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Abstract 

Objective: The overall theme of this thesis is to investigate the possibility of 

constructing a complete artificial system to culture cells at the liquid│liquid interface 

based on the same natural principle of embryogenesis as observed in avian eggs. From a 

technical and biotechnological perspective, the chicken can be seen as an interface of 

two immiscible liquids, where the blastoderm develops at the interface between a 

protein rich in water (egg white / albumen) and lipid (egg yolk). Adopting this natural 

principle in the laboratory could remove the drawbacks and revolutionize the field of 

traditional cell culture methods as well as tissue engineering. Unlike mammals the 

chicken embryo is complete in terms of the nutritional requirements for the developing 

embryo and independent of the mother animal. This was the reason behind the 

selection of chicken egg as a model system to study the liquid│liquid interface. The 

natural egg-system is reconstructed as a bioreactor for culturing mammalian cells, 

adopting the principle that nature uses during embryogenesis for millions of years. 

Background:  Advancement of in vitro cell and tissue culture techniques including 

isolation of embryonic stem cells, discovery of adult stem cells and their multi-lineage 

differentiation raise new hopes in the field of medicine for using these cells in 

regenerative and transplantation therapy. However, even using the state of the art 

techniques, it is not possible yet to culture a piece of tissue in vitro. The current 

technology of in vitro culture of cells in flasks and on dishes had actually developed from 

Petri dishes and nutrient-gel-surface culture of microbiology. In such conventional static 

flat culture flasks or dishes, the two dimensional monolayer environment and plastic 

substrate tend to alter gene expression and differentiation processes. Cell growth is 

governed there mainly by the geometry and surface property of the solid substrate. So 

far the in vitro tool for exact cell differentiation comparable to embryogenesis is lacking. 

The blastoderm swims at a transition zone between two fluids. At this liquid│liquid 

interface follows the cell division, cellular migration, cell differentiation, and tissue 

formation dominated by cell microenvironment and orderly cell migration in groups 

during the process of embryogenesis. Therefore, there should be some potential to copy 

that principle for in vitro cell culture. 

 



Methods: This thesis has a broader aim to construct a complete artificial system for in 

vitro culture of cells at the liquid│liquid interface like in the developing avian eggs. Even 

though it was not possible to accomplish the mission in the time span of this thesis 

work, the preliminary investigations were performed in this period, to initiate the work 

in this field. Emphasis was given to realize the principle of the embryonic growth at the 

liquid│liquid interface- between egg white and egg yolk of avian egg. 

Results: Following the non-invasive study of avian embryogenesis in its natural 

environment in ovo with µMRI, avian embryos were successfully cultured in open culture 

system consisting of trans-species surrogate shells and were brought to hatching. 

Modification of the open system allowed complete observation of the development of a 

chicken embryo from the first day of incubation until hatching. Gradual windowing of 

the surrogate shell on the side with different biocompatible, optically transparent 

material revealed the influence of different material properties on the growth of the 

Chorio-Alantoic Membrane (CAM), which is crucial for embryonic growth and 

development. 

Conclusion: This thesis is the first step towards the overall aim t develop an artificial 

egg as in vitro cell culture system and gives a highly important insight into its feasibility. 

The results of this thesis indicate that it is possible to construct such a system since it 

was possible to culture the avian embryos in the open system consisting of surrogate 

shell from different species. Although many basic problems could be solved, there are 

still obstacles left that have to be found. These results demand further investigations in 

this field to fulfill the overall goal of this thesis. 



Zusammenfassung 

Ziel: Das zentrale Thema dieser Arbeit ist die Suche nach einer Möglichkeit für den Bau 

eines künstlichen Systems zur Kultur von Zellen in der flüssig/flüssig-Grenzfläche, wie 

man es in Hühnereiern beobachtet. Das System soll auf dem gleichen natürlichen Prinzip 

wie die Embryogenese beruhen. Aus technischer und biotechnologischer Sicht 

entwickelt sich des Hühnerembryo an der Schnittstelle von zwei nicht mischbaren 

Flüssigkeiten, wobei sich das Blastoderm an der Grenzfläche zwischen einem 

Proteinbereich in Wasser (Eiweiss / Eiklar) und einem Lipid (Eigelb) entwickelt. Die 

Anwendung dieses natürlichen Prinzips im Labor konnte bisherige Hindernisse 

beseitigen und sowohl die traditionellen Zellkulturmethoden sowie das „Tissue 

Engineerings“ revolutionieren. Was die ernährungsphysiologischen Anforderungen für 

den sich entwickelnden Embryo und die Unabhängigkeit vom Muttertier angeht, ist der 

Hühnerembryo -anders als bei Säugern- als abgeschlossenes System zu betrachten. Dies 

war der Grund für die Auswahl von Hühnereiern als Modellsystem zur Untersuchung der 

flüssig|flüssig-Schnittstelle. Das natürliche System „Ei“ wird nachgebaut, um als 

Bioreaktor zur Kultivierung von Säugertierzellen zu dienen. Man bedient sich hierbei des 

gleichen Prinzips, welches sich seit Millionen von Jahren in der Natur bei der 

Embryogenese vollzieht. 

Hintergrund: Die Weiterentwicklung von in vitro-Zell- und Gewebekultur-Techniken, 

einschließlich der Isolierung embryonaler Stammzellen, der Identifizierung adulter 

Stammzellen und ihre Differenzierung bezüglich ihrer Abstammungslinien wecken neue 

Hoffnungen im Bereich der Medizin, wo diese Zellen in der regenerativen Therapie und 

Transplantation verwendet werden sollen. Aber auch bei dem aktuellen Stand der 

Technik ist es bis heute nicht möglich, komplexere Gewebebereiche in vitro zu 

kultivieren. Die derzeitige Technologie der in vitro-Kultivierung von Zellen in Flaschen 

und auf Kulturschalen hat sich aus den Petrischalen und Ansätzen der Nährstoff-Gel-

Oberflächenkulturen der Mikrobiologiey entwickelt. In solchen herkömmlichen 

statischen  Kulturflaschen oder Kulturschalen neigen die zweidimensionalen Monolayer 

und die Oberflächeneigenschaften des festen Substrats dazu, die Genexpression und 

Differenzierungs-prozesse zu beeinflussen. Das stochastische Zellwachstum wird dort 

hauptsächlich durch die Geometrie und Oberflächenbeschaffenheit der festen Substrate 

geregelt. Bis jetzt gibt es noch kein in vitro-Tool für eine exakte, mit der natürlichen 



Embryogenese vergleichbare Zelldifferenzierung. Das Blastoderm schwimmt in einer 

Übergangszone zwischen zwei Flüssigkeiten. In dieser flüssig|flüssig-Grenzfläche 

erfolgen Zellteilung, Zellmigration, Zelldifferenzierung und Gewebebildung, welche von 

der nächsten Umgebung der Zellen und der normalen Wanderung von Zellgruppen 

während der Embryogenese dominiert werden. 

Methoden: Diese Arbeit hat zum Ziel, ein vollständig künstliches System für die in vitro-

Kultivierung von Zellen in der flüssig|flüssig Grenzfläche wie bei der Entwicklung von 

Hühnereiern zu schaffen. Obwohl es nicht ganz gelang, dieses Ziel im Zeitrahmen dieser 

Arbeit zu erreichen, konnten die vorbereitenden Untersuchungen, die für die Arbeit in 

diesem Bereich notwendig sind, durchgeführt werden. Der Schwerpunkt lag dabei auf 

der Prüfung aller möglicher Varianten und ersten technischen Realisierungen, die die 

Tragfähigkeit des Ansatzes belegen.  

Ergebnisse: Nach einer nicht-invasiven Untersuchung der Vogel-Embryogenese in ihrer 

natürlichen Umgebung (in ovo) mittels µMRI, wurden Vogelembryonen erfolgreich in 

einem offenen (avian) Kultursystem bestehend aus künstlichen, speziesunabhängigen 

Ersatzschalen kultiviert und zum Schlüpfen gebracht. Modifikationen des offenen 

Systems erlaubten die vollständige Beobachtung der Entwicklung eines Hühnerembryos 

vom ersten Tag der Inkubation bis zum Schlüpfen. Sukzessive seitliche Fensterung des 

Schalenersatzes mit verschiedenen biokompatiblen, optisch transparenten Materialien 

ließen den Einfluss der unterschiedlichen Materialeigenschaften auf das Wachstum der 

Chorio-alantoic Membran (CAM), die für Wachstum und Entwicklung des Embryos 

entscheidend ist, erkennen. 

