
Aus dem Bereich Biologie, der Medizinischen Fakultät der Universität des Saarlandes, 

Homburg/Saar und dem  

Institut für Immunologie/Centre de Recherche Public de la Santé, Luxemburg  

 

Genetische und phänotypische Charakterisierung 

verschiedener Masern Viren und ihre  

Interaktion mit der unspezifischen Immunabwehr 

 

Genetic and phenotypic characterization of different measles 

virus strains and their interaction with the  

innate immune response 

 
 

DISSERTATION 

 
zur Erlangung des Grades eines Doktors der Naturwissenschaften  

 

der Medizinischen Fakultät  

der UNIVERSITÄT DES SAARLANDES  

 
2010 

 
vorgelegt von  

 
Julia Kessler 

 
geb. am: 29. Mai. 1981, in Saarburg 



  Index 
 

  i   

 

 

Table of contents 

 

 
    

Zusammenfassung...........................................................................................1 

 

Abstract...………………..……………………………………………………...…….4 

 

   Chapter I: General Introduction 

 
1. The measles virus.................................................................................8 

1.1. History and Classification......................................................................8 

1.2. Morphology ...........................................................................................9 

1.3. Cellular receptors................................................................................12 

1.4. Virus Replication.................................................................................14 

 
2. Molecular Epidemiology......................................................................16 

2.1. Usefulness of Molecular Epidemiology ...............................................16 

2.2. Measles genotyping and surveillance .................................................17 

 
3. Measles disease and host defense.....................................................20 

3.1. Clinical features and complications.....................................................20 

3.2. Immune response against measles virus infection .............................23 

 
4. Measles eradication strategies ...........................................................24 

4.1. Measles vaccines ...............................................................................24 

4.2. Eradication efforts...............................................................................27 

4.3. Measles today.....................................................................................29 

 
5. Objectives of this study .......................................................................30 



  Index 
 

  ii   

   Chapter II: Materials and Methods 
 
 
   Materials 
 

1. Cells and Viruses................................................................................33 

1.1. Cells....................................................................................................33 

1.2. Viruses................................................................................................34 

 
2. Patients sera for cytokine analysis......................................................35 

 
3. Clinical specimens for virus characterization ......................................37 

 
4. Chemicals, Buffers and Solutions .......................................................41 

4.1. Chemicals ...........................................................................................41 

4.2. Buffers and Solutions..........................................................................42 

 
5. Commercial kits ..................................................................................42 

 
6. 2D-DIGE Material ...............................................................................43 

 
7. 2D-DIGE Buffers and Solutions ..........................................................44 

 
8. Enzymes .............................................................................................45 

 
9. Primers ...............................................................................................46 

 
10. Bioinformatics .....................................................................................47 

 
11. Additional programs............................................................................47 

 
12. Instruments .........................................................................................48 

 
 
   Methods 
 

13. Cell cultures ........................................................................................49 

13.1. Cell lines .............................................................................................49 



  Index 
 

  iii   

13.2. Freezing and thawing cells .................................................................50 

13.3. Mycoplasma test.................................................................................51 

 
14. Virus cultures ......................................................................................52 

14.1. MV isolation and virus propagation.....................................................52 

14.2. Virus titration (TCID50 determination)..................................................53 

14.3. Virus Concentration (Amicon® Ultra filtration)......................................53 

 
15. Enzyme-Linked-Immuno-Sorbent-Assay (ELISA)...............................54 

 
16. Cytometric bead array (CBA)..............................................................55 

 
17. RNA extraction....................................................................................57 

17.1. QIAamp® Viral RNA Mini kit ................................................................57 

17.2. MagMAX™-96 AI/ND Viral RNA Isolation kit ......................................57 

17.3. RNeasy® Protect Mini kit.....................................................................58 

 
18. Reverse Transcription.........................................................................59 

 
19. Polymerase Chain Reaction (PCR) ....................................................60 

19.1. MV genotyping PCR ...........................................................................61 

19.2. MV TaqMan® PCR..............................................................................62 

 
20. Agarose gel electrophoresis ...............................................................63 

 
21. Sanger sequencing.............................................................................63 

 
22. Phylogenetic analysis .........................................................................66 

 
23. 2D-DIGE Proteomics ..........................................................................67 

 
 
 
 
 
 



  Index 
 

  iv   

   Chapter III: Results and Discussion 
 
 
   Part I: Genetic and Phenotypic characterisation of various MV strains 
 

1. Results................................................................................................74 

1.1. MV wt strains are highly variable in their sensitivity to IFN-alpha .......74 

1.2. No sequence motif in the P/C/V-locus can be associated with the 

sensitivity to IFN-alpha........................................................................75 

1.3. MV wt strains are low IFN-beta inducers unless they express diRNA 76 

1.4. MV wt strains induce significantly lower levels of cytokines than clade 

A strains, provided they are negative for diRNA .................................79 

1.5. DiRNA induce TNF-alpha expression during early MV infection in Vero 

cells.....................................................................................................80 

1.6. Multiple passaging induces diRNA in MV culture................................81 

1.7. Clinical samples do not contain diRNA ...............................................85 

 
2. Discussion ..........................................................................................85 

 
 
   Part II: Proteome profiling of Measles virus-host interaction in human lung cells 

comparing wild type and attenuated strains 

 
1. Results................................................................................................90 

1.1. Experimental design ...........................................................................90 

1.2. 2D DIGE analysis ...............................................................................91 

1.3. Comparison of MV strains.................................................................103 

 
2. Discussion ........................................................................................106 

 
 
   Part III: MV induced cytokine response in humans 
 

1. Results..............................................................................................110 

 
2. Discussion ........................................................................................113 



  Index 
 

  v   

   Part IV: Investigation of MV outbreaks 
 

1. Results..............................................................................................117 

1.1. Genotype D6: Germany....................................................................117 

1.2. Genotype D6: Belarus.......................................................................118 

1.3. Genotype D6: Russia........................................................................124 

1.4. Genotype B2: Democratic Republic of Congo ..................................125 

 
2. Discussion ........................................................................................130 

 
 

References....................................................................................................138 

 
 
   Anexes 
 

1. Conference Participations.................................................................151 

 
2. Publications ......................................................................................153 

 
 

Acknowledgements......................................................................................154 

 
 



  Index 
 

  vi   

 

 

Index of Figures 

 

 

Figure 1: Schematic diagram of the measles virus particle correlated with the 

genetic map ........................................................................................10 

Figure 2: Structure of human MV receptors. .......................................................13 

Figure 3: MV replication cycle. ............................................................................14 

Figure 4: Typical cytopathic effect of syncytia formation associated with MV 

replication in Vero/hSLAM cells. .........................................................16 

Figure 5: Geographical distribution of MV genotypes. ........................................20 

Figure 6: Basic pathogenesis of MV infection. ....................................................22 

Figure 7: MV vaccines. .......................................................................................26 

Figure 8: Overview about global annual reported measles cases and measles 

vaccine coverage during 1980 to 2008. ..............................................28 

Figure 9: MV production in IFN-alpha treated or un-treated Vero/hSLAM cells. .75 

Figure 10: Effects of MV on host cells.................................................................78 

Figure 11: Detection of RANTES, MCP-I, IL-8, L-6, TNF-alpha and IL-1 beta in 

MV infected A549/hSLAM cells...........................................................80 

Figure 12: mRNA expression level of TNF-alpha in MV infected Vero/hSLAM 

cells.....................................................................................................81 

Figure 13: MV genome nt positions 15670 to 15795 of MV strains used in this 

study. ..................................................................................................84 

Figure 14: Representative 2D gel maps of MV infected A549/hSLAM cells 12h 

and 32h p.i. and corresponding Venn diagrams. ................................92 

Figure 15: Cytokine induction of IL-5, IL-6, IL-8 and IL-10 in sera of patients 

infected with either MV genotype C2 or B3.......................................112 

Figure 16: Cytokine induction of IL-6 and IL-8 stratified according to onset of 

rash...................................................................................................113 



  Index 
 

  vii   

Figure 17: Phylogenetic tree of D6a strains from Russia and D6b strains from 

Germany and Belarus displaying MV-NP HVR genes. .....................119 

Figure 18: Phylogenetic tree of D6a strains from Russia and D6b strains from 

Germany and Belarus displaying MV-P/H-pseudo-genes.................121 

Figure 19: Phylogenetic tree of D6a strains from Russia and D6b strains from 

Germany and Belarus displaying MV-P genes. ................................122 

Figure 20: Phylogenetic tree of D6a strains from Russia and D6b strains from 

Germany and Belarus displaying MV-H genes. ................................123 

Figure 21: Phylogenetic trees showing MV-NP HVR and MV-P/H-pseudo-genes 

of  B2 strains collected in the DR-Congo. .........................................128 

Figure 22: Phylogenetic trees showing MV-P and H genes of  B2 strains 

collected in the DR-Congo. ...............................................................129 

 

 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  Index 
 

  viii   

 

Index of Tables 

 

 

Table 1: WHO reference strains for measles genotyping 2010...........................19 

Table 2: Cell lines used in part I of the Result Section........................................33 

Table 3: MV strains used in part I of the Result Section .....................................34 

Table 4: Patient sera used in part III of the Result Section .................................36 

Table 5: Controle sera used in part III of the Result Section...............................37 

Table 6: List of clinical specimens analysed in part IV of the Result Section ......38 

Table 7: DiRNA production in MV strains passaged on Vero, Vero/hSLAM and 

A549/hSLAM cells ..............................................................................82 

Table 8: Characteristics of MV 5`copy-back diRNAs ..........................................83 

Table 9: Characterization of MV strains used in this study .................................91 

Table 10: Differentially expressed protein spots in A549/hSLAM cells 12 h p.i...94 

Table 11: Differentially expressed protein spots in A549/hSLAM cells 32 h p.i...97 

Table 12: Molecular and cellular functions of differentially expressed proteins in 

A549/hSLAM cell 12 h and 32 h p.i...................................................102 

Table 13: Unique proteins affected by MV strains and IFNB ............................105 

 

 

 

 

 

 

 

 

 

 

 



  Index 
 

  ix   

 

List of Abbreviations 

 

 

aa  amino acid  
2-5AS 2-5 oligoadenylate synthetase 
BSL bio safety level 
Ca calcium 
cm centimeter 
CPE cytopathic effect 
2D-DIGE Two-dimensional Difference Gel 

Electrophoresis 
DMEM  Dulbecco’s modified Eagle’s medium  
DMSO  dimethyl sulfoxide  
DNA  deoxyribonucleic acid  
DR-Congo Democratic-Republic of Congo 
DTT  dithiothreitol  
EDTA  ethylenediaminetetraacetic acid  
ELISA  enzyme-linked immunosorbent assay  
F  fusion protein  
FACS  fluorescence-activated cell sorter  
FBS  fetal bovine serum  
fw forward 
g gram or gravity 
HBV Hepatitis B Virus 
HIV  human immunodeficiency virus  
H haemagglutinin protein  
h hour 
IFN interferon 
IgG  immunoglobin G  
IgM immunoglobin M 
IL interleukin 
IU international units 
L large protein 
LNS  Laboratoire National de Santé  
M  matrix protein  
Mg magnesium 
MHC  major histocompatibility factor  
min minutes 
ml milli liter 
mM milli Mol 
MMR  Measles Mumps Rubella vaccine  
MOI multiplicity of infection 



  Index 
 

  x   

MV  measles virus  
N  nucleoprotein  
NRW North-Rhine-Westphalia 
nt nucleotide 
OD  optical density  
ORF open reading frame  
P phospho protein 
PBS  phosphate buffered saline  
PCR polymerase chain reaction  
p.i. post infection 
rpm  rounds per minute  
P/S Penicillin/ Streptomycin mix 
RANTES regulated upon activation, normal T 

cell expressed and secreted 
mRNA  messenger RNA 
RNA ribonucleic acid  
RT  room temperature  
rv reverse 
SLAM  signaling lymphocyte activation 

molecule  
SSPE subacute sclerosing panencephalitis  
TCID50 50% tissue culture infective dose 
TNF tumor necrosis factor 
TLR  toll like receptor  
µl micro liter 
Ultra-Glu Ultra-Glutamine 
UV  ultraviolet  
WHO  World Health Organization  
w/o with out 
wt wild type 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



  Index 
 

  xi   

 

Index of Amino Acids 

 

 
single letter code 
  

amino acid name  
 

A  Alanine  
R  Arginine  
N  Asparagine  
D  Aspartic acid  
C  Cysteine  
E  Glutamic acid  
Q  Glutamine  
G  Glycine  
H  Histidine  
I  Isoleucine  
L  Leucine  
K  Lysine  
M  Methionine  
F  Phenylalanine  
P  Proline  
S  Serine  
T  Threonine  
W  Tryptophan  
Y  Tyrosine  
V  Valine  

 
 



  Zusammenfassung 
 

  1   

 

 

Zusammenfassung 

 

 

Die angeborene unspezifische Immunabwehr bildet eine erste Verteidigungslinie 

gegen viele Viren und Mikroorganismen. Cytokine, die nach der Erkennung von 

Pathogenen freigesetzt werden, spielen hierbei eine Schlüsselrolle. Eine 

unterschiedliche Beeinflussung der Cytokinsignalwege durch verschiedene 

Masernviren (MV) könnte die Virusausbreitung und den Schweregrad der 

Krankheit verändern.  

In der vorliegenden Studie wurde der Phänotyp von 22 MV (14 Repräsentanten 

aus 19 derzeit zirkulierenden Genotypen), hinsichtlich ihres Einflusses auf die 

angeborene, unspezifische Immunabwehr charakterisiert. Die Virusreplikation 

verschiedener MV-Wildtypen (wt) in Zellkultur reduzierte sich  durch die Zugabe 

des Cytokins Interferon-alpha (IFN-alpha) um das 2- bis 47-fache, wohingegen 

die Produktion der Impfviren lediglich um das 2- bis 3-fache abnahm. Zusätzlich 

wurde die Produktion verschiedener Cytokine und Effektormoleküle  (IFN-beta, 

RANTES, Interleukin-5 (IL-5), IL-6, IL-8, IL-10, TNF-alpha, IL-1 beta, MxA and 2-

5AS) als Reaktion auf die MV-Infektion verfolgt. Während die Großzahl der wt 

Stämme 71 bis 99% weniger IFN-beta als der „Schwarz“-Impfstamm induzierten, 

wurden bei drei wt Stämmen vergleichbare Konzentrationen nachgewiesen. In 

diesen drei wt Stämmen wurden sogenannte „defective interfering RNAs“ 

(diRNA) nachgewiesen. In klinischen Proben von Masernpatienten konnten wir 

diese diRNAs nicht nachweisen, jedoch nach mehreren Passagen der Viren in 

Zellkultur.  

Andere Studien zeigten bereits, dass Proteine die vom MV-Phosphoprotein Gen 

(MV-P) codiert werden die Signalkaskaden von IFN-alpha/beta blockieren 

können. Sequenzanalysen dieser Gene ließen in unserer Studie allerdings keine 
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Mutationen erkennen, die mit den verschiedenen beobachteten Phänotypen der 

MV Stämme übereinstimmten. 

Diese in vitro Studien zeigten, dass besonders wt MV-Stämme sich in Bezug auf 

ihre Sensitivität zu IFN-alpha und auf ihre Fähigkeit mit der unspezifischen 

Immunabwehr zu interagieren, stark unterscheiden. Des Weiteren zeigten unsere 

Proteomanalysen, dass wt Stämme unterschiedliche Effekte auf Proteine der 

Wirtszelle haben. Dies könnte Unterschiede in der Pathogenität der wt Stämme 

reflektieren.  

 

Kürzlich wurde gezeigt, dass Makaken, die mit zwei verschiedenen wt Stämmen 

(zugehörig zu MV Genotyp C2 oder B3) infiziert wurden, deutliche Unterschiede 

in klinischen Parametern, Virusproduktion und Antikörperproduktion aufwiesen. 

In unserer in vitro Studie gehörte der verwendete Virus vom Genotyp C2 zu den 

hochsensitiven Stämmen, wohingegen der B3 Virus die geringste Sensitivität 

aller Stämme gegen IFN-alpha aufwies.  Augenscheinlich korrelierten unsere in 

vitro Resultate mit den oben genannten in vivo Daten. Um nun die humane 

Immunantwort zu überprüfen, untersuchten wir die Cytokin-Level von IL-5, IL-6, 

IL-8 und IL-10 in Patientenseren, die während Ausbrüchen von Genotyp B3 in 

Nigeria und Spanien oder einem C2-Ausbruch in Luxemburg gesammelt wurden. 

Da in allen B3-Seren höhere Cytokinkonzentrationen gemessen wurden scheint 

die Immunantwort in B3-infizierten-Patienten erhöht zu sein. Zusätzlich fanden 

wir, dass in C2-infizierten-Patienten die Cytokinkonzentrationen während der 

ersten acht Tage nach Exanthembildung eine abnehmende Tendenz zeigten, 

während sie in B3-infizierten-Patienten eher anstiegen. Diese Ergebnisse 

könnten als Hinweis auf Unterschiede in der Pathogenität von verschiedenen MV 

wt Stämmen gedeutet werden.  

 

Seit 1998 empfiehlt die Welt-Gesundheits-Organisation (WHO) zur 

Genotypisierung der MV die Sequenzierung der hypervariablen Region des MV-

Nukleoprotein Gens (MV-NP HVR). Die Genotypisierung ermöglicht 

Übertragungswege und Ausbreitung, sowie Fortschritte in der MV-Ausrottung zu 
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verfolgen. Mit zunehmenden Impffortschritten nimmt jedoch die genetische 

Variabilität der zirkulierenden Viren ständig ab. Seit mehreren Jahren finden sich 

immer häufiger Viren mit identischen MV-NP HVR Sequenzen. Als Folge wird es 

zunehmend schwerer den Ursprung einzelner MV-Ausbrüche zu bestimmen. 

Daher untersuchten wir zusätzlich die Variabilität der MV-P und H Gene. Anhand 

von vier verschiedener Masern-Ausbrüche in Europa und Afrika konnten wir 

zeigen, dass die zusätzliche Sequenzinformation des MV-P/H-Pseudo-Gens 

deutlich zur Verbesserung der Charakterisierung von MV und deren Verfolgung 

beiträgt und neue Verbreitungswege aufzeigt. So konnten wir z.B. zeigen, dass 

MV-Genotyp D6 Ausbrüche 2006 in Deutschland und Weißrussland, von 

verschiedenen Viren ausgelöst wurden, obwohl Viren beider Ausbrüche in ihrer 

MV-NP HVR identisch waren. Am Beispiel Russlands zeigten wir, dass auch hier 

mehrere MV Varianten während 2003-2007 co-zirkulierten. Im Speziellen fanden 

wir für Moskau, dass Ausbrüche nicht in direktem Zusammenhang standen, 

obwohl alle Viren in der MV-NP HVR identisch waren und bis dato eine direkte 

Verwandtschaft und anhaltende Zirkulation von MV in der Stadt vermutet wurde. 

Entsprechend zeigte die Untersuchung der MV-P/H-Pseudo-Gene von Proben 

aus der Demokratischen-Republik-Kongo, dass auch hier verschiedene MV 

Importe stattfanden. 

Somit konnten wir zeigen, dass obwohl die genetische Variabilität der MV-P und 

H Gene geringer als die der MV-NP HVR ist, die zusätzliche Untersuchung 

dieser beiden Gene die Sensitivität der genetischen Analyse deutlich erhöht und 

Zusammenhänge zwischen Masern-Ausbrüchen, Virusverbreitung, Importe und 

Zirkulation besser nachvollziehen lässt.  
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Abstract 

 

 

The innate immunity is critical to control viral infections during the development of 

the adaptive immune response. Cytokines are key players in the early immune 

response to viral infections. Therefore phenotypic differences between measles 

virus (MV) strains, relating to cytokine induction, may influence virus spread and 

severity of disease.  

We investigated how 22 different MV strains of 14 circulating genotypes interfere 

with the early immune response. Virus proliferation of vaccine and wild-type (wt) 

strains was compared, after IFN-alpha treatment. Wt production was 2 to 47-fold 

lower in IFN-treated cells, whereas vaccine production was reduced only 2 to 3-

fold. Furthermore, we compared the cytokine induction of IFN-beta, RANTES, 

interleukin 5 (IL-5), IL-6, IL-8, IL-10, TNF-alpha and IL-1 beta and mRNA 

quantification of IFN-alpha/beta response genes (MxA, 2-5AS). While most of the 

wt strains induced 71-99% less cytokines than the Schwarz vaccine strain, three 

wt strains induced similar levels of cytokines. These three wt strains were 

positive for defective interfering RNAs (diRNA). DiRNA emerged only in virus 

cultures during multiple passaging and was not detectable in clinical samples of 

measles patients.  

Previous studies showed that proteins encoded by the MV-P gene inhibit IFN-

alpha/beta signaling. However, sequence analysis of those gene of all used 

strains, did not display specific amino acid mutations that correlated with the 

different phenotypes. 

The present data show that MV wt strains differ in their sensitivity and their ability 

to temper with the innate immune response. In addition our proteomic analyses 

highlight variations in the cellular response induced by different wt strains. These 

phenotypic characteristics may result in differences in virulence.  
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Recently it was shown that macaques infected with two different wt strains 

(genotype C2 or B3) display variations in clinical parameters, MV replication and 

antibody responses. In our in vitro study the used C2 strain was one of the most 

sensitive wt strains, whereas the B3 strain was the least sensitive one to IFN-

alpha treatment. Since our in vitro findings correlated with the latter in vivo date 

we compared also the immune response in humans. Thus, we investigated the 

cytokine levels of IL-5, IL-6, IL-8 and IL-10 in sera collected from patients during 

MV outbreaks of genotype B3 in Nigeria and Spain and from a C2 outbreak in 

Luxembourg. In great contrast to B3 infected patients the cytokine response in 

C2 infected patients seems to be alleviated. Additionally during eight days after 

onset of rash cytokine levels decreased in C2 patients, whereas they elevated in 

B3 infected patients. Thus, our findings also force the hypothesis of differences in 

pathogenicity among various wt strains.   

 

Since 1998 the WHO recommends sequencing the hypervariable region of the 

MV nucleoprotein (MV-NP HVR) for MV genotyping. Genotyping is an important 

tool of measles surveillance to document chains of transmission, discriminate 

between imported or indigenous viruses and monitor elimination programs. 

However, with the enhanced vaccination control the genetic variability of 

circulating strains continues to decrease and identical MV-NP HVR sequences 

have been found for several years.  

Analyzing the variability of the MV-P and H genes, we showed for four different 

outbreaks in Europe and Africa that phylogenetic analysis of the MV-P/H-pseudo-

gene sequences provides a more refined picture of MV circulation. Identical MV-

NP HVR sequences found in Belarus and Germany in 2006, may have 

suggested that strains belong to the same outbreak. However, the MV-P/H 

pseudo-gene sequences clearly identified both cases as part of two distinct 

outbreaks. For strains collected throughout Russia 2003 to 2007 the MV-P/H 

pseudo-gene provides more insights into the time course of strains, indicating 

rather the circulation and importation of independent variants, than a single major 

outbreak lasting for several years, like suggested by identical MV-NP HVR 
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sequences. Also in the DR-Congo our findings suggested an independent 

evolution of variants and multiple independent importations into the country.  

By extending the sequencing window recommended by the WHO for molecular 

epidemiology of MV, links between outbreaks and transmission chains became 

more clearly defined. 
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1. The measles virus 

 

1.1. History and Classification 

 

Despite enhanced vaccination efforts, the measles virus (MV) remains one of the 

most important causes of childhood mortality and morbidity worldwide with 

around 165,000 deaths and 20 millions infected annually particularly in the 

developing countries (WHO, 2008). MV is a member of the Morbillivirus genus of 

the family of Paramyxoviridae and phylogenetically most closely related to the 

Rinderpest virus, a pathogen of cattle. This close phylogenetic relation suggests 

that MV is an ancestral virus that has evolved during the early stages of 

civilization with close proximity of humans and cattle approximately 5,000 years 

ago (Moss & Griffin, 2006, Norrby et al., 1992).  

The name “measles” descends from the Latin word “misellus” meaning 

miserable. Alternatively, “rubeola or morbilli” are also found as names for the 

disease, traced back to the Latin words “rubeolus” for reddish and “morbus” for 

disease. Abu Becr (also known as Rhazes of Baghdad), an Arab physician, is 

generally cited as first precise descriptor of measles in the 9th century (Griffin, 

2007, Rhazes, 1748). As a childhood disease measles was first mentioned in 

1224 (McNeill, 1976). As a consequence of the conquest of the Americas, 

measles appeared in parts of the Caribbean and Central America in the early 16th 

century, decimating the Native American population and facilitating the 

colonization (McNeill, 1976). Humans are the only natural reservoir of MV 

(Griffin, 2007). The basic principles of measles epidemiology and infection, like 

the high contagion rate, the 14-days incubation period, the life-long immunity and 

the respiratory route of transmission, were first elucidated by the Danish 

physician Peter Panum, who investigated a large measles outbreak on the Faroe 

Islands in 1846 (Panum, 1938). The first attempts with vaccination against 

measles were based on the principle of variolation done by Dr. Home 1749 in 

Edinburgh, Scotland. In 1954, MV was finally isolated successfully in tissue 
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culture, using the blood of an infected child (David Edmonston) by Enders and 

Peebles (Enders & Peebles, 1954). The development of vaccines against 

measles soon followed (details about vaccines, please see section 4.1).  

