGGATCCTAATGGCCCAGCAGTTCAGC, reverse primer (633): 

TTTTTCTCGAGTCAGAACATGGCAC TTTTCC and full-length GCAP2pGEX as 

template. The PCR product was digested with BamHI/XhoI and cloned into the 

respective sites of pACT2. 
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GCAP2(3-204)pACT2, encoding full-length GCAP2 from which the first two amino 

acids are deleted. The insert of GCAP2(3-204)pACT2 was amplified by PCR with the 

following primers: forward primer (657): TTTTGGATCCTACAGCAGTTCAGCT 

GGGAG); reverse primer (633): TTTTTCTCGAGTCAGAACATGGCACTTTTCC) 

and full-length GCAP2 cDNA as template. The PCR product was cloned into the 

BamHI/XhoI sites of pACT2. 

 

GCAP2(105-204)pACT2. The insert was amplified by PCR with the following 

primers: forward primer (677): TTTTTGGATCCTAGGTGGCAGCGACAAGGA 

CCGCAATCGC); reverse primer (633): TTTTTCTCGAGTCAGAACATGGC 

ACTTTTCC) and full-length GCAP2 cDNA as template. The PCR product was 

cloned into the BamHI/XhoI sites of pACT2. 

 

GCAP2(118-204)pACT2. The insert was amplified by PCR with the following 

primers: forward primer (678): TTTTTGGATCCTAGGTGGCAGCCTGGACATC 

GTGGAGTCC); reverse primer (633): TTTTTCTCGAGTCAGAACATGGCACT 

TTTCC) and full-length GCAP2 cDNA as template. The PCR product was cloned 

into the BamHI/XhoI sites of pACT2.  

 

GCAP2(158-204)pACT2. The GCAP2 (aa158-204) pACT2 was amplified by PCR 

with the following primers: forward primer (679): 

TTTTTGGATCCTAGGTGGCAGCGATGAAAATGGAGATGGTCAG); reverse 

primer (633): TTTTTCTCGAGTCAGAACATGGCACTTTTCC) and full-length 

GCAP2 cDNA as template . The PCR product was cloned into the BamHI/XhoI sites 

of pACT2. 

 

GCAP2(171-204)pACT2. The insert was amplified by PCR with the following 

primers: forward primer (681): TTTTTGGATCCTAGGTGGCAGCGTTGAAGGT 

GCCCGTCGT); reverse primer(633): TTTTTCTCGAGTCAGAACATGGC 

ACTTTTCC) and full-length GCAP2 cDNA as template. The PCR product was 

cloned into the BamHI/XhoI sites of pACT2. 
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GCAP2(1-204)pGEX. Full-length GCAP2 was excised from GCAP2(1-204)pACT2 

with NcoI/XhoI and cloned into the respective sites of pGEX-KG. 

 

GCAP2(171-204)E172DpACT2. The insert was generated by PCR with forward 

primer (1032): TTTTGGATCCTAGTTGATGGTGCCCGTCGT; reverse primer 

(633): TTTTTCTCGAGTCAGAACATGGCACTTTTCC using GCAP2(171-

204)pACT2  as template and cloned into the BamHI/XhoI sites of pACT2.  

 

GCAP1pMalC2. The insert was amplified by PCR using the following primers: 

forward primer (961): TTTTGAATTCATGGGGAACATTATGGACG): reverse 

primer (962): TTTTTCTAGATCAGCCGTCGGCCTCC and bovine retina cDNA 

library as template. The PCR product was cloned into the EcoRI/XbaI sites of    

pMal-C2. 

 

GCAP1(156-205)pACT2. The insert was amplified by PCR using following primers: 

forward primer (968): TTTTCCATGGAGATGGAGGGCGTCCAGAAG; reverse 

primer (969): TTTTCTCGAGTCAGCCGTCGGCCTCC and GCAP1pMalC2 as 

template. The PCR product was cloned into the NcoI/XhoI sites of pACT2. 

 

RE(B)pGBKT7 encoding full-length RIBEYE (B )domain 

The full length Ribeye(B) domain  was amplified by PCR with forward primer(406): 

TTTTCCATGGTTATCCGCCCCCAGATCATGA, reverse primer(405): 

TTTTCTCGAGCTATTGCTCGTTGGGGTGCT and bRIBEYE(B) cDNA as 

template. The PCR product was subsequently digested with NcoI/XhoI and cloned 

into the NcoI/salI sites of pGBKT7. 

 

RE(B)pMal-C2 encoding full-length RIBEYE B domain. The insert was generated 

via PCR with forward rimer(96):TTCACAATTGATCCGCCCCCAGATCATG, 

reverseprimer(979):TTCACTAGTCTATTGCTCGTTGGGGTGC and using 

rRE(B)pGEX(Schmitz et al,2000) as a template, digested with MunI/SpeI and 

subsequently cloned into the EcoRI/XbaI sites of pMAL-C2. 
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RE(B)hinge1pGBKT7; RE(B)663-691pGBKT7. The insert was generated via PCR 

with forward primer (749): TTTTCCATGGTAGGCGGTAGTGGAATCGCCGTGT 

GCAAC; reverse primer (750): TTTTGGATCCCCGCCGATACAGATTGAG using 

rRE(B) pMalC2 as template. The PCR product was cloned into the NcoI/BamHI sites 

of pGBKT7.  

 

RE(B)hinge2pGBKT7; RE(B)856-891pGBKT7. The insert was generated via PCR 

with forward primer (751): TTTTCCATGGTAGGCGGTAGTGCTCCAAATCT 

CATCTGCA; reverse primer (752): TTTTGGATCCGCGACCTGTGATTGCTCG 

using rRE(B) pMalC2 as template. The PCR product was cloned into the 

NcoI/BamHI sites of pGBKT7. 

 

RE(B)E844QpGEX,  

The insert was generated via PCR with outward forward primer (353): 

GTTCCATGGAGATCCGCCCCCAGATCAT, mutated forward primer (868): 

CATGAGTCTCAGCCCTTCAGCTTT; mutated reverse primer (869): 

AAAGCTGAAGGGCTGAGACTCATG,outward reverse primer (354) 

GTTCTCGAGCTATTGCTCGTTGGGGT using rRE(B)pSK as template. 

 

RE(B)E844QpGBKT7, was cloned by inserting the amplified mutated PCR product 

(see above) into the NcoI/SalI site of pGBKT7 (Alpadi et al., 2008). 

 

RE(B)F848WpGEX, 

The insert was generated  via PCR with outward forward primer (353): 

GTTCCATGGAGATCCGCCCCCAGATCAT; mutated forward primer (870): 

CCCTTCAGCTGGGCTCAGGGCCCA; mutated reverse primer (871): 

TGGGCCCTGAGCCCAGCTGAAGGG; outward reverse primer (354): 

GTTCTCGAGCTATTGCTCGTTGGGGT using RE(B)pGEX as template. 

 

RE(B)F848WpGBKT7, was cloned by inserting the amplified mutated PCR product 

(see above) into the NcoI/SalI site of pGBKT7 (Alpadi et al., 2008). 
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RE(B)D758NpGEX,  

The insert was generated  via PCR with outward forward primer (353): 

GTTCCATGGAGATCCGCCCCCAGATCAT; mutated forward primer (866): 

TACTTACAGAACGGGATAGAGCGG; mutated reverse primer (867): 

CCGCTCTATCCCGTTCTGTAAGTA; outward reverse primer (354): 

GTTCTCGAGCTATTGCTCGTTGGGGT using RE(B)pGEX as template. 

 

RE(B)D758NpGBKT7, was cloned by inserting the amplified mutated PCR product 

(see above) into the NcoI/SalI site of pGBKT7(Alpadi et al., 2008). 

 

RE(B)G730ApGBKT7.  

Full-length RE(B)G730A was excised from RE(B)G730A pGEX with NcoI/XhoI and 

cloned into the NcoI/SalI sites of pGBKT7 (Alpadi et al. 2008). 

 

RE(B)C683SpGEX. The point mutant was generated with the QuikChange  site-

directed mutagenesis kit (Stratagene) using using RE(B)pGEX (862) as template and 

the following primers: forward primer (816): CGACAGTCTCCCATATCCTC; 

reverse primer (817): GAGGATATGGGAGACTGTCG according to the 

manufacturers instructions.  

 

RE(B)C683SpMalC2. The insert was generated via PCR using following primers: 

forward (856): TTTTAGATCTATCCGCCCCCAGATCATG; reverse (857): 

TTTTGTCGACCTATTGCTCGTTGGGGTG and RE(B)C683SpGEX as template. 

The PCR product was cloned into the BglII/SalI sites of pMalC2 

 

RE(B)C899SpGEX. This construct was generated by a site-directed mutagenesis kit 

(QuikChange, Stratagene) using RE(B)pGEX (862) as template and the following 

primers: forward primer (810): TACGAAACTCTGTCAACAAAG; reverse primer 

(811): CTTTGTTGACAGAGTTTCGTA according  to the manufacturer’s 

instructions. 
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RE(B)C899SpMalC2. The insert was generated via PCR using following primers: 

forward (856): TTTTAGATCTATCCGCCCCCAGATCATG;  reverse (857): 

TTTTGTCGACCTATTGCTCGTTGGGGTG and RE(B)C899SpGEX as template. 

The PCR product was cloned into the BglII/SalI sites of pMalC2. 

 

RE(B)F904WpGBKT7 (Magupalli et al., 2008). 

 

RE(B)∆HDLpGBKT7. The insert was generated via overlapping PCR using the 

following primers PCR1: outward forward primer (353): 

GTTCCATGGAGATCCGCCCCCAGATCAT; reverse primer (504): 

GGATCCGAGCAGCTCCTCCTCCCAGATTGAGGATATGGCA. PCR2: forward 

primer (505): TGCCATATCCTCAATCTGGGAGGAGGAGCTGCTCGGATCC; 

outward reverse primer (354): GTTCTCGAGCTATTGCTCGTTGGGGT using 

ratRIBEYE in pSK (Schmitz et al., 2000) as template. The PCR product digested with 

NcoI/XhoI and cloned into the NcoI/SalI sites of pGBKT7. 

 

RE(B)∆CTRpGBKT7. In this RIBEYE(B) construct, the hydrophobic 

carboxyterminal region of RIBEYE(B) (aa912-988) is deleted. The insert was 

generated via PCR using the following primers: forward (406): 

TTTTCCATGGTTATCCGCCCCCAGATCATGA, reverse (467): 

TTTTCTCGAGCCAAGGAGTTGAAGTAACAA and RE(B)pGEX (864) as 

template. The PCR product was digested with NcoI/XhoI and cloned into the 

NcoI/SalI sites of pGBKT7.  

 

RE(B)NBDpGEX-KG encoding NAD (H)-binding domain of RIBEYE B domain 

(Magupalli et al., 2008). The NAD(H)-binding sub domain of RIBEYE(B) was 

amplified by PCR using rRIBEYE in pSK (Schmitz et al., 2000) as a template and the 

following primers Globular RE(B) FOR(508; 

TTTTGAATTCTTATCCCATCTGCTGCAGT), Globular RE(B) REV(509; 

TTTTCTCGAGGCTGTACCAGGCTGTGT); and cloned in frame with the GST-

encoding cDNA of pGEX-KG using the EcoRI and XhoI sites.  
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RE (B) NBDpGBKT7 (Magupalli et al., 2008). 

The NBD-cDNA was cut out from pRE (B) NBD-GEX by EcoRI, XhoI and cloned  

into pGBKT7 vector in frame with GAL4-BD of pGBKT7 at the EcoRI and SalI site. 

 

RE(B)SBDpGBKT7 encoding substrate binding domain of RIBEYE(B) domain 

The two parts of  substrate binding domain of Ribeye B domain was amplified by 

PCR using two sets of primers: outward forward 

(353):GTTCCATGGAGATCCGCCCCCAGATCAT; internal rev (522): 

TGATGCTTGTTCGCTGTTAGATCCTCCTGCAGCAGATGGGATGTT; Internal    

forward(523):AACATCCCATCTGCTGCAGGAGGATCTTACAGCGAACAAGCA

TCA outward reverse (354):GTTCTCGAGCTATTGCTCGTTGGGGT Then these 

two products were joined by Combo PCR using the outward forward (353) and  

outward reverse (354) primers and subsequently cloned into the NcoI/SalI sites of 

pGBKT7. 

 

RE(B)hinge2T865SpGBKT7. The insert was generated with the QuikChange site 

directed mutagenesis kit (Stratagene) according to the manufacturer’s instructions 

using the following primers: forward primer (822): 

TGCACACCACACAGTGGCTGGTACAGC; reverse primer (823): 

GCTGTACCAGCCACTGTGTGGTGTGCA using RE(B)856-891pGBKT7 as 

template. 

 

RE(B)hinge2W867EpGBKT7. This construct was generated with the QuikChange 

site directed mutagenesis kit (Stratagene) via PCR with forward primer (826): 

CCACACACAGCCGAATACAGCGAACAAG; reverse primer (827): 

CTTGTTCGCTGTATTCGGCTGTGTGTGG using RE(B)856-891pGBKT7 as 

template. 

 

RE(AB)pGBKT7 encoding full-length RIBEYE (A- and B- domain) (Magupalli et 

al., 2008). 
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2.6. Antibodies used for western blotting 
 

Antibody Source 
Dilution 
used Secondary antibody 

Dilution 
used 

GCAP2 6th immune 
serum 

Rabbit 
polyclonal 1:1,000 

Goat anti-rabbit (GAR)-
POX (SIGMA) 
Cat.No: A6154 1:10,000 

GCAP2(A1) (Santa Cruz)  
Cat.No: SC-59543 

Mouse 
monoclonal 1:1,000 

Goat anti-mouse 
(GAM) POX (SIGMA) 
Cat.No: A3673 1:10,000 

U2656 ( Schmitz et al., 
2000) 

Rabbit 
polyclonal 1:10,000 

GAR POX (SIGMA) 
Cat.No: A6154 1:10,000 

RIBEYE/CtBP2 (BD 
Transduction  
Laboratories) Cat.No: 
612044 

Mouse 
monoclonal 1:10,000 

GAM POX (SIGMA) 
Cat.No: A3673 1:10,000 

 
2.7. Antibodies used for Immunolabeling 
 
Antibody Source Dilution 

used 
Secondary antibody Dilution 

used 
GCAP2 6th immune 
serum 

Rabbit 
polyclonal 

1:500 GAR Cy3 (ZYMED) 
Cat.No: 81-6115 

 
1:1,000 

 
GCAP2(A1) (Santa Cruz)  
Cat.No: SC-59543 

 
Mouse 
monoclonal 

 
1:1,000 

GAM Cy3-(ROCK-
LAND) Cat.No: 610-
104-121 

 
1:1,000 

U2656 (Schmitz et al., 
2000) 

Rabbit 
polyclonal 

1:1000 GAR Cy2 
(ROCKLAND) 
Cat.No: 611-111-122 

 
1:1,000 

RIBEYE/CtBP2 (BD 
Transduction  
Laboratories) Cat.No: 
612044 

Mouse 
monoclonal 

1:500 GAM Cy2(Jackson 
ImmunoResearch) 
Cat.No:115-096-146  

 
1:1,000 

Gt1(K-20) (Santa Cruz) 
Cat.No: SC-389 

Rabbit 
polyclonal 

1:500 GAR Cy3 (ZYMED) 
Cat.No: 81-6115 

1:1,000 

Visual Arrestin (E-12) 
(Santa Cruz) Cat.No: SC-
3457 

Goat 
Polyclonal 

1:500 RAG Cy3 (SIGMA) 
Cat.No:: C 2821 
 

1:1,000 

SV2 A  (Synaptic 
Systems) Cat.No: 119 00 
2 

Rabbit poly- 
clonal 

1:500 GAR Cy2 
(ROCKLAND) 
Cat.No: 611-111-122 

1:1,000 

Synaptophysin (Sigma) 
Cat.No: S5768  

Mouse 
monoclonal 

1:500 GAM Cy2 (Jackson 
ImmunoResearch) 
Cat.No:115-096-146 

1:1,000 
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2.8. Enzyme, Proteins and molecular weight standards 
 
 Bovine serum albumin Sigma 

100 bp DNA-Leiter Roti® Mark Roth 

T4 DNA ligase Roche Diagnostics 

Low range protein standarRoti® Mark Roth 
 

Lysozyme Roth 
 

Restriction enzymes New England Biolabs 

Taq polymerase 
 

PeQLab 

 

 

 

2.9. Chemicals 

Agar-Agar Roth 

Agarose Roth 

3-Amino-1,2,4-triazol Sigma 

Ampicillin Roth 

BSA Sigma 

Chloroquine Sigma 

Coomassie Brilliant Blue R 250 Roth 

DEAE-Dextran Sigma 

N,N-Dimethylformamide Roth 

Disodium hydrogen phosphate Roth 

Dithiothreitol (DTT) Sigma 

EDTA Roth 

Ethidiumbromide Roth 

Glucose Roth 

Glutathione-Sepharose  Sigma 

Glycerol Roth 

Glycine Roth 

IPTG Roth 
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Potassium chloride Roth 

Potassium hydrogen phosphate Roth 

Lithiumacetate Sigma 

Magnesiumchloride Hexahydrate Roth 

β-Mercaptoethanol Roth 

Sodium azide Sigma 

Sodium carbonate Roth 

Sodium chloride Roth 

Sodium dihydrogenphosphate Roth 

NPG (n-Propylgallate) Sigma 

ONPG (o-Nitrophenyl-β-D-galactoside) Sigma 

Phenylmethylsulfonylfluoride (PMSF) Roth 

Ponceau-S Roth 

Saccharose Roth 

Sorbitol Roth 

Tris Roth 

Triton X-100 Fluka 

X-GaL(5-Brom-4-Chlor-3-indoyl-β-

galactoside) 

Roth 

 

 

2.10. Buffers & Media 

Acetate buffer (P3) 3 M Potassium acetate, 

pH  5.5 

3-Amino-1,2,4-triazol  10 mM in a dd H2O 

Ampicillin 50 mg/ml A.dest, steril 

filtered 

Bradford-Reagent 

Roti®-Quant 

Carl Roth, 

Breaking –buffer 100 mM Tris-HCl pH 8.0 

1 mM β-Mercaptoethanol 

20 % Glycerol 
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100 x BSA 10 mg/ml 

(Restriction digestion) 

New England Bio labs 

Coomassie-Brilliant 

blue stain 

600 ml Isopropanol 

1560 ml dd H2O 

240 ml acetic acid 

0,6 g Coomassie 

Brilliant Blue R 250 

OPTIMEM/GlutaMax™ 

medium 

 

10% (v/v) tryptose 

phosphate broth,  

20 mM HEPES,  

2.5% FCS 

ECL-solution 1:1 obtained with ECL 1 & ECL2 

(ECL1) 5.0ml 1M Tris-HCl , pH: 8.5 

500µl luminol 

220µl PCA 

Made up to 50ml with dd H2O 

(ECL2) 5.0ml 1 M Tris-HCl , pH 8.5 

32µl Hydrogen peroxide (30%) 

Made up to 50.0 ml with dd H2O 

De-staining solution for 

coomassie stain gel 

100 ml acetic acid 

300 ml Ethanol 

Make up to 1 litre with dd H2O 

Loading buffer for 

Agarose gel 

10 µl 100 mM EDTA 

490 µl  dd H2O 500 µl Glycerol 

LiAc/TE/DTT 

20 ml 1 M Lithium 

acetate 

10 ml 200mM DTT 

20 ml TE (0.1M Tris-

HCL, 10mM EDTA) 

- made up to 200 ml 

with ddH2O 

- Filter sterilized 

IPTG                                                                     0.1 M in PBS 
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Lysis buffer for E. coli 

(P2) 

 

200 mM NaOH 

1% SDS 

LB Nutrient medium for Bacteria  Invitrogen GmbH, 

Karlsruhe 

Na2CO3 1 M in dd H2O. 