Schlussfolgerung: Diese Arbeit beschreibt erfolgreich alle vorbereitenden Versuche 

bezüglich des übergeordneten Ziels und gibt einen sehr wichtigen Einblick in die 

Machbarkeit. Die Ergebnisse zeigen, dass es möglich ist, ein solches System bauen, da es 

möglich war, aviäre Embryonen im offenen System, bestehend aus 

Schalenersatzmaterial für sogar verschiedener Spezies, zu kultivieren. Obwohl viele 

grundlegende Probleme gelöst werden konnten, gibt es weiterhin offene Fragen, die 

erforscht werden müssen. Die Ergebnisse erfordern weitere Untersuchungen in diesem 

Bereich, um das übergeordnete Ziel dieser Arbeit erreichen zu können und eine 

praktisch nutzbare umzusetzen. 
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1 Introduction 

Tissue losses because of injury or diseases and end-stage organ failure are 

devastating and costly problems in medicine. In ageing population, they reduce quality 

of life for many at significant socioeconomic cost. All procedures that restore missing 

tissue in patients require some type of replacement structure for the area of defect or 

injury. These have traditionally been complete artificial substitutes (joints), non-viable 

processed tissue (heart valves), or tissue taken from another site from the patients 

themselves or from other patients (transplantation). Advancement of in vitro cell and 

tissue culture techniques, including isolation of embryonic stem cells, discovery of adult 

stem cells and their multi-lineage differentiation raise new hopes in the field of medicine 

to use these cells in regenerative and transplantation therapy. Even using the most 

advanced techniques, it is not possible yet to culture a piece of tissue in vitro. The field 

of tissue engineering emerged in response to the growing need for tissues and organs 

for transplantation. Tissue engineering and selective cell transplantation were born as  

means to replace diseased tissue with a viable one that is “designed and constructed 

to meet the needs of each individual patient”. Tissue engineering is no longer 

restricted to the academic laboratory. Tissue-engineered skin is commercially available; 

cartilage is in clinical trials and should be available within a few years.  

With the advancement of modern science and technology, many new products are 

developed every day, intended for human use. Product testing and evaluation is an 

immense issue. For years, the development of appropriate animal and tissue model for 

testing and evaluation of pharmaceutical and cosmetic products, biomaterials, tissue 

engineering and for clinical application in regenerative medicine and transplantation 

therapy has promoted immense programs worldwide. No doubt, in vitro cell and tissue 

culture play a key role in these areas and will find a wider application in animal and 

human cell models in the field of medicine and biotechnology. The production of 

vaccines, enzymes, hormones and immunobiologicals revolutionised medicine. Mass 

cultures of animal cell lines are fundamental to the manufacture of viral vaccines and 

many products of biotechnology. Biological products produced by recombinant DNA 

(rDNA) technology in animal cell cultures include enzymes, synthetic hormones, 
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immunobiologicals (monoclonal antibodies, interleukins, lymphokines), and anticancer 

agents. Although many simpler proteins can be produced using rDNA in bacterial 

cultures, more complex proteins that are glycosylated (carbohydrate-modified) currently 

must be made in animal cells.  

The current technology of in vitro culture of cells in flasks and on dishes has 

actually developed from the Petri dishes and nutrient-gel-surface culture of 

microbiology. It is difficult to automate and allows insufficiently defined 

microenvironment for cells. It is limited and dominated by the technical limitations of the 

culture dish. In general, these methods are used to culture cells outside the organism. 

The cells are isolated from tissue/subculture with the treatment of proteolytic enzymes 

(e.g. Trypsin) and cultured using solid cell-culture substrates in a single cell layer (two-

dimensional monolayer culture) at the interface between solid and liquid or in the 

suspension. This treatment with proteolytic enzyme however may have detrimental 

effects on cells. Unlike in vivo, cells there act as independent units, much like a 

microorganism such as a bacterium or fungus. The cell growth is governed mainly by the 

geometry and surface property of the solid substrate and stochastic cell interactions. 

Instead of forming a three-dimensional tissue like structure in vivo /in ovo (as observed 

in embryogenesis where a single cell is differentiated into three different germ layers 

and eventually form a complete organism) they proliferate in a monolayer until a single 

layer of cells just touching each other covers the surface of the culture dish. By contrast 

in mammalian tissues, cells connect not only each other, but also a support structure 

called the extracellular matrix (ECM). The growth of normal cells as two-dimensional 

monolayer on artificial support leads to partial loss of original cell characteristics with the 

quality of the monolayer being strongly influenced by physiochemical properties of the 

support. From different experiments it is evident that cell phenotype depends much on 

its micro-environment. Inappropriate alterations of cell–microenvironment interactions 

can result in abnormal cellular behaviour. It is quiet evident that the phenotypes of the 

in vitro cultured cells are different than in the physiological state. For these reasons, 

researchers are now leaning towards culturing cells in three-dimensional environment 

mimicking the physiological state.  

During embryogenesis, single fertilized oocytes gives rise to a multicellular 

organism whose cells and tissues have adopted differentiated characteristics or fates to 
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perform the specified functions of each organ of the body. As embryos develop, cells 

that have acquired their particular fate proliferate, enabling tissues and organs to grow. 

Even after an animal is fully grown, however, many tissues and organs maintain a 

process known as homeostasis. As cells die, either by natural death or by injury, they are 

replenished. This remarkable feature has ancient origins, dating back to the most 

primitive animals, such as sponges and hydrozoans. Throughout evolution, nature has 

exerted considerable fun and fancy in elaborating on this theme. Some amphibians, for 

instance, can regenerate a limb or tail when severed, and the neurons of bird brains can 

readily regenerate. While mammals seem to have lost at least some of this wonderful 

plasticity, their liver can partially regenerates providing that the injury is not too severe, 

and the epidermis and hair of their skin can readily repair when wounded or cut. 

Additionally, the epidermis, hair, small intestine, and hematopoietic system are all 

examples of adult tissues that are naturally in a state of dynamic flux: even in the 

absence of injury, these structures continually give rise to new cells, able to transiently 

divide, terminally differentiate and die. The fabulous ability of an embryo to diversify and 

of certain adult tissues to regenerate throughout life is a direct result of stem cells, 

nature’s gift to multicellular organisms. 

Stem cell differentiation in vitro is, more or less, a stochastic process. Embryonic 

stem cell lines have the potential to form derivatives of all three embryonic germ layers. 

In vitro, however these cells differentiate when cultured in the absence of embryonic 

fibroblast feeder layers. When grown to confluence and allowed to pile up in a culture 

dish, embryonic stem cell lines differentiate spontaneously even in the presence of 

feeder cells. Controlled differentiation and tissue formation is needed for tissue 

engineering. This needs defined microenvironments and proper migration of cells. In 

tissue engineering process, in vitro differentiated cells are seeded into a porous bio-

degradable scaffold and cultured in a bioreactor to form tissue which is later intended to 

be implanted into the patient. The use of bio-degradable scaffold material (mimicking 

the extra-cellular matrix) to construct tissue like structures actually emerged due to the 

inability to grow tissue from cells in vitro. A tissue is composed of different type of cells 

performing specific functions in co-ordination with each other. Co-culture of different 

cells also failed to form tissue in vitro. Theoretically, the biodegradable scaffold should 

be reabsorbed and replaced by the proliferated cells and extracellular matrix to form a 
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complete tissue. However, in reality the situation is quite different. Mass transfer 

(nutrient and O2) is the main obstacle in this regard. Since diffusion is the only means of 

transportation, cells do not penetrate deep into the scaffold and grow only at the 

interface between scaffold and culture media due to the deficiency of nutrient and O2. 

Implantation of such a construct into the patient will not form tissue. Rather scaffold 

degradation products trigger immunogenic reactions; eventually leading to scar 

formation.  

Currently the tissue engineering approach, particularly the scaffold lacks the 

physiological boundary conditions and the cellular microenvironment. Actually, the basic 

principle is similar to in vitro cell culture on solid surface. As worth solid│liquid interface 

culture, there is not enough flexibility for orderly cellular migration. Even with big 

success in cell culture and increasing understanding of molecular and genetic processes 

of stem cell differentiation, the results of tissue engineering are lagging far behind of 

expectations and are not yet satisfactory. So far, the in vitro tool for exact cell 

differentiation comparable to embryogenesis is lacking. Apart from some simple 

epithelial and endothelial systems- functional, complex and multilayered physiological 

tissue models are absent from stem cell research. In many cases, the appropriate 

biological, physical and chemical cues are not yet completely understood.  

Developmental biologists knew the complex process of embryogenesis for a long 

time. The complexity and orderly fashion of tissue formation and organogenesis 

fascinated them. Throughout history, it attracted great naturalists, artists, philosophers, 

pioneers of biology and stimulated them to think about the most fundamental questions 

on generation and life. In ancient times, Aristotle was fascinated by the uniqueness of 

the chicken egg. In the 19th century, egg from sea urchins, Amphibians, reptiles, fish, 

and in particular birds eggs dominated in the field of embryonic research. By the end of 

the 19th century, Wilhelm Roux and his followers realized that carefully designed 

experimental manipulations that disturb development could provide information about 

the developmental potential of cells in the embryo. These studies led to the clear notion 

that development depends upon the flow of signals between different cell populations. 

In the twenties of the last century, Spemann and Mangold 309 with their ground-

breaking experiments on embryos demonstrated that special cell groups take part in 
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tissue formation and organogenesis. Embryogenesis is the best and perfect example of 

tissue engineering by the nature. 

 The blastoderm swims at a transition zone between two liquids. At this 

liquid│liquid-interface follows the cell division, cellular migration, cell differentiation, 

and tissue formation during the process of development. During embryogenesis–

dominated by cell microenvironment and orderly cell migration in groups – a single 

fertilized oocytes gives rise to a multicellular organism whose cells and tissues have 

adopted differentiated characteristics or fates to perform the specified functions of each 

organ of the body. As the embryo develops, cells that have acquired their particular fate 

proliferate, enabling tissues and organs to grow. Apparently, this three-dimensional 

freedom of movement facilitates cell division and migration as well as far-reaching 

freedom for the developing embryo. This remarkable feature has an ancient origin and 

has attained perfection throughout million of years of evolution. Nature has expended 

considerable fun and fancy in elaborating on this theme. Until now, not much attention 

has been paid to this issue. Cell culture methods and stem cell research has rather 

deviated from the nature and is based on artificial methods. 