 

 

1.2. Morphology 

 

MV is a pleomorphic virus ranging in diameter from 100 to 200 nm. The lipid 

bilayer envelope is derived from the plasma membrane of the host cell and 

carries surface projections (length: 9 to 15 nm), composed of the two viral trans-

membrane glycoproteins: haemagglutinin (H) and fusion (F) (Griffin, 2007) 

(Figure 1). The matrix (M) protein lines the inner surface of the virion. The 

ribonucleoprotein (RNP) complex, packed within the envelope, has a coiled 

helical structure with a total length of 1.2 µm and a diameter of 21 nm (Lund et 

al., 1984). It consists of the nucleoprotein (NP), which surrounds the monopartite, 

single-stranded, negative sense RNA genome, to which the phospho (P) and 

large (L) proteins are attached. The RNP contains 2,649 NP and approximately 

300 P and 50 L proteins (Plumet et al., 2005). The entire measles genome 

consists of 15,894 nucleotides (nts) and contains six genes, encoding nine 

proteins: NP, P, M, F, H and L (Figure 1). Each transcription unit is flanked by a 

short leader and trailer sequence, containing the genomic (minus strand) and 

antigenomic (plus strand) promoters. In addition to the P protein, the P gene 

encodes three accessory proteins C, V and R, generated by alternative initiation 

of protein translation, mRNA editing and protein truncation, respectively (Bellini et 

al., 1985, Cattaneo et al., 1989, Liston & Briedis, 1995) .  
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Figure 1: Schematic diagram of the measles virus particle correlated with the genetic map 

 (WHO, 2007). 

 

The NP mRNA is the first transcribed from the genome and the NP protein (525 

aa) is the most abundant protein both in the virion and in the infected cell. Every 

NP protein binds to six nts, so the NP polymer entirely covers the complete MV 

genome and makes it resistant to nucleases. Thus the NP protein encapsidates 

the genomic RNA, associates with the P/L polymerase complex, so it is required 

for transcription and replication and most likely interacts with the M protein during 

virus assembly (Longhi, 2009). The highly conserved amino-terminal part (NCORE, 

aa 1 to 400) is required for self-assembly, RNA binding and P protein binding, 

whereas the extremely variable carboxyl-terminal domain (NTAIL, aa 401 to 525) 

can interact with several host proteins and also the P protein (Bankamp et al., 

1996, Bourhis et al., 2005). The NP protein is a ubiquitous antigen in infected 

cells and is the first target of the immune response, though antibodies are not 

neutralising due to it’s unavailability at the virus surface (Graves et al., 1984). 

  

The P protein (507 aa) is a highly phosphorylated, modular protein, which links L 

to NP to form the replicas complex (Curran et al., 1995). The amino-terminus 

(PNT) is poorly conserved, binds to NCORE and is required for replication. In 

contrast, the carboxyl-terminus (PCT) is well conserved, binds to NTAIL and 
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contains all domains required for transcription. Beside the P protein the P gene 

also encodes non-structural virulence factors in particular the C (186 aa) and V 

(299 aa) proteins (Bellini et al., 1985). The V protein shares the first amino-

terminal 231 aa with the P protein, but its 68 carboxyl-terminal aa are translated 

from a different open reading frame (ORF), accessed by RNA editing of a non-

encoded guanosine residue. The C protein is translated using the second ORF of 

the P gene, 19 nts downstream of the P/V start codon (Devaux & Cattaneo, 

2004). Both V and C proteins interact with cellular proteins, play a role in the 

regulation of transcription and translation and contribute to immune evasion 

(Palosaari et al., 2003, Reutter et al., 2001, Shaffer et al., 2003, Takeuchi et al., 

2003a). A third accessory protein encoded by the P gene is the so called R 

protein (299 aa). The first 294 aa of the amino-terminus are in common with the 

P protein, fused to a 5 aa carboxy-terminus derived from the V ORF, created by 

ribosomal frame-shifting (Liston & Briedis, 1995).  

 

The M protein (335 aa) is a basic protein with several hydrophobic domains and 

links the RNP complex with H and F proteins during assembly. Thus it plays a 

key role in the maturation, stabilisation and budding of the virion (Hirano et al., 

1993).  

 

The F protein (550 aa) is a type I trans-membrane glycoprotein synthesized as 

an inactive precursor F0 and cleaved enzymatically by furin in the trans-golgi 

network to yield the functional, disulphide linked F1 and F2 subunits (Wild & 

Buckland, 1997). This protein, associated with the H protein, mediates 

membrane fusion and virus entry.  

 

The H protein (617 aa) is a type II trans-membrane protein expressed as 

disulfide-linked homodimer on the surface of the virion and infected cells (Hu et 

al., 1994). Its amino-terminus acts as a membrane anchor and is essential for 

transport to the cell membrane, whereas the carboxyl-terminus has key function 

in receptor binding. The binding sites on the H protein for these receptors overlap 
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and MV strains differ in their efficiency to use a receptor (details about MV 

receptors, please see section 1.3). The H protein is closely associated with the F 

protein, allowing viral entry into the cell by attaching and fusing the viral envelope 

to the host cell membrane (Griffin, 2007, Moss & Griffin, 2006).  

 

The L protein (2,183 aa) is a multi-domain protein, represented only in small 

quantities (< 50 copies) inside the virion. The amino-terminus contains domains 

important for binding the L to the P protein, in order to form the polymerase 

complex (Horikami et al., 1994). Both proteins together are important for 

transcription and replication.  

 

 

1.3. Cellular receptors 

 

Until now two main receptors are identified for MV: signalling lymphocyte 

activation molecule (SLAM/CD150) and the complement regulatory molecule 

CD46 (Naniche et al., 1993, Tatsuo et al., 2000).  

CD46, the receptor for vaccine and laboratory adapted MV strains, is expressed 

on all nucleated cells. It normally protects cells from autologous complement, 

being a cofactor for the serine protease factor I to inactivate C3b and C4b (Riley-

Vargas et al., 2004). Four different isoforms, derived from alternative splicing of a 

single gene, are common on human cells and all serve as receptors for MV 

(Gerlier et al., 1994). CD46 is a type I membrane glycoprotein and the amino-

terminus of each isoform consists of four tandem complement control protein 

repeats (CCPs), followed by one or two serine/threonine/proline-rich domains 

(STP) that are heavily O-glycosylated (Figure 2a). The STP region is followed by 

a trans-membrane domain and two alternative cytoplasmic tails. The MV-H 

protein binds to the two external CCP modules (CCP1/2), whereas CCP2/3/4 are 

essential for complement inactivation. Both cytoplasmic tails comprise signaling 

motifs and are associated with adaptor proteins or intracellular kinases and 

cross-linking of CD46 leads to cell activation events (Riley-Vargas et al., 2004).  
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Figure 2: Structure of human MV receptors.  

a) membrane cofactor protein/CD46 (Griffin, 2007) and b) signaling lymphocyte activation 

molecule/SLAM (Yanagi et al., 2002). On the CD46 receptor MV-H binds to complement control 

protein/CCP1 and CCP2. On the SLAM receptor MV-H binds to immunoglobulin like domain V. 

 

SLAM/CD150, the MV wild-type (wt) receptor, is expressed on activated 

lymphocytes, mature dendritic cells, macrophages, thymocytes as well as on 

human and mice platelets (Griffin, 2007). It is a membrane glycoprotein with two 

highly glycosylated extracellular immunoglobulin like domains (V and C2) (Figure 

2b). The cytoplasmic tail with three tyrosine-based motifs is surrounded by SH2 

domain-binding sequences. It has the ability to bind tyrosines and SH2 domain-

containing adaptor proteins like SLAM-associated protein (SAP), protein tyrosine 

phosphatase SHP-2 and inositolphosphatase SHIP, all important for cell 

signaling (Sayos et al., 1998, Shlapatska et al., 2001, Yanagi et al., 2002). Wang 

et al. (Wang et al., 2004) showed that SLAM also plays a role in activation of 

lipopolysaccharide induced production of interleukin 12 (IL-12), tumor necrosis 

factor (TNF-alpha) and nitric oxide by macrophages in mice. The amino-terminal 

V domain is necessary and sufficient to interact with the MV-H protein and allows 

MV entry (Ono et al., 2001).  

  H binding 

a) b) 
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Beside CD46 and SLAM, other receptors like a putative receptor on epithelial 

cells, dendritic cell specific intercellular adhesion molecule-3-grabbing non-

integrin (DC-SIGN) and neurokinin-1 are discussed (de Witte et al., 2006, 

Makhortova et al., 2007, Takeuchi et al., 2003b).  

 

 

1.4. Virus Replication 

 

Aerosols and respiratory secretions from measles infected persons function as 

vehicles of transmission by delivering infectious virus to epithelial cells of the 

upper respiratory tract of susceptible hosts. The identification of SLAM as the MV 

wt receptor supports a new model of MV dissemination, postulating a primary 

infection of SLAM-expressing lymphatic cells in the tonsils, following a rapid 

spreading to all lymphatic organs (Navaratnarajah et al., 2009). 

 
Figure 3: MV replication cycle.  

(Moss & Griffin, 2006). 
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Attachment of the H protein to the receptor (CD46 or SLAM) on the surface of the 

host cell triggers a conformational change within the F protein and leads to the 

fusion of the viral membrane with the cellular plasma membrane (Figure 3). Next 

the RNP complex is released into the cytoplasm of the cell and serves as a 

template for both primary transcription from and replication of the genomic RNA. 

The main location of the large viral factories is perinuclear, especially in the early 

stage of the infection (Wileman, 2007). The RNA-dependent RNA polymerase, 

made of L and P proteins, initiates the transcription from a single promoter at the 

3’-end of the genome. Reaching an intergenic junction the polymerase 

recognizes the gene end and terminates the synthesis. Following, either the gene 

start of the downstream gene is recognized and the transcription started again or 

the polymerase fails and detaches from the template, explaining the attenuated 

viral transcription gradient (Cattaneo et al., 1987). Except for the glycoproteins H 

and F that are translated at the endoplasmatic reticulum, all other proteins are 

synthesized from free ribosoms in the cytosol.  

During transcription the polymerase sometimes ignores all 

polyadenylation/termination signals to form a full-length antigenome 

nucleocapsid. Following generation of this bicistronic mRNAs, the polymerase 

switches to the replication mode and synthesizes a full-length positive-sense 

RNA genome utilising the upstream replication genomic promoter (Plumet et al., 

2005). During this replication process the genome is simultaneously 

encapsidated by the N protein. Together with the L and P proteins, the RNA-N 

protein complex is assembled into the RNP complex. As last step after the 

assembly the RNP complex is enwrapped into the envelope. The M protein 

seems to have a key role in this, concentrating F and H proteins as well as the 

RNP at the site of virus assembly (Vincent et al., 2000).  

In cell culture monolayers as well as in infected tissues in vivo, MV replication 

leads to the cytopathic effects (CPE) of syncytia-formation (Figure 4), due to cell-

cell fusion. This effect is facilitated by the interaction of surface expressed H and 

F proteins and actin-filament plasma membrane cross-linker moesin (Doi et al., 

1998). 
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Figure 4: Typical cytopathic effect of syncytia formation associated with MV replication in 

Vero/hSLAM cells.  

 

 

 

 

2. Molecular Epidemiology 

 

2.1. Usefulness of Molecular Epidemiology 

 

Since the introduction of measles vaccination, the global burden of measles 

disease has continuously decreased. Significant progress has been made during 

the last decade, with the elimination of measles from the Americas and a 

dramatic reduction in measles mortality worldwide (Rota et al., 2009). Although 

measles induced death were reduced during 2000 to 2008 from 733.000 to 

164.000 cases (reduction of 78%), the disease still remains a serious public-

health problem with more than 10 million cases annually (WHO, 2008). Measles 
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continues to be endemic in many developing countries and to certain extend also 

in industrialized countries (Papania & Orenstein, 2004). 

Molecular epidemiology of MV has proven to be a very useful tool for monitoring 

the progress in measles control (Rota & Bellini, 2003). First in 1998, following the 

spring meeting of the World-Health-Organization (WHO), standardized analysis 

protocols for virus surveillance and a uniform nomenclature for MV strains were 

established, facilitating the comparison of data created in different laboratories. 

Based on the fact that the 450 nts encoding the carboxyl-terminal 150 aa of the N 

gene (MV-NP HVR) are the highest variable region of the MV genome (up to 

12% sequence divergence among wt strains) the WHO recommends this as the 

minimal sequence data required for MV genotyping (Xu et al., 1998). Additionally, 

the complete H gene sequence (up to 6.1% sequence divergence among WHO 

reference strains) should be obtained, if a new genotype is suspected (Bankamp 

et al., 2008, Rota et al., 2009).  

 

 

2.2. Measles genotyping and surveillance 

 

Although MV is serologically a monotypic virus, the genetic characterisation 

identified so far eight clades A-H, further sub-divided into 24 genotypes (A, B1-

B3, C1 and C2, D1-D11, E, F, G1-G3, H1 and H2) (Table 1) (Rota et al., 2009, 

Zhang et al., 2010). Several of these genotypes B1, D1, E, F, G1 seem to be 

extinct or inactive, since they have not been detected during the last 15 years 

(Rota & Bellini, 2003). The combination of MV genotyping and standard case 

classification/ reporting are important tools of measles surveillance to document 

chains of transmission, discriminate between imported or indigenous viruses and 

monitor elimination programs. Laboratory-based surveillance, including the 

characterisation of wt strains, is performed throughout the world by the WHO 

Measles and Rubella Laboratory Network including 166 countries.  

Based on the extensive measles surveillance, three different patterns of 

genotype distribution have been observed (Rota et al., 2009). In countries where 
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measles are still endemic, most cases are caused by relative few endemic 

genotypes. In these cases co-circulation of different variants is quite common. In 

countries that have eliminated measles, small outbreaks are caused by a number 

of different genotypes imported from other regions. The third pattern occurred in 

countries with very good measles control, but increasing numbers of susceptibles 

(perhaps due to “Vaccine fatigue”). This situation allows reintroduction of 

measles and leads to large outbreaks associated with a single genotype with 

nearly the same sequence. The geographic distribution of MV genotypes is 

shown in Figure 5.   
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Table 1: WHO reference strains for measles genotyping 2010 

(Rota et al., 2009, Zhang et al., 2010).  

 
Genotype Status 

a
 WHO Reference name 

b
 MV-H gene 

accession
 c
 

MV-N gene 
accession

 c 

 
A Active Edmonston-wt.USA/54 U03669 U01987 
B1 Inactive Yaounde.CAE/12.83 ‘‘Y-14” AF079552 U01998 
B2 Active Libreville.GAB/84 “R-96” AF079551 U01994 
B3 Active New York.USA/94 L46752 L46753 
  Ibadan.NIE/97/1 AJ239133 AJ232203 
C1 Active Tokyo.JPN/84/K AY047365 AY043459 
C2 Active Maryland.USA/77 “JM” M81898 M89921 
  Erlangen.DEU/90 “WTF” Z80808 X84872 
D1 Inactive Bristol.UNK/74 (MVP) Z80805 D01005 
D2 Active Johannesburg.SOA/88/1 AF085198 U64582 
D3 Active Illinois.USA/89/1 “Chicago-1” M81895 U01977 
D4 Active Montreal.CAN/89 AF079554 U01976 
D5 Active Palau.BLA/93 L46757 L46758 
  Bangkok.THA/93/1 AF009575 AF079555 
D6 Active New Jersey.USA/94/1 L46749 L46750 
D7 Active Victoria.AUS/16.85 AF247202 AF243450 
  Illinois.USA/50.99 AY043461 AY037020 
D8 Active Manchester.UNK/30.94 U29285 AF280803 
D9 Active Victoria.AUS/12.99 AY127853 AF481485 
D10 Active Kampala.UGA/51.00/1 AY923213 AY923185 
D11 Active MVi/Menglian.Yunnan.CHN/47.09 GU440571 GU440576 
E Inactive Goettingen.DEU/71 “Braxator" Z80797 X84879 
F Inactive MVs/Madrid.SPA/94 SSPE Z80830 X84865 
G1 Inactive Berkeley.USA/83 AF079553 U01974 
G2 Active Amsterdam.NET/49.97 AF171231 AF171232 
G3 Active Gresik.INO/17.02 AY184218 AY184217 
H1 Active Hunan.CHN/93/7 AF045201 AF045212 
H2 Active Beijing.CHN/94/1 AF045203 AF045217 
 

aActive genotypes that have been isolated within the past 15 years, bWHO name-quotation mark 

indicates other name that has been used in the literature, cNCBI accession number. 
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Figure 5: Geographical distribution of MV genotypes.  

Based on surveillance data from 1995-2008. Americas and Australia are not shown since they 

have eliminated measles. In European Region only genotypes from major outbreaks 2005-2008 

are shown (Rota et al., 2009).  

 

 

 

 

3. Measles disease and host defense 

 

3.1. Clinical features and complications 

 
The Measles virus is a highly contagious agent that spreads by the respiratory 

route and outbreaks can occur in populations in which less than 10% of 

individuals are susceptible (WHO, 2007). It is typically a childhood disease with 

an incubation period of 10 to 14 days. Upon contact, the virus replicates first in 

the upper respiratory tract and local lymph nodes leading to a primary viremia. 

Five to seven days after exposure, a second viremia occurs accompanied by 

characteristic lymphopenia and virus spread to multiple organs including lymph 

nodes, kidney, gastrointestinal tract, liver, skin and in monocytes, macrophages 

and lymphocytes (Moss & Griffin, 2006)(Figure 6).  
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First non specific symptoms of measles disease are fever, cough, coryza and 

conjunctivitis. First pathognomonic signs are the so called “Koplik`s spots”. This 

prodrome period of 2-3 days is followed by a characteristic maculopapular rash 

(3-5 days) that starts behind the ears and on the face and then spreads 

centrifugally to the trunk and extremities. The onset of rash indicates the 

activation of measles specific humoral and cellular immunity and initiation of virus 

clearance (Griffin, 2007). In uncomplicated cases an effective immune response 

leads to decreased symptoms and virus clearance 7-10 days after onset of rash. 

Recovery from natural measles infection is accompanied by a lifelong immunity 

(Black & Rosen, 1962, Graves et al., 1984, Panum, 1938).   

However the long-lasting immunosuppression cased by measles can lead to 

sever complications including encephalitis, diarrhea and pneumonia. In rare 

cases (1 per 100.000) measles can also cause subacute sclerosing 

panencephalitis (SSPE), a fatal degenerative disease of the central nerve system 

(Griffin, 2007). Case-fatality rates in developing countries are ranging between 1-

5% (Nandy et al., 2006) in contrast to <0.1% in many industrialized regions 

(WHO, 1999).  
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Figure 6: Basic pathogenesis of MV infection.  

MV is spread from the respiratory epithelium to local lymph nodes and during second viremia 

virus spread to multiple organs including kidney, gastrointestinal tract, liver and skin. The rash 

appears simultaneously with the virus specific immune response and clearance of the virus is 

coincident with fading of the rash (Griffin, 2007). 
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3.2. Immune response against measles virus infection 

 

The first immune response to be activated by viral infections is the innate 

immune response. Viral RNA sensing by different host cell receptors including 

Toll-like receptors (TLRs) TLR-3/7 and 9, cytoplasmic protein kinase R (PKR) or 

RNA-helicases like retinoic acid inducible gene I (RIG-I) and melanoma 

differentiation–associated gene-5 (MDA-5) leads to the activation of different 

transcription factors like interferon regulatory factor 3 (IRF-3) or NfkB, which 

mediate the expression of inflammatory cytokines and chemokines like IFN-

alpha/beta, TNF-alpha, IL-1 beta, IL-5, IL-6, IL-8, IL-10, MCP-I or RANTES 

(Ebihara et al., 2007, Indoh et al., 2007, Moriuchi et al., 1997, Ozato et al., 2007, 

Poeck et al., 2010, Shakhov et al., 1990, Wickremasinghe et al., 2004). IFN-

alpha/beta binds to its common receptor on the cell surface, to activate the 

JAK/STAT signalling pathway. This ultimately leads to the expression of IFN-

response genes including PKR, 2',5'-oligoadenylate synthetase (2-5AS) and 

myxovirus resistance A (MxA), most of which have antiviral activities (Haller et 

al., 2007, Haller et al., 2009, Sadler & Williams, 2008) 

Both humoral and cellular immune responses are also involved in virus 

clearance. Anti-MV specific IgMs are the first detectable antibodies already 72h 

after onset of rash (Figure 6) and lasting for about 2 month (Naniche, 2009).  IgA 

and IgG are detectable a few days after onset of rash (IgG peak 3-4 weeks later) 

and remain for life. The IgG antibodies are in majority targeting the most 

abundant N protein, but they are also directed against H, F and M proteins 

(Graves et al., 1984, Norrby et al., 1981, Stephenson & ter Meulen, 1979). Only 

Anti-H and Anti-F antibodies contribute to the neutralisation of the virus (de Swart 

et al., 2005) and the majority of neutralising antibodies are specific for the H 

protein (Black, 1989, Malvoisin & Wild, 1990). During acute phase of measles 

infection mostly IgG1 and IgG3 are predominant, whereas during the 

convalescent phase as well as long-term humoral memory IgG1 and IgG4 are 

dominant and IgG3 decreases.  
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Both CD4+ and CD8+ cells, specific for various measles proteins and specific 

epitopes, are activated during measles infection. T cells recognizing almost all 

MV proteins based on either MHC class I or class II presentation are described. 

CD8+ cells are activated during the prodrome, eliminating infected cells via the 

MHC class I pathway. During the acute phase a CD4+ Th1 response profile 

(including cytokines IFN-gamma and IL-2; activation of macrophages) is found, 

whereas in the convalescent phase a Th2 response profile (including cytokines 

IL-4, IL-5 and IL-10; B cell growth and differentiation,  macrophage deactivation) 

is prevalent. The Th1 response is essential for virus clearance, while a Th2 

response promotes the induction of protective MV-specific antibodies (Griffin, 

1995).  

However, in vivo as well as in vitro a long-lasting immune suppression has been 

described following measles disease. This measles induced immune suppression 

starts with the onset of clinical symptoms and persists over weeks (Hirsch et al., 

1984, Marie et al., 2001, McChesney et al., 1989, Tamashiro et al., 1987). During 

this period patients are highly susceptible for secondary bacterial and viral 

infections causing diarrhoea, otitis media, bronchitis or pneumonia, explaining 

the high mortality rates especially in developing countries with poor health care 

systems. Pneumonia is the most common fatal complication and occurs in 56-

86% of measles related death (Duke & Mgone, 2003). 

 

 

 

 

4. Measles eradication strategies 

 

4.1. Measles vaccines 

 
Following the successful isolation of MV in cell culture in 1954 by Enders and 

Peebles (Enders & Peebles, 1954), intensive work was spent on this so called 

Edmonston isolate. Formalin- and Tween-ether inactivated vaccines as well as 
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live attenuated vaccines were produced. The inactivated vaccines provided only 

insufficient protection since antibody levels declined fast, recipients became 

again susceptible for measles and reinfection with wt virus induced a more 

severe disease called “atypical measles” (characterized by higher and more 

prolonged fewer, unusual skin lesions and sever pneumonitis). These inactivated 

vaccines were soon replaced by the live attenuated vaccines that had been 

passaged intensively on various human and non-human cell lines (like 

successive passages on human kidney cells, human amnion cells, embryonated 

hens eggs and finally chicken embryo cells) (Katz, 2009). The first attenuated 

vaccine (Edmonston B) was licensed in 1963, but was associated with a high 

frequency of fever and rash in immunized children (Katz et al., 1960). These 

Edmonston B strain was further passaged on chicken embryo fibroblasts to 

generate a more attenuated vaccine (Schwarz vaccine) that was licensed in 

1965. Schwarz and Edmonston-Zagreb vaccines are widely used throughout the 

world, whereas the Moraten strain is used primarily in the USA (Moss & Griffin, 

2006). In the early 1960s different groups from Japan, USA and the Soviet Union 

worked simultaneously on the design of measles vaccines, so several attenuated 

vaccine strains were developed (Figure 7). Although these vaccine strains have a 

different passage history, they only show a maximal genetic divergence of 0.6% 

in their MV-NP HVR.  
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Figure 7: MV vaccines.  

Most attenuated vaccines are derived from the original Edmonston-wt isolate. Nowadays the 

Schwarz and Edmonston-Zagreb vaccines are widely used throughout the world, whereas the 

Moraten strain is used primarily in the USA (Moss & Griffin, 2006).  

 

Despite the large public health benefits, all the licensed vaccines have some 

drawbacks that are important for the global measles elimination. Currently used 

attenuated vaccines are light and temperature sensitive, requiring a continuous 

cold-chain and protection from sunlight (reconstituted vaccines lose half their 

potency already after storage for 1h at 20°C). The vaccination is done 

subcutaneously or intramuscularly so trained healthcare workers are obligatory. 

An important limitation is also that both maternally acquired antibodies as well as 

immunological immaturity of young infants reduce the efficacy of measles 

vaccination and hinder the effective immunization of young children.  

The recommended age for a first vaccination boost is 12 month (infants in 

developing countries with 9 months) followed by a second boost at the age of five 
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to six years (Weiss, 1992). Nowadays the WHO recommends to use the trivalent 

MMR vaccine (Measles, Mumps, Rubella vaccine) that induce both humoral and 

cellular immune response (WHO, 2007). Previously it has been assumed that 

approximately 85% of children immunized at 9 month develop protective antibody 

titers, whereas in case of a later vaccination with 12 month 90-95% show 

protective antibodies (Cutts et al., 1995). 

 

 

4.2. Eradication efforts 

 

Prior to the widespread use of measles vaccine more than 130 million cases and 

>2.5 million measles relates death occurred annually and almost everybody was 

infected during childhood (Clements et al., 1992). Due to massive global 

vaccination campaigns over recent years remarkable progress has been made in 

reducing measles incidence and mortality during the last decades (Figure 8).  
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Figure 8: Overview about global annual reported measles cases and measles vaccine 

coverage during 1980 to 2008. 