ONPG-Stock solution 4 mg/ml in Z-Puffer 

5x PBS  40 g NaCl 

1 g KCl 

7.2 g Na2HPO4 

1.2 g KH2PO4 

Make up to 1 litre with 

dd H2O 

PMSF-Stock solution 40mM in 100% 

Isopropanol 

Polyacrylamidgel 10% 

(minigel) 

1 ml ddH2O, 

1.27 ml 1 M Tris pH 8.8 

1.67 ml 30% 

Acrylamide 

50 µl 10% SDS 

1 ml 50% Glycerol 

3.3 µl TEMED 

25 µl 10% APS 

Ponceau S-stain 

30 g Trichloroaceticacid  

5 g Ponceau S 

Make up to 1 litre with 

dd H2O 

10x restriction enzyme 

buffer 

New England Bio Labs 

®Inc.; 

Frankfurt/Main 

Resuspensions buffer 

(P1) 

50 mM Tris-HCL, pH 8.0 

10 mM EDTA 

100 µg/ml RNase A 
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SD-Dropout-Medium 

(Minimalmedium) 

BD biosciences 

26.7 g/l 

-L SD Dropout-liquid 
medium 
-W SD Dropout-liquid 
medium 
-LW SD Dropout-liquid 
medium 
-ALWH SD Dropout- 
liquid medium 

+0.69 g -Leu-DO 
Supplement (BD) 
+0.74 g -TRP-DO 
Supplement (BD) 
+0.64 g-Leu-TRP-DO 
Supplement(BD) 
+0.6 g-Ala-Leu-Trp-
HIS-Supplement (BD) 
All medium was make 
up to 1 litre with dd 
H2O Adjusted pH 5.8  

SDS-PAGE-

Electrophoresis buffer 

3.03 g Tris 

14.4 g Glycine 

1.0 g SDS 

Make up to 1 litre with 

dd H2O 

SDS-loading buffer 4 x 1.6 g SDS 

4 ml β-Mercaptoethanol 

2 ml Glycerol 

2 ml 1M Tris pH 7.0 

4 mg Bromo phenol blue 

2 ml of dd H2O. 

Taq-Puffer Peqlab  

2 x TBS 28 ml 5 M NaCl 

3 ml 1 M KCl 

1 ml 1 M CaCl2 

0.5 ml MgCl2 

4.5 ml 200 mM Na2PO4, pH 7.4 

20 ml 1 M Tris-HCl, pH 7.9 

Make up to 500 ml of filter dd H2O. 

1xTAE-Puffer 40 mM Tris pH 7.8 

10 mM Sodium acetate,  

1 mM EDTA 
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Transfer Buffer 

(Western Blot) 

TRIS 15.125 g  

Glycine 72.05 g 

Methanol 1 litre 

Make up to 5 litres with dd H2O. 

X-Gal solution 20 mg/ml in N,N-

Dimethylformamid 

(DMF) 

X-Gal detection solution 340µl X-Gal solution 

54 µl β-Mercaptoethanol 

Make up to 20 ml with  Z-Puffer  

YPD-Medium Clontech 

50g YPD dissolved in 1 

litre of ddH2O. 

Autoclave 

Z-buffer 

 

Z-Buffer: 

60mM Na2HPO4 

40mM NaH2PO4 

10mM KCl 

1mM MgSO4 

50mM  -mercaptoethanol 

pH7.0 Do not autoclave 

 

2.11. Instruments 

Biofuge fresco Heraeus 

Biofuge primo R Heraeus 

Biofuge stratos Heraeus 

Chemidoc XRS System Bio-Rad 

Elektrophoretic 

apparatus –Agarosegel 

 

Bio-Rad 

Elektroporator ECM 

399 

BTX 
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Flourescence microscope 

Axiovert 200MCamera 

AxioCam MRm 

Carl – Zeiss 

Incubator 

Bacteria/Yeast 

Memmert 

Incubator cell culture  

Sterile cycle CO2 

Incubator 

Thermo 

Multifuge1 S-R Heraeus 

PCR-

Mastercyclergradient 

Eppendorf 

pH-Meter Inolab 

SDS-PAGE  electrophoresis 

apparatus 

Mini-Protean II 2D Cell 

Bio-Rad 

Power Supply EPS 301 Amersham Biosciences 

Shaker Incubator 

Innova 4230 

New Brunswick Scientific 

Rotator NeoLab 

Rotor for Ultracentrifuge, 
70Ti 

Beckmann 

Sterilbank, Lamin Air 

Modell 1,2 

Holten 

Thermomixer compact Eppendorf 

Ultracentrifuge Beckmann 

Vortex VWR International 

Microtome-cryostat, 

Cryo-Star HM560MV 

Microm Int. GmbH, 

Walldorf 
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SW40 rotor  Beckman 

Rotator centrifuge, 

JA20 

Beckman 

 

2.12. Polymerase chain reaction  

The following criteria were changed according to need. Primers were designed 

manually according to some basic principles. The Tm value of primer was kept 

around 50-55°C. Primer length was usually not more than 20-22 bases. The restriction 

sites were added to the primers along with overhang ends for efficient digestion of 

PCR products and cloning into the specific vectors. Primers were diluted in sterile 

ddH20 to get a 100µM concentration. 100-200 ng of DNA was used as a template.  

PCR master mix 

10x PCR buffer-5µl   

10mM dNTPs-1µl 

Template DNA-100ng 

100µM Forward primer-0.5µl 

100µM Reverse primer-0.5µl 

Taq Polymerase (5U/µl)-1µl 

Sterile water to make up to 50µl 

PCR cycling conditions 

Initial Denaturation- 95°C for 2 mins  
8 cycles 

Denaturation     -      95°C for 30 sec 

Annealing         -      55°C for 30 sec 

Extension         -      72°C (approximately 1 min for 1000bp) 

30 cycles 

Denaturation     -      95°C for 30 sec 

Annealing        -       65°C for 30 sec  

Extension        -       72°C (approximately 1 min for 1000bp) 

Final extension  -    72°C for 7 mins 
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2.13. Agarose gel electrophoresis 

        Agarose gel electrophoresis is used for separation, purification and identification 

of plasmid DNA and DNA fragments. The size of a DNA fragment was determined 

by comparison with standard DNA marker. A Rough estimation of the DNA 

concentration can be made by comparing the band intensity of the sample and a 

reference marker DNA band upon staining with ethidium bromide. Depending on the 

size of the DNA molecules, the agarose concentration chosen was between 0.8 % and 

1.2 % (w/v). DNA-samples were mixed with 10x DNA loading buffer and applied 

into the wells of the gel. In parallel, a marker was loaded. 1X TAE buffer was used 

for agarose solution and as electrophoresis buffer. The electrophoretic separation was 

done at 5Volts/cm. DNA fragments were visualized by UV-light and documented 

using BIO-RAD Gel Doc machine. 

2.14. Agarose gel extraction 

The DNA fragments were extracted from agarose gel using the QIA®quick 

gel extraction kit. The specific DNA band was cut out from the gel. 1 ml of QX1 

buffer and 5µl of QX1 suspension were added to the excised gel band. This mixture 

was kept at 55°C shakers for 30 mins. Then the mixture was centrifuged at 13,000 

rpm for 1 mins and the supernatant was removed and to the pellet 1 ml of QX1 buffer 

was added and mixed. The centrifugation step was repeated. To the pellet 1 ml PE 

wash buffer wasadded and mixed. The mixture was centrifuged at 13,000 rpm for 1 

min and the supernatant was removed. This step was repeated and the pellet was dried 

at room temp for 15 mins. Then 30 ml of pre-warmed 1mM Tris HCl pH8.4 was 

added and kept at 55°C in thermal shaker for 10 mins. This mixture was centrifuged 

at 13,000 rpm for 2 mins and the supernatant which contains DNA was taken and 

used for further experiment. 

 

2.15. RESTRICTION DIGESTION & LIGATION (CLONING) 

Restriction Digestion mixture 

Plasmid         10.0µl 

10X buffer  3.0µl 

10X BSA  3.0µl 

Enzyme I 0.5µl 
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Enzyme II 0.5µl  

Sterile dd H2O to make up 30µl 

The insert and vector were digested with appropriate enzymes for 2 to 3 hours at 

37°C. The digested products were fractionated by agarose gel electrophoresis. Then 

appropriate band excised from the gel and eluted using Qiagen gel extraction method. 

The concentration of eluted insert and vector DNA was measured. The insert to 

vector concentration used for ligation is 3:1 weight ratio.  

Ligation mixture 

Insert                         12µl (approx.400ng) 

Vector                           4µl (approx.100ng) 

10X ligase buffer              2µl 

T4 DNA ligase    1µl 

Sterile water to make up      20µl 

The ligation mixture was incubated at room temp for over night. The amounts of 

restriction enzyme and DNA, the buffer and ionic concentrations, and the temperature 

and duration of the reaction varies depending upon the specific application. Then 2 µl 

of ligation mixture was electroporated to E.Coli DH10B bacteria. The colonies were 

selected on respective antibiotic plates and plasmids were isolated from mini culture 

and the insert was checked by restriction digestion and confirmed by sequencing. 

 

2.16. Precipitation of ligation mixtures 

The DNA was purified from high salt concentrations for an efficient 

transformation into E. coli DH10B by electroporation. It is done with 3mM sodium 

acetate. (1 volume ligation mixture, 1/10 volume 3M sodium acetate (pH 5.0) and 10 

volumes of ice cold ethanol). The DNA pellet was washed once with 70 % ethanol 

and resuspended in a suitable volume of dd H2O. 

 

2.17. Determination of DNA concentration  

The DNA molecules in solution can absorb UV-light and this absorption can 

be measured by a spectrophotometer. The higher the concentration, the greater optical 

density at 260nm. The following relationship exists between the optical density (OD) 

and the DNA concentration:  

Double stranded DNA: 1 OD
260 

= 50µg/ml  
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2.18. BACTERIAL TRANSFORMATION 

2.18. 1. Preparation of electrocompetent bacterial cells 

All procedures were carried out in sterile and aseptic environment. Glycerol 

stock of E.coli cells was freshly streaked on LB plate and incubated overnight at 

37°C. Overnight 50 ml LB preculture was grown at 37°C, 160 rpm after single colony 

inoculation. 500 ml main culture (in 2 liters flask) was prepared with inoculation of 

20 ml overnight grown preculture. Cells were grown at 37°C, 160 rpm till an OD600nm 

0.9-1.0 was reached. Electro competent cells were kept on ice. The culture was 

transferred to a sterile falcon tubes and centrifuged at 3,500rpm, 15min at 4°C. The 

cell pellet was washed thrice in the ice-cold, sterile, double-distilled water and 

centrifuged at 3,500rpm, 15min at 4°C. The final washed pellet (~4ml) was 

resuspended in 5 ml sterile, ice-cold 10% glycerol (made in sterile water). Aliquot’s 

of (50µl) cell suspension was made in prechilled 1.5 ml eppendorff tube, and frozen 

in liquid nitrogen. Electro competent cells were stored at -80°C for long term storage. 

Using this method, we routinely got at least 6 – 8 × (108) transformants/ µg DNA. 

2.18.2. Transformation of electrocompetent bacteria E.coli DH10B 

The LB medium was kept at room temperature for 30 mins. The electroporation 

cuvette was kept in the ice for 10 mins. The electrocompetent bacteria were thawed on 

the ice for 1 mins. 2 µl of ligated DNA or plasmid DNA was added to the competence 

bacteria and this sample added to the pre chilled cuvette. Electric shock was given at 

1200 mV current for 5 msec. Immediately after that, 1 ml of antibiotic free LB medium 

was added and the sample was transferred to the test tube and incubated at 37°C for 1 

hr. After incubation, the sample was spreaded on suitable antibiotic selection plate and 

incubated for over night at 37°C. A single colony was innoculated in LB 

mediumcontaining specific antibiotic (ampicillin/kanamycine) and this culture was used 

for plasmid preparation. 

 

2.19. ISOLATION OF PLASMID DNA 

2.19.1. Mini preparation  

Plasmid DNA was isolated from bacterial cultures using alkaline lysis method. 

Single bacterial colony was allowed to grow overnight in 5 ml of LB medium with 

appropriate amount of specific antibiotic at 37°C. 1 ml of culture was stored at 4°C for 

maxi preparation. 4 ml cultures were centrifuged in a 15 ml falcon tube at 4,000 rpm for 
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10 mins at 4°C. The pellet was resuspended with 250 µl of buffer 1. This mixture was 

transferred to 1.5 ml of microfuge tube. 250 ul of buffer 2 was added to that and mixed  

After incubating at room temp for 5 mins, 350 ul of buffer 3 was added and incubated 

for 10 mins at room temperature. This sample was centrifuged at 13,000 rpm for 15 

mins at 4°C. 600 ul supernatant was removed and mixed with 800 ul of isopropanol. 

This sample was centrifuged at 13,000 rpm for 20 mins. The supernatant was removed 

and the pellet was washed with 1 ml of 70% ethanol, air dried and resuspended in 40 ul 

of 1mM Tris HCl. 

 

2.19.2. Maxi preparation  

           Bacterial culture (usually 100ml) were harvested by centrifugation at 4000 rpm 

for 20 mins at 4º C. The pellet was resuspended in 5 ml of buffer 1 by vortexing. Then, 

5 ml of buffer 2 was added to that and incubated for 10 mins at room temp. There after, 

8 ml of buffer 3 was added and mixed thoroughly. This sample was centrifuged at 8500 

rpm for 20 mins until no pellet appears. The supernatant was transferred to 50 ml 

Beckman centrifuge tube and 15 ml of isopropanol was added to that. After 

centrifugation at 13,000 rpm for 1 hr, supernatant was removed and the pellet was 

washed with 15 ml of 70% ethanol; air dried and resuspended in 1 ml of 1 mM Tris 

HCl pH (8.5). 

 

2.19.3. Purification of plasmid DNA for sequencing 

        100 µl of plasmid DNA was mixed with 500 µl of Qiagen binding buffer and 

added to the column after centrifuge at 13000 rpm for 1 min. 500 µl of PE wash 

buffer was added and centrifuged at 13000 rpm for 1 min. the supernatant removed 

and the above step repeated again. Finally, the column was centrifuged without any 

previous addition of buffer to remove the traces of alcohol. 50 µl of prewarmed 1mM 

Tris HCl was added to the column kept for incubation at room temp for 5 mins and 

centrifuged. The supernatant collected contain plasmid DNA. The OD value of DNA 

was measured by spectrophotometer. Roughly 2µg of DNA was sent for sequencing 

to MWG sequencing service centre. 

2.20. Yeast Two Hybrid methods 

          For Yeast-Two-Hybrid (YTH) analyses, the Gal4-based Matchmaker Yeast-

Two-hybrid System (Clontech) was used according to the manufacturer’s 
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instructions. For the YTH screening we used a bovine retinal YTH cDNA library 

from the retina (Tai et al., 1999). The cDNA of the resp. bait proteins were cloned in 

frame with the Gal4-DNA-binding domain of pGBKT7. The cDNA of the indicated 

prey proteins were cloned in frame with the Gal4-activation domain of pACT2 or 

pGADT7. The bait and prey plasmids confer tryptophan and leucine prototrophy to 

the respective. auxotrophic yeast strains.  