On one hand, the embryologists continues to watch the fascinating process of 

development. On the other in vitro cell culture and stem cell research continues on an 

artificial non-physiological platform. Different scientists have mentioned this historical 

gap between cell research and developmental biology for a long time. It therefore 

appears as almost mandatory to bridge the gap, to seek for alternatives to the in vitro 

cell culture approache that avoid the disadvantages of conventional solid surface cell 

culture systems and develops a more flexible and physiological cell culture system whose 

boundary conditions are controllable.   

1.1 In vitro cell culture 

As a routine procedure in the laboratory, animal cells are removed from tissues or 

previous cultures with enzymatic digestion and placed on solid cell culture dishes 

(treated or non-treated) covered with culture medium containing appropriate nutrients. 

In appropriate culture conditions, cells grow and become confluent covering the whole 

solid surface of the culture dish. Cell growth and phenotype is often governed by the 
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physiochemical boundary conditions of the culture environment. As opposed to the in 

vivo situation (forming three dimensional tissue), in vitro culture cells grow in a mono 

layer covering the whole surface of the culture dish just touching each other (other then 

suspension culture or hanging drop preparations). The culture process allows single cells 

to act as independent units, much like microorganisms such as a bacteria or fungus.  

Cells are capable of dividing; they increase in size and, in a batch culture, can 

continue to grow until limited by some culture variable such as nutrient depletion. When 

normal diploid fibroblasts growing on a glass surface come into contact, an adhesion 

forms and cell movement in that direction stops. As the resulting "monolayer" of 

diploid cells becomes confluent, their growth rate also decreases markedly 187. The 

conventional process of cell culture is actually adapted from the microbial culture 

process of the microbiology.  

Robert Koch (1843–1910) developed the method for isolation of bacteria in pure 

culture that consisted essentially of semisolid medium, a nutrient environment solidified 

by the addition of gelatine or agar-agar, a method so simple and yet so effective that is 

used practically unchanged today. By 1887, Julius Richard Petri, one of Robert Koch’s 

assistants, introduced the Petri dish. This simple invention provided a far more versatile 

means of culturing microorganisms than did use of the bulky bell jars employed 

previously. Louis Pasteur (1822–1895) introduced the first semi-synthetic medium 

designed for cultivating bacteria in 1860 by which replaced the previous use of meat 

broths as bacterial growth medium, an approach that persisted well into this century. 

From 1898 onward, the art of enrichment culture was developed. This led to the 

isolation of both nitrifying and cellulolytic bacteria. The process of cell or tissue culture 

has been adopted from all these methods of microbiology.  

The field of cell and tissue culture has gradually developed over last century, and 

continues to make rapid strides because of improvement in techniques, and application 

of the experimental results of Biochemistry and Microbiology. The work of Arnold 382 

proved that animal cells could survive for a short time outside the animal body. Ross 

Harrison 117-120 explanted fragments of tadpole spinal cord in Lymph thereby 

demonstrating that axons are produced as extensions of single nerve cells. Gradually 
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different types of culture flasks and bottles were developed. Different plastic and 

synthetic materials are also employed for manufacturing culture ware. 

Table 1-1: Some Landmarks in the Development of Tissue and Cell Culture 

1885 
Roux shows that embryonic chick cells can be maintained alive in a saline solution outside the 
animal body. 

1907 
Harrison cultivates amphibian spinal cord in a lymph clot, thereby demonstrating that axons are 
produced as extensions of single nerve cells. 

1910 
Rous induces a tumour by using a filtered extract of chicken tumour cells, later shown to contain 
an RNA virus (Rous sarcoma virus). 

1913 
Carrel shows that cells can grow for long periods in culture provided they are fed regularly under 
aseptic conditions. 

1948 
Earle and colleagues isolate single cells of the L cell line and show that they form clones of cells 
in tissue culture. 

1952 
Gey and colleagues establish a continuous line of cells derived from a human cervical carcinoma, 
which later become the well-known HeLa cell line. 

1954 
Levi-Montalcini and associates show that nerve growth factor (NGF) stimulates the growth of 
axons in tissue culture. 

1955 
Eagle makes the first systematic investigation of the essential nutritional requirements of cells in 
culture and finds that animal cells can propagate in a defined mixture of small molecules 
supplemented with a small proportion of serum proteins. 

1956 
Puck and associates select mutants with altered growth requirements from cultures of HeLa 
cells. 

1958 
Temin and Rubin develop a quantitative assay for the infection of chick cells in culture by 
purified Rous sarcoma virus. In the following decade, the characteristics of this and other types 
of viral transformation are established by Stoker, Dulbecco, Green, and other virologists. 

1961 
Hayflick and Moorhead show that human fibroblasts die after a finite number of divisions in 
culture. 

Littlefield introduces HAT medium for the selective growth of somatic cell hybrids. Together with 
the technique of cell fusion, this makes somatic-cell genetics accessible. 1964 
Kato and Takeuchi obtain a complete carrot plant from a single carrot root cell in tissue culture. 

Ham introduces a defined, serum-free medium able to support the clonal growth of certain 
mammalian cells. 

1965 
Harris and Watkins produce the first heterocaryons of mammalian cells by the virus-induced 
fusion of human and mouse cells. 

1968 

Augusti-Tocco and Sato adapt a mouse nerve cell tumour (Neuroblastoma) to tissue culture and 
isolate clones that are electrically excitable and that extend nerve processes. A number of other 
differentiated cell lines are isolated at about this time, including skeletal muscle and liver cell 
lines. 

1975 Köhler and Milstein produce the first monoclonal antibody-secreting hybridoma cell lines. 

1976 
Sato and associates publish the first of a series of papers showing that different cell lines require 
different mixtures of hormones and growth factors to grow in serum-free medium. 

1977 
Wigler and Axel and their associates develop an efficient method for introducing single-copy 
mammalian genes into cultured cells, adapting an earlier method developed by Graham and van 
der Eb. 

Carrel 44-50 showed that cells could grow for long periods in culture provided they 

are fed regularly under aseptic conditions. In 1928 Maitland 193 first introduced the 
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method of growing tissue in culture, a method developed mainly for the growth of 

viruses. White 386-388 in 1946 made one of the first attempts to grow animal tissues in 

synthetic solution of known composition. This was used for the growth of chick embryo 

tissue and he managed to get cells to survive for some weeks. This medium included in 

its composition a very wide range of amino acids and vitamins made up in a balanced 

salt solution base, and supplemented still further with a number of nucleic acid 

constituents and other substances thought to be growth promoting. Basically, the idea 

was not new, actually developed nearly a century ago by Louis Pasteur intended for 

bacterial culture. 

In 1998 Thomson 339, Gearhart 300 and their associates isolated human embryonic 

stem (ES) cells. Their use in research as well as therapeutics is encumbered by ethical 

considerations and discovery of adult stem cell raised new hopes for using these cells for 

medical therapy. They have the potential to differentiate into all cell types. Anticipation 

was to differentiate stem cells in vitro into desired cell types and then to use them for 

therapy. However, the stem cell differentiation in in vitro culture is rather a stochastic 

process than a controlled differentiation into desired cell type. In in vitro culture, 

embryonic stemcells need embryonic fibroblast feeder cells to keep them in 

undifferentiated state. Celllines differentiate spontaneously even in the presence of 

feeder cells. Researchers are facing significant challenges in these efforts because stem 

cells are difficult to handle and there are very few automated or standardized tools 

available in this relatively new field.  

1.1.1 Ambiguous behaviour of cells in different culture environments 

Cellular microenvironment and the boundary conditions play a very important role 

on cellular phenotype and physiology. Providing an artificial, non-physiological 

microenvironment may alter the cellular phenotype than in vivo. Especially in the field of 

stem cell research, environment plays a very important role in differentiation process. 

Inappropriate alterations of cell–microenvironment interactions can result in abnormal 

cellular behaviour, as seen in tumour progression 283. For example, in vitro embryonic 

stemcells need embryonic fibroblast feeder cells to keep them undifferentiated. When 

grown to confluence and allowed to pile up in the culture dish, the embryonic stemcell 

lines differentiate spontaneously even in the presence of feeder cells. An interesting 
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example of cell environment affecting differentiation occurs with the ectopic 

implantation of embryonic stemcells transforms them into malignant tissues while the 

same cells located in the uterus undergo normal embryogenesis 197. 