(WHO, 2009b). 

 

In 2001 the WHO and United Nations International Children's Emergency Fund 

(UNICEF) implemented the measles mortality reduction strategy with focus on 1) 

achieving and maintaining >90% vaccine coverage with the first immunization by 

the age of 12 month, 2) ensuring that all children receive a possibility for a 

second vaccination, 3) surveillance of measles cases and 4) establishment of 

appropriate case management (WHO & UNICEF, 2001). During 2000-2008, 

global measles mortality declined by 78%, from an estimated 733,000 deaths in 

2000 to 164,000 in 2008 (WHO, 2008). As one of the most successful and cost-

effective medical interventions the measles vaccination campaigns have resulted 

in the interruption of indigenous measles circulation in a number of developed 

countries (Papania & Orenstein, 2004).  
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4.3. Measles today 
 
Despite achieving and sustaining global measles vaccination coverage > 80% 

over the past decade, worldwide measles remains the fifth leading cause of 

mortality among children below five years of age (Strebel et al., 2003). Especially 

unvaccinated pre-school-aged children are susceptible to measles and provide 

the fuel for new epidemics. This explains the importance of vaccinating each new 

cohort of infants soon after they lose the protection by maternal antibodies. 

In the last years especially in resource-rich countries a loss of public confidence 

in vaccines as well as vaccine fatigue significantly impaired elimination efforts. 

Following a publication in 1998 that misleadingly purported an association 

between the MMR vaccine and autism (Wakefield et al., 1998) the MMR-

immunization rates in England nosedive from 94 to 75% (Offit and Coffin 2003). 

As a consequence, measles outbreaks became more frequent and larger in size 

in the United Kingdom. Regardless of the huge efforts in measles control, the 

highest number of measles cases since more than a decade was observed in 

2008 in several European countries and the US, and the virus was again 

declared endemic in the United Kingdom (Plemper & Snyder, 2009). Between 

January and June 2010 already more than 40,300 measles cases were reported 

by the WHO worldwide. Ongoing measles disease burden demonstrate the 

requirement to strengthen global efforts to control measles. Nevertheless other 

experiences demonstrate that interruption of measles transmission can be 

achieved and sustained over a long period of time (Orenstein et al., 2004). 
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5. Objectives of this study 

 
Despite enhanced vaccination efforts, measles is still responsible for more than 

50% of vaccine-preventable childhood deaths. Most deaths are attributed to 

secondary infections, facilitated by a long-lasting immunosuppression following 

measles disease. The molecular bases of MV induced immunosuppression and 

of the attenuation process of vaccine strains are still only partially understood. 

The innate immunity is critical to control viral infections during the development of 

the adaptive immune response. Phenotypic differences between MV strains, 

relating to cytokine induction and signalling, may influence virus spread and 

severity of disease.  

Distinct MV genotypes are endemic in most areas with high mortality rates. 

Usually the high mortality rates are attributed to specific host factors and to the 

quality of the public health system in the corresponding region. However, the 

pathogenicity of different genotypes has never been systematically compared. A 

better understanding of the characteristic differences between vaccine and wt 

strains as well as among various wt strains will be crucial to understand measles 

pathogenesis, immunosuppression and in vivo tropism of different strains. This 

knowledge may help to develop alternative vaccines or to test new antiviral 

agents in the future.  

 

The genetic characterisation of wt strains provides a powerful tool of the 

laboratory-based measles surveillance. Molecular characterisation of viruses 

allows monitoring the transmission of MV during and after an outbreak, to detect 

interruptions of indigenous virus circulation and so differentiate ongoing 

transmission of endemic viruses from new imported sources of viruses, as well 

as to estimate the number of co-circulating variants. However, with the enhanced 

vaccination efforts the genetic variability of circulating strains continues to decline 

and identical sequences of the MV-NP highly variable region (routinely used for 

MV genotyping) have been found for several years in a same region. Very similar 

sequence variants were found throughout Europe and beyond. Thus it becomes 
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increasingly difficult to determine the origin of a virus analysing only this part of 

the viral genome. Therefore, sequencing of other variable regions of the MV 

genome, such us the entire MV-P and H genes may help to confirm 

epidemiological links between cases. 

 

The aim of the present project was to identify phenotypic differences between 

attenuated and wt strains and/or between different wt strains and to analyse the 

genetic variability of MV strains (vaccine and wt). Specifically the following points 

were investigated: 

 

o Part I: Genetic and Phenotypic characterisation of various MV strains 

• Differences in replication fitness  

• Interaction with the innate immune response in vitro 

• Effects of multiple passaging on the wt phenotype 

• Relationship of phenotypic differences and genetic characteristics 

 

o Part II: Proteome profiling of MV host interaction in human lung cells 

comparing wild type and attenuated strains  

• Host cell proteome changes induced by different MV strains  

 

o Part III: MV induced cytokine response in humans 

• Effects of two different MV genotypes on cytokine response  

• Interaction with the early immune response  

 

o Part IV: Investigation of MV outbreaks  

• Genetic characterisation of new MV variants 

• Improvement of genotype classification   
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Materials 
 

All cell lines and virus strains used in part I of the Result Section are described 

under “Cells and Viruses” in this chapter. Following, all human sera analysed in 

part III of the Result Section are listed under “Patient sera”. Subsequently all 

samples investigated in part IV of the Result Section are described under 

“Clinical specimens”. 

 

 

1. Cells and Viruses                                                                       

 

1.1. Cells 
 
Table 2: Cell lines used in part I of the Result Section  

 
cell name 
 

Culture 
medium 

cell type 
 

species 
 

source / reference 
 

A549/hSLAM DMEM, 10% 
FBS, 1% P/S, 
1% Ultra-Glu 

SLAM-transfected 
and expressing 
alveolar epithelial 
cells 

Human (Homo 
sapiens sapiens) 

Yusuke Yanagi, 
Faculty of 
Medicine, 
Fukuoka, Japan, 
(Takeda et al., 2005) 
 

Vero DMEM, 7.5% 
FBS, 1% P/S, 
1% Ultra-Glu 

Kidney cells, 
fibroblasts 

African green 
monkey 
(Chlorocebus 
aethiops) 

Yusuke Yanagi, 
Faculty of 
Medicine, 
Fukuoka, Japan, 
(Yasumura & 
Kawakita, 1963) 
 
 

Vero/hSLAM DMEM, 7.5% 
FBS, 1% P/S, 
1% Ultra-Glu 

SLAM-transfected 
and expressing 
Vero cells 

African green 
monkey 
(Chlorocebus 
aethiops) 

Yusuke Yanagi, 
Faculty of 
Medicine, 
Fukuoka, Japan, 
(Tatsuo et al., 2000) 
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1.2. Viruses 

 

Table 3: MV strains used in part I of the Result Section 

 
 
wt: wild type strain; VCA: Vero cell adapted strain (10 times passaged on Vero cells before use) 
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2. Patients sera for cytokine analysis  
 
In total, 41 human sera from laboratory confirmed measles patients, collected in 

Nigeria, Spain and Luxembourg were available for our pilot study described in 

part II of the result section (Table 4). The 13 Nigerian sera (genotype B3) were 

obtained from patients with clinical measles (7 to 60 years) collected during a 

measles outbreak in February and March 1998 in Ibadan. These samples were 

mainly collected from the pediatric out-patients department of three public 

hospitals (Adioyo State Hospital, n=7; Oni Memorial Children Hospital, n=4; 

University Collage Hospital, n=1) and one private hospital (St. Mary`s Hospital, 

n=1). The 14 sera from Spain (genotype B3) were collected from patients (1 to 32 

years) during an MV outbreak in Almeria in 2003. The 14 Luxembourgish sera 

(genotype C2) were obtained during an outbreak in two primary schools in March 

and Mai 1996 from children with clinical measles (1 to 12 years). All sera were 

from uncomplicated measles cases collected between day 0 and day 8 after 

onset of rash. The control sera were from ten healthy Luxembourgish children 

vaccinated against MV (12 to 13 years) (Table 5). All samples have been stored 

appropriately at -20°C. The measles diagnosis was based on typical clinical 

symptoms confirmed by measles-specific IgM ELISA (Enzygnost, Dade Behring) 

as well as PCR for the MV-NP HVR (Kremer et al. 2007) to determine the 

genotype. Nigerian samples were all tested negative for HIV and HBV infection.  
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Table 4: Patient sera used in part III of the Result Section 

 
 

 

f: female, m: male, uk: unknown 

ID number gender Age (years) Days after onset of rash 
 

Patient sera from Luxembourg (genotype C2) 
3005 m 6 2 
3012 m 1 2 
3013 f 8 1 
3017 m 10 1 
3018 m 10 3 
3046 f 12 5 
3055 m 10 3 
3023 m 2 2 
3040 f 6 3 
3020 f 7 5 
3021 m 6 3 
3061 f 9 2 
3070 m 11 4 
3071 m 10 1 
    
    
Patient sera from Nigeria (genotype B3) 
10037 uk 15 2 
10041 uk 37 5 
10043 uk 17 3 
10044 uk 27 3 
10055 uk 15 2 
10581 uk 22 3 
10924 uk 60 1 
10931 uk 7 1 
10951 uk 48 1 
10952 uk 17 5 
10965 uk 7 1 
10967 uk 16 4 
10970 uk 24 4 
    
    
Patient sera from Spain (genotype B3) 
345 f 27 4 
347 m 22 3 
466 f 32 0 
1244 m 8 1 
396 m 1 0 
372 m 18 3 
342 m 23 4 
362 m 26 8 
339 f 28 0 
245 m 12 0 
312 m 28 3 
309 m 21 1 
316 f 19 2 
306 m 19 1 
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Table 5: Controle sera used in part III of the Result Section 

 
 

 

 

 

 

 

 

 

All control sera were positive for measles-specific IgG and negative for measles-specific IgM. 

Information about patient gender was not available. 

 

 

3. Clinical specimens for virus characterization 
 
A total of 73 strains from four epidemiological settings in Europe and Africa were 

analyzed in part IV of the Result Section (Table 6). Clinical specimens from 13 

patients were collected between April and June 2006 from 11 different locations 

in North-Rhine Westphalia (NRW, Germany). Samples from ten patients were 

collected between March and September 2006 from three different areas in 

Belarus: Minsk city (n=1), Minsk region (n=4) and Grodno region (n=5). 31 

clinical samples were collected throughout the Russian Federation, Uzbekistan, 

Kazakhstan and Kyrgyzstan during March 2003 and May 2007. 18 samples were 

collected between December 2004 and February 2006 in three different regions 

of the Democratic Republic of Congo (DR-Congo): Bas-Congo (n=4), Kinshasa 

(n=12) and Kasai-Oriental (n=3). Most cases were serologically confirmed by 

measles specific IgM detection in serum, using a commercial ELISA kit 

(Enzygnost, Dade Behring, Germany).   

 

 

ID number Age (years) 
 

6007 12 
6010 12 
6011 12 
6012 13 
6013 12 
6014 12 
6016 11 
6018 11 
6020 13 
6021 12 
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Table 6: List of clinical specimens analysed in part IV of the Result Section 
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Table 6: (continued) List of clinical specimens analysed in part IV of the Result Section 
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Table 6: (continued) List of clinical specimens analysed in part IV of the Result Section 

 
 
NRW: North-Rhine Westphalia; DR-Congo: Democratic Republic of Congo; TS: throat swab; OF: 

oral fluid; U: urine; ISO: cell culture isolate; SA: saliva; SE: serum; RNA: unknown sample source, 

RNA received from collaborators; ** Epidemiological link to the Ukraine; * Imported from Grodno 

region to Minsk region 
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4. Chemicals, Buffers and Solutions 
 

4.1. Chemicals  

 

Commonly used chemicals were purchased from Sigma Aldrich (Belgium) or 

Merck (Germany). All cell culture media and reagents were purchased from 

Lonza (Switzerland). 

Compound Supplier 
 

Agarose Lonza 

Ampicillin Sigma 

Dithiothreitol (DTT) 0.1 M Invitrogen 

dPBS 10x w/o Ca and Mg Lonza 

Dimethylsulfoxide (DMSO) Sigma 

Dulbecco`s modified Eagle`s medium (DEMEM )  w/o Glutamine Lonza 

Ethanol 100% Merck 

Ethylendiaminetetraacetic acid (EDTA) Biorad 

Fetal bovine serum (FBS) Lonza 

Ultra-Glutamine Lonza 

Glycerol Sigma 

IFN-alpha/beta R&D Systems 

MgCl2 50 mM Invitrogen 

Nucleotides (dNTPs) Invitrogen 

Oligonucleotides/primers Eurogentec 

Orange G Invitrogen 

PCR buffer without MgCl2 10x Invitrogen 

Penecillin G-Streptomycin 100x Sigma/Lonza 

Sodium acetate Merck 

SYBR®Green™ nucleic acid stain 10 000x Molecular Probes 

SYBR®Safe™ DNA Gel Stain 10 000x  Invitrogen 

Tris(hydroxymethyl)aminomethane (Tris) Sigma 

Trypan blue Sigma 
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4.2. Buffers and Solutions 

 

The water used for the buffers and solutions was purified using the Barnstead TII 

Water System (Thermo Scientific). 

 

Buffer name Reagents Volume 

DNA loading dye (6x) Orange G 
Sucrose (40%) 
ddH2O 
store at 4°C 
 
 

25 mg 
4 g 
up to 10 ml 

TAE-buffer (50x) Tris 2 M 

 Sodium acetate 25 mM 

 EDTA 0.5 M 

 
Adjust pH 7.8 
 
 

 

PBS-EDTA (10x) EDTA 
PBS w/o Ca/Mg (10x) 

1 g 
500 ml 

 

 

5. Commercial kits 

 

Commercial name Supplier 
 

QIAamp® Viral RNA Mini kit Qiagen 

RNeasy Mini kit Qiagen 

QIAquick Gel Extraction Kit Qiagen 

MagMAX™ AI/ND Viral RNA Isolation kit Ambion 

Jet Quick PCR Purification Spin® kit Genomed 

Big Dye Terminator v3.1 Cycle Sequencing® kit Applied Biosystems 

MycoAlert® Mycoplasma Detection Kit Lonza 

IFN-beta ELISA kit: EIA-2088 DRG 

RANTES ELISA kit: BMS287/2INST VWR 

CBA Flex sets (for IL-5, IL-6, IL-8, IL-10 and MCP-1) BD 

Enzygnost Anti-MV IgM and IgG  Dade Behring 

2D-Clean-Up-Kit GE Healthcare 

2D-Quant-Kit GE Healthcare 



Chapter II  Materials and Methods 
 

 43

6. 2D-DIGE Material 

 
Compound Supplier 

 
SYPRO® Ruby protein gel stain Invitrogen 

DTT Sigma-Aldrich 

CyDye DIGE Fluor Cy3 minimal dye, 25 nmol GE Healthcare 

CyDye DIGE Fluor Cy5 minimal dye, 25 nmol GE Healthcare 

CyDye DIGE Fluor Cy3 minimal dye, 25 nmol GE Healthcare 

Immobiline DryStrip pH 3-7, 24 cm GE Healthcare 

IPG Buffer pH 3-7 GE Healthcare 

Immobiline DryStrip Cover Fluid GE Healthcare 

Paper Wicks GE Healthcare 

Reference markers (for robot spot picking) GE Healthcare 

PlusOne Ammonium Persulfate GE Healthcare 

PlusOne N,N'-Methylene-bisacrylamide GE Healthcare 

PlusOne N,N'-Methylene-bisacrylamide 2% Solution GE Healthcare 

PlusOne AcrylamidePAGE GE Healthcare 

PlusOne UREA GE Healthcare 

Thiourea GE Healthcare 

PlusOne Gylicerin  GE Healthcare 

PlusOne Tris GE Healthcare 

PlusOne SDS GE Healthcare 

CHAPS GE Healthcare 

Iodoacetamide GE Healthcare 

Potease Inhibitor Mix GE Healthcare 

PlusOne Bromophenol Blue GE Healthcare 

PlusOne Triton X-100 GE Healthcare 

PlusOne Glycerol GE Healthcare 

Nuclease mix GE Healthcare 

Lava Purple gel strain Gel Company 
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7.  2D-DIGE Buffers and Solutions 

 
Buffer name Reagents Volume/Concentration 

CHAPS Lysis buffer Tris Cl (1 M, pH not adhusted) 30 mM 

 Thiourea 2 M 

 Urea 7 M 

 CHAPS 4 % (w/v) 

 Complete Protease Inhibitor Mix 1x 

 Nuclease Mix 1x 

 Isopropanol 12 % 

 dd H2O up to 100 ml 

 pH 8.5 

   

Rehydration buffer CHAPS 4 % 

 Thiourea 2 M 

 Urea 7 M 

 DTT 13 mM 

 IPG buffer 1 % 

 Bromphenol blue trace 

 dd H2O 25 ml 

   

SDS equilibration buffer Tris Cl (1.5 M, pH 8.8) 50 mM 

 Urea 6 M 

 Glycerol (50 %) 30 % (v/v) 

 SDS 2 % (w/v) 

 Bromphenol blue trace 

 dd H2O 80 ml 

   

Equilibration buffer for reduction 
 

SDS equilibration buffer 40 ml 

 DTT 0.5 % (w/v) 

   

Equilibration buffer for alkylation SDS equilibration buffer 40 ml 

 IAA 4.5 % (w/v) 
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Tris 1.5 M, pH 8.8 Tris 1.5 M 

 HCL (6 M)  ~150 ml 

 dd H2O up to 3 l 

   

12 % 2D-PAGE gel   Acrylamid/Bisacrylamid 30 % 
(w/v) 

250 

 Tris Cl (1.5 M, pH 8.8 150 

 10 % SDS 6 

 TEMED 0.2 

 APS 3 

   

20x SDS Running Buffer  Tris 25 mM 

 Glycine 192 mM 

 SDS 0.2 % (w/v) 

   

Agarose sealing solution 1x SDS Running Buffer 100 ml 

 Agarose 0.5 % 

 Bromphenol blue trace 

 

 

8. Enzymes 

 

Enzyme Supplier 
 

Platinum® Taq DNA polymerase Invitrogen 

RNaseOUT™ (Recombinant Ribonuclease Inhibitor) Invitrogen 

SuperScript™ III Reverse Transcriptase Invitrogen 

 

 

 

 

 

 

 

 

 



Chapter II  Materials and Methods 
 

 46

9. Primers 

 

Primer name 5`- 3`sequence Annealing (°C) Reference 
 

MN5 GCCATGGGAGTAGGAGTGGAAC 

MN6 CTGGCGGCTGTGTGGACCTG 

55 (Santibanez 
et al., 2002) 

Nf1a CGGGCAAGAGATGGTAAGGAGGTCAG 

Nr7a AGGGTAGGCGGATGTTGTTCTGG 

58 (Kremer et 
al., 2007) 
 

MVTaqfw CCCTGAGGGATTCAACATGATTCT 

MVTaqprobe  FAM-TCTTGCTCGCAAAGGCGGTTACGG-
BHQ1 

MVTaqrv ATCCACCTTCTTAGCTCCGAATC 

60 (Hubschen et 
al., 2008) 
 
 

MV-P1 (fw) CTTAGGAACCAGGTCCACACA 

MV-P1 (rv) GAGGGTGACTTTCGAGCACAT 

MV-P2 (fw) GCACTTCCGAGACACCCATTC 

MV-P2 (rv) GAGGCAATCACTTTGCTCCTAAGT 

65 (Bankamp et 
al., 2008) 
 
 
 

MV-H1 TTAAAACTTAGGGTGCAAGATCATCCACA 

MV-H2 ACTTGGTTAGTGTACTACAGTGGG 

MV-H3 CACCTCAGAGATTCACTGACCTAGT 

MV-H4 TATCCCTCATGCTGAAGTCTCTAG 

MV-H5 GTACCGAGTGTTTGAAGTAGGTGTTA 

MV-H6 AACTCGTTGGTCAGTCATTACCAG 

MV-H7 GATCTGAGTCTGACAGTTGAGCTTA 

MV-H8 TAACTAGTGTGTGCCGAGTCC 

58 (Kessler et al. 
2010 in 
preparation) 
 
 
 
 
 
 
 
 

MxA TaqMan® TaqMan GE assay Mx1  
(no sequence available) 

 (Applied 
Biosystems) 

beta actin (fw) GGCCACGGCTGCTTC 

beta actin (rv) GTTGGCGTACAGGTCTTTGC 

60 (Schote et 
al., 2007) 

TNF-alpha (fw) TGCTGCACTTTGGAGTGATCG 

TNF-alpha (rv) CCTCAGCTTGAGGGTTTGC 

IL-1 beta (fw) AGATGATAAGCCCACTCTACAG 

IL-1 beta (rv) TTCAGCACAGGACTCTCTGG 

62 (Kessler et al. 
2010 in 
preparation) 
 
 
 

2-5AS (fw) TTAAATGATAATCCCAGCCC 

2-5AS (rv) AAGATTACTGGCCTCGCTGA 

60 (Fujii et al., 
1999) 

MV396 TATAAGCTTACCAGACAAAGCTGGGAATA
GAAACTTCG 

MV402 TTTATCCAGAATCTCAARTCCGG 

MV403 CGAAGATATTCTGGTGTAAGTCTAGTA 

54 (Shingai et 
al., 2007) 
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10. Bioinformatics 
 
Detailed information about phylogenetic analysis can be found in Chapter II, 

Methods.  

 

Program name Reference 
 

Opticon Monitor™ v3.1 BioRad 

FastPCR v. 3.7.8 (R. Kalender, University of Helsinki, Finland) 

BLAST http://ncbi.nlm.nih.gov/BLAST 

SeqScape Applied Biosystems 

BioEdit http://www.mbio.ncsu.edu/BioEdit 

CLUSTAL W (Thompson et al., 1994) 

MEGA 4.0 (Tamura et al., 2007) 

 

 

11. Additional programs 

 
Program name Reference 

 

TCID50 calculation NCBI ID-50 v5.0 

SigmaStat v3.11 and SigmaPlot v9.01 Systat Software 

Adope Photoshop and Illlustrator Adobe Systems 

Delta2D v.4.0 Decodon 
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12. Instruments 

 
Instruments Supplier 

 
Centrifuges Pico 17, Hereaus; Megafuge® 1.0R, Hereaus 

UNIVAP 150H, UniEquip 
Balance SARTORIUS Precision balance 

Electrophoresis power supply E835, Consort 

Electrophoresis power supply EPS 3501 
XL   

GE Healthcare 

Ettan IPGphor II   GE Healthcare 

Ettan Dalt picking robot  GE Healthcare 

FACS Canto II BD 

Fluorescence/Luminescence reader GENios Plus, Tecan 

Gel tank and casting form Biozyme 

InGenius Gel documentation system  InGenius, Syngene 

Heating block Thermomixer Comfort, Eppendorf 

Incubator HERAcell® 150, Heraeus 

KingFisher Flex Thermo Scientific, VWR 

Microscope Leica  

PCR machine Mastercycler® Gradient, Eppendorf 

Real time PCR machines Opticon® 2 DNA Engine, Chromo4™, CFX, 
MiniOpticon, Biorad, ABI7500Fast, Applied 
Biosystems 

Shaker Multitron 2, INFORS-HT 

Sequencer ABI PRISM® 3130xl Genetic Analyzer, Applied 
Biosystems 

Safe Imager™ Invitrogen 

SPECTRAmax PLUS
 

microplate reader 
system  

Molecular Devices 

Typhoon 9400  GE Healthcare 

Ultraflex TOF/TOF  Bruker Daltonics   

UNIVAP 150 H  UniEquip 

Vortex Vortex-Genie® 2, Scientific Industries1 

 

                                                 
 
Comment 

Company and product denominations mentioned in this document, such as: Invitrogen, Merck, 

Biorad, Sigma, Eurogentec, Qiagen, Genomed, Applied Biosystems, Heraeus, UniEquip, 

Eppendorf, Tecan, R&D Systems, Finnzymes, Biozyme, Syngene, Biotage, Roche Diagnostics, 

may be trademarks or registered trademarks of their respective trademark owners. 
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Methods 
 

The following methods were used to generate and collect the results described in 

Chapter III. Additional information about specimens and clinical samples are 

described in the respective parts of Chapter II, Materials.   

 

 

13. Cell cultures 

 

13.1. Cell lines 

 

Vero 

 

The Vero cell line was derived from kidney epithelial cells of an adult African 

Green Monkey (Chlorocebus aethiops) in 1962 (Yasumura & Kawakita, 1963). 

Since Vero cells are susceptible for a broad range of viruses, including measles, 

rubella and rabies viruses, this adherent mammalian continuous cell line is 

commonly used in molecular research. Unlike normal mammalian cells, Vero 

cells are IFN-deficient, so they do not secret type I IFN after virus stimulation, but 

respond normal to external type I IFN stimulation (Emeny & Morgan, 1979). Cells 

were seeded in 175 cm2 flasks and cultivated in 30 ml cell culture medium under 

sterile standard cell culture conditions. Depending on cell growth, cells were 

passaged by splitting every 2-3 days. Reaching 100% confluent monolayer, cells 

were once washed with 10 ml 1x PBS and afterwards incubated (37°C) for 20-30 

min in 10 ml 1x PBS-EDTA. Detached cells were swirled gently, transferred to a 

50 ml tube and centrifuged 5 min at 1200 rpm. The remaining supernatant was 

discarded and the cell pellet resuspended in 10 ml fresh culture medium. To 

estimate the cell number 10 µl cell suspension were mixed with 10 µl trypan blue, 
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transferred to a Neubauer Haemocytometer and the following formula was used 

to determine the number of cells per ml suspension: 

C = N x 104 x 2 (C = cells/ml; N = average of cells counted in two 

haemocytometer chambers; 104 = volume conversion factor; 2 = correction of 

trypan blue dilution). Approximately 2.5 x 106 cells were transferred back into the 

175 cm2 culture flask with maximal 30 ml fresh culture medium.  