 

2.20.1.Yeast cell transformation 

2.20.1.1. Preparation of electro competent yeast 

  Preparation of electrocompetent yeasts and electroporation of yeasts were 

done as described by Helmuth et al., 2001. For identifying transformants, yeasts were 

plated on the respective selective plates to identify the resulting convertents to the 

respective prototrophy (drop out media Clontech/QBiogene). The yeast strain AH109 

and Y187 were streaked from the glycerol stock on YPD plate and incubated at 30°C 

till the colony appeared. Precultures were made by inoculating the single colony in 10 

ml of YPD medium by incubation overnight at 30°C. From this, all steps were carried 

out in ice. The cells were harvested by centrifugation at 2,000 rpm for 10 mins at 4°C.  

The cell pellet was washed twice with sterile cold distilled water. The cells were 

collected from washing each time by centrifugation at 2,000 rpm for 10 mins at 4º C. 

Then the cells were treated with 1M sorbitol followed by centrifugation at 2,000 rpm 

for 10 mins at 4°C. Then, the cells were incubated with 20 ml of incubation mixture 

containing 100 mM LiAc, 10mM   - mercaptoethanol and 1X TE buffer at 30°C for 

30 mins at 250 rpm. The cells were collected by centrifugation at 2,000 rpm for 5 

mins at 4°C. 1M sorbitol washing step was repeated once. The pellet was bathed in 

100-200 ul of 1M sorbitol and it was used for electroporation. 

 

2.20.1.2. Electroporation 

     Electrocompetent (120µl) yeast cells were mixed with 1 ul of plasmid DNA 

and electroporated at 1,800 V for 5 msec. 1 ml of YPD medium was added to the 

mixture and incubated at 30°C for 1 hr at 600 rpm. After incubation, 100 ul of sample 

was spreaded on selection plates (AH109 -W plate; Y187 –L plate) and incubated at 

30º C for 2-3 days. 
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2.20.2. Yeast mating 

               Yeast strains Y187 and AH109 were used that contain distinct auxotrophic 

marker genes: AH109 [MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, Gal4∆, 

gal80∆, LYS2::GAL1UAS-GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2, 

URA3::MEL1UAS-MEL1TATA-lacZ] (James et al., 1996); Y187 [MAT, ura3-52, 

his3-200, ade2-101, trp1-901,leu2-3,112, gal4∆,. met, gal80∆, URA3::GAL1UAS-

GAL1TATA-lacZ] (Harper et al., 1993). The bait (pGBKT7) and prey 

(pACT2/pGADT7) plasmids confer tryptophan and leucine prototrophy to the 

respective auxotrophic yeast strains. Bait plasmids were always electroporated into 

AH109 yeast, whereas all prey plasmids were transformed into Y187. For interaction 

analyses, AH109 yeasts containing the resp. bait plasmid were mated with Y187 

yeasts containing the resp. prey plasmid. For the mating, pSE1111 and pSE1112 (Bai 

et al., 1996) as well as the empty bait and prey vectors were used as negative controls. 

Single colony from -L and –W plate (respective prey and bait construct) were added 

to the 1 ml of YPD medium and mixed. This sample was incubated at 30°C for 6 

hours. After incubation, the samples were pelleted down by centrifugation at 3,000 

rpm for 5 mins at 4°C. The supernatant was discarded and keep the cell pellet in 100 

µl of remaining supernatants. 50 µl of cells were spreaded on selection plate –LW; 

and another 50 µl of cells were spreaded on selection plate –ALWH +100 µl of 

10mM ATZ. The plates were incubated at 30°C until colony appears. 

 

2.20.3. -GALACTOSIDASE ASSAY 

                Expression of -galactosidase (-gal) marker gene activity was 

qualitatively analyzed by filter assays (Stahl, et al., 1996). 

 

2.20.3.1. Colony lift filter assay 

               To rule out the false positive that grown on dropout medium (-ALWH), this 

test was performed to determine which of the positive colonies are also  LAC Z 

positive, by screening for blue colour colonies in ß- galactosidase assay. The 

whatman filter paper (#1) was laid onto the yeast colonies. The filter paper was 

removed using forceps and immersed in liquid nitrogen by the facing colony side up. 

The Petridish was prepared with 20 ml Z buffer containing 340 ul of 50 mg/ml X-gal. 

A replica of the yeast colonies were made with whatman filter. The filter paper with 
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the cracked yeasts placed on the Z buffer, by colony faced up with out air bubbles. 

The petridish was covered with a led and placed at room temperature. 

 

2.21. Site directed mutagenesis 
 Site-directed mutagenesis involves the introduction of mutations at the DNA 

level to alter the primary amino acid sequence of proteins. COMBO PCR methods for 

site-directed mutagenesis utilize four oligonucleotides primers in two rounds of PCR. 

In first round of PCR external forward and mutant reverse primers in one reaction (N- 

terminal PCR product); external reverse and mutant forward in another reaction (C- 

terminal PCR product). Pfu polymerase is used in this first round to prevent addition 

of ‘A’ which is done by Taq polymerase and which would result into a frame shift 

mutation.  In second round of PCR, there two PCR products are annealed 

afterdenaturation and amplified using external forward and external reverse primers. 

Taq polymerase was used in this second round PCR.  

PCR Master Mix-I 

10X Pfu buffer              -5µl 

10mM dNTPs              -1µl 

100µM Forward Primer                     -0.5µl 

100µM Reverse Primer             -0.5µl 

(Mutagenic) 

Template              -0.5µl 

Pfu Polymerase             -0.5µl 

Sterile dd H2O              -42µl 

PCR Master Mix-II 

10X Pfu buffer             - 5µl 

10mM dNTPs             - 1µl 

100µM Forward Primer 

 (Mutagenic)             - 0.5µl 

100µM Reverse Primer                    - 0.5µl 

Template             - 0.5µl 

Pfu Polymerase            - 0.5µl 

Sterile ddH2O             - 42µl 
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PCR cycling condition 

95°C -2 mins 
8 cycles 

95°C -30 secs; 55°C -30 secs ; 72°C  -1 min  
30 cycles 

95°C -30 secs ; 65°C -30 secs ; 72°C  -1 min  
1 cycle 

72° C -7 mins 
 

2nd round-COMBO PCR 

PCR Master Mix 

10X PCR buffer    -5µl 

10mM dNTPs    -1µl 

25mM MgCl2    -1µl 

100µM Forward Primer (353) -1µl 

100µM Reverse Primer (354)  -1µl 

Template (PCR-I)   -4µl 

Template (PCR-II)   -4µl 

Taq Polymerase   -1µl 

Sterile dd H2O              -35µl 

PCR CYCLING CONDITION (PEQLAB PCR MACHINE) 

95°C -5 mins 
1 cycle 

70°C -5 mins ; 65° C-5 mins ; 60°C -2 mins ; 72°C-3 mins 

30 cycles 

95°C-3 mins ;95°C -30 secs ; 65°C-30 secs ; 72°C-1:30 mins 

1 cycle 

72°C -10 mins 

 

2.22.PREPARATION OF RECOMBINANT PROTEIN  

2.22.1. Protein expression  

               The plasmid constructs, pGEX-KG, pGCAP2GEX-KG were electroporated 

into the electro-competent bacteria BL21 or DH10B and pMBP-C2, pRE (B) MBP-

C2 to BL21 at 1,200 volt for 5 ms. 1 ml of LB medium was added to these bacteria 

and incubated  for 1 hr at 37°C, 220 rpm. The bacterial cultures were spreaded on LB-
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Amp plates and incubated at 37°C overnight. The precultures were prepared by 

inoculating the overnight grown isolated colonies in 5 ml of LB medium with 10 ul of 

ampicillin and incubated for over night at 37°C at 220 rpm.The 5 ml of precultures 

were transferred to 500 ml of LB medium with 1 ml of ampicillin and incubation  was 

continued until an OD 600 of 0.8-0.9 at 37°C at 220 rpm. After reaching the 

appropriate OD, the cultures were incubated at room temperature for 30 mins. 600 ul 

of 100 mM IPTG was added to the growing culture for the induction of protein 

expression and incubation was continued for 5 hours at room temperature. From this 

step all experiments were done at 4°C. The cells were harvested by centrifugation at 

3,500 rpm for 20 mins. The pellet were washed thrice by resuspension with 50 ml of 

ice cold PBS and centrifuged at 3,500 rpm for 15 mins. Then, the pellets were 

incubated with 500µl of 10 mg/ml freshly prepared lysozyme in a total volume of 20 

ml of PBS for 1 hr at 4°C. The cell membrane was disrupted by sonication. The 

supernatants were collected by centrifugation at 13,000 rpm for 1 hr. This procedure 

was repeated until no pellet appears. 

 

2.22.2. Purification & elution of fusion proteins 

             1 ml of pre-swollen glutathione agarose beads or amylose beads (depending 

on the applied tag) were washed thrice with ice cold PBS and added to the 

supernatant containing the GST, GCAP2-GST protein and MBP, RE (B) - MBP 

respectively. These samples were incubated for over night at 4°C in cold room for 

binding of GST and GST fusion protein to glutathione agarose beads; MBP and MBP 

fusion protein to amylose beads. Then, the samples were centrifuged at 1,500 rpm at 

4°C for 2mins and the supernatant was removed. The pellets were washed thrice with 

50 ml of ice cold PBS for three times by shaking for 30 mins at 4°C. After last 

washing the beads were saved as bathed in 1000 µl of PBS. 20 µl of beads were 

loaded on to the 10 % SDS-PAGE for checking the expression. The MBP and MBP 

fusion protein was eluted using elution buffer containing 10mM TRIS-HCl pH (8.5), 

10% maltose in PBS in different fractions and checked it on 10% SDS-PAGE. The 

GST and GST fusion proteins were eluted in buffer containing 10mM reduced 

glutathione, 50mM TRIS-HCl pH (8.5). 
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2.22.3. Measurement of protein concentration 

 The Bradford assay was used to estimate the protein concentration 

(Bradford,1975). The absorbance for the protein-specific dye, Coomassie brilliant 

blue G-250, shifts from 465 nm to 595 nm when binding to protein occurs. The 

measured absorbance at 595 nm was blotted against a reference curve obtained with 

known concentrations of BSA. 

 

2.23. SDS-PAGE 

SDS PAGE was done by following Manniatis et al, 2005.   One dimensional 

gel electrophoresis under denaturing conditions in presence of 0.1 % SDS separates 

proteins according to their molecular size. The polyacrylamide gel is casted as a 

separating gel topped by a stacking gel. Sample proteins were solubilized by boiling 

in 6X SDS loading buffer. Coomassie Brilliant Blue R- 250 binds non-specifically 

toalmost all proteins, which allows detection of protein bands in polyacrylamide gels. 

Gels were stained with Coomassie staining solution with gentle shaking for 30 min at 

room temperature. The background was subsequently reduced by soaking the gel in 

acrylamide gel destaining solution. After that, gels were documented using either HP 

scanner or BIO RAD Gel Doc apparatus. 

 

2.24.Western blotting 

          Proteins were separated by SDS-PAGE and transferred from the 

polyacrylamide gel to a Nitrocellulose /Nylon membrane with a constant voltage (3 

hrs, 50 volt at 4˚c). After electroblotting, the membrane was stained with a Ponceau S 

for 2 mins. The Ponceau S stained membrane was documented using scanner. Then, 

the membrane was destained using PBS and blocked with 5% skim milk powder for 1 

hour. For immunodetection of proteins, the primary antibodies were diluted in 5% 

skim milk powder and the membrane was incubated for over night in cold room with 

constant mild shaking. Then the membrane washed three times with PBS. After that, 

the secondary antibody was diluted in 5% MMP and the membrane was incubated at 

room temp for 1 hour. Again the membrane washed with PBS 3 times. Then, the 

membrane was incubated with ECL1 and ECL2 mixture (1:1 ratio; 

chemiluminescence’s detection solution) and the signals were documented with BIO 

RAD Gel Doc apparatus. Also the band intensity was quantified using BIO RAD Gel 

Doc apparatus and the Gel Doc software. 
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2.25. GST pull down assay 

 GST and GST-GCAP2 bound to glutathione agarose beads were used as an 

immobilized partner (bait). The eluted MBP and RE (B)-MBP fusion protein were 

used as a prey for this assay. The eluted RE(B)-MBP fusion protein and MBP protein 

(control) were incubated with eluted GCAP2-GST fusion protein and GST protein 

(control) in equimolar concentration (0.8µM) in a total volume of 500 µl incubation 

buffer (100mM Tris-HCl (pH 8.0) ,150mM NaCl,1mM EDTA and 0.25% TritonX-

100). These samples were incubated for 4 to 6 hrs at 4°C. After incubation, the 

samples were centrifuged to remove the supernatant. The pellets were washed 5 times 

with incubation buffer every washing step was followed by centrifugation at 13,000 

rpm for 1 min at 4°C. The pellet was boiled in SDS-PAGE loading buffer at 96°C for 

5 mins. The eluted proteins were subjected to 10% SDS-PAGE followed by 

coomassie staining.  

 

Experiment set up 

Protein nature 

Concentration  

(mg/ml) 

Amount of protein 

used for each 

experiment (µg)  

GST Immobilized 2.1 10 

GCAP2-GST Immobilized 2.0 20 

MBP Eluted  1.4 20 

RE(B)-MBP Eluted  2.5 40 
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1 GST 0.24 15 

2 MBP                            0.7 15 

3 GCAP2-GST 0.5 15 

 Input            

4 RE(B)-MBP 0.8 15 

 

1 GST 2.4 100 MBP 7.1 100 

2 GCAP2-GST                                        5 100 RE(B)-MBP 8 100 

3 GST 2.4 100 MBP 7.1 100 

Pellet  

             

                 
4 GCAP2-GST 5 100 RE(B)-MBP 8 100 

 

5    

Unbound 

fraction 

RE(B)MBP 

40 8 

 

Input-protein used in the experiment 

Pellet – the portion which is settled after incubation followed by washing and 

centrifugation. 

 

2.26. BOVINE RETINA CO-IMMUNOPRECIPITATION 

          All steps were performed at 4oC if not denoted otherwise. For each 

immunoprecipitation, a bovine retina was incubated with 2ml of lysis buffer (100mM 

Tris HCl, pH 7.4, 150mM NaCl, 1mM EDTA) containing 1% TritonX-100 for 30 min 

at 4oC. Then the sample was centrifuged at 13,000 rpm for 15 mins at 4°C. 

Subsequently, the samples were transferred to 2ml syringes and forcefully ejected 

through 20 gauge needles to mechanically disrupt the retinal tissue. Mechanical 

crushing through 23gauge needles was repeated 40-50times. The mechanical 

disruption is essential to fractionate synaptic ribbons and to make them accessible for 

immunoprecipitation. Without mechanical treatment no RIBEYE Immunoreactivity 

was observed in the respective tissue lysate. After mechanical disruption, lysis was 

allowed to proceed for further 30min on ice. Afterwards, samples were centrifuged 

twice at 13,000 rpm for 30 min. The supernatant was incubated with 10 µl of GCAP2 
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pre-immune serum for 1 hour at 4oC and 20 µl of washed protein A-sepharose beads. 

Afterwards, the sample was centrifuged at 13,000 rpm for 15 min and the pre-cleared 

lysate was divided into two aliquot and incubated either with 10µl of GCAP2 immune 

serum  or with GCAP2 pre-immune serum (IgG control) together with 20µl of 

washed protein A sepharose beads (overnight). After overnight incubation, samples 

were centrifuged at 3,000rpm (2min) to pellet the protein A-sepharose beads. The 

pellet was washed three times with 1 ml of lysis buffer. The final pellet was boiled 

with SDS loading buffer and subjected to SDS-PAGE followed by western blotting.  

 

2.27. PURIFICATION SYNAPTIC RIBBON (Schmitz et al, 1996) 

2.27.1. Purification of photoreceptor synaptic complexes (OPL-fraction) 

 As a first step in the purification of photoreceptor synapses, a crude synaptic 

membrane fraction was prepared as described previously (Schmitz et al., 1993). 

Briefly, retinae freshly isolated from bovine eyes (obtained from a local 

slaughterhouse within 30 min post-mortem) and detached from pigment epithelium 

were disrupted by shear forces exerted by an ultraturrax for 3 min on ice (Type TP 

18/10; Janke and Kunkel, Staufen, Germany) in hypotonic homogenization buffer 

containing 15 mM Na2HPO4, pH 7.4, 1 mM EGTA, 1 mM MgCl2, and 1 mM 

phenylmethylsulfonyl fluoride for 3 min at 4°C. Thirty-five ml of homogenization 

buffer were used for eight isolated retinae. For preparation of crude synaptic 

membranes, 20 ml of homogenate was over layered on 10 ml of a sucrose cushion 

containing 50% sucrose (w/v) in homogenization buffer and centrifuged for 50 min at 

15,000 rpm (~27,200 × gmax) at 4°C in a JA20 rotor (Beckman, Palo Alto, CA). At the 

interface between the sucrose cushion and the supernatant, a broad opaque band of 

membranes was visible and used for the subsequent purification of photoreceptor 

synapses. This band was removed carefully with a Pasteur pipette and diluted with 

approximately twofold its volume with homogenization buffer. This diluted 

suspension was spun in a JA20 rotor at 20,000 rpm (~48,400 × gmax) for 10 min 

(4°C). The supernatant was discarded, and the pellet was resuspended with 

approximately the same volume of homogenization buffer. For convenience, this 

resulting membrane suspension containing crude synaptic membranes (CSMs) was 

denoted CSM-fraction. The CSM-fraction was over layered on a linear sucrose 
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gradient ranging from 35 to 50% sucrose (w/v) in homogenization buffer. Membranes 

were spun at 13,000 rpm (~30,000 × gmax) for 1.5 hr at 4°C in an SW40 rotor. After 

this spin, two bands and a large pellet were visible. A membrane fraction that was 

recovered as a broad band at a sucrose density of ~40% (w/v) in homogenization 

buffer (sucrose density calculated by its distance between the top and bottom of the 

gradient) was denoted OPL-fraction and characterized as described below. Membrane 

fractions were analyzed by Immunoblotting and immunofluorescence microscopy 

with the ribbon antiserum. To analyze the retinal fractions by immunofluorescence, 

microscopy samples were diluted with the twofold volume of homogenization buffer, 

sedimented in an Eppendorf centrifuge (model 5415C, Eppendorf, Hamburg, 

Germany) at 14,000 rpm (~15,900 × gmax) at 4°C for 10 min, and flash-frozen in 

liquid nitrogen. From these frozen samples, 10-µm-thick cryostat sections were cut 

and immunolabeled with the ribbon antiserum as described above.  