In conventional static flat culture flasks or dishes, the two dimensional monolayer 

environment and plastic substrate tend to alter gene expression and prevent 

differentiation 1, 71. Most of these gentle cell culture techniques produce flat, one-cell-

thick specimens that offer limited insight into how cells work together. In mammalian 

tissues, cells connect not only to each other but also to a support structure called the 

extracellular matrix (ECM). This contains proteins, such as collagen, elastin and laminin, 

which give tissues their mechanical properties and help to organize communication 

between cells embedded within the matrix. Receptors on the surface of the cells, in 

particular a family of proteins called the integrins, anchor their bearers to the ECM, and 

also determine how the cells interpret biochemical cues from their immediate 

surroundings 1. Given this complex mechanical and biochemical interplay, it is perhaps 

no surprise that researchers will miss biological subtleties if the cells they are studying 

grow only in flat layers. But providing an appropriate environment in which to culture 

cells in three dimensions is no easy matter. There is a big difference between a flat layer 

of cells and a complex, three-dimensional tissue. 

  

a                                                     b 

 

Figure 1.1: Influence of culture environment on cells 

Embryonic stem cells after ≈75 hours of incubation: (a) Human embryonic stem cell cultured in vitro with 
fibroblast feeder cells after ≈75 hours of incubation; (b) embryonic stem cell develops to a chicken embryo 
in ovo after same periods of incubation (video supplied). Image (a) adhesion and proliferation of a H1 
hESC-colony (H1 line provided by WISC bank, WiCell research institute, USA) on inactivated PMEF for 96 
hours. This experiment has been conducted as control for analysing the effects of slow-rate 
cryopreservation on the adhesion ability of H1 within the EU-project CRYSTAL, FP6-037261 (Robert-Koch 
permission No. 18). Live-cell imaging was prepared and analysed by F. Groeber and M. Gepp, from 
“Biophysics & Cryotechnology department”of Fraunhofer IBMT. 
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Two-dimensional monolayer culture models lack the three-dimensional 

microenvironment of intact tissue. A major limitation of the two-dimensional monolayer 

is lack of stroma. Stroma of the mammary gland accounts for more than 80% of the 

resting breast volume 71. Monolayer culture also lacks structural architecture and 

significant limits of transport. Cells cultured using traditional two dimensional monolayer 

techniques frequently undergo phenotypic and functional de-differentiation 1. After a 

period of continuous growth, cell characteristics can change and may become quite 

different from those found in the starting population. Cells can also adapt to different 

culture environments (e.g. different nutrients, temperatures, salt concentrations etc.) by 

varying the activities of their enzymes. It is, possible that the cellular fates generated by 

adult stem cells are restricted because of the limitations imposed on them by the 

particular environment in which they have been evaluated.  

The necessary components include both regeneration-competent cells and the 

carrier or support matrix. Another requirement is an environment conducive to cell 

growth, differentiation and eventually integration with the surrounding tissue. Most, if 

not all differentiated cells derived from diverse tissue sources lose their specialized 

features and dedifferentiate when grown under traditional two-dimensional cell culture 

conditions 12, 375, 383, 390. Scientists are starting to realize just how much a cell’s context 

matters and are now trying to mimic the three dimensional environment and to grow 

cells in three-dimentional culture. Cells are embedded in a structure that mimics the 

extracellular matrix (ECM) of structural proteins and other biological molecules found in 

real, viable tissues. Many researchers use a material called Matrigel, a cocktail of 

substances extracted from the ECM of a type of mouse tumour and first described some 

two decades ago 160, 161. 

From different experiments, it is quiet evident that the culture conditions and 

cellular microenvironment influence cell behaviour and phenotype. Normal epithelial 

cells when grown in monolayer, are highly plastic and express many characteristics 

displayed by tumour cells in vivo 27, 256. Growth of normal epithelial cells as two 

dimensional  monolayer on artificial supports leads to partial loss of the original 

epithelial cell characteristics with the quality of the monolayer being strongly influenced 

by the physicochemical properties of the support 157. Moreover, without a proper three-

dimensional (3D) assembly, epithelial cells (the basic cells that differentiate tissue into 
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specific organ functions) lack the proper clues for growing into the variety of cells that 

make up a particular tissue177. Human mammary epithelial cells, isolated from reduction 

mammoplasty, grown in culture on reconstituted basement membrane form polarized 

acinus type structures capable of gland specific function such as milk production 144, 317. 

However, the same cells grown in a different substrate, type 1 collagen, show altered 

integrins, abnormal cellular polarity and disorganization emphasising the importance of 

matching cell type with appropriate substrate 132. Antibodies against a cell surface 

receptor called β1-integrin completely changed the behaviour of cancerous breast cells 

grown in three-dimensional culture; they seemed to become non-cancerous, losing their 

abnormal shapes and patterns of growth 383. This result had never been observed in 

two-dimensional cultures. In the same breast-cancer system, it has been shown that 

antibodies against β1-integrin also decrease signalling by receptors for epidermal growth 

factor (EGF); antibodies against EGF receptors similarly depress the activity of β1-integrin 
375. This reciprocal interaction does not happen in two-dimensional cultures. When 

grown in three-dimensional cultures, human disc cells form multicelled colonies. When 

grown in monolayer culture, human disc cells assume a flattened, spindle-shaped 

morphology 108. 

The cell-surface receptors to which adenoviruses bind have been investigated. In 

two- dimensional cultures, both normal and malignant breast cells had similar, high 

levels of the receptors. But in three-dimensional cultures, only malignant cells carried a 

large numbers of the receptors 12. The growth and development of fibroblasts, collagen-

secreting cells that are found in many tissues directly compared, in two-dimensional and 

three-dimensional cultures. In three dimensions, the cells moved and divided more 

quickly, and assumed the characteristic asymmetric shape that fibroblasts have in viable 

tissues 63. Implantation of stem cell from different species into the chicken embryo 

shows region specific differentiation. When hematopoietic stem cells (HSCs) from adult 

human bone marrow are implanted into lesions of the developing spinal cord in the 

chicken embryo, the human cells never express a chicken-specific antigen, but 

differentiate into full-fledged neurons. The microenvironment of the regenerating spinal 

cord of the chicken embryo stimulates a substantial proportion of adult human HSCs to 

differentiate into full-fledged neurons 304. 
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Two-dimensional monolayer culture models are easy and convenient to set up with 

good viability of cells in culture. Many of the seminal findings in cell and molecular 

biology have come from cultures of cells grown cheaply and conveniently in these 

familiar, surface cultures. However, the limitations of just two dimensions are now 

becoming clear. Researchers are now in search of alternative system for in vitro culture 

of cells that mimic more physiological conditions.  

The fetal brain, characterized by active neurogenesis, has been suggested to be a 

promising source of therapeutic neural stem cells 90. Such cells have also been suggested 

as potential therapies for infants and children affected by genetic and acquired diseases 

characterized by neurological deterioration 90, 105. Scientists think, however, that it might 

be possible to use ‘‘neural stem cell’’ transplants to replace the neural cells that are lost 

in neurodegenerative diseases (for example, Parkinson’s disease) or damaged by strokes 

or trauma. The injection of pluripotent ESC or ESC-derived precursor cells in rodents 

leads frequently to the development of teratomas or teratocarcinomas 28, 84, 272. Although 

the tumorigenic potential of ESC seems to be greatly reduced when cells are 

predifferentiated in vitro before implantation 19, 36, 271. Importantly, ESCs seem more 

prone to generate tumors when implanted into the same species from which they were 

derived 84. However, a recent study has raised questions regarding the safety of stem cell 

therapy 10. An ataxia telangiectasia patient (a rare disorder characterized by 

degeneration of the brain region that controls movement and speech, occurs when both 

copies of the ATM gene contain a genetic change that stops the production of 

functional ATM protein) had repeated transplantation of fetal stem cells into the brain 

and the CerebroSpinal Fluid (CSF). Later the patient developed tumour. Histo-pathology 

and immunological examination of the tumor confirmed to be a glioneuronal tumor 

containing both XX (female) and XY (male) cells and the tumor contained cells from at 

least two donors. This also raise question about tissue engineering, where the 

implantation of tissue engineered construct may also lead to tumor formation. Other 

important issue remains unclear about the in vitro differentiated stem cell used in tussue 

engineering. Since cells are differentiated in vitro in a non-physiological environment, 

cells may dedifferentiate, redifferentiate or even form tumor in vivo after implantation 

into the body. 
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1.2 Tissue engineering 

Over the last 50 years, transplantation of a wide variety of tissues, reconstructive 

surgical techniques, and replacement with mechanical devices have significantly 

improved patient outcomes. Murray and colleagues performed the first successful organ 

transplant in 1954 359. Since that historic accomplishment, the field of transplantation 

has evolved to include kidney, liver, split liver, pancreas, heart, lung, and small intestine 

at hundreds of transplant centres throughout the world. In 1967, Barnard performed 

the first heart transplant for congestive heart failure 24. These strides have been made 

possible because of the advances in transplantation biology and immunology leading to 

the development of a variety of immunosuppressive agents. Unfortunately, organ and 

tissue transplantation are imperfect solutions because they are limited by a number of 

factors. Worsening donor shortages result in a discrepancy between the number of 

patients needing transplants and available organs. Today, donated organs and tissues 

are often used to replace those that are diseased or destroyed. The number of people 

needing a transplant far exceeds the number of organs available for transplantation. 

Additionally, transplantation recipients must follow lifelong immunosuppression 

regimens with their increased risks of infection, tumour development, and unwanted 

side effects. Surgical reconstruction also suffers from a lack of available donor tissue and 

donor site morbidity. Replacement with mechanical devices or artificial organs is limited 

by an increased risk of infection, thromboembolism and finite durability.  