 

 

Vero/hSLAM and A549/hSLAM 

 

Both cell lines have been transfected with a plasmid encoding the gene for the 

human signalling lymphocyte activation molecule (SLAM) and are constitutively 

expressing SLAM, the receptor for both MV-wt and laboratory-adapted strains 

(Ono et al., 2001, Takeda et al., 2005). Vero/hSLAM cell are originally derived 

from the Vero cells, described above. The A549/hSLAM cell line was generated 

in 2005 by Takeda et al. (Takeda et al., 2005) using A549 cells. The A549 cells 

are human carcinomic alveolar basal epithelial cells, which were first developed 

in 1972 by D.J Giard and further characterised by Lieber et al 1976. In the past, 

this cell line has been extensively referenced in the toxicology literature. 

Vero/hSLAM as well as A549/hSLAM cells were propagated as described for the 

above Vero cells.  

 

 

13.2. Freezing and thawing cells 

 

As described above, 100% confluent cells were detached from the culture flask 

using 1x PBS-EDTA, centrifuged and counted. Afterwards 2-3x 106 cells/ml were 

resuspended in cold freezing medium, containing 70% culture medium, 20% FBS 

and 10% DMSO. The freezing solution was distributed into 1 ml cryo-vials, tubes 

were transferred into a special freezing container (Mr Frosty) and stored for at 

least 24 h at -80°C to perform the freezing procedure with a cooling rate of 
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1°C/min. Long-time storage was done in the N2-tank. In order to thaw cells, a 75 

cm2 culture flask was filled with 15 ml cell culture medium and pre-warmed in the 

incubator at 37°C and 5% CO2. The cryo-vials were placed directly from the N2-

tank into a 37°C water bath. Subsequently, the thawed cell suspension was 

transferred into the prepared 75 cm2 flask and placed back into the incubator at 

37°C. The next day, the culture medium was changed in order to wash dead cells 

away.  

 

 

13.3. Mycoplasma test 

 

Mycoplasma are obligate parasitic bacteria, depending on their hosts for many 

nutrients, due to their limited biosynthetic capabilities. On a monthly basis a 

mycoplasma test was performed, using the MycoAlert® Kit from Lonza. This is a 

selective biochemical test, which exploits the activity of certain mycoplasmal 

enzymes. For 10-25 tests the lyophilized MycoAlert® Reagent and lyophilized  

MycoAlert® Substrate were each reconstituted in 600 µl MycoAlert® Assay 

Buffer and incubated for 15 min at RT, to ensure complete rehydration. 2 ml of 

cell supernatant were centrifuged for 5 min at 1500 rpm to remove dead cells and 

cell debris.  In a white wall luminescence compatible 96 well plate, 100 µl of the 

cleared supernatant were mixed with 100 µl of the before prepared MycoAlert® 

Reagent and incubated for 5 min at RT. Afterwards the luminescence of reaction 

one was measured using the luminescence reader from Tecan. Subsequently 

100 µl MycoAlert® Substrate were added to each sample and incubated for 10 

min at RT. The luminescence of reaction two was measured and the following 

formula was used to determine whether the cell culture was contaminated by 

mycoplasma: Ratio = Reaction 2/Reaction 1. Ratios below 1 designated 

uninfected cells, ratios between 1 and 1.3 were suspected to be positive, 

quarantined and retested after 24 h. Ratios above 1.3 clearly highlighted a 

contamination with mycoplasma.  
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14. Virus cultures 

  

14.1. MV isolation and virus propagation 

 

MV can be isolated using a broad range of clinical specimens including 

peripheral blood mononuclear cell (PBMCs), throat or nasopharyngeal swabs, 

nasal aspirates or urine collected as soon as possible after rash onset. The virus 

isolation is most successful for samples collected between day one and three 

after onset of rash (WHO, 2007). The preparation of samples for virus isolation 

and the process of virus inoculation on Vero/hSLAM cells have been done in 

BSL3 facilities. As described in the (WHO, 2007), Vero/hSLAM cells stable 

express SLAM also without Geneticin in the cell culture medium, for at least 15 

cell passages. Another advantage of this cell line is that they are not persistently 

infected with virus, and therefore, are not considered as hazardous material like 

previously used B95a cells. Hence, for inoculation 1x 106 Vero/hSLAM cells were 

seeded into a 25 cm2 culture flask in normal cell culture medium. Next day, cells 

were 85-90% confluent and up to 1 ml of the clinical sample was added onto the 

culture. Inoculated cells have been observed by light microscopy for CPE on a 

daily basis. Following 5 days inoculation, 1 ml of CPE negative culture 

supernatant was transferred to a fresh cell culture (blind passage of virus). When 

CPE reached approximately 75-85% cells and culture supernatant were 

harvested using a cell scraper, transferred into a 15 ml tube and stored at -80°C. 

After 24 h at -80°C, this first generation virus batch was thawed, centrifuged 15 

min at 3000 rpm, 1-2 ml aliquots of the clear supernatant prepared and these 

were afterwards used for growing user batches.  

User batches were grown in 175 cm2 flasks and the complete culture was 

harvested when the CPE reached 85-95%, using the procedure described above 

(in general after 2-4 days). TCID50 was determined for each virus batch 

separately.  
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14.2. Virus titration (TCID50 determination) 

 

The 50% tissue culture infective doses (TCID50) determination calculates the 

amount of virus required to produce CPE in 50% of inoculated cells. Vero/hSLAM 

cells from a continuous culture (passage < 15) were detached using 1x PBS-

EDTA, counted and diluted to 7.5x 104/ml in normal culture medium. Each well of 

two sterile 96-well flat-bottom cell culture plates was filled with 100 µl cold (4°C) 

culture medium, 100 µl virus solution was added to each well of column 1 of plate 

1. Beginning in column 1 of plate 1 the solution was mixed by pipetting 100 µl 

three times up and down using an eight channel pipette. Following, a serial 

dilution was performed, transferring always 100 µl of one column to the following 

one, after mixing three times. So 100 µl of column 1 were transferred to column 

2, mixed 3 times, filter-tips were changed and 100 µl of column 2 were 

transferred to column 3, this procedure was repeated until column 11 of plate 2. 

Column 12 of plate 2 was the negative control. Afterwards 100 µl of previously 

prepared 7.5x 104/ml Vero/hSLAM cell solution was added to each well, starting 

at column 12 of plate 2.  After five days incubation (37°C, 5% CO2) wells positive 

for CPE were counted and TCID50 calculation was performed using the program 

ID-50 v5.0 (NCBI).  

 

 

14.3. Virus Concentration (Amicon® Ultra filtration) 

 

In order to increase the amount of infective particles after MV propagation, the 

virus user batch was ultrafiltrated using Amicon® Ultra-15 centrifugal filter devices 

(100k, Millipore, Belgium). This Amicon® Ultra filtration method enables the 

recovery of the concentrated sample (retained in the filter unit) and the 

ultrafiltrate. Up to 15 ml of virus solution was transferred to the Amicon filter unit. 

Capped filter devices were centrifuged up to 30 min at 3000 rpm at 4°C. The 
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concentrate (maximal 2 ml) was collected from the filter unit using a normal 1000 

µl pipette and TCID50 was determined as described above.  

 

 

15. Enzyme-Linked-Immuno-Sorbent-Assay (ELISA)  
 
The Enzyme-Linked-Immuno-Sorbent-Assay (ELISA) is a fundamental tool of 

clinical immunology, and is mainly used to detect the presence of an antibody or 

an antigen in different specimens (like urine, serum or cell culture supernatant) 

usually performed in microwell plates. The basic principle of an ELISA is the 

recognition by enzyme linked antibodies of antigens, adsorbed onto a specially 

treated plastic support. The enzyme converts a colorless substrate to a colored 

product, indicating the presence of antigen/antibody binding. A Sandwich ELISA 

is based on the following steps: 1) The micro-well plate is coated with the capture 

antibody, 2) the specimen is added to the plate and any antigen present, binds to 

a capture antibody, 3) unbound antigens are washed away, 4) the detection 

antibody is added and binds to the antigen, 5) the secondary enzyme-linked 

antibody is added and binds to the detection antibody, 6) in the last step the 

enzyme substrate is added, is converted by the enzyme to a detectable form and 

the color change is measured by a spectrophotometer. An ELISA can be used to 

detect either the presence of antigens or antibodies in a specimen, depending on 

the design of the test.  

Human IFN-beta and RANTES protein concentrations in cell culture supernatant 

as well as in human sera were determined using commercial ELISA Kits (IFN-

beta: EIA-2088, DRG, Germany and RANTES: BMS287/2INST, VWR, Belgium) 

according to the manufactures instructions.  

Briefly IFN-beta ELISA: The lyophilised enzyme-labelled-antibody was dissolved 

in 6 ml ice cold dilution buffer (both contained in the kit). To prepare the HuIFN-

beta standard solution, the lyophilisate was dissolved in 1 ml ice cold distilled 

water. Following this solution was further diluted in ice cold distilled water to 

obtain a standard dilution series (200, 100, 50, 20, 10, 5, 2.5 IU/ml, dilution buffer 
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was used as negative control). The concentrated washing solution was mixed 

with 450 ml distilled water. The colour-developer-solution was freshly prepared 

each time, substrate A was mixed with substrate B in a ratio 20 to 1. To prime the 

ELISA plate, it was placed for 10 min at RT. Afterwards each well was washed 

with 400 µl washing solution, using an eight channel pipette. Subsequently 50 µl 

enzyme-labelled-antibody was added to each well and mixed with 100 µl sample 

or HuIFN-beta standard solution (0-200 IU/ml). The plate was placed for 2 h at 

RT on a plate shaker. Following the solution was carefully aspirated and each 

well was washed twice with 400 µl washing solution. 100 µl colour-developer-

solution was added to each well and the plate was shaken 30 min at RT. Finally 

the reaction was stopped by adding 100 µl reaction-stopper-solution to each well 

and the measurement was performed at 450 nm in a plate reader.  

Briefly RANTES-ELISA: The wash buffer concentrate (25 ml) was diluted in 475 

ml distilled water and adjusted to pH 7.4. The 5 ml assay buffer concentrate was 

diluted in 95 ml distilled water. The ELISA plate was used immediately after 

removing from -20°C. 140 µl distilled water were transferred to each sample and 

standard well. Following 10 µl of the sample were added to the designated wells, 

mixed and the plate was incubated 3 h at RT. Subsequently each well was 

carefully washed six times with 400 µl wash buffer. The plate was tapped on 

absorbent paper to remove excess wash buffer. 100 µl of TMB substrate solution 

was added to each well and incubated for 10 min at RT in the dark. Finally the 

enzyme reaction was stopped by pipetting 100 µl stop solution into each well and 

the absorbance was measured at 450 nm.   

 

 

16. Cytometric bead array (CBA) 

 

The flow cytometric bead-based technology offers a new approach to 

simultaneously measure multiple analytes in biological or environmental 

samples. This method uses the broad dynamic range of fluorescence detection 

by flow cytometry and antibody-coated beads to efficiently capture analytes. 
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Particles (beads) with discrete fluorescence intensities or various sizes are 

coated with a capture antibody for a soluble protein and can be mixed and used 

simultaneously in a single reaction. Each bead provides a capture surface for a 

specific protein and is traced by detector antibodies, which are conjugated to a 

fluorescent dye. In comparison to a traditional ELISA this method requires a 

reduced sample volume. IL-5, IL-6, IL-8, IL-10 and MCP-1 protein concentrations 

in cell culture supernatant or human sera were determined using commercial 

cytometric bead arrays (CBA Flex sets, BD) according to the manufactures 

instructions. 

Briefly: To prepare the standards, all lyophilized standard spheres from each Flex 

set that was tested, were pooled into one 15 ml tube and label as Top Standard. 

These spheres were all reconstituted in 4 ml assay diluent by pipetting the 

solution up and down and equilibrated 15 min at RT. From this Top Standard a 

serial dilution (1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256) was performed in 500 

µl assay diluent; the negative control contained only assay diluent. The Flex set 

capture beads were 50 times concentrated and needed to be diluted into capture 

bead diluent. The exact calculation of this dilution step can be found in the 

manual and was performed using the FlexSet Calculator provided by the 

company. To Prepare the PE detection reagent, the concentrate (50x) was 

diluted in detection reagent diluent as calculated by using the FlexSet Calculator. 

To start the assay procedure 50 µl of the prepared bead mixture was transferred 

into the designated tubes, mixed with 50 µl of sample or standard and incubated 

1 h at RT. Subsequently 50 µl PE detection reagent were added to each tube, 

mixed and incubated for 2 h at RT in the dark. 100 µl wash buffer were 

transferred to each tube, tubes were centrifuged for 5 min at 200 g and the 

supernatant was carefully descended. Finally the pellet was resuspended in 75 µl 

1% paraformaldehyd solution to inactivate infectious samples. The measurement 

was performed using a FACS Canto II (BD).  
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17. RNA extraction 
 

17.1. QIAamp® Viral RNA Mini kit 

 

Viral RNA was extracted from clinical specimens (nasopharyngeal sample, throat 

swab, oral fluid, urine, saliva or serum) and virus cell culture supernatant using 

the QIAamp® Viral RNA Mini kit (Qiagen) according to the manufacturers 

instructions. Briefly: 140 µl of sample were added to 560 µl of Lysis Buffer (AVL 

buffer) containing carrier RNA (both included in kit), vortexed for 10 s and 

incubated for 10 min at RT. Afterwards, 560 µl of 100% ethanol were added to 

the latter solution, vortexed for 10 s, transferred to the QIAamp® Mini spin column 

in a 2 ml centrifugation tube and centrifuged 1 min at 10.000 rpm. The flow 

through was discarded and the column was washed with 500 µl AW1 buffer (1 

min at 10.000 rpm) and afterwards with 500 µl AW2 buffer (both included in kit). 

RNA was eluted in a final volume of 35 µl of distilled water and stored at -80°C. 

 

 

17.2. MagMAX™-96 AI/ND Viral RNA Isolation kit 

 

For huge amounts of clinical samples the MagMAX™-96 AI/ND Viral RNA 

Isolation kit (Ambion, Netherlands) was used to extract measles virus RNA. This 

kit is based on microspherical paramagnetic beads with a large available binding 

surface. The beads can be fully dispersed in solution, allowing thorough nucleic 

acid binding, washing and elution. The procedure was performed in the 

KingFisher Flex robot (Thermo scientific), which is able to process in only 20 min 

up to 96 samples in a single run. The following protocol was used for parallel 

RNA isolation of 100 samples. For the Lysis buffer, 5 ml of Lysis binding solution 

concentrate and 100 µl of carrier RNA were mixed and afterwards 5 ml of 100% 

isopropanol was added. For the bead mix, 600 µl of bead resuspension solution, 

400 µl of nuclease free water, as well as 400 µl of magnetic beads were well 

mixed, afterwards 600 µl 100% isopropanol was added. To Wash Buffer 1 
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concentrate 35 ml 100% isopropanol, as well as to the Wash Buffer 2 

concentrate 80 ml 100% ethanol, were added to reach the working concentration. 

In order to perform the RNA extraction using the Kingfisher Flex Robot, following 

five 96-well plates were prepared: plate 1 (100 µl Lysis buffer and 20 µl of bead 

mix were added in each well); plate 2 (100 µl per well Wash Solution 1); plate 3 

(100 µl per well of Wash Solution 2); plate 4 (100 µl per well of Wash Solution 2); 

plate 5 (50 µl per well of Elution buffer). Fifty µl of the clinical sample was added 

to plate 1 containing the Lysis buffer and the bead mix (well A1 to H12). A 

negative control replaced a clinical sample every 12 wells (sterile 1x PBS). The 

plates were placed in the KingFisher Flex in the given order (plate 1 to 5) and 

plate 5 was removed after finalization of the program containing the eluted RNA. 

Afterwards the RNA was transferred to a clean 1,5 ml tube and stored at -80°C. 

 

 

17.3. RNeasy® Protect Mini kit 

 

Total RNA from virus cell culture was purified using the RNeasy® Protect Mini kit 

(Qiagen), according to the manufacturers instructions. Buffers were prepared as 

follows: Lysis buffer: 10 µl beta-Mercaptoethanol per 1 ml RLT buffer; Wash 

buffer: 4 volumes of 100% ethanol were added to the RPE concentrate. The 

following protocol was used for 200.000 cells per well in a 24 well-plate. Cell 

culture supernatant was removed and cells were washed once with 500 µl 1x 

PBS. Afterwards 350 µl Lysis buffer (RLT + beta-Mercaptoethanol) was added to 

the cells, incubated for 1 min at RT and lysate was transferred to the 

QIAshredder spin column in a 2 ml centrifugation tube. Following centrifugation 2 

min 13.000 rpm, the homogenized lysate was transferred to a gDNA eliminator 

spin column (included in the kit), placed in a 2 ml collection tube, centrifuged 1 

min 13.000 rpm. 350 µl of 100% ethanol were mixed with the flow through and 

applied to the RNeasy-spin column in a 2 ml centrifugation tube and centrifuged 

1 min 13.000 rpm. The column was afterwards washed with 700 µl RW1 buffer 

followed by two wash steps with 500 µl RPE buffer and finally dried by 
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centrifugation 1 min 13.000 rpm. RNA was eluted in a final volume of 35 µl of 

distilled water and stored at -80°C.  

 

 

18. Reverse Transcription 

 

During the Reverse Transcription, a single-stranded RNA template is reverse 

transcribed into a single stranded complementary DNA (cDNA) using the enzyme 

reverse transcriptase. Purified viral RNA was reverse transcribed for 80 min at 

50°C using random primers and SuperScript III reverse transcriptase, brief work 

flow as shown below (all compounds were ordered at Invitrogen, Belgium). The 

resulting cDNA was afterwards used for PCR.  

 

 

Mix 1 

Reagent Volume (µl) Concentration 
 

Random primer  5     150 ng 
dNTP mix  1     10 mM each  
RNA  5    10 pg - 5 µg 
distilled water  1      
 

 

Mix 2 

Reagent Volume (µl) Concentration 
 

DTT 2     5 mM 
RNaseOUT™  0.5 20 units 
5x First-Strand Buffer 4     1 x 
SuperScript® III 1     200 units 
distilled water 0.5   
 

Mix 1 was incubated 5 min at 65°C, afterwards kept on ice, supplemented with 

Mix 2 and incubated 5 min at 25°C. The Reverse Transcription was performed at 

50°C for 80 min, followed by 15 min at 72°C for inactivation of the enzyme.  
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19. Polymerase Chain Reaction (PCR) 

 

As the name implies, PCR is a chain reaction, where one DNA molecule is used 

to produce two copies, then four, then eight and so forth. This procedure 

amplifies double stranded PCR products, to quantify the presence of a specific 

DNA fragment, or to obtain sufficient DNA product for downstream applications. 

The reaction solution contains beside DNA molecules (to be copied), a set of 

oligonucleotides (forward and reverse primer, which specifically bind to a given 

sequence), a DNA-dependent-DNA-polymerase (which copies the DNA by 

starting at the forward primer and finishing at the reverse primer during multiple 

PCR cycles), MgCl2 (essential for enzyme activity and primer binding) and 

reaction buffer (ensuring the correct ionic strength and pH for the PCR). Each 

PCR cycle consist of the following three steps and is repeated up to 40 times: 1) 

Denaturation at 95°C (separates the double stranded DNA into single stranded 

molecules), 2) Primer Annealing usually at temperatures between 50-65°C 

(primers will bind specifically to designated positions on the single stranded 

molecules), 3) Elongation at 72°C (the polymerase will add further nts to the 

developing DNA strand, so copying the single stranded sequence between 

primers to a double stranded molecule; at the same time, any loose bonds that 

have formed between the primers and DNA segments that are not fully 

complementary are broken). Each time these three steps are repeated, the 

number of copied DNA molecules doubles and after 20 cycles about a million 

molecules are cloned from a single segment of double-stranded DNA. Normally, 

the result of the PCR is visualised using agarose gel electrophoresis. 

 

In order to increase the sensitivity of the amplification, a nested or semi-nested 

PCR can be performed. In a nested PCR the first-round PCR product is used as 

template in a second PCR, with two new primers binding inside of the first-round 

product. Alternatively, in a semi-nested PCR only one primer is shifted 

(downstream for the forward primer or upstream for the reverse primer), whereas 

the second primer is unchanged.  
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Alternatively, by adding SYBRGreen® (a non-specific fluorescent dye that 

intercalates unspecific with any double-stranded DNA) (Invitrogen, Belgium) to 

the PCR reaction, it is possible to visualise the DNA amplification during each 

cycle and consequently simultaneously quantify the DNA; this method is called 

real-time PCR (RT-PCR). Other common methods to quantify specific DNA, are 

TaqMan® assays, they contain a third primer (probe) that is labelled with a 

fluorescent reporter and binds between the forward and reverse primers. During 

the elongation process, the DNA polymerase separates the initially non-

fluorescent reporter from the probe, which then becomes fluorescent. Based on 

their high sequence specificity, TaqMan® assays are commonly used for 

diagnostic purposes.  

 

 

19.1. MV genotyping PCR 

 

The following PCR protocol was used for the MV genotyping first-round and 

nested PCR. For the first-round PCR: primer MN5 and MN6, Annealing at 55°C, 

five times diluted cDNA as template. For the nested PCR: primer Nf1a and Nr7a, 

Annealing at 58°C, 50 times diluted first-round product as template (Kremer et 

al., 2007, Santibanez et al., 2002). PCR reactions were performed on Opticon 2 

(Biorad) thermocyclers. 

 

PCR Mix 

Reagent Volume (µl) Concentration 
 

PCR Buffer (10x) 2.5     1x 
MgCl2  0.91   1.8 mM 
dNTP's  0.5      0.2 mM 
primer fw 1         0.8 µM 
primer rv 1 0.8 µM 
SYBRGreen®  (100x stock) 0.25 1x 
Platinum Taq® polymerase 0.1 0.5 units 
DNA template (diluted in distilled water) 5  
distilled water 13.74   
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PCR protocol 

Step Temperature Time Cycle 
 

Starting denaturation 94 °C 1 min 30 s 1x 
Denaturation 94 °C 30 s 
Annealing 55 °C or 58°C 1 min 
Elongation 72 °C 1 min 

repeat  34 times 

Final Elongation 72 °C 5 min 1x 
 

According to the above described PCR setup all other RT-PCRs were performed, 

using different primers and annealing temperatures (details about primers please 

see chapter II, section 7). For further details please check the designated 

references.  

 

 

19.2. MV TaqMan® PCR 

 

The following TaqMan® assay was used for fast and highly sensitive MV 

detection of diverse specimens. As template five times diluted cDNA was used. 

PCR reaction was performed on a 7500 Fast Real-time PCR thermocycler 

(Applied Biosystems).  

 

TaqMan® Mix 

Reagent Volume (µl) Concentration 
 

TaqMan® Fast Universal Master Mix (2x) 10   1x 
MVTaqfw 1.8 0.9 µM 
MVTaqrv  1.8 0.9 µM 
MVTaqprobe  0.5 0.9 µM 
DNA template (diluted in distilled water) 5  
distilled water 5.9   
 

TaqMan® Fast PCR Protocol 

Step Temperature Time Cycle 
 

Starting denaturation 95 °C 20 s 1x 
Denaturation 95 °C 3 s 
Annealing and 
Elongation  

60 °C 30 s 
repeat  44 times 
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20. Agarose gel electrophoresis 

 

Agarose gel electrophoresis is used to separate DNA molecules by size. DNA 

molecules are negatively charged due to their high content of phosphates and 

migrate to the positively charged cathode, when they are exposed to an electric 

field (electrophoresis). Since agarose forms a tightly meshed structure, shorter 

molecules move faster and migrate farther than longer ones due to the sieving 

effect of the gel. To visualise the migration, the DNA was mixed with an ionic 

marker (Loading Dye 6x) which migrates as similar to a DNA molecule of 200 bp.  

In order to afterwards visualize the PCR products under UV light, SYBRSafe® 

(Invitrogen) (a dye which fluoresces only when bound to double stranded DNA) 

was added to the agarose gel.  

Agarose gels (1.5%) were prepared by dissolving 1.5 g of powdered agarose in 

100 ml of 1x TAE buffer using a microwave oven. Once completely dissolved, the 

mixture was allowed to cool to approximately 55°C, and 10 µl of SYBRGreen® 

were added and the liquid mixture was transferred into the casting form (14x12 

cm) and the comb(s) were inserted (thickness of slots 1 mm). After 15 min the 

combs were removed from the polymerized agarose gel and the gel was 

transferred into the gel chamber. The gel was covered with 1x TAE running 

buffer. Before loading the DNA samples on the gel, 2 µl of 6x Loading Dye were 

mixed with 5 µl of PCR product. The gel was exposed for approximately 35-45 

min to an electrical current of 130 V and images were taken after UV illumination 

at 300 nm wavelength with the InGenius Gel documentation system (Syngene).  

 

 

21. Sanger sequencing 

 

The dideoxynucleotide sequencing method that was used for de novo 

sequencing is based on the dye terminator method (Sanger sequencing). This 

technique utilizes 2',3'-dideoxynucleotide triphospates (ddNTPs) molecules that 

differ from deoxynucleotides by having a hydrogen atom attached to the 3' 
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carbon rather than an OH-group. These molecules terminate the DNA chain 

elongation, since they cannot form a phosphodiester-bond with the next 

deoxynucleotide. Primer and DNA polymerase were mixed with dNTPs and a low 

concentration of fluorescently labelled, chain terminating dideoxynucleotides. 