2.27.2. Purification of synaptic ribbons from the OPL fraction  

 OPL membranes were diluted with the twofold volume of homogenization 

buffer and spun in a JA20 rotor at 11,000 rpm (~14,600 × gmax) for 10 min at 4°C. 

The resulting sediment was resuspended in homogenization buffer containing 1% 

Triton X-100 (w/v) to a protein concentration of ~1 mg/ml. The pellet was 

homogenized three times with a tight-fitting Teflon pestle and kept on ice for ~30 

min. After this incubation period, the Triton-insoluble fraction of photoreceptor 

synapses was sedimented in a JA20 rotor at 11,000 rpm (~14,600 × gmax) for 10 min 

at 4°C. The sediment was resuspended with approximately the same volume of 

homogenization buffer containing 20% sucrose. This suspension was over layered on 

a sucrose step gradient containing 2 ml of each of the following sucrose 

concentrations (in homogenization buffer): 30, 40, 50, and 70%. Then the sample was 

centrifuged in an SW40 rotor at 11,000 rpm (~20,000 × gmax) for 75 min at 4°C. The 

opaque protein bands at the respective interfaces of the sucrose step gradient were 

tested for the presence of synaptic ribbons by immunofluorescence and electron 

microscopy. The retinal subfraction between the 50 and 70% sucrose step contained 

the highest density and purity of synaptic ribbons and was denoted SR-fraction. 
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2.28. GST pull down assay in the presence of NAD+/NADH 

           GCAP2-GST or GST alone bound to glutathione agarose beads as an 

immobilized bait protein and the eluted RE (B)-MBP or MBP alone as a prey protein 

were used for this assay. The eluted RE(B)MBP were incubated with GCAP2-GST   

in equimolar concentration (0.8µM) in a total volume of 500 µl incubation 

buffer(100mM Tris-HCl(pH 8.0), 150mM NaCl,1mM EDTA and 0.25% Triton X-

100). The NADH or NAD+ was added as an increasing concentration ranging from 

1nM-20µM in the incubation mixture of GCAP2-GST and RE(B)-MBP. These 

samples were incubated for 5 to 6 hrs at 4º C. Then, the samples were centrifuged and 

the pellets were washed 3 times with incubation buffer. Every washing step was 

followed by centrifugation at 3,000 rpm for 2 mins at 4º C. The pellet was boiled in 

SDS-PAGE loading buffer at 96º C for 5 mins. The eluted proteins were subjected to 

10% SDS-PAGE . 

 

2.29. Preabsorption experiments 

        Preabsorption for western blotting: 50µl of GCAP2 immune serum (6th immune 

serum) was added to GST-GCAP2 (20µg) and GST (20µg) fusion protein bound to 

beads in a final volume of approx. 75 l and incubated overnight at 4oC in an 

overhead rotator. After incubation, samples were centrifuged at 13,000rpm for 3 mins 

at 4ºC and the respective supernatants were taken for the subsequent experiments. For 

western blot analyses of bovine crude retinal extract the two preabsorbed antisera 

described above were used at a dilution of 1:1,000 in blocking buffer (5% skim milk 

powder in PBS).  

 

2.30. Preabsorption for immunofluorescence 

         Pre-absorption with fusion protein for immunofluorescence microscopy was 

done as described above for western blotting. The preabsorbed antisera (preabsorbed 

either with GST or GCAP2-GST) were subsequently tested at identical dilutions for 

immunolabeling on cryostat sections of the bovine retina. 
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2.31. Immunolabeling analyses 

Immunolabeling analyses were performed as previously described (Schmitz et 

al., 2000, 2006; Alpadi et al., 2008) using a Zeiss inverted Axiovert200M microscope 

(Carl Zeiss) equipped for conventional epifluorescence microscopy. In brief, 10µm 

thick cryostat sections were heat-fixed for 10 mins at 50oC and subsequently treated 

with 0.5% BSA for 1hr (RT) before the primary antibodies were applied at the 

indicated dilutions (see also section 2.7). Primary antibodies were usually applied 

overnight at 4oC if not indicated otherwise. After removing unbound antibody by 

several washes with PBS, secondary antibodies were applied at the dilutions in PBS 

(1hr, RT). After removing unbound antibody with PBS sections were mounted in 

NPG-antifade (Magupalli et al., 2008). Incubations only with secondary antibody 

(without primary antibody) and irrelevant primary antibodies served as negative 

controls. 

 

2.32. Double-labeling of cryostat sections of the bovine retina with GCAP2 

antibodies and Peanut agglutinin (PNA) 

         Cryosection of bovine retina were heat fixed  for 10 min @ 50o C and incubated 

with blocking buffer containing (0.5 % BSA, 0.02 % Triton X -100 in PBS) at RT for 

45 mins. Section were then incubated with primary polyclonal GCAP2 antibody at a 

1:500 dilution in blocking buffer overnight, 4oC. After brief washing with blocking 

buffer, sections were incubated with secondary antibody GAR-Cy3 (1hr, RT). Section 

were next incubated with Peanut aggulutinin (PNA)–Alexa 488 (1:250 dilution) in 

blocking buffer for 3hrs at RT. After washing once with PBS, sections were mounted 

in NPG-antifade for microscopic analysis. 

 

2.33. Genereration of recombinant Semliki-Forest Virus  

   2.33.1. Cell culture 

     BHK-21 cells were cultured in OPTIMEM/GlutaMax™ medium (Gibco) 

supplemented with 10 % (v/v) tryptose phosphate broth, 20 mM HEPES, 2.5 % FCS 

at 37 °C, 5 % CO2, and used between passage numbers 5 to 25. 
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  2.33.2. Generation of recombinant SFV particles  

   The Semliki forest virus expression vector GCAP2-EGFPpSFV was 

constructed in three steps. First, PCR was used to generate a BglII-BamHI flanked 

EGFP fragment using the following forward and reverse primers: forward (5’-

TTTAGATCTGCCACCATGGTGAGCAAGGGCGA) and reverse (5’-

TTTGGATCCCTTGTACAGCTCGTCCAT) for ligation into the BamHI site of the 

pSFV1 expression vector. Next, a BamHI-BssHII flanking GCAP insert was 

amplified by PCR (5’-TTTTGGATCCATGGGGCAGCAGTTCAGC, forward 

primer), (5’- TTTTGCGCGCTCAGAACATGGCACTTTTCC, reverse primer) and 

GCAP2(aa1-204)pGEX as a template. The PCR product was cloned into the BamHI-

BssHII site of EGFPpSFV (Ashery et al., 1999). The IRES site of pSFV was deleted  

by digestion with BssHII-ClaI, fill-in with Klenow and religation of the vector. 

EGFPpSFV was used as control plasmid/control virus (Ashery et al., 1999). mRNA 

was generated from pSFV1 expression vector (GCAP2-EGFPpSFV; EGFPpSFV) and 

pSFV2 helper vector by linearizing both vectors with SpeI and in-vitro transcription 

using SP6 RNA polymerase according to the manufacturer’s instructions (mMessage 

mMachine SP6- Kit, Ambion). 10g of purified mRNA was electroporated into 1 

x107 BHK-21 cells in OPTIMEM/GlutaMax™ medium without supplements at 

360V, 75 µF and pulsed twice using a Bio-Rad GenePulser II apparatus. Cells were 

resuspended in 10 ml of complete OPTIMEM/GlutaMax™ growth medium (see 

under A) and plated for 24hrs at 31°C, 5% CO2. Medium was recovered from the 

flasks and centrifuged at 400xg for 5 mins. The supernatants were aliquoted and 

stored at -80°C. Virus titer of the virus suspensions was determined exactly as 

previously described (Ashery et al., 1999).  

    

2.33.3. Infection of mouse organotypic retinal cultures 

 The virus-containing stock was supplemented with an equal volume of OPTIMEM/ 

GlutaMax™ containing 0.2% BSA. Virus was activated by the addition of 

chymotrypsin (0.2 mg/ml, Sigma-Aldrich) and subsequent incubation for 40 mins at 

room temperature. Proteolytic activation of the virus was stopped by the addition of 

aprotinin (0.6 mg/ml, Sigma-Aldrich). Organotypic retina cultures were incubated 

with the respective virus (4-5x107 infectiuos units/ml) for 16-24hrs at 31oC, 5% CO2, 

before being replaced by normal growth medium. 
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2.34. Organotypic culture of retinal explants 

Preparation of organotypic cultures was performed largely as previously described 

(Fischer et al., 2000; Pérez-León et al., 2003; Zhang et al, 2008), with some 

modifications. Briefly, freshly isolated eyes enucleated from adult mice housed under 

ambient light conditions were immediately immersed into ice-cold RPMI 1640 

(supplemented with 10 % fetal calf serum, 10 mM HEPES, 2 mM L-glutamine, 1 mM 

sodium pyruvate, and 50 µM ß-mercaptoethanol, 100U/ml penicillin and 100µg/ml 

streptomycin). The anterior portion of the eye was removed by incision along the ora 

serrata. After removal of lens and vitreous body, the optic nerve was cut and the 

retina subsequently gently removed from the posterior eyecup. The retina was 

mounted photoreceptor side down on PET (polyethylene terephthalate) cell culture 

inserts (8,0 µm pore size, Falcon) placed in six-well plates containing 1ml of RPMI 

1640 with the above described supplements. Explants were incubated for 1h at 

31°C/5% CO2 and then infected with recombinant Semliki Forest virus. For infection 

with recombinant Semliki Forest virus, RPMI1640 medium was replaced by 1ml of 

the activated virus solution (see above, virus titer typically between 4-5 ×107 

infectious units per ml) and incubated overnight at 31°C /5% CO2. After 16-24hrs of 

infection, the virus-containing medium was removed from the cell culture dishes by 

three washes with RPMI (with supplements). The explants were allowed to recover 

for several hours before being processed for whole mount immunostaining. 

 

2.35. Whole mount immunostaining of organotypic retinal explants 

 One day after infection retinal explants were fixed in 4% PFA for 20 min at 4°C. 

Explants were permeabilized for 30 min at RT in incubation buffer (PBS with 0.3% 

Tx-100 and 0.5% BSA) and subsequently incubated with primary antibody (U2656, 

1/500 diluted in incubation buffer) overnight at 4°C. Unbound antibody was removed 

by intensive washing with washing buffer (PBS, 0.5%Tween-20, 0.5% BSA). 

Explants were then incubated with the indicated fluorophore-conjugated secondary 

antibody (1/1000 in incubation buffer; see also section 2.7) ovenight at 4°C. Unbound 

antibody was again removed by intensive washing with washing buffer. Explants 

were then fixed with 4% PFA (15 mins, 4oC), cut with a cryostat (10µm-thick 

sections) and thawed on uncoated SUPERFROST coverslides. Sections were 

analyzed with a Zeiss Axiovert200M microscope equipped with an apotome and the 

respective filter sets (EX BP 450-490nm/BS FT510/EM BP 515-565; EX BP 
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546/12/BS FT 580/EM LP 590). For counting terminals were observed in the 

apotome mode. 

 

2.36. 3D-reconstruction of immunolabeled structures in retinal explants 

For 3D-reconstructions retina sections were observed with the Zeiss Axiovert200 

microscope. Z-stacks were taken using the apotome and 3D-reconstruction was 

performed using the Inside4D software module from Zeiss. 

 

2.37. In-situ Proximity Ligation Assays (In-situ PLA) 

 Proximity ligation assays are a highly sensitive and specific way to detect protein-

protein interaction in-situ e.g. in tissue sections (Gustafsdottir et al., 2005; Söderberg 

et al., 2006, 2008). Proximity ligation reactions critically depends on the distance of 

the two interaction partners. Positive PLA interaction signals indicate that the 

interacting proteins are localized in less than 40 nm distance from each other 

(Söderberg et al., 2006). PLA assay components (Gustafsdottir et al., 2005) were 

purchased from Eurogentec and performed according to the manufacturer’s 

instructions. The following components were purchased from Eurogentech: anti-

rabbit immunoglobulins coupled to the “PLUS” oligonucleotide (PLA PLUS probe), 

anti-mouse immunoglobulins PLA “MINUS” probe and the fluorescence detection kit 

563 containing the linker oligonucleotide, enzymes for rolling circle amplification 

and fluorescent probe for product detection. In brief, 10µm thick sections of flash-

frozen mouse eyes (prepared as described above) were heat-fixed for 10 mins at 50oC 

and subsequently treated with the Duolink blocking solution supplied by the 

manufacturer (Olink Biosciences, Eurogentech, Belgium) for 30 mins at 37oC. Next, 

sections were incubated with primary antibody dilutions (in Duolink antibody dilution 

solution; Olink Bioscience; Eurogentech, Belgium). The following antibodies were 

used at the indicated dilutions: polyclonal rabbit GCAP2 antibody (1:500); 

monoclonal anti-RIBEYE(B)/CtBP2 (BD) (1:500); polyclonal rabbit RIBEYE 

antibody (U2656, 1:500); mouse monoclonal antibody against opsin (Rho1D4, 

1:500); polyclonal antibody against mGluR6 (Neuromics/Acris antibodies, RA13105) 

(1:500). Duolink in-situ PLA were performed as described by the manufacturer: After 

incubation with the primary anibodies, combinations of the PLA probes (anti-rabbit 

PLUS probe, anti-mouse MINUS probe: both diluted 1:8 in Duolink antibody dilution 

buffer) were added to the sections for 2hrs at 37oC in a wet chamber. After washing 
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the sections with TBS (2x5mins) hybridization with the linker oligonucleotide was 

performed for 15 mins at 37oC. Tissue was washed for 1min with TBS before ligation 

was performed for 15 mins at 37oC in a humid chamber. After washes with TBS for 5 

mins, rolling circle amplification was done for 90 mins at 37oC precisely following 

the manufacturer’s protocol. The product of the rolling circle amplification was 

detected with the Duolink detection kit 563 (Olink Bioscience, purchased via 

Eurogentech, Belgium) using Duolink fluorophore 563-labeled oligonucleotide 

diluted 1:5 with H2O. The detection reaction was performed for 60 mins at 37oC. As 

negative controls, PLA assays were done without primary antibodies or with only one 

primary antibody. Sections were subsequently washed with 2x SSC (2mins), 1xSSC 

(2mins), 0.2xSSC (2mins) and 0.02x SSC (1min). Afterwards, sections were mounted 

with Duolink mounting medium, sealed with a coverslip and analyzed by 

epifluorescence microscopy as described above. As further control to test for the 

spatial sensitivity/proximity requirements  of the in-situ PLA reactions we also 

analyzed for PLA signals between a presynaptic marker (RIBEYE) and a postsynaptic 

marker at the tips of invaginating ON-bipolar cells (mGluR6). As positive controls we 

used acombination of the following two antibodies (rabbit polyclonal RIBEYE 

U2656/mouse anti-RIBEYE(B)/CtBP2) (Fig. 20L) and mouse monoclonal anti-opsin 

(Rho1D4)/rabbit polyclonal GCAP2) (Fig. 20K). The antibodies that were used in the 

Olink PLA assays are summarized as following with their indicated working 

dilutions: rabbit polyclonal GCAP2 antibody (1:500); Rabbit polyclonal antibody 

against RIBEYE U2656 (1:500); rabbit polyclonal antibody against mGluR6 (1:500); 

mouse monoclonal antibody against RIBEYE(B)/CtBP2, mouse monoclonal antibody 

against opsin (Rho1D4) (1:500). Antibody combinations were used as indicated in 

Fig. 20. 
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3.1. Identification of GCAP2 as a RIBEYE interacting protein 

       In order to identify novel RIBEYE interacting proteins, RIBEYE (B)-domain (aa 

564-988) was used as bait in YTH screen of a bovine retina cDNA library. The 

GCAP2 prey clone we obtained started at histidine H95 of bovine GCAP2 

(GCAP2(95-204) and coded for the two carboxyterminal EF hands and the 

carboxyterminal region (CTR) of GCAP2. The interaction was confirmed by growth 

of mated yeast on -ALWH selective plates and the expression of - galactosidase 

marker gene activity. The prey clone was not auto-activating as judged by the 

respective control matings (Fig. 9C) and thus pointed to an interaction between 

RIBEYE and GCAP2 in the YTH system. In order to further consolidate these finding 

we cloned full-length GCAP2 and the indicated GCAP2 constructs from bovine 

retinal cDNA into the respective yeast vectors and tested them for interaction with 