    

a        b           c 

 

Figure 1.2: Draw back of conventional in vitro cell culture and stem cell research. 

(a) Cardiomyocyte differentiated from stem cell, (b) cardiac spheroid, (c) porcine heart in the laboratory. It 
is possible to differentiate stem cell into cardiomyocytes, which can form a beating spheroid. However, 
forming a complete organ or tissue out of it in the laboratory is not possible until now (video supplied). 
Scale Bar in image (C) = 75µm. Image (a)   courtesy of Dipl.-Biol. Rothin Strehlow from workgroup “Cell 
Programming and Bioinformatics” of Fraunhofer IBMT in Potsdam-Golm, Germany; Image (b) courtesy of 
M.Sc. Ina Meiser from “Biophysics & Cryotechnology department” of Fraunhofer IBMT in St. Ingbert; 
Image (c): courtesy of Prof. Paul A. Iaizzo, PH.D., Visible heart Lab, University of Minnesota. 
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Advances in stem cell research, especially plasticity of adult stem cell raised new 

hopes for tissue construction for medical therapies. Adult stem cells, such as blood-

forming stem cells in bone marrow (called hematopoietic stem cells, or HSCs), are 

currently the only type of stem cell commonly used to treat human diseases. Doctors 

have been transferring HSCs in bone marrow transplants for over 40 years, and 

advances in techniques of collecting, or "harvesting" HSCs have been made. HSCs are 

used to reconstitute the immune system after leukaemia, lymphoma or various blood or 

autoimmune disorders have been treated with chemotherapy. However, even, using the 

most advanced techniques it is not yet possible to culture a piece of tissue suitable for 

transplantation using these cells. In traditional culture, cells grow, differentiate but 

remain as cells. Because of the above shortcomings, the field of tissue engineering and 

selective cell transplantation was born as a means to replace diseased tissue with viable 

one that is “designed and constructed to meet the needs of each individual patient”. 

Tissue engineering is “an interdisciplinary field that applies the principles and methods 

of engineering and the life sciences toward the development of biological substitutes 

that restore, maintain, or improve tissue function” 176, 360.  

The term “Tissue Engineering” was introduced in 1987 by members of the US 

National Science Foundation (NSF) in Washington, D.C. It was defined a year later at an 

NSF organized conference on tissue engineering in Lake Tahoe, California as 

“Application of principles and methods of engineering and life sciences toward 

fundamental understanding of structure–function relationship in normal and 

pathological mammalian tissues and the development of biological substitutes 

to restore, maintain, or improve functions.” Tissue engineering aims at generating 

functional three-dimensional tissues outside of the body that can be tailored in size, 

shape and function according to the particular needs before implanting them into the 

body. Tissue engineering is no longer restricted to the academic laboratory. Tissue-

engineered skin is commercially available; cartilage is in clinical trials and should be 

available within a few years. First clinical experiences have been published using 

bioengineered skin, cartilage, and vascular grafts 100, 266, 303, but the present data are still 

preliminary 401.  
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Three general tissue-engineering approaches have been attempted thus far. These 

include guided tissue regeneration using engineered matrices alone, the injection of 

allogenic or xenogenic cells alone, or the use of cells placed on or within matrices 176, 360. 

The latter two methods are the most common. The second approach can be 

synonymous with, “cell therapy” which intends to promote the formation of new tissue 

or to improve the function of an existing tissue by injecting or infusing suspensions of 

isolated cells. This concept has gained much attraction over the past years; studies have 

been performed in animals 53, 164, 167, 168, 307 and are currently tested in controlled clinical 

trials 70, 173, 207, 208, 220, 221, 318, 370. This approach, however, may be of little clinical benefit 

when the local organ structure cannot support cell seeding because it is missing or 

seriously damaged, it is difficult to control shape, size and location of the grafted cells. 

Additionally, isolated cell transplantation is not enough for replacing congenital defects 
302. It has the drawbacks of possible rejection or loss of function 176. 

  

b 

 

Figure 1.3: Tissue-engineered cartilage 

(a) Photomicrograph of tissue-engineered cartilage using fetal chondrocytes from ear specimens. Arrow = 
residual polymer. (Haematoxylin and eosin) 99. (b) Tissue engineered cartilage as the shape of human ear 
12 weeks after subcutaneous implantation into a nude mouse 47. 

The use of cell-matrix constructs, the most common method in tissue engineering, 

involves either an open or a closed system. An open system begins with the in vitro 

culture of isolated cells. The cells are then seeded onto a scaffold or matrix, either 

synthetic or natural. After appropriate cultivation time, the cell-matrix construct is 

implanted into the host. The matrix functions to guide the development of the new 

tissue and provides structural support. This approach is based on a number of biological 

observations. Firstly, all tissues undergo constant remodelling. Under appropriate 

environmental conditions, dissociated cells often reform their native structures 359. 
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Furthermore, normal parenchymal cells are anchorage dependent; they also require 

three-dimensional structure and an extracellular matrix to guide their growth. Lastly, the  

volume of tissue that can be implanted and survive is limited by the diffusion distance 

for nutritional molecules, gas exchange, and waste removal 359. In a closed system, the 

cells are isolated from the body by a permeable membrane allowing exchange of 

nutrients and waste but protecting the cells from the immune response 176. 

 

Figure 1.4: The tissue engineering.  

Schematic representation of Tissue engineering process360. 

1.2.1 State of the art 

Important procedures in tissue engineering include the isolation and selection of 

organotypic cells from small tissue biopsies, their ex vivo proliferation by cell culture 

techniques in bioreactor, and the seeding of these cells into suitable biocompatible 

matrices. These constructs are commonly transferred from the in vitro situation into an 

in vivo state (transplantation). Tissue engineering has currently been based on the 

concepts that three-dimensional biodegradable scaffolds are useful as alternatives for 

extracellular matrix (ECM) and that seeded cells reform their native structure in 

according to scaffold biodegradation 176. This context has been used for every type of 

tissue. The word “biodegradation” is defined to be the phenomenon where a material is 

degraded or water solubilised by any process in the body to disappear from the site 

implanted 324.  
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Synthetic and natural polymers are attractive alternative and versatile in their 

applications to the growth of most tissues. Among Synthetic polymers, aliphatic 

polyesters such as polyglycolic acid (PGA), polylactic acid (PLLA), their copolymers (e.g. 

PLGA) and polycaprolactone (PCL) are most commonly used for tissue engineering 

scaffold applications 3, 135, 136, 371. The degradation products of these polymers (glycolic 

acid and lactic acid) are present in the human body and are removed by natural 

metabolic pathways. Naturally derived protein or carbohydrates (natural polymers) have 

been used as scaffolds for the growth of several tissue types. Most natural hydrogels, 

such as collagen, gelatin, alginate, fibrinogen, chitosan, and carrageenan are compatible 

with cells.  

1.2.2 Limitations of current tissue engineering approach 

Engineered skin and cartilage have recently been introduced for clinical use 169, 358. 

The manufacture of Dermagraft® by Advanced Tissue Sciences (ATS) was a pioneering 

example of the use of bioreactors in the large-scale production of tissue-engineered 

products 134. Although some structural tissues have been made, such as skin, bone, and 

cartilage, there are few results that developed complicated bioactive organs, such as 

kidney or liver. The low oxygen requirement of cartilage may be the reason why only 

this tissue has been successfully grown in vitro to thick cross-sections i.e. greater than 

1mm using conventional scaffold fabrication techniques 371. Even though the largest 

organ of the body, skin is relatively two dimensional tissue and thus thick cross-sections 

are not required, thereby explaining the success of producing this tissue with 

conventional scaffold fabrication techniques 76. However, most other three dimensional 

tissues require a high oxygen and nutrient concentration. Long-term survival and 

function of such three -dimensionally constructed tissues depend on rapid development 

of new blood vessels, which provide nutrients and oxygen not only to the marginal cells 

but also of the centre of the tissue grafts. In fact, the growth of a new microvascular 

system remains one of the major limitations in the successful introduction of tissue 

engineering products to clinical practice. Accordingly, the focus of research in tissue 

engineering has changed toward the understanding of angiogenesis and new blood 

vessel formation. The limiting factor for the survival, proliferation, and differentiation of 

transplanted cells is sufficient supply of nutrients and oxygen. This supply relies on 
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diffusion processes. Furthermore, to supply tissue-engineered constructs thicker than a 

few millimetres, initial vascularisation from the surrounding host tissue is necessary.  

It is difficult to reproduce the in vivo events completely in vitro using the basic 

knowledge of biology and medicine or cell culture technologies currently available. At 

present, it is difficult to realize in vitro tissue engineering because the artificial 

arrangement of a biological environment to induce cell-based tissue reconstruction is 

practically impossible. Even if a three-dimensional tissue-like construct is prepared in 

vitro, it is practically difficult for the construct to survive and function in vivo after 

grafting. In addition, the construct does not always connect with surrounding natural 

tissue biologically 324. 

  

Figure 1.5: Example of a bioreactor for use in tissue engineering 99. 