Thus, these ddNTPs terminate DNA strand extension and result in DNA 

fragments of varying length. Each fragment terminates either with ddATP, ddCTP 

ddGTP or ddTTP labelled with different fluorescent dyes (different wavelengths 

of fluorescence and emission). Using a poly-acrylamide gel the fragments are 

size-separated by capillary electrophoresis and at the end of the capillary the 

fluorescence is read with a laser. Sequences are assembled by comparing the 

size dependent order of appearance of fragments and the nucleotide specific 

fluorescence peaks (sequence electropherogram). 

 

Prior the sequencing procedure, all samples were purified from residual primers 

and non-incorporated nucleotides using the Jetquick PCR product Purification 

Spin kit (Genomed). Briefly description of the method: 20 µl PCR product were 

mixed with H1 buffer (included in the kit), transferred to the Jet Quick Spin® 

column placed in a 2 ml collection tube and centrifuged 1 min at 10.000 rpm. The 

flow through was discarded and the column was washed with 500 µl H2 buffer (1 

min at 10.000 rpm). The DNA was eluted in a final volume of 35 µl of TE buffer 

and stored at -20°C. Approximately 5-20 ng of DNA were required to sequence 

templates of 500 to 800 bp.   

 

The sequencing PCR was performed using the BigDye Terminator® v3.1 Cycle 

Sequencing kit (Applied Biosystems) the and following protocol: 
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Sequencing PCR reaction 

Reagent Volume (µl) Concentration 
 

BigDye Terminator® Mix  1  1x 
TE buffer  1.5 0.75 
Primer fw 1 0.5 µM 
Primer rv 1 0.5 µM 
DNA template (diluted in distilled water) max. 5  10 ng 
distilled water >0.5  
Total volume  10   
 

Sequencing PCR protocol 

Step Temperature Time Cycle 
 

Denaturation 96 °C 1 min  
Denaturation 96 °C 10 s 
Annealing 50 °C  5  s 
Elongation 60 °C 2 min 

repeat  25 times 

 
 

Before sequencing the final PCR products, non-incorporated dyes were 

removed. All steps were performed in 96-well plates. So 5 µl of 125 mM EDTA 

and 10 mM of distilled water were mixed with each sample and 60 µl of 100% 

ethanol were added, samples were vortexed and incubated 15 min at RT in the 

dark. Afterwards the 96-well plate was centrifuged for 30 min at 3000 rpm and 4 

°C. Subsequently, the ethanol was removed by flapping the plate on paper and 

additionally centrifuge for 60 s at 1000 rpm. The previous steps were repeated 

with 70% ethanol. Finally the plate was dried 15 min in a UNIVAP 150 H 

(UniEquip) and stored at 4°C until use. For sequencing, samples were finally 

heated 5 min at 95°C, complemented with 10 µl HI-DI (Applied Biosystems) and 

again incubated 5 min at 95°C and loaded on the capillary sequencer ABI 

PRISM® 3130 xl Genetic Analyzer (Applied Biosystems) (capillaries were 80 cm 

long).  
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22.  Phylogenetic analysis 

 

The SeqScape® program (Applied Biosystems) was used to convert the 

generated electropherograms into sequences, and individual sequences were 

combined to complete genes using a reference sequence (NCBI accession 

number: AF266291: MV Schwarz vaccine, complete genome). Sequences were 

imported into BioEdit (Hall, 1999)  and further aligned using the internal algorithm 

ClustalW (Thompson et al., 1994). The MEGA 3 (Kumar et al., 2004) software 

was used to construct phylogenetic trees by the Neighbor-Joining method (Kimira 

2-parameter or number of nucleotide differences) and the nucleotide distance 

was calculated.  

A phylogenetic tree is a branching diagram showing the inferred evolutionary 

relationship for example among various viruses, based on nt differences among 

them. Sequences are linked by nodes (hypothetical ancestors or points of 

deviation) and connected by horizontal branches (length of lines is proportional to 

the genetic distance). Strains clustering on the same node belong to the same 

phylogenetic group. 

The neighbour-joining method (Saitou & Nei, 1987) is a simplified version of the 

minimum evolution method, which uses distance measures to correct for multiple 

hits at the same sites and chooses a topology showing the smallest value of the 

sum of all branches as an estimate of the correct tree. The Bootstrap test was 

used to estimate the reliability of the calculated phylogenetic trees. For this 

bootstrapping, a tree is calculated on a sub-sample of the sites in an alignment. 

This computation is repeated multiple times (≥ 1000) and the results allow 

estimating about the reliability of the particular cluster/group. The Bootstrap 

values are expressed as percentage, so high bootstrap values indicate significant 

nodes.  

The Kimura 2-parameter model (1980) corrects the calculation by taking into 

account transitional and transversional substitution rates, while assuming that the 

four nt frequencies are the same and that rates of substitution do not vary among 

sites. This is one of the most widely used models and time-independent. The 
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number of substitutions between sequences usually reflects the evolutionary 

distance among sequences. Evolutionary distances are essential to study the 

molecular evolution of a virus.  

 

 

23. 2D-DIGE Proteomics 

 

Two-dimensional Difference Gel Electrophoresis (2D-DIGE) is a special from of 

gel electrophoresis, commonly used to analyse proteins. The procedure consists 

of the following steps: sample preparation (cell lyses and protein purification), 

sample labelling (using up to three specific fluorescent dyes), sample 

fractionation (starts with separation in the first dimension based on the isoelectric 

points of the proteins, using isoelectric focusing; following the second dimension 

based on the molecular weight of the proteins, which is performed in an 

acrylamide gel), gel imaging and image analysis (using Typhoon scanner and 

Delta2D analysis software to identify differential expressed proteins) and finally 

spot picking and identification of differentially expressed proteins (using mass 

spectrometry).  

Labelling proteins with fluorescent dyes prior to isoelectric focusing and SDS-

PAGE allows detection and quantification of differences in protein abundance 

between different biological samples within one single gel (Unlu et al., 1997). 

Special charge- and size -matched cyanine CyDyeTM DIGE fluor minimal dyes 

(Cy2, Cy3, Cy5) that react over an NHS-ester group with ε-amino residues of 

lysine are commonly used for protein labeling. The three different CyDyes add 

approximately 450 Da to the protein mass. With this procedure approximately 3% 

of the available proteins are labeled (only on a single lysine per protein). In order 

to reduce to experimental gel-to-gel variation a pooled internal standard 

comprises of equal amounts of each sample is used.  

The practical work concerning the following proteomics parts, as well as the 

results shown in Chapter III part II were performed together with Dr. Anja Billing 
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and Dominique Reverts from the Proteomics platform at the Institute of 

Immunology.  

 

Protein extraction and CyDye labeling 

Treated cells were two times washed with ice cold 1x PBS, scrapped with a cell 

scraper in a final volume of 1 ml 1x PBS, transferred into a 1.5 ml tube. After 

centrifugation the pellet was stored at -80°C until parallel protein extraction. 

Protein extraction was performed for 30 min at RT in 150 ul lysis buffer (pH 8.5) 

containing 7 M urea, 2 M thiourea, 30 mM Tris, 4% CHAPS, protease inhibitors 

and nuclease mix. Subsequently proteins were acetone precipitated with 8 

volumes ice-cold acetone over night at -20°C and washed with ice-cold 90% 

acetone/DDW. Protein was resuspended in 50 µl lysis buffer and quantified using 

the 2D Quant kit (GE Healthcare).  

Protein samples and internal standard were labeled with CyDye™ Fluor minmal 

cyanin dyes (GE Healthcare) prior 2D gel electrophoresis according to standard 

protocol and as described previously (Billing et al., 2010). Briefly, 50 µg of protein 

per sample was labeled with 400 pmol CyDyes™ (GE Healthcare). Labeling was 

performed on ice for 30 min with pH adjusted (pH 8.5) protein samples. Lysine 

(10 mM) was used to quench the labeling reaction. We generated two internal 

standards, one for each time point. Therefore, 25 µg of all protein samples per 

time point was combined and labeled with Cy2. Biological triplicates were labeled 

with Cy3 or Cy5. Labeled samples were pooled (Cy2, Cy3, Cy5) and separated 

by 2D-DIGE. One gel for each time point was spiked with 200 µg unlabeled 

protein mix of MV infected cells to enable protein identification. 

 

2D gel electrophoresis 

Immobiline DryStrips (GE Healthcare, 24 cm pH 3-7 NL) were rehydrated 

overnight with combined samples (Cy2, Cy3, Cy5) in 7 M urea, 2 M thiourea, 4% 

CHAPS, 13 mM DTT, 1% IPG buffer, traces of bromophenol blue in a total 

volume of 450 µl. Isoelectric focusing was carried out on an Ettan II (GE 

Healthcare) using the following protocol constant 300 V over 4 h, gradient to 
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1000 V over 4 h, gradient to 8000 V over 4 h and final focusing at 8000 V for 8 h. 

The cysteine sulfhydryl groups were reduced and carbamidomethylated with 10 

mM DTT and 55 mM iodoacetamide for 15 min at RT. IPG strips were placed on 

top of 12% self-cast polyacrylamide gels and overlaid with 0.5 % agarose. SDS-

PAGE was carried out on an Ettan DALTtwelve (GE Healthcare) at 30°C with 2 

W per gel for 30 min and 4 W per gel until the bromophenol blue front left the gel. 

2D DIGE gels were scanned on a Typhoon 9400 (GE Healthcare) directly 

between glass plates in a 16-bit TIFF file format with a resolution of 100 µm using 

excitiation/emission wavelength of 488/520 nm for Cy2, 532/580 nm for Cy3 and 

633/670 nm for Cy5. Preparative gels backed on bind silane-treated glass plate 

were post-stained with LavaPurple (GelCompany). Gels were scanned with a 

resolution of 100 micron using 633/670 nm as excitation/emission wavelength.  

 

Image analysis 

Images were analyzed with Delta2D v.4.0 (Decodon). We generated two 

projects; one for the 12 h and one for 32 h time point. All images belonging to the 

same project were aligned with the DIGE compatible in-gel standard warping 

method. This defines the best Cy2 image as a master to which all other Cy2 

images are merged. A few vectors were set manually prior automatic match 

vector finding. Warping was evaluated and approved. Images with the best 

resolution were selected for generation of a fusion image, which contains all 

spots in the project. This fusion was used for automated spot detection. After 

evaluation and editing the spot pattern was transferred to all images. Quantitative 

analysis of protein expression based on normalized spot volumes (after 

background subtraction and normalization to the internal standard) was 

performed with student’s t-test. Spots with a p-value ≤ 0.05 were considered to 

be significant different. Data are represented as fold changes for each treatment 

in comparison to the mock-infected control.   
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Protein identification 

LavaPurple-post stained preparative gel images were included into the Delta2D 

projects and aligned to its corresponding Cy2 gel internal standard. Significant 

spots were selected and automatically excised, in-gel digested with trypsin and 

extracted peptides were spotted by Ettan Spot handling Workstation (GE 

Healthcare) and analyzed by ABI 4800 Proteomics Analyzer (Applied 

Biosystems). Proteins were identified using MASCOT by searching against the 

UniProt database (release 57.15, 02-Mar-2010). Protein scores greater than 65 

were significant. All searches were carried out with a tolerance of 150 ppm for 

the precursor ion and 0.75 Da for fragment ions. Carbamidomethyl was set as 

fixed modification and oxidation of methionine as variable modification. A 

maximum of 2 missed cleavages were allowed.   

Spot picking and protein identification was mainly performed by the Proteomics 

Service Centre at the CRP-Gabriel-Lippmann, therefore experimental details are 

not described.  

 

Bioinformatic pathway analysis 

Proteomic data sets were analyzed by Ingenuity Pathway Analysis. (Ingenuity® 

Systems, www.ingenuity.com). Functional module analyses were performed 

using data sets containing gene identifiers and corresponding expression values 

and functional groups were defined based on information contained in the 

Ingenuity Pathways Knowledge Base.  
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Part I 

 

 

Genetic and Phenotypic characterisation of various MV strains 

 

 

 

 

 

Manuscript of part I is submitted as: 

 

Interplay of measles virus with early induced cytokines reveals different wild type 

phenotypes.  

 

J. R. Kessler, J. R. Kremer, C. P. Muller 

 

 

 

 

 

 

Differential effects of MV on the innate immune response may influence virus 

spread and severity of disease. Type I interferons (IFN) and IFN-response genes 

including 2',5'-oligoadenylate-synthetase (2-5AS) and myxovirus-resistance A 

(MxA), are essential mediators of the innate immune response against viral 

infections (Haller et al., 2007, Sadler & Williams, 2008) Viral RNA sensing by 

different host cell receptors, including RNA-helicases like retinoic acid inducible 

gene I (RIG-I), mediates the expression of inflammatory cytokines and 
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chemokines like IFN-alpha/beta, TNF-alpha, IL-1 beta, IL-6, IL-8, MCP-I or 

RANTES (Liao et al., 2008, Poeck et al., 2010, Wang et al., 2008, Wu et al., 

2010). MV has been shown to induce IFN via different mechanisms: MV-N 

protein recognition by IRF-3; detection of MV 5`-triphosphate RNA or specific 

defective interfering RNA molecules (diRNA) by RIG-I (Plumet et al., 2007, 

Shingai et al., 2007, tenOever et al., 2002). These 5`copy-back diRNA molecules 

that have been intensively studied in Sendai virus and Vesicular stomatitis virus, 

are subviral replicons generated spontaneously during virus replication, due to an 

error of the polymerase complex. DiRNAs often represent only minor parts of the 

virus genome and are therefore only replicated in cells infected with the parent 

virus (Barrett & Dimmock, 1986, Enami et al., 1989, Marcus & Sekellick, 1977). 

MV has also the ability to suppress the innate immunity. Especially the P/C/V 

locus has been associated with host immune evasion, by prevention of IFN-

biosynthesis (Childs et al., 2007, Pfaller & Conzelmann, 2008) or by interfering 

with IFN-signalling (Takeuchi et al., 2003a, Yokota et al., 2003).  

Different MV genotypes are endemic in most areas with high mortality rates. 

Mortality is mainly caused by secondary infections, facilitated by an 

immunosuppression. Differences in mortality rates are usually attributed to 

specific host factors and poor supportive care. However, the pathogenicity of 

different strains or genotypes has never been systematically compared.  

Here we compare for the first time 22 MV strains, representative of most 

circulating genotypes (n=14), for their ability to interfere with the early immune 

response of different host cells. We found that MV wt strains significantly differ in 

their sensitivity to type I IFN and their ability to induce this and other cytokines 

largely depends on the apparently haphazard induction of diRNA.   
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1. Results 

 

1.1. MV wt strains are highly variable in their sensitivity to IFN-

alpha 

 

MV was grown in the presence of IFN-alpha on IFN-deficient Vero/hSLAM cells 

and virus titers were compared to cultures without IFN-alpha treatment. Virus 

proliferation of all 22 MV strains was reduced in the presence of IFN-alpha 

(Figure 9), but viruses differed considerably in their sensitivity to this cytokine. 

Three wt strains (MV112, MV022, MV705) produced only 1.5 to 2.1 times less 

infectious virus in the presence of IFN-alpha (p>0.05). Seven wt strains (MV801, 

MV035, MV407, MV409, MV034wt, MV326, MV336, and MV030) showed an 

intermediate sensitivity with 3.5 to 11.6-times lower TCID50/ml (p<0.05) in IFN-

alpha treated cultures. The remaining wt viruses (MV005, MV215, MV033wt, 

MV335 and MV032wt) exhibited a high sensitivity to IFN-alpha treatment, with a 

25 to 47-fold reduction in virus production (p<0.05). Virus titers obtained with 

Vero cell adapted (VCA) strains were in all cases lower (~2-fold), than those 

produced by their parental wt strains, but for each virus differences were not 

statistically significant (Figure 9). Clade A strains showed low (Schwarz) or 

intermediate (Edmonston-wt and Hallé) sensitivity to IFN-alpha. Some wt strains 

were more while others were less sensitive than the Schwarz vaccine and other 

clade A strains. Thus it was not possible to distinguish between vaccine and wt 

strains on the basis of their sensitivity to IFN-alpha treatment and Vero cell 

adaptation essentially did not change the sensitivity to IFN-alpha.  
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Figure 9: MV production in IFN-alpha treated or un-treated Vero/hSLAM cells.  

MV production (TCID50/ml) in IFN-alpha treated (grey bars) or un-treated (open bars) 

Vero/hSLAM cells (MOI:0.0025) 48h p.i. (left y axis). MV sensitivity (black line and �) to type I 

IFN was defined as fold-decrease in viral titer, compared to untreated cultures (right y axis). 

Viruses are sorted by increasing sensitivity to IFN-alpha. Values represent means and standard 

errors of three biological replicates. Statistically significant differences are indicated by asterisks 

(Students t test: *, p<0.05; **, p<0.01). Genotypes are indicated in brackets behind the strain 

designation. 

 

 

1.2. No sequence motif in the P/C/V-locus can be associated 

with the sensitivity to IFN-alpha 

 

 MV-P, V and C proteins have previously been associated with inhibition of IFN-

signalling. Simultaneous amino acid (aa) mutations in the PNT region (Y110H) 

and the VCR region (C272R) of the V protein reverse their capacity to inhibit IFN 

signalling (Caignard et al., 2009, Ohno et al., 2004). Therefore complete P-

genes, encoding the three proteins P, C and V were sequenced to assess, 

whether specific sequence motifs were associated with a high or low sensitivity to 

IFN-alpha treatment. The maximum aa diversity in P, C and V proteins of the 22 

MV strains, was 10.1%, 7.5% and 11.4% respectively. None of the strains had 



Chapter III  Results and Discussion 
 

 76

any of the above mutations, and no other sequence motif in the P/C/V-locus was 

preferentially associated with strains showing high or low sensitivity to IFN-alpha.  

Nevertheless, three characteristic aa substitutions were identified in the P and V 

protein (K/N51R, S83P and E225G) and one in the C protein sequence 

(R/M44G) of clade A strains compared to wt strains. The VCA strains 

MV032VCA and MV033VCA differed by one (V112A) and two (S63P and S66P) 

aa from their parental wt strains in the P and V proteins, as well as by F105L 

(MV032VCA) and V50A and V73A (MV033VCA) in the C protein. No aa 

difference in any of the three proteins was found between MV034VCA and its 

parental wt strain (MV034wt). Characteristic mutations in clade A or VCA strains 

may well be associated with their attenuated phenotype, but did not correlate 

with their sensitivity to IFN-alpha.  

 

 

1.3. MV wt strains are low IFN-beta inducers unless they express 

diRNA 

 

 We further investigated whether viruses that are sensitive to type I IFN avoid 

inducing this cytokine. Between <2.5 IU/ml (detection limit) and 750 IU/ml of IFN-

beta was detected in the supernatant of MV infected A549/hSLAM cells 48h p.i. 

(Figure 10a). All clade A strains induced >600 IU/ml of IFN-beta. Two VCA 

strains (MV32VCA and MV34VCA) and the three wt strains MV112, MV035 and 

MV407 induced >250 IU/ml. All other wt strains induced <210 IU/ml of IFN-beta. 

Since it was previously shown that MV diRNAs are strong IFN-beta inducers 

(Shingai et al., 2007) all strains were screened for these subviral replicons. 

DiRNA was detected only in A549/hSLAM cultures of two VCA strains 

(MV32VCA and MV34VCA) and three wt strains (MV112, MV035 and MV407) 

(Figure 10b i). MV034VCA and MV032VCA induced about four times (p<0.001) 

more IFN-beta than their parental, diRNA-negative wt strains, whereas 

MV33VCA, which remained negative for diRNA, induced 3.4 (p<0.001) times less 
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IFN-beta than the parental wt strain. The intensity of the corresponding bands in 

agarose gels, correlated with the concentration of IFN-beta in the culture 

supernatant (Figure 10a and b i).  

 

 
Figure 10: Effects of MV on host cells. Detailed figure legend please see next page. 

 

 

d) 

a) 

b) 

c) 
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Figure 10: (see previous page). Effects of MV on host cells.  

a) Induction of IFN-beta in MV infected A549/hSLAM cells 48h p.i. (MOI:0.05). DiRNA carriers are 

marked with + (representing the amount of diRNA in agarose gel in Figure 10b I). Data are sorted 

by increasing IFN-beta induction. Values are expressed as mean and standard error of three 

biological replicates. Strain designation as in Figure 9. b) 5`copy-back diRNA in MV strains 

propagated on (I) A549/hSLAM or (II) Vero/hSLAM cells. DiRNA carriers are underlined. c) Fold 

induction of IFN response genes (MxA, closed symbols; 2-5AS, open symbols) in MV-infected 

A549/hSLAM cells normalizing against the housekeeping gene beta actin. �, clade A strains; �, 

wt strains; �, diRNA positive strains. IFN-beta levels measured in the supernatant of the same 

experiments are shown on the x-axis. d) Comparison of the sensitivity of MV to IFN-alpha 

treatment (measured in Vero/hSLAM) and the induction of IFN-beta in MV infected A549/hSLAM 

cells. �, clade A strains; �, wt strains; �, diRNA positive strains. Values are expressed as mean 

of three biological replicates. 

 

 

 

DiRNAs were also detected in the stocks of MV strains (grown on Vero/hSLAM 

cells), which induced high levels of IFN-beta (MV032VCA, MV034VCA and 

MV407), whereas all other stocks were negative for diRNAs (Figure 10b II). 

Some of the other wt strains, inducing intermediate levels of IFN-beta, may 

express diRNAs below the limit of detection, but even after multiple passaging 

these strains did not necessarily induce detectable levels of diRNA (compare 

MV033wt and MV034wt in Figure 10a, Table 7).  

In the same experiments the expression of type I IFN-inducible genes were also 

determined (Figure 10c). Up to 10 IU/ml IFN-beta the expression of MxA and 2-

5AS increased with IFN-beta concentration, before reaching a plateau above 10 

IU/ml. Several wt strains as well as the diRNA negative VCA strain (MV215, 

MV030, MV409, MV005, MV033VCA and MV705) triggered levels of IFN that 

induced low or sub-maximal levels of both response genes.  

When the sensitivity to type I IFN of strains was compared with the level of IFN 

they induced, strains with a high sensitivity induce only low amounts of IFN 

(Figure 10d). On the other hand both strong and weak inducers were found 

among viruses with low or intermediated sensitivities.  
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Thus, the high levels of IFN-beta induced by clade A strains seemed to be 

independent of diRNAs, whereas wt strains induce high levels of IFN only in the 

presence of diRNA. 

 

 

1.4. MV wt strains induce significantly lower levels of cytokines 

than clade A strains, provided they are negative for diRNA 

 

In the above experiment on A549/hSLAM cells, diRNA positive strains (including 

the two VCA strains) also induced significantly more RANTES (26.8 fold), IL-6 

(24.8 fold), IL-8 (3.2 fold), MCP-I (4.5 fold), TNF-alpha mRNA (21 fold) and IL-1 

beta mRNA (14.3 fold) than diRNA negative wt strains (p<0.005) (Figure 11). On 

average diRNA positive strains did not induce significantly higher levels of the 

above cytokines than clade A strains. Wt in comparison to clade A strains 

induced significantly lower levels of IL-6 (13.5 fold), RANTES (37.3 fold), MCP-I 

(4.14 fold) and TNF-alpha mRNA (6.7 fold) (p<0.005). IL-8 and IL-1 beta mRNA 

inductions were also lower with wt strains, but the differences were not 

statistically significant.  

Thus, in general wt strains induced low or undetectable levels of all cytokines, 

whereas clade A and diRNA positive strains (wt and VCA) induced intermediate 

or high levels. 
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Figure 11: Detection of RANTES, MCP-I, IL-8, L-6, TNF-alpha and IL-1 beta in MV infected 

A549/hSLAM cells.  

Detection of RANTES (pg/ml), MCP-I (pg/ml), IL-8 (pg/ml) and IL-6 (pg/ml) in the supernatant of 

MV infected A549/hSLAM cells (MOI:0.05). TNF-alpha and IL-1 beta are shown as fold induction 

of mRNA. MV strains are shown on the x axis: wt: all wt strains (negative for diRNA); diRNA: all 

strains positive for diRNA (wt and VCA); clade A: all strains from genotype A. Mann-Whitney rank 

sum test: *, p<0.05)  

 

 

1.5. DiRNA induce TNF-alpha expression during early MV 

infection in Vero cells 

 

In our previous experiment (Figure 9, open bars) we showed that diRNA positive 

VCA strains produced much less virus than their diRNA negative parental wt 

strains. This suggests that in IFN-deficient Vero/hSLAM cells diRNA activates an 

antiviral mechanism that is independent of IFN, such as TNF-alpha (Herbein & 

O'Brien, 2000, Shingai et al., 2007, Wang et al., 2008). We compared the 

induction of TNF-alpha in Vero/hSLAM cells infected with diRNA positive or 
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negative MV stocks as an alternative antiviral mechanism at an early time point 

of infection (Figure 12). The diRNA positive strains induced up to 540-fold more 

TNF-alpha (p<0.05), than their diRNA negative counter parts. Thus, in 

Vero/hSLAM cells only diRNA positive strains induced significant levels of TNF-

alpha already early during infection. 

 

 

Figure 12: mRNA expression level of TNF-alpha in MV infected Vero/hSLAM cells 

(MOI:0.05). DiRNA positive strains are indicated as closed bars; diRNA negative strains as open 

bars. Values are expressed as mean plus standard error of three biological replicates. Mann-

Whitney rank sum test *, p<0.05). Strain designation as in Figure 9. 