RIBEYE(B) in the YTH system (Fig.9C). The GCAP2 constructs were designed 

based on the known domain structure of GCAP2 (Fig. 9D). All of the tested GCAP2 

constructs-except for full-length GCAP2 with an intact aminoterminal myristoylation 

signal- interacted with RIBEYE(B) (Fig.9). Full-length GCAP2 with intact 

aminoterminal myristoylation signal encoded by the first two amino acids (MG) did 

not interact with RIBEYE (Fig. 9C, D). If the aminoterminal myristoylation signal in 

full-length GCAP2 was deleted by deleting the two aminoterminal amino acids 

GCAP2 interacted with RIBEYE(B) in the YTH system (Fig. 9D). Thus, the 

myristoylation of GCAP2 at glycin G2 and the resulting membrane association 

prevent GCAP2 from entering the nucleus  were the interaction needs to take place in 

the Gal4-based YTH system. This finding confirmed the interaction between 

RIBEYE(B) and GCAP2. This was further addressed by deletion mapping using 

RIBEYE(B) and GCAP2 deletion constructs. The mapping analyses revealed that 

RIBEYE interacted with GCAP2 even when all EF-hands of GCAP2 were deleted by 

aminoterminal truncations (Fig. 9). The carboxyterminal region of GCAP2 that starts 

after the fourth EF hand (abbreviated as CTR in the following text) retained the 

capability to interact with RIBEYE(B) in the YTH system. Therefore, we conclude 

that the CTR of GCAP2 mediates the interaction with RIBEYE. 
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Figure  9.  RIBEYE interacts with GCAP2 in the YTH system. 
A) Sequence of bovine GCAP2 given in the single letter amino acid code. The 4 EF hands of GCAP2 are indicated 
in color. EF hand 1 (colored in yellow) is non-functional and does not bind Ca2+; EF hands 2-4 (colored in green) 
are functional and do bind Ca2+. The bold bar that underlines the schematic drawing of GCAP2 denotes the 
extension of the obtained GCAP2 prey clone (see also Fig. 1D, prey 4). B) Domain structure of RIBEYE. 
RIBEYE consists of an aminoterminal A-domain and a carboxyterminal B-domain. The B-domain can be further 
subdivided into a contiguous central NAD(H)-binding sub-domain (NBD) and a discontinuous substrate-binding 
sub-domain (SBD). The SBD consists of two sequence stretches, SBDa and SBDb, that are linked to the NBD via 
two flexible hinge regions, hinge 1 and hinge 2 (see also Fig. 4A,B). C) GCAP2 interacts with RIBEYE(B) in the 
YTH system. Summary plates of YTH analyses obtained with the indicated bait and prey plasmids. For 
convenience, experimental bait-prey pairs are underlayered in color (green in case of interacting bait-prey pairs; 
yellow in case of non-interacting bait-prey pairs); control matings are non-colored. RIBEYE(B) interacts with 
GCAP2 as judged by growth on selective plates (-ALWH) and expression of -galactosidase expression (yeast 
matings #4,7,13,16,19,22; Fig. 1C). The respective control matings (auto-activation controls; yeast   matings # 2-3,  
5-6,  8-11, 14-15, 17-18, 20-21, 23-24)  did  not  show  growth  on -ALWH plate and no expression of -
galactosidase activity. Growth on –LW plates (Fig. 1C) demonstrates the presence of the bait and prey plasmids in 
the mated yeasts. Full-length GCAP2 containing an intact myristoylation site did not interact with RIBEYE(B) 
(mating #1, Fig.1C) because the myristoylation prevents the entry of the prey protein into the nucleus (see text). If 
the myristoylation signal is deleted by a point mutation (G2A) full-length GCAP2 also interacts with RIBEYE(B) 
(Suppl. Fig. 1). Similarly, deleting the myristoylation signal by truncation of the first two amino acids also results 
in interaction between RIBEYE(B) and GCAP2 (mating #4; Fig. 1C). Mating #12 is an unrelated positive control 
mating (Alpadi et al., 2008). D) Schematic summary of the mapping analyses obtained with the YTH system. 
RIBEYE(B) interacts with all tested GCAP2 constructs except for full-length GCAP2 that contains an intact 
myristoylation signal (prey 1). If the myristoylation signal is deleted by a point mutation (G2A) (prey 2, Fig. 1D) 
full-length GCAP2 also interacts with RIBEYE(B). 
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3.2. RIBEYE interacts myristoylation deficient full-length GCAP2 

All of the tested GCAP2 constructs -except for full-length GCAP2 with an 

intact aminoterminal myristoylation signal- interacted with RIBEYE(B) (Fig. 9C,D) 

in the YTH system. If the aminoterminal myristoylation signal in full-length GCAP2 

(encoded by the first aminoterminal amino acids: MG) was deleted by point-mutating 

glycine 2(G2) into alanine (G2A), GCAP2 interacted with RIBEYE(B) in the YTH 

system (Fig.10). Thus, the myristoylation of GCAP2 at glycine G2 and the resulting 

membrane association prevent GCAP2 from entering the nucleus where the 

interaction needs to take place in the Gal4-based YTH system. 

 

 
Figure 10. RIBEYE interacts with myristoylation-deficient full-length GCAP2.  
Summary plates of YTH analyses obtained with the indicated bait and prey plasmids. For convenience, 
experimental bait-prey pairs are underlayered in color (green in case of interacting bait-prey pairs; yellow in case 
of non-interacting bait-prey pairs); control matings are non-colored. RIBEYE(B) interacts with myristoylation-
deficient full-length GCAP2 (GCAP2(1-204)G2A) as judged by growth on selective plates (-ALWH) and 
expression of -galactosidase activity (yeast mating #1). The respective control matings (auto-activation controls; 
yeast  matings #2 - 5, #7 - 8)  did  not show growth on -ALWH selective plates and expression of -galactosidase 
activity. RIBEYE(B) does not interact with full-length GCAP2 with an intact myristoylation signal (mating #6). 
Mating #9 is a positive control. 
 

3.3. Mutation of the CTR of GCAP2 abolish interaction with RIBEYE(B) 

The carboxyterminal region of GCAP2 that starts after the fourth EF-hand 

retained the capability to interact with RIBEYE(B) in the YTH system. Therefore, we 

conclude that the CTR of GCAP2 mediates the interaction with RIBEYE. This 

assumption is further supported by our finding that point mutants of the CTR 

GCAP2(171-204)E172D of GCAP2  no longer interacted with RIBEYE(B). 
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Figure 11. Mutations of the carboxyterminal region (CTR) of GCAP2 abolish interaction with RIBEYE. 
Summary plates of YTH analyses obtained with the indicated bait and prey plasmids. For convenience, 
experimental bait-prey pairs are underlayered in color (green in case of interacting bait-prey pairs; yellow in case 
of non-interacting bait-prey pairs); control matings are non-colored. RIBEYE(B) does not interact with a point-
mutated CTR of GCAP2, GCAP2(171-204)E172D (matings #1, #6), although it interacts with the wildtype CTR, 
GCAP2(171-204) (Fig. 1). The respective control matings (auto-activation  controls;  yeast  matings  # 2-5, # 7-8)  
did  not show growth on -ALWH selective plates and expression of -galactosidase activity. Mating #9 is a 
positive control. RE(B)856-891 encodes for the hinge 2 region of RIBEYE(B) which was shown to be responsible 
for interaction with GCAP2 (Fig. 3). 
 

3.4. GCAP2 does not interact with SBD and NBD of RIBEYE(B) 

The B-domain of RIBEYE consists of a NAD(H)-binding sub-domain (NBD) 

and a substrate-binding sub-domain (SBD). In order to map which parts of 

RIBEYE(B) are important for interaction with GCAP2 we tested whether the SBD 

and NBD of RIBEYE alone can interact with GCAP2. Surprisingly, both the SBD 

and NBD alone did not interact with GCAP2 in the YTH system (Fig. 12B).  

                              A 

                                
Figure  12A) Structure model of the B-domain of RIBEYE based on the crystal structure of tCtBP1 (Kumar et al., 
2002; Nardini et al., 2003; see also Magupalli et al., 2008; Alpadi et al., 2008). The B-domain of RIBEYE consists 
of a NAD(H)-binding sub-domain (NBD) and a substrate-binding sub-domain (SBD) 
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Figure  12B. GCAP2 not interact with the NBD and SBD of RIBEYE(B). 
Summary plates of YTH analyses obtained with the indicated bait and prey plasmids. For convenience, 
experimental bait-prey pairs are underlayered in color (green in case of interacting bait-prey pairs; yellow in case 
of non-interacting bait-prey pairs); control matings are non-colored. GCAP2 interacts with intact RIBEYE(B) as 
judged by growth on selective plates (-ALWH) and expression of -galactosidase expression (yeast mating #1; 
positive control). In contrast, GCAP2 does not interact either with the NBD (mating #2) or the SBD (mating #3) of 
RIBEYE alone. The respective control matings (auto-activation controls; yeast matings # 4 - 11) did not show 
growth on -ALWH plates and expression of -galactosidase activity. Growth on –LW plates (Fig. 2C) 
demonstrates the presence of the bait and prey plasmids in the mated yeasts. 
 

3.5. GCAP2 interacts with flexible region of hinge2 region of RIBEYE(B) 

Since the NBD- and SBD- constructs used above did not contain the 

connecting hinge regions, hinge 1 and hinge 2, we tested next whether the hinge 

regions of RIBEYE might mediate interaction with GCAP2. Indeed, the hinge 2 

region of RIBEYE interacted with GCAP2 whereas the hinge 1 region did not in the 

YTH system (Fig. 13B) Therefore, the flexible hinge 2 region that connects the NBD 

with the SBD is the essential binding site for GCAP2 (Fig. 13A).  

                  A                                          

                    
Figure  13A. Structure model of the B-domain of RIBEYE. 
Based on the crystal structure of tCtBP1 (Kumar et al., 2002; Nardini et al., 2003; see also Magupalli et al., 2008; 
Alpadi et al., 2008). The B-domain of RIBEYE consists of a NAD(H)-binding subdomain (NBD) and a substrate-
binding subdomain (SBD) which are connected by two flexible hinge regions, hinge 1 and hinge 2 (colored in 
blue). The dotted lines indicate the extensions of the hinge 1 and hinge 2 constructs tested in Fig. 5B with the YTH 
system 
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 Figure  13B.  GCAP2 interacts with the hinge 2 region of RIBEYE(B). 
 Summary plates of YTH analyses obtained with the indicated bait and prey plasmids. For convenience, 
experimental bait-prey pairs are underlayered in color (green in case of interacting bait-prey pairs; yellow in case 
of non-interacting bait-prey pairs); control matings are non-colored. GCAP2 interacts with the hinge 2 region of 
RIBEYE(B)856-891 (yeast matings #3, #6, #9) but not with the hinge1 region of RIBEYE(B)663-691 (yeast 
matings #2, #5, #8) as judged by growth on selective plates (-ALWH) and expression of -galactosidase activity. 
The respective control matings (auto-activation controls; yeast matings #10-21) did not show growth on -ALWH 
plate and expression of -galactosidase activity. Growth on –LW plates (Fig. 2B) demonstrates the presence of the 
bait and prey plasmids in the mated yeasts. Mating #1 represents a positive control mating (RE(B)/GCAP2; see 
also Fig. 1). Mating #22 represents an unrelated positive control mating (Alpadi et al., 2008). Abbreviations: 
NBD, NAD(H)-binding sub-domain of RIBEYE(B); SBD, substrate-binding sub-domain of RIBEYE(B). 
 

3.6. Point mutants of the hinge2 region of RIBEYE(B) disrupt interaction with 

GCAP2 

The hinge 2 region (aa856-aa891) of RIBEYE(B) interacted with GCAP2 

whereas the hinge 1 region (aa663-691) did not (Fig. 13B). Therefore, the flexible 

hinge 2 region that connects the NBD with the SBDb is the essential binding site for 

GCAP2 (Fig. 13A). This assumption is further supported by the analysis of point 

mutants of the hinge 2 region, i.e. RIBEYE(B)W867E and RIBEYE(B)T856S (Fig. 

14A). These points mutants of the hinge 2 region of RIBEYE(B) no longer interacted 

with GCAP2 in the YTH system(Fig. 14B).  
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Figure 14A. Structure model of RIBEYE(B)-domain in which the interface region between NBD and SBD is 
magnified. W867 and T865 indicate amino acid residues within the hinge 2 region that disrupt interaction with 
GCAP2 when mutated. The hinge 2 region with W867, T865 and bound NAD(H) are colored in blue. W867 is 
located close to the nicotinamide moiety of NAD(H). 
 

 
Figure 14B. point mutants of the hinge 2 region of RIBEYE(B) disrupt interaction with GCAP2.   
Summary plates of YTH analyses obtained with the indicated bait and prey plasmids. For convenience, 
experimental bait-prey pairs are underlayered in color (green in case of interacting bait-prey pairs; yellow in case 
of non-interacting bait-prey pairs); control matings are non-colored. Point mutants of the RIBEYE(B) hinge 2 
region RE(B)T865S and RE(B)W867E do not interact with GCAP2 (matings #1-3, #15-17). The respective 
control matings (auto-activation controls; yeast matings #4-11, #18-25) did not show growth on -ALWH selective 
plates and expression of -galactosidase activity. Matings #12-14, 26-28 are positive control matings. 
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3.7. The A-domain of RIBEYE does not prevent GCAP2/RIBEYE(B) interaction 

   RIBEYE expresses endogenously as full length (A+B domain) in the retina. 

Therefore, we  tested whether the full length RIBEYE (contains both A domain and B 

domain) also interacted with GCAP2. RE(AB) also shows interaction with GCAP2 

indicating that the A-domain of RIBEYE is not inhibiting the interaction of RIBEYE 

(B)-domain with GCAP2 (Fig.15). In YTH assay, the confirmation of bait and prey 

plasmids in the yeast was confirmed by growth on –LW plates. The interactions were 

judged by the growth on -ALWH selection plates, selective for protein interaction 

(Fig.15) by qualitative assessment of -galactosidase marker gene expression. 

 

 
Figure 15. The A-domain of RIBEYE does not prevent GCAP2/RIBEYE(B) interaction.   
Also full-length RIBEYE (RE(AB)) and not only RIBEYE(B) interacts with GCAP2 indicating that the A-domain 
of RIBEYE does not prevent RIBEYE(B)/GCAP2 interaction. For convenience, experimental bait-prey pairs are 
underlayered in color (green in case of interacting bait-prey pairs; yellow in case of non-interacting bait-prey 
pairs); control matings are non-colored. RIBEYE(AB) interacts with GCAP2 (matings #1-6). The respective 
control matings (auto-activation controls; yeast matings #7-20) did not show growth on -ALWH selective plates 
and expression of -galactosidase activity. Mating #21 is an interaction positive control mating. 
 

 

3.8. GCAP2 binds to monomeric RIBEYE(B) and GCAP2 binding is 

independent upon RIBEYE(B) homodimerization 

RIBEYE(B) is known to homo-dimerize (Magupalli et al., 2008). Analyses of 

a RIBEYE(B)-dimerization deficient mutant RIBEYE(B)∆HDL (Magupalli et al., 

2008), revealed that RIBEYE(B)-GCAP2 interaction does not require RIBEYE(B) 

homo-dimerization. RIBEYE(B)∆HDL interacted with GCAP2 in the YTH system ( 

Fig. 16). Therefore, GCAP2 can interact with monomeric RIBEYE(B).  
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Figure 16. GCAP2 binds to monomeric RIBEYE(B).  
For convenience, experimental bait-prey pairs are underlayered in color (green in case of interacting bait-prey 
pairs; yellow in case of non-interacting bait-prey pairs); control matings are non-colored. RIBEYE(B)∆HDL 
interacts with GCAP2 (mating #2) although it does not interact with RIBEYE(B) (mating #4). The respective 
control matings (auto-activation controls; yeast matings #5-14) did not show growth on -ALWH selective plates 
and expression of -galactosidase activity. Mating #1 is the interaction positive control mating. Mating #3 
represents an unrelated positive control mating demonstrating proper folding of the dimerization-deficient 
RIBEYE(B) mutant (Alpadi et al., 2008). 
 

3.9. GCAP2 interacts with RIBEYE(B) in fusion protein pull-down assays 

The YTH analyses demonstrated RIBEYE/GCAP2 interaction in the YTH 

system. In order to verify this interaction also by further independent approaches we 

first performed fusion protein pull-down analyses (Fig. 17). GST-tagged GCAP2 was 

used as an immobilized bait protein. GST alone served as control protein. 

RIBEYE(B)-MBP or MBP alone (control protein) were used as soluble prey proteins. 

GST-GCAP2 (but not GST alone) pulled down RIBEYE(B)-MBP (but not MBP 

alone) demonstrating a specific interaction between RIBEYE(B) and GCAP2 (Fig. 