1.2.2.1 Mass-transfer requirements for tissue engineering 

It has long been known that the supply of oxygen and soluble nutrients becomes 

critically limiting for the in vitro culture of three-dimensional tissues. The consequence of 

such a limitation is exemplified by early studies showing that cellular spheroids larger 

than 1 mm in diameter generally contain a hypoxic, necrotic centre, surrounded by a rim 

of viable cells 323. Similar observations were reported for different cell types cultured on 

three-dimensional scaffolds under static conditions. Warburg 379 predicted many years 

ago that the maximal possible thickness achievable by diffusive transfer alone, with 
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blood as the non-circulating oxygen-carrying fluid, would be of 1mm for a cylinder-

shaped tissue or complete developing organism, as calculated by the relation 

2

2
max

4

Vo

BPDo
r = ,                                            Equation 1.1                                                         

Where Do2B is the diffusion constant for oxygen in blood, VO2 the rate of oxygen 

consumption in the tissue in question (for a human embryo, this rate is of approximately 

6 mlO2/min.kg), and P the oxygen partial pressure in the culture medium. It is interesting 

to note that, to date, the maximal thickness obtained experimentally in most cases is 

under this 1mm diffusive threshold 199. To obtain tissue thickness clinically valuable, it 

must therefore be concluded that diffusive transport will have to be matched with 

convection to bring sufficient oxygen to the growing cells, whether an oxygen-carrying 

fluid is used or not. 

Both for nutrient needs and waste elimination, mass transfer to and from tissues is 

a critical issue. In vivo, cells beneficiate from the proximity of blood capillaries for their 

mass-transfer requirements; in most tissues, cells are no more than 100 µm from these 

capillaries 365. Thus, cells are only able to survive close to the surface. In this connection, 

it should be noted that no cell, except for chondrocytes, exists further than 25-100 µm 

away from a blood supply 112, 366. Also, the small diameter of capillaries (6-8 µm) ensures 

a residence time long enough in tissues to permit the radial diffusion of chemical species 
384. Proteins and proteoglycans of the ECM generated by the cells are relatively large 

molecules and possess low intra-tissue diffusion coefficients, seriously hindering 

diffusion. For hepatocyte culture, it has been shown that when a reactor design relies 

solely on diffusion for the mass transfer of oxygen, cells must be within 150–200 µm of 

an oxygen source to survive and proliferate 203.  

Table 1-2: O2 solubility and consumption 
104, 196 

 Typical culture medium Pure water  

Atmospheric O2 solubility (mmol/l) 0.2 0.4  

Human skin fibroblast Human liver cells Blood 
O2 uptake (mmol/l) @10

6 cells/ml 
0.064 0.30 up to 9.5mmol/l 
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Because engineered constructs should be at least a few mm in size to serve as 

grafts for tissue replacement, mass-transfer limitations represent one of the greatest 

challenges to be addressed. Oxygen is one of the most important nutrients for cells, 

being a major actor in all aerobic metabolic cycles. However, it is often the limiting 

nutrient in successful tissue growth in vitro. The reason for this arises from the difficulty 

of bringing sufficient amounts of oxygen to the surface of the cells mainly because of 

the poor solubility of oxygen in culture media (Table 1-2). Oxygen is typically consumed 

at approximately the same rate as glucose (on a molar basis), but oxygen solubility is 

lower than the availability of glucose (e.g., 20 mmol), for example. As a result, medium 

must be continually circulated and re-oxygenated by passing through an in-line gas 

exchanger. Moreover, an excess of oxygen in the medium surrounding the cells without 

an appropriate carrier such as haemoglobin, achieved by using pure oxygen  instead of 

air or increasing gas pressure, induces the presence of free radicals, which are cytotoxic 
98. Indeed, hypo- and hyperoxic stresses have been implicated as causes of programmed 

cell death or apoptosis, which appears to be the main mode of cell death in many 

cultured cell lines 310. However, cellular oxygen uptake varies depending on cell and 

tissue type (Table 1-2). Blood can carry more than 45 times the amount of oxygen that 

in vitro culture media can. 

1.2.2.2 Limitations of tissue engineering scaffolds 

The current inborn seeding-cells-on-scaffold regeneration method of engineered 

tissue is deficient for large constructs due to inadequate vascularisation 393, 394. Several 

detailed investigations have shown that cells attach to synthetic polymer scaffolds 

leading to the formation of tissue 96. However, the degradation of synthetic polymers, 

both in vitro and in vivo conditions, releases acidic by-products, which raise concerns 

that the scaffold microenvironment may not be ideal for tissue growth. Lactic acid is 

releases from poly(L-lactic acid) (PLLA) during degradation 270, reducing the pH, which 

further accelerates the degradation rate due to autocatalysis 368, resulting in a highly 

acidic environment adjacent to the polymer. Such an environment may adversely affect 

cellular function. Cells attached to scaffolds are faced with several weeks of in vitro 

culturing before the tissue is suitable for implantation. During this period, even small pH 

changes (pH 6.8-7.5) in the scaffold microenvironment can significantly affect bone 
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marrow stromal cell expression of osteoblastic phenotypic markers. Furthermore, 

particles released during polymer degradation can affect bone-remodelling processes 

along with eliciting an inflammatory response and inducing bone resorption in vivo. 

Moreover, current synthetic polymers do not possess a surface chemistry which is 

familiar to cells, that in vivo thrive on an extracellular matrix made mostly of collagen, 

elastin, glycoproteins, proteoglycans, laminin and fibronectin 7. In contrast, collagen is 

the major protein constituent of the extracellular matrix and is recognised by cells 159 as 

well as being chemotactic 261. Collagen scaffolds presents a more native surface than to 

synthetic polymer scaffolds for tissue engineering purposes. However, like other natural 

polymers, it may elicit an immune response 18.  

Table 1-3: Biodegradable polymers used for tissue engineering of cell scaffold 
and biosignalling molecule release. 

Synthetic polymers Natural polymers 

poly(L-lactic acid) (PLLA) collagen 
poly(glycolic acid) (PGA) gelatin 
poly(e-caprolactone) (PCA) fibrin 

copoly(LL-GA) hyaluronic acid * 
copoly(LL-CA) Alginate * 

copoly(LLA-ethylene glycol (EG)) chitosan, chitin 
copoly(fumarate-EG)  

* There are no enzymes in the body to directly degrade these polymers. They are washed out 
by body fluids to disappear from the implanted site. 

Scaffold manufacturing techniques have improved a lot now and it is possible to 

manufacture scaffolds with finer diameter of elements. Even with the improvement, this 

approach has resulted in the in vitro growth of tissues with cross-sections of less than 

500µm from the external surface 95, 140. This is probably due to the diffusion constraints 

of the foam. The pioneering cells cannot migrate deep into the scaffold because of the 

lack of nutrients and oxygen and insufficient removal of waste products; cell 

colonisation at the scaffold periphery is consuming, or acting as an effective barrier to 

the diffusion of, oxygen and nutrients into the interior of the scaffold. Furthermore, for 

bone tissue engineering, the high rates of nutrient and oxygen transfer at the surface of 

the scaffold promote the mineralization of the scaffold surface, further limiting the mass 

transfer to the interior 198.  
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1.2.3 Alternative approaches 

As discussed earlier, there had been limited success of current tissue engineering 

approaches with cartilage and skin; which can be explained in terms of cellular density, 

cellular energy demand and  tissue thickness. Cartilage is relatively cell sparse, avascular 

tissue with relatively less energy consumption and nourished with diffusion from the 

surrounding tissue. Though skin is the largest organ of the body, it is relatively two-

dimensional. For these reasons, construction of skin and cartilage is not much influenced 

by the mass transfer limitation of current tissue engineering approach. However, the 

scenario is quiet different for tissues rich in cells with more energy demand, like cardiac 

and hepatic tissue. The creation of ‘thick’ (>100–200 µm) cardiac patches has been 

limited by an inability to create the geometry necessary to support the high oxygen and 

energy demands of cardiomyocytes at a depth greater than ≈100 µm from the surface 
85, 265. This is actually the scenario in general for most of the tissue. Keeping these 

limitations in mind, there had been alternative attempt; like cell sheet engineering or use 

the nature’s architecture- the extracellular matrix by decellularisation of tissue or organ.  

The cell sheet engineering process  used the temperature-responsive polymer, 

poly(N-isopropylacrylamide) (PIPAAm) to coat tissue culture polystyrene (TCPS) dishes, 

changing their property from hydrophobic to hydrophilic with change of temperature 
302. Normal TCPS dishes are hydrophobic and absorb extracellular matrix (ECM) proteins 

resulting in cell attachment and proliferation. The surfaces of PIPAAm are hydrophobic 

and cells adhere and proliferate under culture condition at 37° C. By lowering 

temperature below 32° C, the surfaces change reversibly to hydrophilic and not cell 

adhesive due to rapid hydration and swelling of the grafted PIPAAm. This unique surface 

change allows cultured cells to detach spontaneously from these grafted surfaces simply 

by lowering temperature. However, unlike trypsin treatment to harvest cells from culture 

dishes (which cause disruption to both adhesive proteins and membrane receptors and 

cells detach with considerable damages and cells are separated), this method allows 

harvesting cells in a single layer. These are then piled up to form a multilayer tissue like 

structure.  