 

 

1.6. Multiple passaging induces diRNA in MV culture 

 

To investigate whether diRNA formation is influenced by IFN-competency/IFN-

deficiency or whether SLAM expression affects this, three MV strains (MV032wt, 

MV033wt and MV034wt) were passaged ten times on type I IFN-deficient, SLAM-

negative (Vero) or SLAM-positive (Vero/hSLAM), as well as IFN-competent 

SLAM-positive A549/hSLAM cells (Table 7). DiRNAs emerged during passaging, 

irrespective of the cell line, but not in all virus strains. MV032wt remained 

negative for diRNA both on Vero/hSLAM and A549/hSLAM cells, although diRNA 
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developed on Vero cells. DiRNA positive virus MV034VCA continued to express 

similar levels of diRNA throughout five additional passages in all three cell lines, 

showing that diRNA positive MV continues to be produced even in IFN-

competent A549/hSLAM cells. The MV Schwarz strain developed a single diRNA 

in passages ≥9 on Vero/hSLAM cells, but remained negative on A549/hSLAM 

cells. The sizes of these diRNAs were calculated as described before (Shingai et 

al., 2007) (Table 8). Partial diRNA sequences showed that the switch of the MV 

polymerase from the positive to the negative strand RNA occurred in different 

positions, despite identical sequences of MV032VCA and MV034VCA in this 

region (Figure 13).  

 

 

Table 7: DiRNA production in MV strains passaged on Vero, Vero/hSLAM and A549/hSLAM 

cells 

 
Strain Cell line No of 

passages 
diRNA in passage Intensity of diRNA 

in agarose gel 
 

Vero 10 ≥ 8 +++ 
Vero/hSLAM 10 not detected - 

MV032wt 

A549/hSLAM 10 not detected - 
     

Vero 10 not detected - 
Vero/hSLAM 10 ≥ 7 +++ 

MV033wt 

A549/hSLAM 10 ≥ 7 +++ 
     

2 and 4 to 7 (multiple size) ++ Vero 10 
≥ 8 single size +++ 

Vero/hSLAM 10 ≥ 8 multiple size ++ 

MV034wt 

A549/hSLAM 10 not detected - 
     

Vero/hSLAM 10 ≥ 9 + MVSchwarz 
A549/hSLAM 10 not detected - 

     
Vero 5 ≥ 1 +++ 
Vero/hSLAM 5 ≥ 1 +++ 

MV034VCA 
(diRNA 
positive) A549/hSLAM 5 ≥ 1 +++ 
 

+: intensity of diRNA in agarose gel, -: no diRNA detected  
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Table 8: Characteristics of MV 5`copy-back diRNAs 

 
MV name (genotype) diRNA 

size (nt) 
Stem size 
(nt) 

Loop size (nt) Jump point 
position (nt) 
 

MV032VCA (D4) p8 to 10 461 131 199 15763 
MV034VCA (D4) p8 to 10 533 136 261 15758 
MV034VCA (D4) p4 to 7 1204 190 824 15704 
MV034VCA (D4) p2,4 to7 755 210 335 15684 
MV035 (D4) 581 214 153 15680 
MV112 (B3) 408 136 136 15758 
MV407 (H1) 504 103 298 15790 
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Figure 13: MV genome nt positions 15670 to 15795 of MV strains used in this study.  

Polymerase jump points are marked with black lines. Sequences have been submitted to NCBI, 

accession numbers are FN687774 - FN687795.  
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1.7. Clinical samples do not contain diRNA 

 

To investigate whether such subviral replicons are also produced during natural 

MV infection, 64 clinical samples (PBMCs, oral fluid, throat swab or urine) from 

patients infected with either one of the 4 different genotypes B3, C2, D4 or D6 

were analyzed. No diRNA was detected in any of the clinical specimens, 

suggesting that diRNA positive MVs are generated only during multiple 

passaging in cell culture (data not shown). 

 

 

 

2. Discussion 

 

The interplay between MV and type I IFN has been investigated in a number of 

studies (Caignard et al., 2009, Fontana et al., 2008, Naniche et al., 2000, Ohno 

et al., 2004). However, most of these studies compared differences between MV 

vaccine and a few wt strains. This is the first study of a broad set of MV wt 

strains, including at least one representative of each clade, and 14 of the 19 

currently circulating genotypes.  

We showed for the first time that MV wt viruses differ significantly in their 

sensitivity to type I IFN. Some wt strains were more, whereas others were less 

sensitive to IFN-alpha than vaccine strains. Thus, using a large panel of wt 

strains our observations reconcile earlier reports that wt strains are more 

sensitive to IFN-alpha than vaccine strains (Naniche et al., 2000), with those that 

reported the opposite (Ohno et al., 2004). Considering that also vaccine strains 

differ in their sensitivity to type I IFN, previous results probably reflect differences 

between individual strains, rather than differences between attenuated and wt 

virus in general. The D7, C2 and one D4 strain were the most sensitive wt strains 

to IFN, whereas the B3 strain was least sensitive to IFN-alpha. Interestingly, this 

seems to agree with in vivo pathogenicity studies in rhesus macaques, where a 

B3 strain was more pathogenic than a C2 strain (El Mubarak et al., 2007). 



Chapter III  Results and Discussion 
 

 86

Although sensitivity to IFN-alpha does not seem to be associated with 

attenuation of vaccine strains, this may nevertheless account for differences in 

pathogenicity between wt strains. However, this can only be confirmed by animal 

experiments. 

It has been suggested that the sensitivity of MV strains to IFN correlates to some 

extent with the capacity of their P, C and V proteins to interplay with IFN 

biosynthesis and signalling (Caignard et al., 2009, Fontana et al., 2008, Naniche 

et al., 2000, Ohno et al., 2004). Nevertheless, in this study no sequence motif in 

the MV-P gene was preferentially associated with a high or low sensitivity to IFN-

alpha, in particular none of the mutations associated with impaired inhibition of 

the JAK/STAT signalling (Caignard et al., 2009, Ohno et al., 2004). 

We also showed that MV strains considerably differ in their ability to induce type I 

IFN, IL-6, IL-8, RANTES, MCP-I, TNF-alpha and IL-1 beta. While clade A, as well 

as diRNA positive wt and VCA strains induced high levels of these cytokines, 

diRNA negative wt strains induced only low levels. This reconciles earlier in vitro 

and in vivo findings that MV induces the latter cytokines (Helin et al., 2001, Sato 

et al., 2005, Schneider-Schaulies et al., 1993, Xiao et al., 1998), with those 

reporting the opposite (Haspolat et al., 2001, Ichiyama et al., 2006, Manchester 

et al., 1999, Naniche et al., 2000, Saruhan-Direskeneli et al., 2005) and which did 

not test for diRNA. In contrast to (Shingai et al., 2007) we did not detect diRNA in 

our Edmonston-wt and Schwarz isolates, probably because of differences in 

passage history and sample sources. It was suggested before that MV wt strains 

actively suppress IFN-beta induction, rather than failing to activate this cytokine 

(Childs et al., 2007, Nakatsu et al., 2008). Our findings suggest that this is only 

true for diRNA independent type I IFN induction, which is in line with the results 

from Naniche and colleagues (Naniche et al., 2000).  

In our hands diRNA was not required for clade A strains to induce high levels of 

IFN-beta. In contrast, wt strains did not induce IFN-beta in absence of diRNA. 

Thus mechanisms of IFN induction such as binding of uncapped MV triphosphate 

leader RNA to RIG-I or the direct interaction of nucleoprotein with IRF-3 are only 

pivotal in vaccine strains (Plumet et al., 2007, tenOever et al., 2002). 
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It has been suggested that adaptation of wt MV to Vero cells is sufficient, to 

change their phenotype from a non-inducing into a type I IFN-inducing strain  

(Naniche et al., 2000). In our hands only viruses that produced diRNA were able 

to induce IFN-beta and other cytokines. At least one strain (MV033VCA) was 

adapted to Vero cells, but did not induce diRNA or any of the measured 

cytokines. Thus cytokine induction seems to be a marker of diRNA rather than of 

Vero cell adaptation. It would thus be interesting to understand whether the 

attenuated phenotype of VCA strains depends on diRNA induced cytokines alone 

or whether other mechanisms are involved and whether diRNA negative VCA 

strains are closer to the wt or the vaccine phenotype of MV in vivo.  

Among 64 samples from measles patients infected with either one of four 

different MV genotypes, no diRNA was detected. Nevertheless, it has been 

shown that brain cells of SSPE patients can contain MV-specific diRNA  (Sidhu 

et al., 1994). Hence the generation of diRNAs seems to be a rare event in the 

course of natural measles infections in humans. Since diRNA carriers would 

induce a stronger innate immune response and consequently a more rapid viral 

clearance, these would have a selective disadvantage over diRNA negative 

strains  (Barrett & Dimmock, 1986, Roux et al., 1991). Indeed, diRNA positive 

VCA strains produced significantly less infectious virus than their parental wt 

strains even in IFN-deficient Vero/hSLAM cells. In absence of type I IFN another 

mechanism must be responsible for reduced virus production. As reported here, 

the early expression of TNF-alpha in Vero/hSLAM cells and the strong induction 

of TNF-alpha in A549/hSLAM cells infected with diRNA positive MV, supports 

this hypothesis.  

In conclusion, using a large panel of representative MV strains we found that 

both wt and vaccine strains differed considerably in their sensitivity to type I IFN 

and in their ability to induce IFN, TNF-alpha and other cytokines and that this 

variations may relate to differences in pathogenicity of wt viruses that were 

previously observed in monkeys. Some wt strains that were highly sensitive to 

IFN induced only suboptimal levels of cytokines. In vitro, in particular wt strains 

that produced diRNA, induced high levels of cytokines that otherwise were only 
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reached by vaccine strains. During acute measles diRNA was not detectable, but 

these subviral replicons were an important confounding parameter in passaged 

wt viruses which must therefore be carefully assessed in all in vitro studies.  
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Part II 

 

 

Proteome profiling of Measles Virus host interaction in 

human lung cells 

comparing wild type and attenuated strains 

 

 

 

 

 

Manuscript in preparation 

 

 

 

 

Monitoring molecular changes within an infected host cell are key components in 

understanding biological events following a viral infection. The MV life cycle can 

be divided into different processes: virus entry and replication, virus interplay with 

cellular stress response and antiviral activity and finally assembling and budding 

of the virion from the host cell membrane. In the last years great efforts have 

been made to reveal mechanisms of MV host cell interactions. Nevertheless, the 

molecular bases of the interplay of MV with the innate immune response are only 

partially understood. In particular differences among various wild-type (wt) strains 

as well as wt compared to vaccine strains are discussed.  

In contrast to basic virology research, only a few studies investigated viral-host 

interactions using a proteomic approach. Investigations regarding abundant 

changes in cellular proteins could help to characterize the physiological status of 
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an infected cell, highlighting new pathways involved in the viral life cycle or the 

antiviral response of the host cell.  

In this study we describe the effects of MV infection on the proteome of human 

alveolar lung cells at different time points after infection, to especially explore 

changes in the protein profile induced by different MV strains. Main changes 

were found in proteins grouped as cytoskeleton, chaperones/stress response, 

metabolism, transcription/translation, immune response and mitochondria. Mostly 

structural proteins and proteins involved in stress response as well as in protein 

folding were affected.  

 

 

 

 

1. Results 

 

1.1. Experimental design 
 
Since MV enters the human body via the respiratory route, human A549/hSLAM 

cells, a human lung carcinoma cell line that retains features of alveolar cells, was 

chosen to asses the effects of different MV strains on the host cell proteome. In 

the literature many discrepancies are found describing the characteristics of 

vaccine and wt MV strains (Naniche et al., 2000, Ohno et al., 2004) In this study, 

we used a common attenuated vaccine strain (MVSchwarz), two freshly isolated 

wt strains (MV34wt, MV37wt) and one Vero-cell adapted (VCA) strain 

(MV34VCA) that was passaged 10 times on SLAM-negative Vero cells. Three of 

the four MV strains have been intensively characterized in previous experiments 

(Table 9) (please see Chapter III Part I). In contrast to wt strains that mostly 

induced a week cytokine response during 48 h p.i., both the vaccine and the VCA 

strain caused a high cytokine expression in infected cells. The presence of 

diRNA in the inoculum of the MV34VCA strain was correlated with the high 

cytokine response, whereas these subviral replicons were not detected in any 
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other strain used in the present study. Thus, our experimental design allowed to 

make the following comparisons: i) vaccine versus wt, ii) wt versus wt, iii) wt 

versus diRNA positive VCA strain and iv) vaccine versus diRNA positive VCA 

strain during early (12 h) and late (32 h) phase of the infection. Treatments with 

IFN-beta (IFNB) served as a positive control. Previously it has been shown that 

during the selected time points live or UV-inactivated MV strains do not differ in 

their effects on the cellular proteome (van Diepen et al., 2010). Thus we used live 

replicative MV strains for our experiments. Although viral cytophatic effects were 

visible at 32 h p.i. cells retained their viability. 

 

Table 9: Characterization of MV strains used in this study  
(Kessler et al. 2010 in preparation*) 
 
strain name diRNA cytokine 

induction 
CPE formation  
32 h p.i. 

passage history 

MVSchwarz no ++ ++ attenuated vaccine strain 

MV34wt no + ++ 2x on Vero/hSLAM 

MV37wt no nt +++ 2x on Vero/hSLAM 

MV34VCA +++ +++ + 10x on Vero 

 
* strain MV37wt was not included in this study, nt: not tested, +: indicates the intensity 

 

The practical work concerning the following proteomics part as well as the protein 

identification was performed together with Dr. Anja Billing and Dominique 

Reverts from the Proteomics platform at the Institute of Immunology. -  

 

 

1.2. 2D DIGE analysis 
 
A549/hSLAM cells were treated for 12 h or 32 h with MVSchwarz, MV34wt, 

MV34VCA, MV37wt or IFNB. Total protein was extracted, CyDye labeled and 

separated by 2D-PAGE in 12% acrylamide gels within pH 3-7. For technical 

reasons proteins from 12 h and 32 h treatment were separately analyzed in two 

independent projects. In total, 738 and 882 spots were included in the statistical 

analysis for 12 h and 32 h, respectively. Significant differentially expressed spots 
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(Students t test p<0.05) were selected for automated spot picking, in-gel 

digestion and were identified by PMF combined with peptide sequencing using 

MALDI-TOF MS. Representative gel images with spot identifications of both 12 h 

and 32 h time points are shown in Figure 14a. For 12 h we identified 58 proteins 

from 79 spots and for 32 h 59 proteins from 91 spots. There was an overlap of 18 

proteins within 12 h and 32 h treatment. In total, we identified 170 spots 

corresponding to 99 unique proteins (Tables 10 and 11). At 12 h we found 13, 

15, 42 and 19 proteins differentially expressed for MVSchwarz, MV34wt, 

MV34VCA and IFNB, respectively. At 32 h we found 25, 24, 36 and 10 proteins 

differentially expressed for MVSchwarz, MV34wt, MV37wt and IFNB, respectively 

(Figure 14b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: (see next page) Representative 2D gel maps of MV infected A549/hSLAM cells 

12h and 32h p.i. and corresponding Venn diagrams. 

a) Representative 2D gel maps (24 cm IPG strip pH 3-7NL) for 12 h and 32 h of A549/hSLAM 

cells infected with MV strains (12 h: MVSchwarz, MV34wt, MV34VCA; 32 h: MVSchwarz, 

MV34wt, MV37wt) or treated with IFNB. Identified protein spots are annotated by UniProt ID. 

Multiple protein isoforms were numbered. b) Venn diagrams created with 

http://bioinfogp.cnb.csic.es/tools/venny/index.html for proteins identified at 12 h, 32 h and 

combined 12 h and 32 h time points.  
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Figure 14: Representative 2D gel maps of MV infected A549/hSLAM cells 12h and 32h p.i. 

and corresponding Venn diagrams. Detailed figure legend please see previous page. 
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Table 10: Differentially expressed protein spots in A549/hSLAM cells 12 h p.i. 
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Table 10: (continued) Differentially expressed protein spots in A549/hSLAM cells 12 h p.i. 
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Table 10: (continued) Differentially expressed protein spots in A549/hSLAM cells 12 h p.i. 
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Table 11: Differentially expressed protein spots in A549/hSLAM cells 32 h p.i. 
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Table 11: (continued) Differentially expressed protein spots in A549/hSLAM cells 32 h p.i.  
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Table 11: (continued) Differentially expressed protein spots in A549/hSLAM cells 32 h p.i.  
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Table 11: (continued) Differentially expressed protein spots in A549/hSLAM cells 32 h p.i.  
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Proteins were grouped into cytoskeleton, chaperones/stress response, 

metabolism, transcription/translation, immune response, mitochondria and 

others. Mostly affected were structural proteins as well as proteins involved in 

stress response and protein folding. Multiple spots were identified as cytokeratins 

with up to 16 spots for K2C8 and 9 spots for K1C18. K2C8 was affected at the 

two time points, whereas KRT81 was only affected at 12 h, K1C18 only at 32 h. 

Cytokeratins were almost exclusively regulated after MV infection. At 12 h we 

observed average fold changes (FC) of -1.3 and 1.56 with maximal values for 

MX1 (FC 5.29) and PGRC1 (FC -5.75). At 32 h average fold changes were 3 and 

-2.18 with maximal values for K1C18 (FC 15.75) and EF1D (FC -9). The higher 

mean of expression changes at 32 h may reflect a stronger anti-viral response 

over time. Functional analysis of our data set revealed a strong enrichment for 

proteins linked to cell death and apoptosis, reflected by significant enrichment of 

mitochondrial proteins (1.9E-05). Individual analysis for the 12 h time point 

showed significant enrichment for protein folding (1.56E-10), endoplasmatic 

reticulum stress (2.79E-09), cell death (6.9E-09), inhibition of apoptosis (3.24E-

08) and linkage of actin cytoskeleton (3.69E-08). Top functions found for 32 h 

were cell death (2.84E-09), apoptosis (1.52E-07) and pneumonitis (5.5E-06) 

(Table 12). 
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Table 12: Molecular and cellular functions of differentially expressed proteins in 

A549/hSLAM cell 12 h and 32 h p.i.  

 

 
 
* Only number of proteins with significant changes are shown 
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1.3. Comparison of MV strains 
 
MV induced changes in cellular proteome 12 h p.i. 

The early response to the vaccine strain (MVSchwarz) was an overall induction 

of proteins (13 up) including all grouped as immune response (IFIT3, MX1, 

PSME1, PSME2, SYWC). Proteins classified for cytoskeleton, chaperones and 

metabolism were underrepresented. Four proteins were uniquely affected 

MVSchwarz (SPB9, SYWC, TERA, and TPIS). Cytokeratins were not affected by 

except for one cytokeratin 8 isoform (K2C8_4). In contrast, the wt infection 

(MV34wt) dominantly led to protein down regulation (4 up, 11 down). Up 

regulated proteins were IFIT3, MX1, CH60 and GRP75. The majority of down 

regulated proteins included cytoskeletal proteins (EZRI, K2C8, KRT81, and 

TPM1) and chaperones (HS105, HSP71, STIP1, TCPA and TCPZ). In 

comparison to the latter wt and vaccine strain, most changes at 12 h were 

observed for the diRNA positive MV34VCA strain (18 up, 24 down). Among those 

proteins, 20 proteins were uniquely affected by MV34VCA. However, the relation 

to its parental wt strain (MV34wt) was still visible in the induced proteome 

changes. Of the 14 MV34wt modulated proteins 13 overlap with its VCA strain 

MV34VCA. Proteins grouped as chaperones/stress response were mostly down 

regulated by MV34VCA except for GRP78 and the phosphodiesterases PDIA1, 

PDIA3 and PDIA6. The mitochondrial chaperone CH60 was commonly induced 

by all viruses.   

Indicator of an activated antiviral response was the induction of IFN-inducible 

proteins MX1 and IFIT3.  At 12 h IFIT3 was similarly induced by all three MV 

strains (FC 1.77, 1.66, 2.02), but not by IFNB. Notably, CH60 and IFIT3 were the 

only common proteins at 12 h among virus infections. At the later time point IFIT3 

was also induced by IFNB, again with a similar expression pattern (FC 3.06, 

3.07, 2.24, 3.35). MX1 was significantly only induced at 12 h by MVSchwarz and 

MV34VCA (FC 5.29, 3.83) as well as IFNB (FC 3.3). Ten out of 19 proteins were 

uniquely expressed by IFNB treatment including PGRC1, CATB, NDUS3, 

GANAB, ECH1, 1433Z, ANXA1, TPM4, SEPT2, and MCM7.  
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MV induced changes in cellular proteome 32 h p.i. 

During the late phase (32 h p.i.) virus infections induced more changes than 

IFNB alone. In contrast to the early phase more proteins were up regulated upon 

virus infection.  

Comparing the MVSchwarz vaccine to both wt strains, six proteins showed 

similar expression when compared to MV37wt (HSP71, PDIA6, TADPB, 5NT3, 

UCR1, ECHM) and two proteins (HNRPC, APOL2) when compared to MV34wt. 

The two wt strains showed no broad overlap except for similar effects on the 

cytoskeleton (K1C18, K2C8, VINC) and one metabolic protein (KPYM). KPYM, 

equally induced by both wt strains (FC 9.77, 10.02), was the highest up regulated 

protein for MV34wt infection.  

The dominantly suppressive phenotype of MV34wt (4 up, 11 down) at 12 h 

changed at 32 h showing equal up and down regulations (12 up, 10 down). 

Commonly induced by all virus strains and IFNB were two cytokeratin 8 isoforms 

(K2C8_15, K2C8_16), TGM2 and IFIT3. TGM2 and IFIT3 showed equal 

induction among viruses and IFNB, whereas the cytokeratin 8 isoforms were 

strongest induced by MV37wt. The two wt strains influenced multiple isoforms of 

cytokeratin 8 and 18, mostly by down regulation. Two cytokeratin 18 isoforms 

(K1C18_2 and K1C18_3) were induced by both wt viruses, but showing 

expression differences (MV34wt: 3.24, 3.67, MV37wt: 12.75, 15.75). Overall, 

MV37wt induced stronger expression changes than MV34wt. Among the unique 

proteins of MV37wt, 7 were more than 2-fold up-regulated: NMI, ETHE1, NDUV2, 

LMNA, AMPL_2, ST1A3 and RLA0. Highest induction was observed for NDUV2 

(12.76). 

Similarly induced by all three viruses (vaccine and both wt), but not found for 

IFNB were TPM1 and ALBU. All three viruses showed some overlap, but also 

induced unique proteins. At 32 h p.i. there were 8, 9 and 18 unique affected 

proteins for MVSchwarz, MV34wt and MV37wt respectively. None was found for 

IFNB (at 32 h).  
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In general, we observed distinct proteome changes for the different MV strains. 

Proteins which were present in more than one treatment showed mainly 

expression changes in the same direction.  

 

Comparing all proteins found to be affected at both early and late phase of the 

infection (combining time points 12 h and 32 h p.i.) by the different virus strains, 

we observed a profound part to be uniquely expressed for each treatment. We 

found 34, 36, 42, 36 and 28 total proteins for MVSchwarz, MV34wt, MV34VCA, 

MV37wt and IFNB, respectively. Among those were 7, 9, 14, 14 and 8 uniquely 

expressed after infection with MVSchwarz, MV34wt, MV34VCA, MV37wt or 

treatment with IFNB, respectively (Table 13). 

 

Table 13: Unique proteins affected by MV strains and IFNB 

 
  MVSchwarz MV34wt MV34VCA MV37wt IFNB 

total*  34 36 42 36 28 

unique* 7 9 14 14 8 

 TERA  CPSM  D3D2  NACA  PGRC1  
 SYWC  DPYL2  GDIR1  IMMT  CATB  
 SPB9  TCPQ  RADI  PLOD2  NDUS3  
 TPIS  PSA1  IF4A3  ROAA  1433Z  
 TBCB  NDUS1  SAHH  PEPD  ANXA1  
 RD23B  ACTZ  GDIB  VIME  TPM4  
 CLIC1  SNAA  HS90A  RUVB1  SEPT2 
  MTX2  LDHB  HSPB1  MCM7  
  PP2AB HSP7C  1433S   
   RCN1  ST1A3   
   PARK7  LMNA   
   PDIA1  ETHE1   
   ATPB  NMI   
      SPS1  NDUV2    
 

*; whole data set (12 h and 32 h) was considered 
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2. Discussion 

 

MV infection result in multiple effects in the host cell. The aim of this study was to 

compare proteome changes induced by different virus strains. Our quantitative 

proteomic approach and subsequently bioinformatics analyses displayed that 

different MV strains induced different alterations in the cellular host proteome.  

The MV life cycle can be divided into different processes: virus entry and 

replication, virus interplay with cellular stress response and antiviral activity and 

finally assembling and budding of the virion from the cell membrane. During 12 h 

p.i. structural proteins and proteins involved in stress response or protein folding 

were mostly affected, reflecting mostly virus induced changes of the cellular 

machinery to replicate the virus. Most changes were found in the cytoskeleton, 

whether this is induced by the fusion of the virus with the cellular membrane or 

binding to the receptor on the cell surface, need to be further investigated. 

Previously it has been speculated that compounds of the cytoskeleton like 

cellular tubulin are necessary for MV RNA synthesis (Moyer et al., 1990) . At the 

later phase of the infection (32 h) mostly proteins of the cytoskeleton as well as 

cell death and apoptosis are influenced. For MV and other viruses it has been 

shown before that components of the cytoskeleton like actin, ezrin, moesin and 

tubulin play key functions during assembly and budding of the virion from the cell 

membrane (Berghall et al., 2004, Bohn et al., 1986, Cudmore et al., 1997). 