17). The binding between RIBEYE(B)-MBP and GST-GCAP2 as shown by both  

coomassie staining of SDS PAGE as well as by western blot analysis with respective 

antibodies (Fig. 17A,B). In western blotting, the membrane was first incubated with 

anti- MBP to show the binding of RIBEYE (B) to GST-GCAP2     (Fig. 17Ba) and 

then the same blot was incubated with anti-GST (after stripping) to demonstrate the 

equal loading of bait proteins (Fig. 17Bb). Based on semiquantitative evaluation 

GCAP2-GST pulled-down at least ~15% of total RIBEYE(B)-MBP in these 

experiments. Using quantification of the bound proteins, we estimate a KD of 2,72 

(+/-0.19) x10-6 mol/L for GCAP2/RIBEYE interaction. 
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 Figure 17A. RIBEYE(B) interacts with GCAP2 in protein pull-down analyses. 
GCAP2-GST and GST alone (control protein) were used as immobilized bait proteins and RIBEYE(B)-MBP and 
MBP alone (control protein) as soluble prey proteins. After incubation and subsequent washing of the immobilized 
proteins, binding of the soluble prey proteins to the immobilized prey proteins was tested by SDS-PAGE (10% 
polyacrylamide gels) in (A).  RIBEYE(B)-MBP binds to GCAP2-GST (lane 9, arrowhead) but not to GST alone 
(lane 8). MBP alone does not bind to either GCAP2-GST (lane 7) or GST alone (lane 6). 10% of the total proteins 
were loaded in the input lanes (lanes 2-5); 100% of the immobilized protein pellets were loaded (lanes 6-9). 8% of 
the unbound fraction (marked by asterisk) was loaded in lane 1. 
 
 
 

             
 
Figure 17B. RIBEYE(B) interacts with GCAP2 in protein pull-down analyses(Western blot).  
Figure 17Ba. RIBEYE(B)-MBP binds to GCAP2-GST (arrowhead in lane 8) but not to GST alone (lane 7). It 
shows specific interaction of GCAP2/RIBEYE(B). Lane 3 and lane 4 are input fractions. Figure 17Bb shows the 
same blot as in Fig. 3Ba but after stripping and reprobing of the nitrocellulose with anti-GST antibodies to show 
equal loading of bait proteins. In (Fig. 3Ba,b) 10% of the input (lanes 1-4) was loaded. Always 100% of the 
immobilized protein pellets were loaded (lanes 5-8).   
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3.10. Characterisation of GCAP2 antibody 

         A polyclonal antibody against full-length bovine GCAP2-fusion protein was 

generated in rabbits by using purified, bacterially expressed GST-tagged full-length 

bovine GCAP2(1-204) as antigen(fig. 18).  

                                                  
   Figure 18. Expression of GST-GCAP2 fusion protein. 
   Coomassie Blue-stained SDS-PAGE shows the expression of GST-GCAP2 (49kDa) fusion protein        
   which is expressed in BL21 electrocompetent bacterial cell 
 

The 6th immune bleed (obtained 90 days after initial immunization) was used in the 

present experiments. The polyclonal GCAP2 antibody raised against full-length 

GCAP2 cross-reacts with GCAP1 (Fig. 19). A mouse monoclonal antibody against 

human GCAP2 that reacts with bovine GCAP2 but not with bovine GCAP1 (Fig. 22) 

was purchased from Santa Cruz (clone A1, sc-59543).  

 

                                     
 Figure 19.Polyclonal GCAP2 antiserum cross-reacts with GCAP1. 
 The polyclonal GCAP2 antiserum (generated against full-length bovine GCAP2 tagged with GST) detects 
GCAP2-GST (lane 4) as well as GCAP2 in bovine retinal extracts (lane 6). It also cross-reacts with GCAP1 
(tested with purified GCAP1-MBP fusion protein lane 2). This cross-reactivity of the polyclonal GCAP2 immune 
serum with GCAP1 is not surprising because GCAP1 and GCAP2 are highly homologous (for review, see 
Palczewski et al., 2004). The GCAP2 pre-immune serum does not detect any protein band in the bovine retina 
(lane 7) and does not react with purified GCAP2-GST fusion protein (not shown). 
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3.11. Detection of GCAP2 in the bovine retina can be blocked by GCAP2-GST 

pre-absorption but not by GST pre-absorption. 

            The GCAP2 immunosignals were specific because the signal could be 

completely blocked by preabsorbing the polyclonal antiserum with GCAP2-GST 

fusion protein but not GST protein alone (Fig. 20).  
 
 

                                            
 
Figure 20. Detection of GCAP2 in bovine retina can be blocked by GCAP2-GST but not by GST pre-
absorption. The polyclonal GCAP2 antibody specifically detected GCAP2 in a crude retinal extract as a single 
band of the expected molecular weight of approx. 24kDa. This band is specific because it is completely blocked if 
our GCAP2 antiserum was pre-absorbed with its antigen (GCAP2-GST, lane 2) but not by GST alone (lane 3). 
 
 

3.12. RIBEYE INTERACTS WITH GCAP2 BUT NOT WITH GCAP1 

         As described above (Fig.19), the polyclonal GCAP2 antibody raised against 

full-length GCAP2 cross-reacts with GCAP1. Therefore, we analyzed whether 

GCAP1 interacts with RIBEYE in the YTH system. We found that RIBEYE(B) only 

interacts with the carboxyterminal region (CTR) of GCAP2 but not with the CTR of 

GCAP1 (Fig. 21B) indicating that RIBEYE specifically interacts with GCAP2 but not 

with GCAP1. 
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Figure 21A. Schematic depiction of the domain structure of RIBEYE, GCAP2 and GCAP1. GCAP1 and GCAP2 
contain four EF-hands from which the first EF-hand (EF1, colored in yellow) is non-functional. 
 
 
 
 

 
Figure 21B. RIBEYE interacts with GCAP2 but not with GCAP1. 
YTH analyses showed that RIBEYE(B) interacts with the carboxyterminal region (CTR) of GCAP2 but not with 
the CTR of GCAP1. For convenience, experimental bait-prey pairs are underlayered in color (green in case of 
interacting bait-prey pairs; yellow in case of non-interacting bait-prey pairs); control matings are non-colored. The 
hinge 2 region of RIBEYE(B) interacts with the CTR of GCAP2 (mating #6) but not with the CTR of GCAP1 
(matings #1, #7). The respective control matings (auto-activation controls; yeast matings #2-5, #8-9) did not show 
growth on -ALWH selective plates and expression of -galactosidase activity. Mating #10 is an interaction 
positive control. RE(B)856-891 encodes for the hinge 2 region of RIBEYE(B) which was shown to be responsible 
for interaction with GCAP2 (Fig. 3C,D). Abbreviations: CTR, carboxyterminal region; EF1-EF4, EF-hand 1 - EF-
hand 4. 
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3.13. Monoclonal GCAP2 antibody is specific for GCAP2 

Since our polyclonal antibody against GCAP2 cross-reacts with GCAP1,we 

further tested whether commercially available monoclonal antibody against GCAP2 

can cross-reactivity with GCAP1 but it reacts with bovine GCAP2 but not cross-react 

with bovine GCAP1(Fig. 22).  

 

           
 Figure 22. The monoclonal GCAP2 antibody is specific for GCAP2 and does not react with GCAP1. This 
monoclonal antibody detects GCAP2-GST (lane 5), but not GST alone (lane 6), GCAP1-MBP (lane 7) or MBP 
alone (lane 8). The monoclonal GCAP2 antibody specifically detects GCAP2 in purified synaptic ribbons (lane 1, 
Fig.14Ba) and in crude bovine retina extracts (lane 3, Fig.14Ba). the same blot as in Fig. 13Ba as shown after 
stripping and reprobing the blot with a mixture of anti-GST/anti-MBP antibodies to document the loading of 
fusion proteins.  
 

3.14. RIBEYE and GCAP2 can be co-immunoprecipitated from the bovine 

retina 

         To analyse whether this interaction also occurs in vivo, we performed co-

immunoprecipitation experiments using extracts from bovine retina. In fact, GCAP2 

immune serum co-immunoprecipitated RIBEYE (Fig. 23A) whereas GCAP2 pre-

immune serum did not demonstrating the specificity of the experiments. Identical 

results where obtained when RIBEYE antibodies were used for immunoprecipitation. 

RIBEYE immune serum but not RIBEYE pre-immune serum specifically co-

immunoprecipitated GCAP2 (Fig. 23B).  
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Figure 23. Co-immunprecipitation of RIBEYE and GCAP2 from the bovine retina. In A) GCAP2 immune 
serum and GCAP2 pre-immune serum were tested for their capability to co-immunoprecipitate RIBEYE. RIBEYE 
is co-immunoprecipitated by GCAP2 immune serum (lane 2, Fig. 23Aa) but not by GCAP2 pre-immune serum 
(lane 1, Fig. 23Aa). Fig. 23Ab) shows the same blot as in Fig. 23Aa but reprobed with rabbit polyclonal anti-
GCAP2 antibodies. This blot shows the presence of GCAP2 precipitated by the GCAP2 immune serum (lane 2) 
but not by the pre-immune serum (lane 1). Asterisks indicate the immunoglobulin heavy chains. In B) RIBEYE 
immune serum and RIBEYE pre-immune serum were tested for their capability to co-immunoprecipitate GCAP2. 
GCAP2 is co-immunoprecipitated by RIBEYE immune serum (lane 2, Fig 23Ba) but not by RIBEYE pre-immune 
serum (lane 1, Fig. 23Ba). Fig. 23Bb) shows the same blot as in Fig. 15Ba but reprobed with polyclonal anti-
RIBEYE (U2656). This blot shows the presence of RIBEYE that was immunoprecipitated by the immune serum 
but not by the pre-immune serum. Asterisks indicate the immunoglobulin heavy chains. Fig. 23Bc) shows the 
same blot as in Fig. 15Bb but reprobed with mouse monoclonal anti-CtBP2 antibodies which detects the B-domain 
of RIBEYE. This blot also shows the presence of RIBEYE precipitated by the immune serum (lane 2) but not by 
the pre-immune serum (lane 1). Asterisks indicate the immunoglobulin heavy chains. In addition to RIBEYE, a 
further protein at approx 50kDa is present in the experimental precipitate but not in the control immunoprecipitate. 
This band very likely is CtBP2 (circle in lane 2; Fig. 23Bc). CtBP2 is absent from purified synaptic ribbons which 
contain RIBEYE and CtBP1 but not CtBP2 (Schwarz et al., unpublished data). In the input lanes, 0.5% of total 
input was loaded in (A) and 1% of total input in (B). The immunoprecipitates are always 100%. 
 
The co-immunoprecipitation experiments prove that the RIBEYE/GCAP2 interaction 

also occurs in-situ in the retina and emphasizes the physiological relevance of the 

RIBEYE/GCAP2 interaction. This assumption is further supported by our findings 

that GCAP2 is also a component of purified synaptic ribbons as shown both with a 

polyclonal as well as with the monoclonal GCAP2 antibody (Fig. 23A,B). 

 

 

 

 

 

A B 
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3.15. GCAP2 present in purified synaptic ribbons 

          RIBEYE is a major component of synaptic ribbons (Schmitz et al., 2000; 

Zenisek et al., 2004; Wan et al. 2005, Magupalli et al., 2008). Therefore it is 

important to know whether GCAP2 present in purified synaptic ribbons. We used 

both GCAP2  polyclonal (rabbit) and monoclonal (mouse) antibodies to answer this 

question.The polyclonal GCAP2 antiserum detects GCAP2 both in extracts of the 

bovine retina (lane 2) as well as in the purified synaptic ribbon fraction (lane 1) 

(100g of protein loaded in each lane) (Fig. 24A). Similar to the findings obtained 

with the polyclonal GCAP2 antibody, the monoclonal GCAP2 antibody also detects 

GCAP2 in both retinal extracts (lane 1, 100g of protein loaded) and purified 

synaptic ribbon fraction (lane 2, 30g of protein loaded) (Fig. 24B).  

                                          

 
Figure  24. GCAP2 is present on purified synaptic ribbons.  
(A) The polyclonal GCAP2 antiserum detects GCAP2 both in extracts of the bovine retina (lane 2) as well as in 
the purified synaptic ribbon fraction (lane 1) (100µg of loaded protein in each lane). (B)The monoclonal GCAP2 
antibody detects GCAP2 both in retinal extracts (lane 1, 100µg of protein loaded) as well as in the purified 
synaptic ribbon fraction (lane 2, 30µg of protein loaded). 
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3.16. GCAP2 co-localizes with synaptic ribbons in photoreceptor ribbon 

synapses 

 We performed immunolabeling experiments with a polyclonal GCAP2 

antibody raised against bacterially expressed and purified full-length bovine GCAP2  

as well as with the commercial monoclonal mouse GCAP2 antibody (Fig. 25A-F).  

        
Figure  25. GCAP2 co-localizes with synaptic ribbons in photoreceptor ribbon synapses.  
Immunolabeling of the bovine retina with rabbit polyclonal antibodies against GCAP2 and mouse monoclonal 
antibodies against RIBEYE(B)/CtBP2 (A-C) or mouse monoclonal antibodies against GCAP2 (A1, Santa Cruz) 
and rabbit polyclonal antibodies against RIBEYE (U2656) (D,E). Both the polyclonal (A-C) as well as the 
monoclonal (D) GCAP2 antibody generated a strong immunolabel particularly in the inner segments (IS) of 
bovine photoreceptor cells. In addition, the OPL that contains photoreceptor ribbon synapses is strongly labeled by 
the polyclonal (A-C) and monoclonal GCAP2 antibodies (D-E). The OPL which is immunolabeled by the GCAP2 
antibodies is labelled by arrows in (A,B). The GCAP2 immunosignal co-localized with synaptic ribbons which 
were visualized by immunolabeling with RIBEYE antibodies (B-E, arrows). Strong immunosignals of GCAP2 
were found at synaptic ribbons and in close vicinity to synaptic ribbons. Most, but not all ribbons, co-localize with 
GCAP2. The arrowhead in (C) denotes synaptic ribbons which were not associated with detectable amounts of 
GCAP2. (F) The GCAP2 immunosignal in the outer plexiform layer (OPL) largely co-localizes with the 
immunosignal of synaptophysin, a marker protein of synaptic vesicles highly enriched in the presynaptic terminals 
(arrow in F). Abbreviations: OS, outer segment; IS, inner segment; ONL, outer nuclear layer; OPL, outer 
plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer. Scale bar: 15µm (A,B,D); 10µm (C,E,F). 
In collaboration with Sivaraman Natarajan  
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we observed a strong GCAP2 immunolabeling in the synaptic terminals of bovine 

photoreceptors in addition to a strong expression particularly in the inner segments 

(Fig. 25A-F). A strong immunolabeling of the rod presynaptic terminals was 

observed, the labeling of the larger cone terminals was less intense. Double 

immunolabeling demonstrated that RIBEYE and GCAP2 co-localized in the 

presynaptic terminals of photoreceptors (Fig. 25B-E). In Fig. 25F presynaptic 

terminals were labelled with antibody against Synaptophysin. GCAP2 was found at 

synaptic ribbon sites (immunolabeled by RIBEYE antibodies) and close to synaptic 

ribbons. Most but not all ribbons were labelled (Fig. 25). Furthermore, identical 

results, as described above for the polyclonal GCAP2 antibody, were obtained with a 

commercially available monoclonal antibody against GCAP2 (Fig. 25D-E).that does 

not cross-react with GCAP1 (Fig. 22).  

 

3.17. GCAP2 is weakly expressed in cone photoreceptor ribbon synapses 

         The bovine retina is a mixed retina that contains both rod and cone 

photoreceptors. As already shown in Fig. 25 GCAP2 is strongly expressed in rod 

photoreceptor synapses where it co-localizes with synaptic ribbons (immunolabeled 

with RIBEYE antibodies). Rod synapses only contain a single synaptic ribbon in their 

active zone (Schmitz et al., 1996, 2000). The cone synapses (arrows) only show a 

weak GCAP2 immunoreactivity. Cone synapses can be readily identified in these 

sections and discriminated from rod synapses based on their typical localization 

closer to the inner nuclear layer (INL), their large size and the presence of numerous 

synaptic ribbons (Schmitz et al., 1996; 2000). In (Fig. 26C,D) cone synapses were 

visualized with polyclonal antibodies against SV2A which is only expressed in cone 

synapses but not in rod synapses (Wang et al., 2003; Morgans et al., 2009); GCAP2 

was immunodetected with monoclonal GCAP2 antibody in (Fig. 26C,D). In (Fig. 

26E) cone synapses were identified with fluorescently labelled peanut agglutinin 

(PNA) (Wang et al., 2003; Morgans et al., 2009). In these incubations, the GCAP2 

immunosignal neither co-localized with SV2A (Fig. 26C,D) nor with PNA (Fig. 26E) 

further demonstrating that GCAP2 is not or weakly expressed in cone photoreceptor 

synapses. 
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Figure  26. GCAP2 is weakly expressed in cone photoreceptor ribbon synapses.  
Cryostat sections of the bovine retina immunolabeled with rabbit polyclonal antibodies against GCAP2 and 
monoclonal antibodies against RIBEYE(B)/CtBP2 (BD Transduction Laboratories) (A,B). In (C,D) cone synapses 
were visualized with polyclonal antibodies against SV2A which is only expressed in cone synapses but not in rod 
synapses (Wang et al., 2003; Morgans et al., 2009); GCAP2 was immunodetected with monoclonal GCAP2 
antibody in (C,D). In (E) cone synapses were identified with fluorescently labelled peanut agglutinin (PNA) 
(Wang et al., 2003; Morgans et al., 2009). In these incubations, the GCAP2 immunosignal neither co-localized 
with SV2A (C,D) nor with PNA (E) further demonstrating that GCAP2 is not or weakly expressed in cone 
photoreceptor synapses. Abbreviations: ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear 
layer. Scale bars: 10µm. 
Contributed by Sivaraman Natarajan 
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3.18. Labeling of presynaptic GCAP2 immunosignals can be blocked by pre-

absorption with GCAP2-GST but not by GST . 

GCAP2 was found at synaptic ribbon sites (immunolabeled by RIBEYE 

antibodies) and close to synaptic ribbons (Fig. 26). Most but not all ribbons were 

labeled (Fig. 26).    