To use nature’s architecture as a tissue engineering scaffold, the ECM of the donor 

tissue is prepared by the process of decellularisation. In this process, the cells from the 
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tissue are washed away keeping the tissue architecture intact. This is than repopulated 

with autologus cells from the recipient. This method has been used for transplantation 

of trachea in human 190, 191. However, for other tissue like heart, it is still in the laboratory 

with no promising results 51, 68, 101, 103, 155, 244, 278. It does not form real tissue rather a 

surface is coated with cells. 

 

a               b                c                d                     e 

 

Figure 1.6: The use of nature’s architecture as tissue engineering scaffold. 

Rat heart decellularisation (a-c); and during recellularisation (d-e) 201. 

1.3 Embryogenesis in comparison with in vitro culture of cells 

The cultivation of anchorage-dependent animal cells is performed by using solid 

cell-culture substrates, such as polystyrene dishes, microcarriers and macroporous 

carriers where the whole process is governed by the physiochemical properties of the 

solid substrate. Cells are cultured at the interface between solid substrate and liquid 

culture medium. Rather than forming an organised three-dimensional tissue-like 

structure, cells divide and grow in a single layer following the geometry of the substrate. 

Cellular phenotype is often dominated and limited by the cellular microenvironment and 

technical boundary conditions of the substrate. Inappropriate alteration to cellular 

microenvironment and rigid substrates hinder cellular communication, cell division, 

differentiation and migration. This results into a flat layer of homogenous cell sheet, 

which is unlike tissue consisting of inhomogeneous cells performing a specific function 

in coordination. The current technology of in vitro culture in flasks or on dishes 

developed from Petri dishes and nutrient-gel-surface culture of microbiology. It is less 

automated, allows insufficiently defined microenvironment of cells and limited and 

dominated by technical boundary conditions of the flask. In general, these methods are 

used to keep and culture cells outside the organism.  
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In contrast, the process of embryogenesis takes place at the transition zone of two 

liquid substrates. As observed in avian embryo, the embryonic disc (also called the 

blastoderm, the blastodisc, the disc of blastomeres) is the mass of cells that lies at the 

interface of egg yolk and egg white during the time of lay. With the incubation, these 

cells grow and start to differentiate. Here the cells are not guided or dominated any 

solid surface. During embryogenesis, dominated by cell microenvironment and orderly 

cell migration in groups – from the germ layer, forms the tissue, organ and at last forms 

a functional organism. Apparently, this three-dimensional freedom of movement 

facilitates cell division and migration.  

In chicken, the oocytes accumulate so much yolk in its cytoplasm that the nucleus 

of the cell and most of the cytoplasm contents (particularly those needed by the nucleus 

to divide) are pushed to one end of the cell. The yolk contains all the nutrients needed 

by a growing embryo. A non-cellular vitelline membrane produced by the ovum 

surrounds the cell membrane of the ovum. Cell division begins soon after fertilization. 

As the yolk passes through the oviduct, the yolk becomes invested with several layers of 

albumin and the cells of the germ disc lies at the interface. By the time the egg is laid, 

the embryo has reached the blastoderm stage where the initial development of the 

embryo takes place. Several thousand cells form two layers (epiblast and hypoblast) 

called "gastrula." The embryonic disc arose by meroblastic cleavage of the germ disc. 

Cleavage is incomplete (meroblastic) and is restricted to the small portion of yolk-free 

cytoplasm called the germinal disc. At this time the egg is laid, it cools, and embryonic 

development usually stops until proper environmental conditions are established for 

incubation.  

With the proper environmen (incubation), the process of development resumes. 

The avian egg as a culture system has a dynamic and permanent changing boundary 

conditions, which adapts to the changing need of the growing embryo. In vitro culture 

of cells, on the contrary, has static boundary conditions all the time. This is a very 

important difference in this regard especially concerning stem cell differentiation where 

the differentiated cells may have different metabolic status and microenvironment then 

in the undifferentiated status. However, cells are cultured in the same boundary 

conditions. This is no surprise that differentiated cells will have altered physiology in the 

unchanged boundary conditions. 
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 As the process of embryonic development continues, a furrow (primitive streak) 

appears in the midline of the embryonic disk which is formed by the ingression of 

epiblast cells which will go on to form the definitive endoderm and mesoderm by 

replacing hypoblast cells. The epiblast cells then develop into the definitive ectoderm. 

Gradually, a highly vascularised membrane begins to appear on the yolk and by the end 

of 4th day of incubation, it completely surrounds the yolk. At this stage the contents of 

the yolk is compartmentalised with the yolk enclosed by the yolk sac, which is further 

enclosed by egg white. The embryo lies at the interface over the yolk and egg white 

over the vascular yolk sac. Turning of eggs by the incubating bird during the process of 

embryonic development may have determinative effect on the embryonic development 

where the embryos from unturned eggs fail to hatch. As the development proceeds, a 

fluid filled sac called amniotic cavity surrounds the embryo and the CAM is formed on 

the fourth day of incubation by the fusion of the ectodermal epithelium (chorion) and 

the endodermal epithelium (allantois). At this stage, undifferentiated blood vessels are 

scattered in the mesoderm of the CAM. These vessels grow rapidly until day 8, when 

some vessels differentiate into capillaries and form a layer at the base of the ectoderm. 

At ID 14, 6 days before hatching, the capillary plexus is located at the surface of the 

ectoderm adjacent to the shell membrane 282. This extraembryonic membrane serves as 

a transient gas exchange surface similar to the lung. An extensive capillary network 

provides its respiratory function. The CAM functions for gas exchange (lung), storage of 

excretory urinary products (reservoir function), and mobilization of calcium from the 

shell to start bone mineralization (mineral resorption).  

1.4 The chicken embryo – a model system 

The embryo of Gallus gallus domesticus, the chicken, has a long history as a model 

system in developmental biology and has contributed major concepts to immunology, 

genetics, virology, cancer and cell biology 313. The chicken egg is such a common and 

easily accessible source for embryological studies that it attracted attention from the 

ancient Egyptians as well as the Greek philosopher Aristotle, who opened eggs at 

different stages of incubation to examine developmental progress. Important discoveries 

that have been made in the chicken embryo include the function of arteries and veins 
125, the existence of capillaries 194, 195, the existence of the neural tube 195, and the 
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derivation of organs from the germ layers (ectoderm, endoderm and mesoderm) and 

from mesenchyme such as the neural crest 249. It was demonstrated first in the chicken 

embryo that viruses can cause cancer (Rous Sarcoma virus) 286, that extraembryonic 

endoderm (hypoblast) regulates embryo polarity 313, that the somites control the 

segmentation of the nervous system 156, and that the notochord patterns the dorsal-

ventral axis of the spinal cord 364, 395. The hemangioblast, common precursor of 

endothelium and blood cells, was first demonstrated in the chicken embryo 69, T- and B-

lymphocytes were first described in the chicken embryo 213, 313, and the first cellular 

onocgen (c-src) was described in the chicken embryo 367, to name a few of the many 

important discoveries made in this remarkable model system. At early stages of 

development, the chicken embryo has no immune system, and can therefore serve as a 

host for tissue implantation, both conspecific and xenotypic, without rejection. For 

example, transplantation of chicken and quail tissue has been used as an embryological 

tool for decades, and in more recent years xenotypic transplantation of mouse 

embryonic tissue to chicken embryos has become a popular means of studying mouse 

tissue development ex utero 181, 260, 389. The implantation of human and mouse stem cells 

into chicken embryos is more recent but has been shown to yield important new 

discoveries 92, 106, 219, 260, 385, 389. The use of chicken embryos in SC research has great 

potential, not just for studying endogenous stem and progenitor cells during 

development, but also as a transplant model for studying the in vivo properties of 

various types of stem and progenitor cells. 

1.4.1 The chicken egg – a model system to promote in vitro cell culture as well 
as tissue engineering 

Embryonic development is a tremendously complex process, which has fascinated 

man since the beginning of history. How does fertilization result in the formation of a 

complete, independent individual? Where is the information for this complexity 

encoded, and what mechanisms ensure that it is decoded appropriately? To answer 

these fundamental questions, science has made use of a number of “model systems,” 

each with different advantages in that they allow various experimental approaches to 

different extents.  
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The most important metazoan model systems for studying development currently 

include the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, a 

few species of sea urchin (mainly Strongylocentrotus purpuratus and Lytechinus 

variegatus), the zebrafish Danio rerio, the South African clawed toad frog Xenopus 

laevis, the chicken Gallus gallus domesticus, and the mouse Mus musculus. Of these, the 

chicken was the first to be used for developmental investigations.  

 

Figure 1.7: Tissue-engineering models. 

(A) Syrian golden hamster equipped with a dorsal skinfold chamber (weight ≈4 g). (B) Overview of the 
observation window after the implantation of the chamber into the dorsal skinfold. (C) Intravital 
fluorescence microscopy of the micro-angioarchitecture of the dorsal skinfold chamber consisting of 
arterioles (arrow), parallelly arranged muscle capillaries (arrowheads), and postcapillary and collecting 
venules (double arrows). Scale bars: A = 12.5 mm; B = 2.5 mm; C = 105 µm 178. 