Moesin in interaction with the MV-H protein is involved in the cell-to-cell fusion 

process visible by CPE effect (Doi et al., 1998). Strain MV37wt that showed the 

strongest effect 32 h p.i. on proteins of the cytoskeleton also showed the highest 

amount of CPE. On the other hand, changes in cytoskeletal proteins indicated 

probably the loss of membrane integrity during the syncytia formation induced by 

MV. Functional analysis of our data set revealed a strong enrichment for proteins 

linked to cell death and apoptosis, reflected by a significant enrichment of 

mitochondrial proteins (1.9E-05). Changes in mitochondrial proteins are quite 

common during viral infections (Munday et al., Wang et al., 2009). Proteins 
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related to pneumonitis, a feature of MV infection (Moss & Griffin, 2006), were 

also found to be significantly affected. 

Strain MV34VCA induced the most changes on the cellular proteome (42 

proteins). Interestingly, this strain was the only diRNA positive strain in this study. 

It has been shown before that diRNAs can be detected from various sensors of 

the host cell, leading to a fast and strong antiviral response like activation of IFN 

as well as other cytokines (Shingai et al., 2007). Previous experiments displayed 

that compared to their parental wt strains Vero-cell adapted strains induce an 

attenuated phenotype in primates (Auwaerter et al., 1999). Whether this is linked 

to the appearance of diRNA or other molecular changes need to be further 

investigated. Our proteomics data revealed broad effects on proteins of all 

groups with chaperones and proteins involved in metabolism dominantly down 

regulated by MV34VCA, and immune response and mitochondrial proteins 

dominantly up regulated. In comparison to its parental wt strain MV34wt a slightly 

higher IFIT3 induction was observed in MV34VCA, as well as an induction of 

MX1 and PSME2 at 12 h p.i..  

Notably, the evolutional relation of MV34VCA and MV34wt was reflected by the 

largest overlap in commonly expressed proteins between those two strains. 

Three proteins were common only between MVSchwarz and MV34VCA, 

whereas no protein was common only between the vaccine and the original wt. 

This may reflect that the VCA strain evolves an intermediate phenotype like a 

hybrid of vaccine and the original wt strain. At 32 h p.i. the differences between 

MVSchwarz and MV34wt were still present, with one protein common only in the 

two strains. Closer to the vaccine strain was the MV37wt, with 7 proteins 

specifically overlapped between the two strains. The two wt strains showed not 

more similarities than compared to the vaccine. It has been speculated that wt 

strains in contrast to attenuated vaccine strains actively interact with the early 

innate immune response (Naniche et al., 2000). This we could not observe. We 

found a massive effect on cytokeratin isoforms mediated by the two wt strains 

and the attenuated MV34VCA. Huge differences found between the two wt 

strains 32 h p.i. underline the complex picture how wt strains interplay with the 
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cellular proteome and that they very likely differ in their phenotypic 

characteristics.  

Despite inter strain differences we also observed some similarities which 

underline the potential power of the proteomics technique. IFIT3 (interferon-

induced protein with tetratricopeptide repeats 3 or RIG-G) was induced similarly 

by all virus strains at both time points, whereas for IFNB treatment it was only 

detected at 32 h. IFIT3 can be induced by type I IFN but also by IRF3 (Andersen 

et al., 2008). This suggests that both attenuated and wt MV leads to the 

activation of IRF3 at comparable levels. Serum albumin was induced by all 

viruses at 32 h p.i., but not by IFNB. It has been shown that albumin-uptake in 

lung cells by receptor-mediated endocytosis and pinocytosis is a mechanism for 

alveolar clearance (Hastings et al., 2004). It has been suggested that intracellular 

albumin influence increased glutathione levels, which leads to a decrease in 

TNF-alpha-mediated NF-kappaB activation (Cantin et al., 2000) and prevents 

apoptosis of endothelial cells (Zoellner et al., 1996). Notably, the attenuated 

MV34VCA already showed albumin uptake at 12 h p.i.. TGM2 (protein-glutamine 

gamma-glutamyltransferase 2) catalizes transamidation and produces 

polyaminated or deamidated proteins. Recently a growing number of viral 

proteins, as well as cellular proteins with which they interact, have been found to 

be modified by TG2, suggesting a novel function for TG2 in viral pathogenesis 

(Maggio et al., 2006). Protein disulfide isomerases PDIA1, 3 and 6 were 

moderate induced by MV34VCA during early phase of infection, whereas PDIA6 

became strongly induced by the vaccine strain and MV37wt at the late phase of 

the infection. PDIAs, redox chaperones, mainly present in the endoplasmatic 

reticulum but also at cell surface, have been linked to virus-uptake (Santos et al., 

2009) and MHC I degradation (Lee et al., 2010)NMI (N-Myc interactor), a 

transcription co-factor to enhances the association of CPB/p300 to STAT1 and 

STAT5 (Zhu et al., 1999)., was solely induced by MV37wt at 32 h p.i.  

This is the first study that offers a global overview of the host cell response to 

different MV strains. This opens up new potential targets for antiviral treatments 

and a deeper understanding of differences in MV phenotypes.  
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Part III 

 

 

MV induced cytokine response in humans  

 

 

 

 

 

The human immune system continuously tries to limit pathogen invasion and 

tissue damage and to efficiently protect the organism against invaders. The 

immunity against pathogens is orchestrated by an intimate interaction between 

the natural (innate) and acquired (adaptive) immunity. After recognition of 

pathogens various cytokines are released by activated tissue and inflammatory 

cells to trigger the diverse networks of defense mechanisms.  

Despite intensive analyses of genetic differences of MV genotypes, little is known 

about biological differences among members of the different clades. Recently 

speculations occurred about differences in the level of pathogenicity among 

various wt strains, since Mubarak et al. (Chernoff et al., 1995, Opal et al., 1998, 

Sieling et al., 1993) found variations in clinical parameters and immune response 

in macaques following the infection with either MV genotype C2 or B3.  Also in 

our IFN sensitivity study (part I of the Result Section) these MV strains behaved 

differently. Our C2 strain was one of the most sensitive wt strains to IFN, 

whereas the B3 strain was least sensitive to IFN-alpha treatment.  

In the following pilot study we investigated the concentration of cytokines in 

human sera after natural measles infection with either one of the two mentioned 

genotypes (genotype C2 or B3). In agreement with previous studies we could 

detect interleukin 5 (IL-5), IL-6, IL-8 and IL-10 during the first eight days after 

onset of rash of the measles disease (Moss et al., 2002).  
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IL-6 and IL-8 are among the most prominent pro-inflammatory cytokines. IL-6 

plays an important role in the acute-phase innate response and is involved in 

stimulating T-cell proliferation, T and B-cell differentiation and antibody 

production (Schneider-Schaulies & ter Meulen, 2002). IL-6 is one of the most 

important mediators of fever. IL-8 supports the induction of the local immune 

response, mucosal inflammation and mucus secretion required for rapid virus 

clearance (El Mubarak et al., 2007). IL-5 is a pleiotropic cytokine, enhances the 

mediator release from human basophils and plays a pivotal role in the chemo-

attraction, proliferation, differentiation, survival and activation of eosinophils 

(Moss et al., 2002, Sato et al., 2008). IL-10 plays a major role in the late-phase of 

the infection, enhancing B-cell proliferation (Kenis et al., 2002, Thavasu et al., 

1992). However, IL-10 down-regulates cytokine synthesis, suppresses 

macrophage activation and T-cell proliferation and promotes the release of 

cytokine inhibitors (Kenis et al., 2002). Thus it was speculated that these 

inhibitory effects of IL-10 contribute to the prolonged immune suppression 

following measles disease (Papania & Orenstein, 2004). 

 

 

 

1. Results 

 

The comparison of cytokine levels in the sera from laboratory confirmed measles 

showed that in the Luxembourgish patients infected with genotype C2, the 

median cytokine levels of IL-5, IL-6, IL-8 and IL-10 were lower than in the 

genotype B3 infected patients from Spain and Nigeria (Figure 15). In B3 infected 

patients (Spain and Nigeria) was the cytokine level for IL-6 >2.5 fold higher 

(p<0.05) than in C2 infected patients. A similar pattern was found for IL-8 and IL-

10 respectively. Spanish and Nigerian B3 sera showed a >2.6 fold and >3 fold 

higher level of IL-8 and IL-10 (p<0.05) than Luxembourgish C2 sera. IL-5 was 

detectable only in a few samples, since most of them were under limit of 
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detection. Nevertheless the Spanish B3 sera showed a higher induction of IL-5 

than the Luxembourgish C2 (p>0.05) and control samples (p<0.05). 

 

To monitor the kinetics of cytokines during acute measles related to different 

genotypes we analyzed the cytokine changes during different days after onset of 

rash. We separated the patients into two groups, one group (<3days) with all 

patients for which sera between day zero and day three after onset of rash were 

collected and the second group (>3days) included all sera collected later than 

day three (Figure 16). Overall in B3 infected patients the cytokine average levels 

in group one (<3days) were significantly higher for IL-6 and IL-8 than in C2 

infected patients (p<0.05). The same pattern was found for sera of group two 

(>3days), but only IL-6 was significantly different in B3 sera. Interestingly, in C2 

sera a slight decrease in IL-6 and IL-8 levels was found between group one 

(<3days) and group two (>3days), whereas in case of B3 sera a slight increase in 

these cytokine levels was observed.  

So in this study we could show that in great contrast to B3 infected patients 

(Spain and Nigeria) the cytokine response in C2 infected patients (Luxembourg) 

seems to be alleviated. 
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Figure 15: Cytokine induction of IL-5, IL-6, IL-8 and IL-10 in sera of patients infected with 

either MV genotype C2 or B3.  

Overall cytokine induction of a) IL-5, b) IL-6, c) IL-8 and d) IL-10 in sera of patients infected with 

MV genotypes C2 from Luxembourg (Lux) or B3 from Nigeria and Spain and healthy control 

group. All sera were collected during day 0 and 8 after onset of rash. All sera were measured in 

triplicates, except those from Nigeria, which were measured in duplicates only (due to low sample 

volume). Analysis of statistical significance was performed using Mann-Whitney rank sum test (*, 

p<0.05). 

 

 

 L
u

x
 C

2

S
p

a
in

 B
3

N
ig

e
ri

a
 B

3

c
o

n
tr

o
l

p
g

/m
l

0.0

0.5

1.0

1.5

2.0

2.5 *

*

L
u

x
 C

2

S
p

a
in

 B
3

N
ig

e
ri

a
 B

3

c
o

n
tr

o
l

p
g

/m
l

0

20

40

60

80

100

120

140

160

180

*

*

*

*

*

L
u

x
  
C

2

S
p

a
in

 B
3

N
ig

e
ri

a
 B

3

c
o

n
tr

o
l

p
g

/m
l

0

20

40

60

80

100

*

*

 L
u

x
 C

2

S
p

a
in

 B
3

N
ig

e
ri

a
 B

3

c
o

n
tr

o
l

p
g

/m
l

0

2

4

6

8

10

12

14

16

18 *

*

*

*

a) 

d) c) 

b) 



Chapter III  Results and Discussion 
 

 113

 

Figure 16: Cytokine induction of IL-6 and IL-8 stratified according to onset of rash.  

Cytokine induction of a) IL-6 and b) IL-8 in sera of patients infected with MV genotypes C2 (from 

Luxembourg) or B3 (fused data from Nigeria and Spain) and healthy control group. Sera were 

stratified according to onset of rash: <3days or >3days. Analysis of statistical significance was 

performed using Mann-Whitney rank sum test (*, p<0.05). 

 

 

 

2. Discussion 

 

The immune reaction against viral infections starts with the recognition of the 

pathogen by the innate immune system, followed by a specific B- and T-cell 

response, which normally terminates the infection and the inflammatory 

response. In this study we investigated the cytokine response during acute 

measles infection in humans infected with either genotype C2 or B3. Interestingly 

B3 and C2 infected patients showed important differences in their immune 

response. The B3 infections consistently induced high cytokine levels. In 

contrast, C2 infections induced a slower progression of the immune response 

characterized by lower cytokine levels. C2 sera differed from B3 sear especially 

by the higher levels of IL-6, IL-8 and IL-10.  

On the one hand, a fast and strong induction of cytokines may lead to inhibition 

of virus replication and fast clearance of the virus, whereas a low cytokine level 
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would support virus spread and severity of disease. However these effects would 

only play a role if all MV wt strains have the same sensitivity to cytokines. In our 

previous study (see part I of the Result Section) we demonstrated significant 

variations in the sensitivity to IFN-alpha among wt strains. We showed that the 

B3 strain had the lowest sensitivity to IFN-alpha treatment, whereas the C2 strain 

was among the most sensitive strains. Taking this into account, we hypothesise 

that the C2 strain could be cleared faster than the B3 strain, although this 

induced higher amounts of cytokines, but is less sensitive to them.  

Until now it was commonly assumed that MV wt strains do not differ in terms of 

pathogenicity or neurovirulence at least in humans and explanations were always 

given by host determinants, such as age, nutrition status and particular 

immunocompetence (Riddell et al., 2005). Nevertheless, Mubarak et al. (WHO, 

2007) showed differences in pathogenicity between B3 and C2 strains in infected 

macaques. Animals infected with the B3 strain had an earlier and longer viremia 

as well as a more rapid onset of MV-specific IgM. It would thus be interesting to 

know the sera cytokine concentrations in these animals and whether they are in 

agreement with our findings in humans. IL-10 is known to negatively influence 

the immune response by suppressing macrophages activation, inhibition of 

cytokines synthesis and T-cell proliferation (Rota et al., 2009). Thus, higher 

levels of IL-10 leading to longer immunosuppression, would result in increased 

susceptibility to severe secondary infections like pneumonia or diarrhea, 

especially in B3 infected patients. However, whether the stronger induction of 

cytokines in the case of human B3 infection corresponds to differences in 

pathogenicity requires further investigation.  

Two types of biases can influence our results. First, the biological variability of 

cytokine levels, which is influenced by seasonal and diurnal fluctuations, age, 

gender, the menstrual cycle and other conditions that effects the cytokine 

concentration in vivo (Rota et al., 2009). On the other hand may experimental 

variability due to blood sampling, sera preparation and storage play a role. Since 

we analyzed sera collected in 1996, 1998 and 2003, there is a difference in 

storage time, but sampling and storage conditions were comparable. 
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Nevertheless, both B3 cohorts collected 1998 in Nigeria or 2003 in Spain showed 

a higher cytokine concentration than the C2 sera collected 1996 in Luxembourg. 

It has been shown before that especially IL-6 and IL-10 are quite stable and can 

be stored for several years at -20°C, including up to 4 times repeated freeze-

thaw cycles, without significant decline in concentration (Kremer et al., 2008). 

Thus, the difference in storage time should not impact our findings.  

Although we have used small cohorts in this study, we could demonstrate that B3 

strains collected during two outbreaks (1998 and 2003) and in patients from 

Africa and Europe induce higher levels of cytokines than the C2 strains. So the 

results obtained here support the hypotheses that MV genotypes differ in their 

pathogenicity in human. At least we could demonstrate large differences in the 

induction of cytokines during the first eight days of the acute phase of the 

measles disease. Nevertheless, further studies including larger cohorts and sera 

collected during the convalescent phase of the infection are necessary to clarify 

the role of these mediators in the pathogenicity of MV.  
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Since the introduction of measles vaccination, the global burden of measles 

disease has continuously decreased. However measles continues to be endemic 

in many developing countries and to certain extend also in industrialized 

countries (Wichmann, 2009). Molecular epidemiology of MV has proven to be a 

very useful tool for monitoring the progress in measles control (Samoilovich et 

al., 2006). Since 1998 the WHO recommends that the hypervariable 450 nts 
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encoding the C-terminal 150 amino acids of the MV-NP gene (MV-NP HVR) is 

the minimal sequence data required for MV genotyping (Kremer et al., 2008). 

Additionally the complete MV-H sequence should be obtained, if a new genotype 

is suspected (Shulga et al., 2009). MV genotyping is an important tool of measles 

surveillance to document chains of transmission, discriminate between imported 

or indigenous viruses and monitor elimination programs. Only the sequences of 

the MV-NP HVR are available for most strains obtained from clinical cases. 

However, with the enhanced control the genetic variability of circulating strains 

continues to decrease and identical MV-NP HVR sequences have been found for 

several years in a same region (Xu et al., 1998). Very similar sequence variants 

were found throughout Europe and beyond. For instance, two main variants of 

genotype D6, differing by a single nt in their MV-NP HVR, were widely distributed 

in the WHO European Region in 2005 and 2006 (Bankamp et al., 2008). Thus it 

becomes increasingly difficult to determine the origin of a virus using only this 

part of the MV genome. 

In this study the sequence variability of MV-P and H genes of strains with 

identical or very similar MV-NP HVR sequences were investigated. We showed 

for four different outbreaks in Europe and Africa that phylogenetic analysis of the 

MV-P/H-pseudo-gene sequences provides an improved picture of MV circulation.  

 

 

 

 

1. Results 

 

1.1. Genotype D6: Germany 

 

Between January and July 2006, 1,749 measles cases have been reported 

during a measles outbreak in NRW, which was suspected to be caused by a 

virus imported from the Ukraine. Eleven NP-HVR variants differing by up to three 

nts, were found among the 125 MV strains, sequenced in the context of this 
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outbreak (Wichmann, 2009). Among these variants, we investigated the genetic 

diversity of P and H genes of 13 of these strains with identical NP-HVR 

sequences (Figure 17-20). Nine of them were collected in April 2006 at the peak 

of the epidemic and the other four one or two months later. Six strains that were 

identical in their NP-HVR sequences had each a unique P/H-pseudo-gene 

sequence, differing by one or two nts from the most common variant (Figure 18). 

The highest genetic distance of four nts was found between two strains 

(MVs/BadNeunahr.GER/21.06/1, MVs/Borken.GER/21.06/2) collected towards 

the end of the outbreak. In the H gene all 13 strains were identical, except for 

one (MVs/Neunkirchen.GER/17.06/1), with a single point mutation (Figure 20). 

Thus, the diversity of P/H-pseudo-gene sequences was mainly due to random 

mutations in the P gene (Figure 19). 

 

 

1.2. Genotype D6: Belarus 
 
Between January and September 2006, 149 measles cases were reported from 

five different regions in Belarus (Samoilovich et al., 2006); personal 

communication from Galina Semeiko). A total of five NP-HVR variants, differing 

by one to three nts, were obtained from 47 MV strains which were sequenced in 

the context of this outbreak (Kremer et al., 2008). Ten of these strains with 

identical NP-HVR sequences were analyzed here for their P and H gene diversity 

(Figure 17-20). The latter were collected between March and September 2006 in 

three different regions of Belarus (details about regions please see Table 6). 

Among the 10 strains with identical NP-HVR sequences four and three different 

P and H gene sequences were found (Figure 19, 20). Six different P/H-pseudo-

gene variants could be distinguished (Figure 18).  

The strains imported independently from two very distant locations within the 

Ukraine (MVi/Smorgon.BLR/28.06, epidemiologically linked to Khmelnitsky; and 

MVi/Smorgon.BLR/31.06, from a patient returning from the Crimea two weeks 

before onset of disease) had identical P gene sequences and differed by a single 
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fixed nt in the H gene (Figure 19, 20). The latter nt was found in several other 

strains from Smorgon (Grodno Region) and Volozhin (Minsk Region) collected 

several weeks later. Similarly all four strains from Minsk Region (Molodechno, 

Vilejka, Volozhin) differed from each other by the same fixed H nt as well as 

some random mutations in the P gene, suggesting several independent 

importations into both regions. Indeed MVi/Volozhin.BLR/34.06 (Minsk Region) 

was epidemiologically linked to Grodno Region. Strain MVi/Minsk.BLR/12.06/3 

was suspected to be imported from the Netherlands. 

In conclusion, six sequence variants could be distinguished among the 10 MV 

strains from Belarus (with identical NP-HVR) on the basis of their P/H-pseudo-

gene sequences. Although the overall sequence diversity remained low, the fixed 

H nt accurately reflected the known epidemiological links, while the random 

mutations of the P gene were less informative. 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: (see next page) Phylogenetic tree of D6a strains from Russia and D6b strains 

from Germany and Belarus displaying MV-NP HVR genes.  

Phylogenetic tree of D6a strains (collected in the Russian Federation (n=31, March 2003 to May 

2007)) and D6b strains (collected in Germany (□, n=13, April to June 2006) or Belarus (○, n=10, 

May to October 2006)). The calculation was based on the 450 nts of the MV-NP HVR. WHO 

reference strain is indicated with �. Strains with epidemiological link to the Ukraine indicated as 

�; Strain imported from Grodno to Minsk region indicated as ▼. Genetic distances are 

represented as number of nucleotide differences between strains.  
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Figure 17: Phylogenetic tree of D6a strains from Russia and D6b strains from Germany 

and Belarus displaying MV-NP HVR genes. Detailed figure legend please see previous page. 
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Figure 18: Phylogenetic tree of D6a strains from Russia and D6b strains from Germany 

and Belarus displaying MV-P/H-pseudo-genes.  

Phylogenetic tree of D6a and D6b strains based on the 3377 nts of the MV-P/H-pseudo-gene. 

Strain designating as in Figure 17.Strains with epidemiological link to the Ukraine indicated as �; 

Strain imported from Grodno to Minsk region indicated as ▼. Genetic distances are represented 

as number of nucleotide differences between strains.  
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Figure 19: Phylogenetic tree of D6a strains from Russia and D6b strains from Germany 

and Belarus displaying MV-P genes. 

Phylogenetic tree of D6a and D6b strains based on the 1524 nts of the MV-P gene. Strain 

designating as in Figure 17. Strains with epidemiological link to the Ukraine indicated as �; Strain 

imported from Grodno to Minsk region indicated as ▼. Genetic distances are represented as 

number of nucleotide differences between strains.  