                                                                              
Figure  27. Labeling of presynaptic GCAP2 immunosignals can be blocked by GCAP2-GST but not by GST 
pre-absorption. Cryostat sections immunolabeled with polyclonal anti-GCAP2 antiserum pre-absorbed with GST 
(A,B,E,F) or GCAP2-GST (C,D,G,H). (A-D) The GCAP2 immunolabeling in the OPL, as well as in the IS and 
OS cannot be blocked by pre-absorption with GST (A) but by pre-absorption with GCAP2-GST (C). After pre-
absorption of the GCAP2 polyclonal antiserum the GCAP2 immunosignal is gone (C) whereas after pre-
absorption with GST the GCAP2 immunosignal remained unchanged (A). (B,D) represent the respective phase 
pictures for (A,C). (E,F) Pre-absorption of GCAP2 antiserum with GST does not influence the GCAP2- as well as 
the RIBEYE- immunosignal in ribbon synapses of the OPL and IPL. In contrast, pre-absorption of the GCAP2 
antiserum with GCAP2-GST (G,H) abolishes GCAP2 immunosignals but not the RIBEYE immunosignals 
demonstrating the specificity of the GCAP2 pre-absorption. (E,G) are low magnification micrographs from the 
indicated immunolabelings (F,H) are high magnification micrographs from the indicated immunolabelings. 
Abbreviations: OS, outer segment; IS, inner segment; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, 
inner nuclear layer; IPL, inner plexiform layer. Scale bars: 10 µm (A-D, F,H); 30 µm (E, G). 
Contributed by Sivaraman Natarajan 
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The GCAP2 immunosignals were specific because the signal could be completely 

blocked by preabsorbing the polyclonal antiserum with GCAP2-GST fusion protein 

but not GST protein alone (Fig. 27) polyclonal anti-GCAP2 antiserum pre-absorbed 

with GST (A,B,E,F) or GCAP2-GST (C,D,G,H). The GCAP2 immunolabeling in the 

OPL, as well as in the IS and OS cannot be blocked by pre-absorption with GST (A) 

but by pre-absorption with GCAP2-GST (C). After pre-absorption of the GCAP2 

polyclonal antiserum the GCAP2 immunosignal is gone (C) whereas after pre-

absorption with GST the GCAP2 immunosignal remained unchanged (A). Pre-

absorption of GCAP2 antiserum with GST (E,F) does not influence the GCAP2- as 

well as the RIBEYE- immunosignal in ribbon synapses of the OPL and IPL. In 

contrast, pre-absorption of the GCAP2 antiserum with GCAP2-GST (G,H) abolishes 

GCAP2 immunosignals but not the RIBEYE immunosignals demonstrating the 

specificity of the GCAP2 pre-absorption.      
 

 3.19. RIBEYE and GCAP2 are localized very close to each other in 

photoreceptor synapses as judged by in-situ Proximity Ligation Assays (PLA). 

The close association of RIBEYE and GCAP2 in-situ was further supported 

by in-situ Proximity Ligation Assays (PLA assays; Gustafsdottir et al., 2005) on 

flash-frozen mouse retinal sections (Fig. 28). PLA in-situ interaction assays critically 

depend on the close proximity of the interaction partners (Söderberg et al., 2006). In 

PLA assays, the secondary antibodies are labeled with specific oligonucleotides. Only 

if the two antigens detected by two different primary antibodies are in close proximity 

to each other (less than 40nm), a linker oligonucleotide can hybridize to the distinct 

PLUS/MINUS oligonucleotides conjugated to the secondary antibodies and provide 

the template for a rolling circle amplification (Söderberg et al., 2006, 2008). The 

product of the rolling circle amplification is then specifically detected by a 

fluorescent oligonucleotide probe (Fig. 28). In case of RIBEYE and GCAP2 a strong 

PLA interaction signal was observed in the OPL (Fig. 28A-E).  
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Figure 28. Co-localization of RIBEYE and GCAP2 as analyzed by In-situ Proximity Ligation Assays (PLA). 
Co-localization of RIBEYE and GCAP2 in retinal sections in-situ was analyzed using proximity ligation assays 
(Gustafsdottir et al., 2005; Söderberg et al., 2008). This assay critically depends upon the distance of the 
interaction partners and a positive PLA interaction signal is only generated if the interaction partners are located in 
a distance of less than 40nm (Söderberg et al., 2006). A strong PLA interaction signal in the OPL, as visualized by 
the red fluorescence signal, was observed between RIBEYE and GCAP2 (Fig. 28A-E). In Fig. 28A,B an overview 
of the PLA signals is given at a low magnification. Fig. 28C-E are high magnifications of the OPL. In Fig. 28B 
and in Fig. 28E the PLA signals of Fig. 28A and Fig. 28D is superimposed onto the respective phase images. 
Arrows point to PLA interaction signals in the OPL indicating close proximity of RIBEYE and GCAP2. No PLA 
interaction signal was present in the OPL if both primary antibodies were omitted (Fig. 28F,G) or if only one 
primary antibody was applied (Fig. 28H,I) demonstrating the specificity of the detection assay. In Fig. 28G the 
PLA signal of Fig. 19F is superimposed onto the respective phase image. As a further negative control RIBEYE 
and opsin were tested for interaction by PLA and did not produce any signal in the OPL (Fig. 28J) again 
demonstrating specificity of the PLA interaction assays. In contrast, a mixture of RIBEYE (U2656)/CtBP2 
antibodies (positive control) gave a strong PLA interaction signal in the OPL (Fig. 28L). A mixture of 
GCAP2/opsin antibodies generated a strong PLA interaction signal in the outer/inner segments but not in the OPL 
(Fig. 28K). RIBEYE and mGluR6 which are located relatively closely together but beyond the critical distance of 
PLA assays of ~40nm (Söderberg et al., 2006) did not produce a PLA interaction signal in the OPL (Fig. 28M) 
demonstrating that PLA interaction signals clearly indicate very close proximity of the analyzed antigens. The 
arrows in K and L point to PLA interaction signals. Abbreviations: IS, inner segments; ON, outer nuclear layer; 
OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer. Scale bars: 10µm (A-J). 
Contributed by Sivaraman Natarajan 
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There was no interaction signal present in the OPL if both primary antibodies were 

omitted or if only one primary antibody was applied (followed by incubation with the 

two oligonucleotide-conjugated secondary antibodies) demonstrating the specificity 

of the detection assay. As a further negative control RIBEYE and opsin were tested 

for interaction by PLA and did not produce any signal in the OPL further 

demonstrating specificity of the PLA interaction assays (Fig. 28J). In contrast, a 

mixture of rabbit polyclonal RIBEYE (U2656) and mouse monoclonal CtBP2 

antibodies (positive control) gave a strong PLA interaction system in the OPL (Fig. 

28L). Remarkably, RIBEYE and mGluR6 did not produce a PLA interaction signal in 

the OPL (Fig. 28M). RIBEYE at the synaptic ribbon and mGluR6 at the tips of 

invaginating ON bipolar cells of the ribbon synapse obviously are not close enough to 

produce a PLA interaction signal further emphasizing the very close proximity of 

GCAP2 and synaptic ribbons in the presynaptic terminal in-situ (see discussion).  

 
3.20. Characterization of RIBEYE(B)-GCAP2 binding 
 

In order to further characterize binding of GCAP2 to RIBEYE we analyzed 

why the presence of 1mM ME is essential for RIBEYE-GCAP2 interaction in the 

fusion protein pull-down experiments. If ME was absent from the incubation buffer, 

RIBEYE(B) did not bind to GCAP2-GST in the fusion protein pull-down assays (Fig. 

17A; Fig. 30A,B). It is well known that ME can cleave disulfide bridges (for review, 

see Berg et al., 2007). rRIBEYE(B)-domain contains 8 cysteine residues: 

RIBEYE(B)C587; RIBEYE(B)C603; RIBEYE(B)C667; RIBEYE(B)C683; 

RIBEYE(B)C781; RIBEYE(B)C786; RIBEYE(B)C861 and RIBEYE(B)C899. From 

these cysteines only cysteine C667 and cysteine C899 in the SBD of RIBEYE are 

predicted to be close enough to form disulfide bridges in monomeric RIBEYE (Fig. 

29A,B). RIBEYE(B)C667 is located in SBDa spatially close to RIBEYE(B)899C in 

the SBDb and a disulfide bridge between these residues would thus link the two 

different parts of the SBD with each other. We analyzed RIBEYE(B)C899S for its 

capability to interact with GCAP2 and tested whether this RIBEYE point mutant 

needs ME to interact with GCAP2 in pull-down assays. Most interestingly, 

RIBEYE(B)C899S interacted with GCAP2 in the absence of ME (Fig. 30B) 

demonstrating that RIBEYE(B)C899S does not need ME to bind to GCAP2. 
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A                                                                              B 

 
Figure 29. (A) Localization of cysteine residues in RIBEYE(B): Only cysteine C667 and cysteine C899 are 
located within a distance of ~4Å to form a disulfide bridge. (B) A predicted disulfide bridge between C667 in 
SBDa and C889 in SBDb (indicated by a yellow-black dashed line) can be expected to limit the rotational freedom 
of the hinge 2 region and the movement of the SBDb relative to SBDa. The structure model in (A,B) starts at 
amino acid P575 and ends at amino acid F905 of RIBEYE and is based on the crystal structure of tCtBP1 (Kumar 
et al., 2002; Nardini et al., 2003; see also Magupalli et al., 2008; Alpadi et al., 2008). 
 

 
Figure 30. The binding of GCAP2 to the hinge 2 region of RIBEYE(B) is modulated by the substrate-
binding subdomain (SBD) of RIBEYE(B). (A, B) Fusion protein pull-down assays analyzed by SDS-PAGE 
(10% acrylamide gels). (A) GCAP2 does not pull-down both wild type RE(B) as well as RE(B)C683S in the 
absence ME (lanes 8,10) but only in the presence of ME (lanes 7,9; arrowheads). (B) In contrast, GCAP2 pulls 
down RIBEYE(B)C899S in the absence of ME lane 8 (arrowhead). 
 

The binding of RIBEYE(B)C899S to GCAP2 in the absence of ME indicates that 

cysteine C899 is part of the “-mercaptoethanol effect” that promotes 

GCAP2/RIBEYE interaction. Mutating RIBEYE(B)C683 (which is located in the 

homo-dimerization interface of the NBD (Fig. 30A) into RIBEYE(B)C683S did not 

change the dependency of GCAP2/RIBEYE binding from the presence of ME (Fig. 

A B  
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30A, lane 7-8). RIBEYE(B)C683S did not interact with GCAP2 in the absence of 

ME (Fig. 30A, lane 8) demonstrating that only specific cysteine mutations of 

RIBEYE(B) lead to an independence from ME for GCAP2 binding. 

RIBEYE(B)C899S which was shown to be important in modulating 

GCAP2/RIBEYE interaction (Fig. 30B, Fig. 29A,B) is located in the SBD of 

RIBEYE(B). 

 

3.21. Mutations in SBD of RIBEYE influence the binding of GCAP2 to 

RIBEYE(B) 

I also tested non-cysteine mutants of the SBD, namely RIBEYE(B)F904W 

and RIBEYE(B)CTR, for their capability to interact with GCAP2. RIBEYE(B)F904 

is located in the SBDb at the end of the modelled structure (Fig. 9B; Fig. 10A,B; Fig. 

29A,B). RIBEYE(B)CTR lacks the hydrophobic carboxyterminal region (CTR; 

aa912-918 of RIBEYE); the structure of the CTR has not yet been resolved (Kumar et 

al., 2002; Nardini et al., 2003). RIBEYE(B)F904W and RIBEYE(B)CTR did not 

interact with GCAP2 in the YTH system although these mutants are not within the 

proper binding region of RIBEYE for GCAP2 (Fig. 29A,B). We interpret these data 

that the latter mutants of the SBD are likely not relevant for a direct physical 

interaction with GCAP2 but are less well capable to stabilize a conformation of the 

hinge 2 region that can bind GCAP2. 

 
Figure 31. Mutations in SBD of RIBEYE influence the binding of GCAP2 to RIBEYE(B): Point mutating 
F904 in RIBEYE(B) to RE(B)F904W abolishes RIBEYE(B)-GCAP2 interaction in the YTH system (mating #1). 
Similarly, deleting the hydrophobic carboxyterminal region (CTR) of RIBEYE(B) results in a lack of interaction 
between RIBEYE and GCAP2 in the YTH system (mating #7). 
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3.22. RIBEYE(B)-GCAP2 interaction is NAD(H)-dependent 
I tested whether the reducing power of ME is important in promoting 

RIBEYE-GCAP2 interaction. RIBEYE(B) efficiently binds reduced NAD(H) 

(Schmitz et al., 2000; Alpadi et al., 2008) Therefore, we analyzed whether NADH 

could replace ME in promoting RIBEYE-GCAP2 interaction. Indeed, GCAP2 

bound to RIBEYE(B) in the absence of ME if NADH was present in the incubation 

buffer (Fig. 32A,B). Surprisingly, also the oxidized form of NAD(H), NAD+, induced 

RIBEYE(B)-GCAP2 interaction in the absence of ME (Fig. 32B) demonstrating that 

the reducing power of NADH does not play a major role in promoting GCAP2-

RIBEYE interaction. Both the oxidized as well as the reduced form of NAD(H) 

(NAD+ and NADH, respectively) stimulate RIBEYE-GCAP2 interaction.  

 

 
Figure 32. NADH and NAD+ are essential co-factors for the binding between RIBEYE and GCAP2 in the 
absence of -mercaptoethanol (-ME). Fusion protein pull-down assays were analyzed by SDS-PAGE (10% 
acrylamide gels). RIBEYE(B) binds NAD(H) with high affinity (Schmitz et al., 2000). (A,B) In fusion protein 
pull-down assays, GCAP2-RIBEYE(B) interaction requires the presence of -mercaptoethanol (-ME). If ME is 
absent GCAP2 does not bind to RIBEYE(B) unless NADH or NAD+ is added to the incubation buffer. Both the 
reduced form (NADH) (Fig. 22A) as well as the oxidized form (NAD+) (Fig. 22B) promote RIBEYE(B)-GCAP2 
interaction. 
 

3.23. Low concentrations of NAD(H) promote RIBEYE/GCAP2 interaction 

         In the fusion protein pull-down analyses the fusion proteins were used at an 

equimolar concentration of 0.8µM. We tested whether low concentrations of NAD+ 

(A) or NADH (B) (ranging from 0.1 to 0.8µM) were able to stimulate binding of 

RIBEYE to GCAP2. Even the lowest concentration of NAD+ or NADH (0.1µM) 

stimulated binding of RIBEYE(B)-MBP to GCAP2-GST (lanes 3-6); without 

addition of NAD+ or NADH no binding was observed between GCAP2-GST and 

RE(B)-MBP in the absence of ME (lane 1). The addition of ME replaced the need 

for either NAD+ or NADH in promoting GCAP2-RIBEYE(B) interaction: even in the 

B A 
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absence of NAD+/NADH GCAP2 bound to RIBEYE(B) if ME was present (lane 2). 

In (C) and (D) even lower concentrations of NAD+ (C) or NADH (D) were tested. 

NAD+/NADH promoted RIBEYE(B)/GCAP2 binding already at concentrations as 

low as 10nM (lane 4). If still lower concentrations of NAD(H) were used, i.e. 1nM 

and 5nM (lanes 2,3) interaction was no longer observed, similar to the absence of 

interaction in the absence of any NAD+ (lane 1;  Fig. 33C)/ or NADH (lane 1; Fig. 

33D). The incubation buffer in the experiments shown in Fig. 33C,D did not contain 

any ME. 

 
Figure  33. Low concentrations of NAD(H) promote RIBEYE/GCAP2 interaction. 
The binding of RIBEYE(B)-MBP (0.8µM) to GST-GCAP2 (0.8 µM) was analyzed in the presence of increasing 
concentrations of NAD+ (A,C) or NADH (B,D). In A and B  we tested low concentration of NAD+ and NADH 
ranging from 0.1µM to 0.8µM  (lane3 to lane6) were stimulating  binding of RE(B)MBP  to GCAP2-GST. In C 
and D we tested even lower concentration of NAD+ and NADH ranging from 1nM to 100nM. At the 
concentration of 10nM (lane4) both NAD+ and NADH promotes GCAP2/RIBEYE(B) binding but if  we used 
lower  concentration i.e., 1nM and 5nM  of NAD+ and NADH interaction was no longer observed (lane 2,3). 
 
 
 
 
 
 

A C 

D B 
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3.24. NAD(H) binding-deficient RIBEYE(B)G730A mutant 

I analyzed the NAD(H)-binding-deficient RIBEYE point mutant, 

RIBEYE(B)G730A, (Magupalli et al., 2008; Alpadi et al., 2008) in the YTH system 

for interaction with GCAP2. In agreement with the essential requirement of NAD(H) 

in promoting RIBEYE/GCAP2 interaction in fusion protein pull-down analyses, 

GCAP2 did not interact with this NAD(H) binding-deficient RIBEYE point mutant in 

the YTH system (Fig. 34) although this RIBEYE point mutant was able to efficiently 

hetero-dimerize with RIBEYE(B) wildtype protein . 