2007

2006

MVs/Neunkirchen.GER/17.06/1

MVs/Duisburg.GER/17.06/2

MVs/Dormagen.GER/15.06/4

MVs/BadNeunahr.GER/21.06/1

MVs/Dortmund.GER/16.06

MVs/Moenchengladbach.GER/17.06/3

MVs/Essen.GER/14.06

MVs/Duisburg.GER/24.06/2

MVs/Lechling. GER/15.06/2

MVs/Essen.GER/24.06/1

MVs/Rheinberg.GER/15.06/3

MVs/Bonn.GER/15.06/1

MVs/Borken.GER/21.06/2

MVi/Smorgon.BLR/31.06 �

MVi/Smorgon.BLR/36.06/1

MVi/Minsk.BLR/12.06/3

MVi/Smorgon.BLR/28.06 �

MVi/Smorgon.BLR/20.06/2

MVi/Molodechno.BLR/28.06

MVi/Volozhin.BLR/34.06 ▼

MVi/Vilejka.BLR/28.06

MVi/Vilejka.BLR/33.06

MVi/Smorgon.BLR/36.06/2

MVi/NizhnyNovgorod.RUS/35.05

MVi/Moscow.RUS/13.03/2

MVi/Rostov-na-Donu.RUS/15.05

MVi/Rostov-na-Donu.RUS/17.05/2

MVi/S-Petersburg.RUS/16.04/1

MVi/Moscow.RUS/25.03/1

MVi/Moscow.RUS/29.03/1

MVi/Novokuzneck.RUS/44.03/1

MVi/Moscow.RUS/25.03/2

MVi/N.Osetiya.RUS/51.03

MVi/NizhnyNovgorod.RUS/10.07/1

MVs/Moscow.RUS/19.07

MVs/Moscow.RUS/16.07/2

MVi/Moscow.RUS/5.04/1

MVi/Moscow.RUS/7.04

MVi/S-Sahalinsk.RUS/19.04/1

MVi/Moscow.RUS/4.04

MVs/Chuy.KGZ/17.07

MVs/Almaty.KAZ/36.06
MVi/Toshkent.UZB/07.06/2

MVi/Orenburg.RUS/16.06

MVi/Moscow.RUS/11.06/10

MVi/Orenburg.RUS/12.06

MVi/Tver.RUS/14.06

MVs/NizhnyNovgorod.RUS/26.05

MVi/Moscow.RUS/3.04/2

MVi/Moscow.RUS/14.04

MVi/Moscow.RUS/19.06/1

MVi/Moscow.RUS/3.04/1

MVs/Toshkent.UZB/07.06/3

MVs/Toshkent.UZB/07.06/4

90

94

82

94

1

2003

2004

2005

2004

2003
2005

2007

2006

MVs/Neunkirchen.GER/17.06/1

MVs/Duisburg.GER/17.06/2

MVs/Dormagen.GER/15.06/4

MVs/BadNeunahr.GER/21.06/1

MVs/Dortmund.GER/16.06

MVs/Moenchengladbach.GER/17.06/3

MVs/Essen.GER/14.06

MVs/Duisburg.GER/24.06/2

MVs/Lechling. GER/15.06/2

MVs/Essen.GER/24.06/1

MVs/Rheinberg.GER/15.06/3

MVs/Bonn.GER/15.06/1

MVs/Borken.GER/21.06/2

MVi/Smorgon.BLR/31.06 �

MVi/Smorgon.BLR/36.06/1

MVi/Minsk.BLR/12.06/3

MVi/Smorgon.BLR/28.06 �

MVi/Smorgon.BLR/20.06/2

MVi/Molodechno.BLR/28.06

MVi/Volozhin.BLR/34.06 ▼

MVi/Vilejka.BLR/28.06

MVi/Vilejka.BLR/33.06

MVi/Smorgon.BLR/36.06/2

MVi/NizhnyNovgorod.RUS/35.05

MVi/Moscow.RUS/13.03/2

MVi/Rostov-na-Donu.RUS/15.05

MVi/Rostov-na-Donu.RUS/17.05/2

MVi/S-Petersburg.RUS/16.04/1

MVi/Moscow.RUS/25.03/1

MVi/Moscow.RUS/29.03/1

MVi/Novokuzneck.RUS/44.03/1

MVi/Moscow.RUS/25.03/2

MVi/N.Osetiya.RUS/51.03

MVi/NizhnyNovgorod.RUS/10.07/1

MVs/Moscow.RUS/19.07

MVs/Moscow.RUS/16.07/2

MVi/Moscow.RUS/5.04/1

MVi/Moscow.RUS/7.04

MVi/S-Sahalinsk.RUS/19.04/1

MVi/Moscow.RUS/4.04

MVs/Chuy.KGZ/17.07

MVs/Almaty.KAZ/36.06
MVi/Toshkent.UZB/07.06/2

MVi/Orenburg.RUS/16.06

MVi/Moscow.RUS/11.06/10

MVi/Orenburg.RUS/12.06

MVi/Tver.RUS/14.06

MVs/NizhnyNovgorod.RUS/26.05

MVi/Moscow.RUS/3.04/2

MVi/Moscow.RUS/14.04

MVi/Moscow.RUS/19.06/1

MVi/Moscow.RUS/3.04/1

MVs/Toshkent.UZB/07.06/3

MVs/Toshkent.UZB/07.06/4

90

94

82

94

1

2003

2004

2005

2004

2003
2005

MVs/Neunkirchen.GER/17.06/1

MVs/Duisburg.GER/17.06/2

MVs/Dormagen.GER/15.06/4

MVs/BadNeunahr.GER/21.06/1

MVs/Dortmund.GER/16.06

MVs/Moenchengladbach.GER/17.06/3

MVs/Essen.GER/14.06

MVs/Duisburg.GER/24.06/2

MVs/Lechling. GER/15.06/2

MVs/Essen.GER/24.06/1

MVs/Rheinberg.GER/15.06/3

MVs/Bonn.GER/15.06/1

MVs/Borken.GER/21.06/2

MVi/Smorgon.BLR/31.06 �

MVi/Smorgon.BLR/36.06/1

MVi/Minsk.BLR/12.06/3

MVi/Smorgon.BLR/28.06 �

MVi/Smorgon.BLR/20.06/2

MVi/Molodechno.BLR/28.06

MVi/Volozhin.BLR/34.06 ▼

MVi/Vilejka.BLR/28.06

MVi/Vilejka.BLR/33.06

MVi/Smorgon.BLR/36.06/2

MVi/NizhnyNovgorod.RUS/35.05

MVi/Moscow.RUS/13.03/2

MVi/Rostov-na-Donu.RUS/15.05

MVi/Rostov-na-Donu.RUS/17.05/2

MVi/S-Petersburg.RUS/16.04/1

MVi/Moscow.RUS/25.03/1

MVi/Moscow.RUS/29.03/1

MVi/Novokuzneck.RUS/44.03/1

MVi/Moscow.RUS/25.03/2

MVi/N.Osetiya.RUS/51.03

MVi/NizhnyNovgorod.RUS/10.07/1

MVs/Moscow.RUS/19.07

MVs/Moscow.RUS/16.07/2

MVi/Moscow.RUS/5.04/1

MVi/Moscow.RUS/7.04

MVi/S-Sahalinsk.RUS/19.04/1

MVi/Moscow.RUS/4.04

MVs/Chuy.KGZ/17.07

MVs/Almaty.KAZ/36.06
MVi/Toshkent.UZB/07.06/2

MVi/Orenburg.RUS/16.06

MVi/Moscow.RUS/11.06/10

MVi/Orenburg.RUS/12.06

MVi/Tver.RUS/14.06

MVs/NizhnyNovgorod.RUS/26.05

MVi/Moscow.RUS/3.04/2

MVi/Moscow.RUS/14.04

MVi/Moscow.RUS/19.06/1

MVi/Moscow.RUS/3.04/1

MVs/Toshkent.UZB/07.06/3

MVs/Toshkent.UZB/07.06/4

90

94

82

94

1

2003

2004

2005

2004

2003
2005



Chapter III  Results and Discussion 
 

 123

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Phylogenetic tree of D6a strains from Russia and D6b strains from Germany 

and Belarus displaying MV-H genes. 

Phylogenetic tree of D6a and D6b strains based on the 1854 nts of the MV-H gene. Strain 

designating as in Figure 17. Strains with epidemiological link to the Ukraine indicated as �; Strain 

imported from Grodno to Minsk region indicated as ▼ The calculation was based on. Genetic 

distances are represented as number of nucleotide differences between strains.  
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1.3. Genotype D6: Russia 

 

In order to monitor the evolution of the P and H gene of MV strains with identical 

or very similar NP-HVR sequences over a prolonged period, 31 genotype D6 

viruses collected during March 2003 until May 2007 in the Russian Federation, 

and the Newly Independent States (NIS) Uzbekistan, Kazakhstan and 

Kyrgyzstan, were analyzed. Most of the strains (n=21) collected during these five 

years, had the same NP-HVR sequence (variant D6a). Eleven strains differed by 

one or two nts from variant D6a and by up to three nts (0.67%) from each other 

(Figure 17). The maximal overall genetic distance between all MV sequences 

reported during the same period from the Russian Federation was four nts 

(0.89%) in the NP-HVR (Shulga et al., 2009). 

In our study, the P/H-pseudo-gene revealed 18 variants among the 21 D6a 

strains (maximal genetic distance: 20 nts, 0.59%) (Figure 18). Using H gene 

sequences only of the same strains,13 variants (maximal genetic distance: 10 

nts, 0.54%) could be distinguished. Similarly, 13 different P gene variants were 

found among the 21 D6a strains (maximal genetic distance: 10 nts, 0.66%) 

(Figure 19). The maximal genetic distance increased to 11 nts (0.72%) in the P 

gene when the 11 other MV variants with slightly different NP-HVR sequences 

were included in the analysis, but did not increase for the H gene.  

Thus, phylogenetic dendrograms of P and/or H genes were in contrast to the NP-

HVR tree clearly structured. The fused P and H genes formed at least five 

clusters (Figure 18). Cluster 1 included strains identified in the Russian 

Federation during 2003 until 2005; cluster 2 included mainly strains from 

throughout Russia 2003 including Moscow; cluster 3 strains were mostly from 

Moscow 2004; cluster 4 had mostly 2006 strains from various regions throughout 

Russia and NIS; and finally cluster 5 incorporated strains collected throughout 

Russia in 2007. These clusters resulted mainly, but not exclusively from 

accumulating fixed nt in the H gene.  

The three MV strains from Nizhny Novgorod (MVs/NizhnyNovgorod.RUS/26.05, 

MVi/NizhnyNovgorod.RUS/10.07/1, MVi/NizhnyNovgorod.RUS/35.05) had highly 
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diverse P and H gene sequences. Interestingly, the latter 2005 strain was 

relatively closely related to the strain that spread from the Ukrainian outbreak one 

year later. This strain also showed the highest genetic distance of all strains 

represented here to the 2007 strain from the same city, suggesting repeated 

independent importation of MV, rather than continued circulation in Nizhny 

Novgorod. Similarly the P/H-pseudo-gene variability clearly demonstrated that 

the strains from Moscow were not directly related or part of a larger outbreak.  

Considering the large differences in sequence diversity, strains with identical P 

and/or H sequences were much more likely to be epidemiologically linked, than 

strains with identical NP-HVR sequences. For instance, two strains from Rostov 

(MVi/Rostov-na-Donu.RUS/15.05, MVi/Rostov-na-Donu.RUS/17.05/2) differed by 

one nt in their NP-HVR, but had identical P and H sequences. 

MVs/Almaty.KAZ/36.06 and MVi/Moscow.RUS/19.06/1 had identical sequences 

in all genes, suggesting a direct epidemiological link between measles cases in 

Moscow and Kazakhstan in 2006. Similarly, two of the three MV strains obtained 

in Tashkent (Uzbekistan) during the same week of 2006, had identical 

sequences in all genes, whereas the third one seems to represent a different 

chain of transmission.  

In conclusion, P and H gene sequences structured chains of transmission of 

strains with virtually identical NP-HVR sequences.  

 

 

1.4. Genotype B2: Democratic Republic of Congo 

 

Between 2004 and 2006, a large measles epidemic with more than 36,000 cases 

occurred in the DR-Congo. Among 45 MV strains (genotype B2) sequenced from 

this outbreak, mainly three NP-HVR variants (B2KIN-A, B2KIN-B and B2KIN-C) 

differing by up to two nts, were detected (Kremer et al. 2010 in preparation). 

From 18 of these viruses including three B2KIN-A, two B2KIN-B and nine B2KIN-

C strains, collected between December 2004 and February 2006, the P and H 
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genes were sequenced (Figure 21, 22). Four additional strains, that differed by a 

single nt from B2KIN-C were also included.  

All strains, except two (MVi/Kinshasa.COD/19.05/15, 

MVs/Kinshasa.COD/19.05/10), had unique P/H-pseudo-gene sequences (Figure 

21b). However, only the three strains from variant B2KIN-A formed a separate 

cluster in their P/H-pseudo-genes, containing three distinct variants with a 

maximal genetic distance of seven nts (0.21%). This difference was mostly due 

to the P gene, with a maximal genetic distance of six nts (0.39%), but also to two 

H gene variants differing by a single nt (Figure 22a, b). B2KIN-B and B2KIN-C 

strains did not form distinct clusters in the phylogenetic tree based on P/H-

pseudo-gene sequences and genetic distances between B2KIN-C strains were 

due to substitutions in their P genes (maximal diversity: 11 nts, 0.72%) rather 

than their H genes (maximal diversity: 4 nts, 0.22%). On the other hand, four 

strains with different NP-HVR sequences were identical in their P genes 

(MVs/Kinshasa.COD/41.05/6, MVs/Kinshasa.COD/42.05/3, 

MVs/Kinshasa.COD/19.05/10, MVi/Kinshasa.COD/19.05/15 and MVs/Bas-

Congo.COD/06.06/9).  

The earliest available sequence of the 2004-2006 outbreak a B2KIN-A variant 

(Mvi/Kinshasa.DRC/50.04), differed only by two nts (0.44%) in the NP-HVR from 

a B2 strain detected in Gabon twenty years earlier ( MVi.Libreville.GAB/84 (R96) 

[U01994]). Also B2KIN-B and B2KIN-C differed only by one or two nts from the 

Gabon strains. In contrast, in the P/H-pseudo-gene the B2 strains from DR-

Congo differed by 45 and 53 nts (1.33% and 1.57%) from the Gabon strains. 

Most of the latter mutations (29 to 34) were found in the H gene, whereas their P 

genes showed less differences (16 to 23).  

The pseudogene of the B2KIN-A variants, which were only detected during the 

early phase of the epidemic in Kinshasa, were genetically more distant (minimal 

distance 49 nts, 1.45%) from the Gabon strains from 1984, than B2KIN-B and 

B2KIN-C variants. Therefore, it is unlikely that B2KIN-B and B2KIN-C have 

evolved from B2KIN-A during the 2004-2006 epidemic in Kinshasa, but rather 
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represent independent introductions of different genotype B2 variants, during 

2005.  

The three strains collected during the same week in the province of Bas-Congo 

(MVs/Bas-Congo.COD/06.06/6, MVs/Bas-Congo.COD/06.06/9, MVs/Bas-

Congo.COD/06.06/3), differed by three to five nts from each other. Similarly, 

between 9 and 14 nts difference was found in the P/H-pseudo-gene sequences 

of strains MVi/Mbujimayi.COD/06.06/4, MVi/Mbujimayi.COD/06.06/3 and 

MVi/Mbujimayi.COD/06.06/2, collected in the same week in the province of 

Kasai-Oriental. These sequence data, as well as their phylogeny (Figure 21b) 

suggest that measles outbreaks in Bas-Congo and Kasai-Oriental, which 

occurred during the epidemic peak in Kinshasa, were linked by several 

independent chains of transmissions with Kinshasa.  
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Figure 21: Phylogenetic trees showing MV-NP HVR and MV-P/H-pseudo-genes of  B2 

strains collected in the DR-Congo. 

Phylogenetic tree showing B2 strains collected in the DR-Congo (n=18, collected during May 

2005 and February 2006). WHO reference strain is indicated by �. The phylogenetic tree was 

calculated on a) the basis of the 450 nts of the MV-NP HVR or b) on the 3377 nts of the MV-P/H-

pseudo-gene. Genetic distances are represented as number of nucleotide differences between 

strains.  
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Figure 22: Phylogenetic trees showing MV-P and H genes of  B2 strains collected in the 

DR-Congo. 

Phylogenetic tree showing B2 strains collected in the DR-Congo (n=18, collected during May 

2005 and February 2006). WHO reference strain is indicated by �. The phylogenetic tree was 

calculated on a) the 1524 nts of the MV-P gene and b) the 1854 nts of the MV-H gene. Genetic 

distances are represented as number of nucleotide differences between strains. 
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2. Discussion 

 

By extending the sequencing window recommended by WHO for molecular 

epidemiology of MV from the NP-HVR to included P and H genes, links between 

outbreaks, and transmission chains became more clearly defined. Without 

epidemiological data, identical NP-HVR sequences found in Belarus and 

Germany, may have suggested that strains belong to the same outbreak. 

However, their P/H-pseudo-gene sequences formed distinct clusters supported 

by high bootstrap values that clearly identified the cases in both countries as part 

of two distinct parallel outbreaks. Interestingly the outbreak in Germany showed 

only a single cluster in the P/H-pseudo-gene, whereas the Belarusian strains 

both from Grodno and Minsk, showed at least two clusters of pseudo-genes 

which corresponded to several independent introductions from the Ukraine. Thus 

the strains from both regions do not correspond to an ongoing transmission, 

affirming a better measles control in Belarus than suggested by the NP-HVR 

analysis. Unlike the German strains, the Belarusian pseudo-genes showed an 

apparent evolution during the 24 weeks of observation, which was mainly due to 

the fixation of two specific mutations after week 12 and 31 in the H gene, while 

the P gene added additional variability to the P/H-pseudo-gene. In contrast all 

German H genes except one were all identical. Also in this case the variability 

within the single cluster of the pseudo-gene was due to mutations in the P gene.  

In the NP-HVR the strains from Russia (D6a) and Belarus/Germany (D6b) 

differed by a single nt with no intermixing. While this is suggestive of 2 parallel 

outbreaks in both regions, the NP-HVR provided no further insights into 

transmission pathways. In the P/H-pseudo-genes of the Belarusian/German 

strains the tree structure suggested a common most recent ancestor with 

2003/2005 strains from Russia. Most other strains from Russia formed a clearly 

separated cluster of their own with high boot strap support. Interestingly the 

analysis of the pseudo-genes of the Russian strains revealed well defined sub-

clusters by calendar years, suggesting that closely related viruses circulated 

simultaneously in different locations throughout Russia and NIS as a single 
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epidemiological space and continued to evolve over the years. Thus, the P/H-

pseudo-gene permitted a temporal and geographic interpretation of MV 

circulation. In contrast, the NP-HVR sequences provided no insight into 

circulation patterns of MV and could be interpreted as belonging to a single major 

outbreak lasting for several years at the different locations. Especially strains 

collected in Moscow during five years were all identical in their NP-HVR, 

suggesting a continuous circulation of MV in the city. However, the P/H pseudo-

gene showed that most of the strains in Moscow were more closely related to 

strains from several other locations during the same years than to earlier or later 

strains from Moscow. This suggests that every year virus strains have been 

reintroduced into Moscow from different regions within Russia and NIS with 

ongoing outbreaks. Interestingly, the phylogenetic structure reflects a molecular 

evolution of the H gene between 2003 and 2007, with the irreversible fixation of 

distinct mutations. This was much less evident for the P gene, but the phylogeny 

of the constructed P/H-pseudo-genes confirms this evolution.  

Recently three distinct variants of NP-HVR genotype B2 (B2KIN-A/B/C) were 

found in DR-Congo (Kremer et al. 2010 in preparation). However, using their 

P/H-pseudo-genes only strains from variant B2KIN-A formed a distinct cluster, 

supported by bootstrap values in the H gene. Thus, our findings suggest 

circulation of variant B2KIN-A in Kinshasa and multiple independent importations 

of B2KIN-B and B2KIN-C into Kinshasa. The most surprising finding in DR-

Congo was that strains collected during this outbreak showed only a very low 

genetic distance (maximum two nts) in their NP-HVR, compared to strains 

collected more than 20 years before in Gabon. In contrast, they displayed a very 

high genetic diversity in their P/H-pseudo-genes (> 45 nts) compared to these 

strains. Interestingly 2/3 of this variability was contributed by the H gene.  

The NP-HVR provides most bar-coding information per sequence length (12%) 

(Xu et al., 1998). Nevertheless, the P and H genes (and most other MV genes) 

also have a considerable sequence diversity (5.5% and 6.1% (Bankamp et al., 

2008), which as we showed here can be exploited to follow up on viruses with 

reduced genetic diversity.  
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However, the above examples suggest some striking differences between the 

molecular evolution of the P and the H gene. While mutations in the H gene 

seem to have a high tendency to become fixed in the viral genome, mutations in 

the P gene seem to be more variable. As a result, mutations in the H gene tend 

to form distinct clusters, whereas P gene mutations only add variability to these 

clusters. This was very obvious in the Belarus and the Russian strains, where 

several more or less well time-defined clusters evolved from each other. The 

German H genes showed only one mutation and only a single cluster in the P/H 

pseudo-gene. This evolutionary pattern was particularly obvious, when a recent 

B2 strain from DR-Congo was compared to a 24 years old sequence from 

Gabon, where the H gene and the P gene showed a strong and a weaker 

evolutionary drift, while the NP-HVR showed none over the 24 years period. 

Recently is has been shown that especially the MV-P open reading frame has a 

high structural flexibility and a high acceptance for non-synonymous point 

mutations (Gerlier & Valentin, 2009). Likewise, it has been assumed that gradual 

mutations in the MV-H gene are rather induced by random drift than selective 

amino acid changes driven by the immune system (WHO, 2008). Since we did 

not found a mutation in any of the sites currently recognized as having important 

biological and immunological functions our results supports the latter assumption 

(Moss, 2009). 

However, the MV-NP HVR only represents 450 nts of the whole 1578 nts (~29%) 

of the MV-NP gene, whereas the MV-P and H genes were completely 

sequenced. Analyzing the evolution rate of the whole MV-NP gene would 

perhaps be an alternative to sequence the latter genes in addition, but this need 

to be further investigated. We demonstrated that viruses with identical MV-NP 

HVR are very likely to differ in their MV-P and MV-H sequences and links 

between outbreaks and transmission chains became more clearly defined.  
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The current study describes the genetic and phenotypic characterisation of 

various MV strains from all over the world. Beside the genetic classification of 

variants circulating during different measles outbreaks, the main focus of the 

project was the interaction of strains with the innate immune response in vitro 

and in vivo.  

The innate immunity is critical to control viral infections during the development of 

the adaptive immune response. Alpha and beta interferons (IFN-alpha/beta) are 

key cytokines in the early host reaction to viral infections. Therefore phenotypic 

differences between MV strains, relating to IFN-alpha/beta induction and 

signalling, may influence virus spread and severity of disease. We showed here 

for the first time that various MV strains belonging to different genotypes interfere 

differently with the early immune response. Surprisingly we found that among all 

wt strains a large variability exists regarding their replication fitness, sensitivity to 

type I IFN and ability to induce other cytokines of the innate response. For the 

first time we also verified the existence of diRNA in MV wt strains in vitro. These 

subgenomic RNAs are an important confounding parameter in passaged wt 

viruses, which must be carefully assessed in all in vitro studies. Thus, using a 

large panel of wt strains our observations reconcile earlier reports that wt strains 

are more sensitive to IFN-alpha than vaccine strains (WHO, 2009a), with those 

reporting the opposite (Riddell et al., 2005). Considering that also vaccine strains 

differ in their sensitivity to type I IFN, previous results probably reflect differences 

between individual strains, rather than differences between attenuated and wt 

viruses in general.  

MV infection results in multiple effects on the host cell. Our quantitative 

proteomic approach and subsequently performed bioinformatics analyses 

revealed that the investigated MV strains differently induced alterations in the 

cellular host proteome. Thus, a global overview of the host cell response to 

different MV strains was achieved, underlining our previous findings on 

phenotypic differences among MV wt strains.  

Recently Mubarak et al. (Rota et al., 2009) suggested differences in the level of 

pathogenicity among various wt strains, since they found variations in clinical 
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parameters, MV replication and antibody responses in macaques infected with 

two different wt strains (genotype C2 or B3). In our sensitivity study these strains 

also behaved differently. The C2 strain in our study was one of the most sensitive 

wt strains to IFN, whereas the B3 strain was the least sensitive one to IFN-alpha 

treatment.  

Since our in vitro findings support the latter in vivo observations, we compared 

the immune response in humans infected with those two different wt strains. 

Likewise, we found variations in the cytokine response from patients infected 

either with genotype B3 or C2. Thus, our findings underline the hypothesis of 

differences in pathogenicity among various wt strains, but further in vivo 

investigations are necessary.  

Until now little is known about the complex interactions between MV and the host 

cell. Only around 20 interactions between cellular and virus encoded proteins 

have been identified. Recent findings like the induction of IFN-beta by the 

interaction of RIG-I with MV transcripts or the inhibition of the JAK/STAT 

signalling pathway by the non-structural proteins of MV are just small pieces of 

the large molecular puzzle underlying the virus interplay with the innate immune 

response. Details of protein partnerships supporting an optimal virus life cycle, 

like intracellular trafficking of viral proteins, assembly and budding of the virion, 

remain largely a black box.  

 

Despite the availability of cost-effective and safe measles vaccines for more than 

45 years, measles still kills more children than any other vaccine-preventable 

disease. In 2008 more than 160,000 measles related deaths were estimated 

worldwide - nearly 450 deaths every day or 18 deaths every hour. Most of these 

cases (>95%) occurred in low-income countries with weak health infrastructures 

and areas of political conflicts. In particular large cities in Africa and Asia with 

high-density slum areas comprise the fuel for huge measles epidemics. In these 

areas measles control is extremely hindered due to high population density, 

complicating vaccination campaigns and poor health care systems, resulting still 

in large numbers of measles susceptibles. In areas of political conflict the 
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maintenance of routine high vaccination coverage is difficult and devastating 

measles outbreaks frequently occur in refugee populations. Especially regions 

from South-East Asia, including populous countries like Indonesia, Bangladesh 

and India (the country with the highest number of measles related deaths – in 

2008 three out of four children who died from measles lived in India) may 

jeopardize the goal of global measles elimination. Nowadays also the ease of 

global travel and cross-border population movements alleviate the re-importation 

of measles into areas were the disease was already eliminated.  

MV genotyping is an important tool of measles surveillance to document chains 

of transmission, discriminate between imported or indigenous viruses and 

monitor elimination programs. However, with the enhanced control the genetic 

variability of circulating strains continues to decrease and identical MV-NP HVR 

sequences, which are routinely used for MV genotyping, have been found for 

several years in a same region. Very similar sequence variants were found 

throughout Europe and beyond. Thus it becomes increasingly difficult to 

determine the origin of a virus using only this part of the MV genome for the 

genetic characterization. We showed here for four different outbreaks in Europe 

and Africa that phylogenetic analysis of the MV-P/H-pseudo-gene sequences in 

addition to NP-HVR, provides a more refined picture of MV circulation. By 

extending the sequencing window recommended by the WHO for molecular 

epidemiology of MV, links between outbreaks and transmission chains became 

more clearly defined. Identical NP-HVR sequences found in Belarus and 

Germany in 2006, may have suggested that strains belong to the same outbreak. 

However, the P/H-pseudo-gene sequences clearly identified the cases in both 

countries as part of two distinct outbreaks. Among the samples collected 

throughout Russia 2003 to 2007 the P/H-pseudo-gene provides more insights 

into the time course and geography of strains indicating rather the circulation and 

importation of independent variants, than a single major outbreak lasting for 

several years, like suggested by the identical NP-HVR sequences.   

Also in the DR-Congo our findings suggests an independent evolution of variants 

and multiple independent importations into to country. Although the overall 
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genetic variability of the WHO reference strains is lower in P and H genes, 

viruses with identical NP-HVR are very likely to differ in the latter sequences and 

links between outbreaks and transmission chains became more clearly defined.  

 

Although the results presented here elaborated clearly phenotypic differences 

among circulating MV wt strains, they only scratch the surface of the complicated 

interaction of different MV strains with the human antiviral response. Since we 

found variations in the replication fitness of different strains, future experiments 

should investigate the binding and fusion ability and the polymerase activity of 

various strains, as well as the transcription gradient of different viral genes. Using 

the 2D-DIGE technology, detailed analysis of changes in the host cell proteome 

following MV infection, provides new cellular interaction partners of MV proteins. 

Likewise, this approach could identify cellular factors regulating the transcription 

and replication process of the virus.  

Genetic characterization of wt strains is an important tool to study transmission 

chains and is an essential component of the WHO measles laboratory 

surveillance. Exploiting the genetic variability of the MV-P and H genes, we 

revealed transmission chains and provided a more refined picture of MV 

circulation than using MV-NP HVR sequence information only. However, since 

the MV-NP HVR only represents 450 nts of the whole 1578 nts (~29%) of the 

MV-NP gene, whereas the MV-P and H genes were completely sequenced, 

analyzing the evolution rate of the whole MV-NP gene, would perhaps be an 

alternative to sequence the latter genes in addition, but this need to be further 

investigated. This approach will help to improve measles surveillance, to 

document chains of transmission, discriminate between imported or indigenous 

viruses and monitor elimination programs in case identical MV-NP HVR 

sequences provide no insight into circulation patterns of the virus. 
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