 
Figure 34. NAD(H) binding-deficient RIBEYE(B)G730A mutant. GCAP2 did not bind to the NAD(H)-
binding-deficient RIBEYE point mutant RIBEYE(B)G730A in the YTH system as judged by the lack of growth 
on –ALWH selective medium and lack of -galactosidase expression (mating #2). Mating #1 indicates a positive 
control (RIBEYE(B) mated with GCAP2). Matings #3-6 show the respective auto-activation controls. 
RIBEYE(B)G730A is still able to homo-dimerize with wildtype RIBEYE(B) demonstrating that 
RIBEYE(B)G730A is not misfolded (mating #7). For convenience, experimental bait-prey pairs are underlayered 
in color (green in case of interacting bait-prey pairs; yellow in case of non-interacting bait-prey pairs); control 
matings are non-colored. 
 
3.25. Viral overexpression of GCAP2 in presynaptic photoreceptor terminals 

promotes disassembly of photoreceptor synaptic ribbons. 

            We further tested whether synaptic GCAP2 expression could be related to the 

Ca2+-dependent dynamic changes of synaptic ribbons. For this purpose, we generated 

recombinant GCAP2-EGFP expressing Semliki Forest (SLF) virus and used this 

recombinant virus for infecting retinal explants. EGFP-expressing SLF virus served 

as control virus. In organotypic retinal explant cultures the recombinant SLF viruses 

preferentially infected photoreceptors (Fig. 35A-D). Photoreceptors were infected at a 

high density with the SLF viruses (Fig. 35A,B) and showed expression of GCAP2-

EGFP (Fig. 35C) or EGFP (Fig. 35D) throughout all photoreceptor cell compartments 

including the synaptic terminals (Fig. 35). Our organotypical cultures did no longer 

contain outer segments as also observed in other organotypic retinal cultures. 

Interestingly, photoreceptor terminals that were infected with GCAP2-EGFP virus 

typically displayed a loss of synaptic ribbons as analyzed by co-immunolabeling with 

RIBEYE antibodies (U2656) (Fig. 35E-L, Fig. 35R). Photoreceptor terminals infected 

with EGFP-virus (control virus) did not show loss of synaptic ribbons indicating that 
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the loss of synaptic ribbons in GCAP2-EGFP-infected photoreceptors is not due to a 

cytopathic effect of the virus infection itself (Fig. 35M-R).  

 
Figure 35. Overexpression of GCAP in photoreceptor terminals disassembles synaptic ribbons 
Recombinant expression of either GCAP2-EGFP or EGFP in organotypic retina explant cultures (A-D). Simliki 
Forest (SLF) virus efficiently infects photoreceptors in organotypical explant cultures of the retina. SLF-mediated 
GCAP2-EGFP (A-C) heterologous expression labels the entire photoreceptor from the inner segments to the 
synaptic terminals (arrows) in the OPL. As generally observed by us and other groups, outer segments are absent 
from explant preparations. In analogy to GCAP2-EGFP expression also infection with EGFP-SLF virus leads to 
labelling of the entire photoreceptor (D) in retina explant culture. Scale bars in A-D represent 10µm. (E-Q) Three-
dimensional reconstructions of individual optical stacks along the z-axis of SLF virus infected retina explant 
recorded with the apotome (Zeiss). (E-Q) In order to visualize synaptic ribbons in GCAP2-EGFP- and EGFP-
infected retina explants, samples were immunolabeled with polyclonal RIBEYE antibody (U2656, red signals). 
Synaptic ribbons are abundantly present in the OPL of the organotypical retina cultures but absent from GCAP2-
EGFP-expressing photoreceptor terminals (white arrows in E-I, asterisks in J-Q). (E-I) show lower 
magnifications of a three-dimensional reconstructed GCAP2-EGFP expressing photoreceptor from different 
angles to emphasise the lack of synaptic ribbons within the terminal (white arrows) without influencing the 
presence of synaptic ribbons (arrowhead in E) in the neighboring non-infected photoreceptors. The x,y and z 
labeled arrows indicate the coordinate axes in the three dimensions and are scaled to represent the distance of 5 
µm in each spacial direction. (J-L) represent high magnifications of GCAP2-EGFP infected photoreceptor 
terminals. Although abundant ribbon labeling (red signals) can be detected next to the infected terminals 
(asterisks) no ribbon structures are present within the GCAP2 overexpressing terminals. (M-Q) Lack of ribbon 
structures within infected photoreceptor terminals is not due to viral infection as terminals overexpressing EGFP 
alone do contain ribbon structures (M-Q) visualized by the yellow color within the EGFP expressing synaptic 
terminals. (N) and (O) represent view of the same infected, EGFP-expressing terminal as in (M) but from different 
angles. (R) Statistical analysis of photoreceptor terminals infected with either EGFP-SLF virus or GCAP2-EGFP-
SLF-virus. In contrast to EGFP overexpressing photoreceptor terminals 70% of synaptic terminals overexpressing 
GCAP2 lack synaptic ribbons. Error bars represent standard deviation, numbers in parentesis indicate the number 
of counted terminals per construct. Abbreviations: OS, outer segments; IS, inner segments; ONL, outer nuclear 
layer; OPL, outer plexiform layer. 
Contributed by Karin Schwarz and Sivaraman Natarajan 
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The same observation described above for the light microscopic analyses was also 

observed at the electron microscopic level using EM analyses of GCAP2-EGFP and 

EGFP (control)-infected retinas (Fig. 36). In GCAP2-EGFP-infected retinas we 

observed a dramatic reduction in the number of synaptic ribbons in comparison to 

EGFP-infected control retinas. 

 

 
 
 
Figure 36. Overexpression of GCAP2 in photoreceptor terminals disassembles synaptic ribbons: Electron 
microscopic analyses. Recombinant expression of either GCAP2-EGFP (A-G) or EGFP in organotypic retina 
explant cultures (H-L), see also Fig. 35. Infection with GCAP-EGFP (A-G) leads to a loss of synaptic ribbons at 
the presynaptic active zones (labelled by arrows). In many cases, instead of bar-shaped anchored synaptic ribbons, 
floating, non-anchored spherical synaptic ribbons (ss) were observed which are considered as intermediate stages 
in the disassembly of synaptic ribbons. EGFP-transfected photoreceptors (control infections; H-L) displayed 
normally looking photoreceptor terminals with normal looking bar-shaped synaptic ribbons. M: semiquantitative 
evaluation: Approximately 180 randomly picked synapses were analyzed for the presence of bar-shaped synaptic 
ribbons (>150nm in length) at photoreceptor active zones (6 retinas for each construct). GCAP2-EGFP infected 
retinas show a dramatic reduction of bar-shaped synaptic ribbons in comparison to EGFP (control)-infected 
retinas. Abbreviations: pr, presynaptic terminal; po, postsynaptic dendrites; sr, synaptic ribbon; ss, spherical 
synaptic ribbon (synaptic sphere); m, mitochondrion. Scale bars: 1µm (A,B,D,E); 250nm (C), 500nm (F,G-L). 
Contributed by Karin Schwarz and Sivaraman Natarajan 
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GCAP2 is a photoreceptor-enriched neuronal Ca2+-sensor protein. Its role as a 

Ca2+-dependent modulator of the phototransduction cascade is well known (for 

review, see Palczewski et al., 2004). Previous studies have shown that GCAP2 is not 

restricted to photoreceptor outer and inner segments but also present in photoreceptor 

presynaptic terminals (Otto-Bruc et al., 1997; Duda et al., 2002, Pennesi et al., 2003; 

Makino et al., 2008). The function of GCAP2 in photoreceptor synapses is not 

known. The analyses of GCAP2 knockout mice suggested a synaptic function of 

GCAPs based on ERG analyses that showed a defect in the b-wave of the 

electroretinogram (Pennesi et al., 2003). But the mechanism how GCAPs might work 

in the synapse remained unclear. In the present study, we provide first evidence how 

GCAP2 works in the synapse. We showed with many different, independent 

approaches that RIBEYE, the major component of synaptic ribbons in the active zone 

of photoreceptor synapses, binds to GCAP2.  

 
4.1. RIBEYE-GCAP2 interaction requires structural rearrangements of 

RIBEYE(B)-domain 

The hinge 2 region of RIBEYE(B) is responsible for the interaction with the 

carboxyterminal region of GCAP2 as shown by YTH analyses. This suggestion is 

further supported by the analysis of point mutants of the hinge 2 region that 

completely abolished RIBEYE-GCAP2 interaction. Therefore, the hinge 2 region of 

RIBEYE(B) represents the core docking region for GCAP2. The hinge 2 region 

serves as a flexible linker and its conformation is dependent on NAD(H) binding as 

judged by structural analyses obtained for members of D-isomer-specific hydroxyacid 

dehydrogenase family to which also RIBEYE belongs (Lamzin et al., 1994; Goldberg 

et al., 1994, Kumar et al., 2002, Nardini et al., 2003; for review, see Popov and 

Lamzin, 1994, Chinnadurai, 2002). NAD(H) binding results in a significant change in 

the overall conformation of the entire protein. NAD(H)-binding induces movement of 

the SBD towards to the NBD via rotation around the hinge regions (Lamzin et al., 

1994) resulting in closure of the NAD(H) binding cleft (“closed” conformation). 

Additionally, binding of NAD(H) results in the structural organization of the 

carboxyterminal region (CTR) (Lamzin et al., 1994). The NAD(H)-induced creation 

of a new -helix that interacts with NADH stabilizes the “closed” conformation 

(Lamzin et al., 1994). This event was shown for formate dehydrogenase (Lamzin et 

al., 1994) from which structures exist in both the apo- and holo-state. Since 
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RIBEYE(B) belongs into the same protein family, it is reasonable to assume similar 

structural changes also in RIBEYE(B) in response to NAD(H) binding (Lamzin et al, 

1994; Goldberg et al., 1994; Kumar et al., 2002; Nardini et al., 2003). 

Thus, we suggest that binding of GCAP2 to the hinge 2 region of RIBEYE(B) 

requires the NAD(H)-induced, closed conformation of RIBEYE(B). This hypothesis 

can explain the NAD(H)-induced stimulation of GCAP2 binding and provides an 

explanation for the observed modulatory role of the SBD: As discussed above, 

formation of the NAD(H)-induced closed conformation requires considerable 

structural rearrangements in the SBD and movement of both SBDa and SBDb. The 

predicted disulfide bridge between C667 and C899 locks SBDa to the SBDb and 

restricts the movements of the two portions of the SBD relative to each other (Fig. 

8E). Therefore, the observed capability of RIBEYE(B)C899S to bind GCAP2 in the 

absence of -ME could be attributed to an enhanced conformational flexibility of the 

SBD. In the cysteine mutant RIBEYE(B)C899S a disulfide bridge can no longer be 

formed between cysteines C667 and C899. We propose that this enhanced structural 

flexibility of the SBD in RE(B)C899S favors a conformation of the flexible hinge 2 

region that is able to bind GCAP2 similar to the NAD(H)-bound conformation. The 

incapability of the RIBEYE(B) mutants RIBEYE(B)F904W and RIBEYE(B)∆CTR 

to bind to GCAP2 can be explained by a decreased capability of these mutants to 

stabilize the closed conformation. RIBEYE(B)∆CTR lacks the hydrophobic 

carboxyterminal region (CTR) of RIBEYE(B) which undergoes enormous structural 

re-arrangements upon NADH binding (Lamzin et al., 1994; Nardini et al., 2003). 

RIBEYE(B)F904 is located at the beginning of the CTR in the SBD of RIBEYE(B) 

(Magupalli et al., 2008). The CTR has an important role in stabilizing the closed 

conformation in the D-isomer-specific 2-hydroxyacid dehydrogenase protein family 

(Lamzin et al., 1994). We suggest that the incapability of the RIBEYE(B)∆CTR 

mutant and of the RIBEYE(B)F904W mutant to bind to GCAP2 is based on the 

insufficient stabilization of the closed conformation. We propose that these mutants 

destabilize a conformation of the hinge 2 region of RIBEYE(B) that is compatible 

with GCAP2 binding. Further investigations will be necessary to understand the 

complex regulation of GCAP2-RIBEYE interaction and how it is mediated by 

structural changes in the protein. 
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4.2. GCAP2, a candidate to mediate Ca2+- and illumination-dependent synaptic 

ribbon dynamics 

RIBEYE is a major component of synaptic ribbons (Schmitz et al., 2000; 

Zenisek et al., 2004; Wan et al. 2005, Magupalli et al., 2008) and therefore synaptic 

ribbons can probably bind considerable amounts of GCAP2. Such a Ca2+-sensing- 

and buffering protein placed in the active zone will shape Ca2+-dependent synaptic 

vesicle trafficking in ribbon synapses (von Gersdorff and Matthews, 1994; Neves and 

Lagnado, 1999; Beutner et al., 2001; Thoreson et al., 2004; Innocenti and 

Heidelberger, 2007). The binding of GCAP2 to RIBEYE is regulated by NAD(H) and 

provides the synaptic ribbon with a dynamically adjustable Ca2+-sensing and Ca2+-

buffering system. The NAD(H)-dependent, dynamic RIBEYE-GCAP2 interaction 

explains why most, but not all, of the synaptic ribbons contain GCAP2 (Figs. 

17,18.19). Since GCAP2 needs to be recruited to synaptic ribbons the physiological 

processes targeted by GCAP2 are likely not extremely fast. More likely, slower Ca2+-

dependent processes will be affected. We propose that GCAP2 mediates the known 

Ca2+-dependent structural changes of synaptic ribbons during light- and darkness. A 

variety of studies have shown that synaptic ribbons (e.g. number and shape of 

synaptic ribbons) are important determinants of synaptic performance that adjust the 

synaptic machinery to transmit a broad range of stimulus intensities (Hull et al., 2006; 

Johnson et al., 2008; Meyer et al., 2009). The structure of synaptic ribbons is 

dynamically regulated. Spiwoks-Becker et al. (2004) demonstrated disassembly of 

synaptic ribbons in photoreceptor terminals during illumination when exocytosis is 

low. Illumination of photoreceptors also reduces the presynaptic Ca2+ concentration in 

photoreceptor ribbon terminals (Jackman et al., 2009). Interestingly, the tendency of 

synaptic ribbons to disassemble during environmental illumination could be 

mimicked by removing (chelating) extracellular Ca2+ indicating that Ca2+ is an 

important mediator of synaptic ribbon dynamics and that Ca2+ stabilizes the synaptic 

ribbon. GCAP2 could mediate these Ca2+-dependent effects by chelating Ca2+ at the 

synaptic ribbon. Chelating Ca2+ by GCAP2 which has been recruited to RIBEYE via 

a NAD(H)-dependent mechanism at the synaptic ribbon thus would result in a 

reduction in the number of synaptic ribbons. The hypothesis that GCAP2 is important 

for the stability of synaptic ribbons is supported by our finding that viral 

overexpression of GCAP2 in photoreceptors reduces the number of synaptic ribbons; 

GCAP2 overexpression in the synapse works similar on ribbon dynamics as chelating 



 109 

Ca2+. Both procedures lead to a preferential disassembly of synaptic ribbons although 

the size of the responses is bigger in the virus-induced disassembly of synaptic 

ribbons. This is probably due to intracellular overexpression of the Ca2+ chelating 

protein which can be expected to induce a stronger effect than the indirect 

manipulation of intracellular Ca2+ through the chelation of extracellular Ca2+.  

 
 
Figure 37. Schematic, simplified working model of RIBEYE-GCAP2 interaction in the photoreceptor ribbon 
synapse. The synaptic ribbon is anchored at the active zone of photoreceptor ribbon synapses and located close to 
L-type, voltage-gated presynaptic Ca2+-channels (Cav1.4). RIBEYE, a major component of synaptic ribbons, 
forms the scaffold of the synaptic ribbon via RIBEYE-RIBEYE interactions. RIBEYE consists of a unique A-
domain with mainly structural functions and a B-domain that specifically binds NAD(H). Based on currently 
available data (Schmitz et al., 2000; Alpadi et al., 2008), the B-domain of RIBEYE probably points to the 
cytoplasmic face of synaptic ribbons. GCAP2 binds to RIBEYE(B) in a NAD(H)-dependent manner. We suggest 
that binding of NAD(H) to RIBEYE recruits GCAP2 to synaptic ribbons. The dynamic, NAD(H)-dependent  
nature of RIBEYE/GCAP2 interaction could explain why most, but not all, synaptic ribbons co-localize with 
GCAP2 (Fig. 26). 
 

Photoreceptor terminals also contain guanylate cyclases (Liu et al., 1994, Cooper et 

al., 1995; Duda et al., 2002; Venkataraman et al., 2003) that might be targeted by 

GCAP2. The regulation of intracellular cGMP levels is important for various aspects 

of structural and functional plasticity of photoreceptor terminals (Spiwoks Becker et 

al., 2004; Zhang et al., 2005). cGMP-gated Ca2+-channels have been reported in 

photoreceptor synapses which could be targeted by GCAP2-regulated cGMP levels to 
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adjust synaptic transmission (Rieke and Schwartz, 1994, Savchenko et al., 1997; 

Müller et al., 2003). Which synaptic mechanisms are targeted by RIBEYE-GCAP2 

interaction, the characterization of GCAP2 effector proteins, how GCAP2- effector 

interaction is affected by intracellular Ca2+ concentrations and how the recruitment of 

NADH to RIBEYE is regulated remains to be elucidated by future analyses. 

The selective association of GCAP2 with photoreceptor synaptic ribbons but 

not with bipolar cell synaptic ribbons can contribute to known physiological 

differences between different types of retinal ribbon synapses (e.g. Heidelberger et 

al., 1994; Thoreson et al. 2004; Sheng et al., 2007). We suggest that the disturbance 

of synaptic transmission in GCAP2 knockout mice (Pennesi et al. 2003) as measured 

by reduced b-waves in ERG analyses is due to a defect in synaptic transmission at 

photoreceptor ribbon synapses. 
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