To improve current techniques and to develop new strategies for optimal 

vascularisation of implanted tissue constructs, sophisticated experimental models are 

required that allow for a detailed analysis of blood vessel ingrowth in engineered tissue 

constructs in vivo. The generation of 3D tissues ex vivo not only requires the 

development of new biological models for traditional monolayer or micromass cell 

cultures 62, but also poses new technical challenges owing to the physicochemical 

requirements of large cell-masses. Previous studies have analyzed the process of 

angiogenesis primarily using in vitro cell culture experiments and histological 

examinations of formalin-fixed tissue. Recently, however, two commonly used in vivo 

models to study angiogenesis, the CAM assay and the dorsal skinfold chamber, have 
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been introduced in the field of tissue engineering. Since, now animal experiments are 

discouraged, the CAM of the developing chicken embryo offers advantages over the 

other model system. 

Lack of a functional immune system of developing chicken embryo before 

embryonic Incubation Day (ID) 17 of prevents transplant rejection 200. Different 

applications of the CAM model in areas of interest for the pharmaceutical community, 

such as angiogenesis and antiangiogenesis 273, 275, 277, wound healing 274, tissue 

engineering 32, biomaterials and implants 163, 362, 402 and biosensors 361. Three 

extraembryonic membranes protecting and nourishing the embryo are formed during 

development: the yolk sac membrane, the amnion, and the CAM. The latter is a 

transparent and highly vascularised membrane, formed during the ID 4 to 5 by the 

fusion of the mesodermal layers of both the allantois and the chorion, resulting in a 

highly vascularised mesoderm composed of arteries, veins, and an intricate capillary 

plexus 273, 291.  
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Figure 1.8: Chick embryo Chorio-Alantoic Membrane (CAM).  

(a) CAM image taken from the top of the open culture system at ID 12. (b) Development of the domestic 
fowl egg: after ID 12. s, shell; sm, shell membrane; as, air space; y, yolk; al, albumen; sac, sero-aminiotic 
connection; am, amnion; ebc, extra embryonic body cavity; cam, ChorioAllantoic Membrane; i al, inner 
allantois; al fl, allantoic fluid; am fl, amniotic fluid (redrawn after Burton et al, 1985 43). 

This model has also been used as a short-term in vivo system in numerous studies 

in a wide range of fields: human skin grafting 172, liver 149 and skeletal muscle  

regeneration 225, surgical retinal research and simulation 184, tissue responses to 

biomaterials 33, 362, photodynamic therapy 175, as an alternative to the Draize rabbit eye 

irritation test 37, grafting of mammalian cells and tissues to the embryonic chick 148 and is 

extremely accessible to experimental manipulation..  
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The CAM, is a well-established experimental system for studying solid tumours, 

embryonic development, and evaluating angiogenic and antiangiogenic drugs. The CAM 

is a respiratory organ composed of several layers, a low stratified epithelium positioned 

externally, adjacent to the shell membrane, and an underlying dense plexus of capillaries 

where gas exchange takes place. Internally, lining the amnion, there is a simple cuboidal 

epithelium. In between the outer and inner epithelia lies a highly branched plexus of 

blood vessels of many sizes, the largest of which are accompanied by a dense plexus of 

lymphatics. The large vessels are embedded in loose mesenchyme. The ability of cells to 

from solid cancers grafted to the CAM to reproduce many of the characteristics of 

tumours in vivo, including tumour mass formation, angiogenesis, and metastasis, has 

been utilized in many studies 

The extracellular matrix constitution of CAM is similar to peritoneum 200. The best 

current in vivo models for studying human blood malignancies and leukaemia therapy 

are highly immune-deficient mice or foetuses of large mammals (sheep and dogs) in 

which hematopoietic cells are capable of proliferation 48, 325. These large-animal models 

are not practical for studying the biology of blood malignancies or for drug screening, 

because of the high cost and large space requirements for the experiments. Although 

the immune-deficient mouse models are powerful and recapitulate the phenotypes of 

blood malignancies in vivo, the purchase price per mouse is high, the maintenance of 

these mice is costly and complex, and more than 1 month is required to establish 

engraftment. 

1.4.2 Historical studies on chicken eggs  

The embryo of the domestic fowl (Gallus gallus domesticus) holds the record as 

the animal with the longest continuous history as an experimental model for studies in 

developmental biology, spanning more than two millennia. Throughout this time, it 

attracted great naturalists, artists, philosophers, and pioneers of biology and stimulated 

them to think about the most fundamental questions on generation and life. The 

ancient Egyptians are documented as having opened hen’s eggs at different periods 

during incubation to observe the progress of embryonic development. By around 300 

BC Aristotle undertook careful studies of the morphology of the embryo (as much as he 

could without the aid of magnifying devices); this can be considered as the first 
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‘scientific’ study of embryo development and his work referred to by his followers right 

up to the 19th century. After the mediaeval ‘Dark Ages’, the resurgence of an interest 

in anatomy and embryo development in the Renaissance attracted figures including 

Leonardo Da Vinci (1452–1519), Ulisse Aldrovandi (1522–1605) and Hieronymus 

Fabricius ab Aquapendente (1537–1619) to return to the study of the embryo within the 

egg.  

Until well into the 19th century, observations of chicken embryos at different stages 

were used to support either of the two theories of the raging debate between 

preformation (the adult is preformed in miniature from the time of fertilization or even 

earlier, and just grows) and epigenesis (the embryo increases in complexity and new 

organs form as it develops) 235, 312, 391. Along the way, the philosophers made many 

discoveries, as important as blood islands and the functional difference between arteries 

and veins, which were proposed to be connected to each other by capillary vessels 125. 

William Harvey (1578–1657) observed chick embryos at early stages of development and 

concluded that the heart was the first functioning organ to develop in the embryo. By 

observing the motion of the blood through the heart and early vessels, he discovered 

the circulation of the blood and understood the function of arteries and veins. The 

existence of the capillary was later confirmed with the aid of a simple microscope by 

Malpighi, who also discovered (despite his preformationist convictions) the existence of 

the neural groove (neural tube) and the somites and that the beating of the heart began 

even before the blood started to form 194, 195. Subsequent progress closely followed new 

technical advances. Improved microscopes and early attempts at sectioning allowed the 

discovery of the germ layers 249, 369 and the first indications of interactions between 

them, which later led to the concept of induction. The introduction of histological 

sectioning and of selective staining methods allowed Pander and von Baer to start to 

understand the significance of germ layers in development. These pioneers also started 

to ask questions about causality in development—what mechanisms are responsible for 

such stereotyped development?  

After the mid-1800s, the new innovation was the introduction of numerous 

selective dyes for staining and more sophisticated methods for sectioning, which 

sprouted a new generation of comparative histologists (mainly in Germany, including 

von Ebner, Hensen, Rauber, Koller, and Remak) who quickly generated a comprehensive 
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description of the changes in structure of the embryo throughout development. Many 

of the modern concepts and the names of anatomical components of the embryo are 

due to the work of these pioneers, whose keen powers of observation combined with 

their curiosity to establish the first mechanistic insights into how development might 

occur. Further and increasingly careful histological studies followed throughout the 19th 

Century, with the most important contributions being made by Rauber and Hensen and 

culminating in a beautiful histological atlas by Mathias Duval (1889).  
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Figure 1.9: Structural reorganization of the CAM between ID 8 and ID 12.  

Structure of the CAM of a chick embryo on (a) ID 8, (b) ID 10, and (c) ID 12. Shown is development from 
subepithelial (a), intraepithelial (b), to supraepithelial (c) vascularisation of the CAM. CE, Chorion 
epithelium; EC, endothelial cell type of capillary; P, pericyte; SM, shell membrane; BM, basal membrane. 
(redrawn after Fitze-Gschwind, 1973) 89. 

By the end of the 19th century, embryology was born again. Wilhelm Roux and his 

followers realized that carefully designed experimental manipulations that disturb 

development could provide information about the developmental potential of cells in 

the embryo, far beyond the speculations that had previously been attached to static 

histological observations. These studies were quickly applied to many species and led to 

detailed fate maps, formal definition of concepts such as regulation, induction, 

commitment, and competence, and the clear notion that development depends upon 

the flow of instructive signals between different cell populations. 
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Around the same time (ca. 1910), Thomas Hunt Morgan was building the 

discipline of developmental genetics and introducing the fruit fly as a system—the 

combination of Roux’s “Experimental Embryology” (Entwicklungsmechanik) with 

Morgan’s genetic analysis signalled the birth of modern developmental biology. At that 

time, experimental embryology (Entwicklungsmechanik) started to replace simple 

histological observation as it became clear that principles could only emerge from 

experimental manipulation of the embryo. However, the initial advances were mainly 

made through work in other organisms (sea urchins and amphibians for 

“embryoembryonic regulation” and induction, marine invertebrates for lineage studies, 

Drosophila for developmental genetics) and the chick was a little slower in catching up. 

But there were some salient chick studies at this time. Which include Graeper’s 

spectacular three dimensional stereo time-lapse movies of embryos labelled with spots 

of vital dyes to follow cell movements (made in 1926, published in 1929 and unrivalled 

to the present day), which revealed the cell movements preceding and during 

gastrulation and Waddington’s cross-species transplants of primitive streak and node 

and his hypoblast rotations which led to the first evidence that extraembryonic 

endoderm (hypoblast) plays a role in positioning the embryonic axis 311, as well as 

consolidating the concept that Hensen’s node is a source of signals for neural induction 

in both mammals and birds. Likewise it is not widely known that Waddington pioneered 

an experimental approach to understanding the development of left–right asymmetry 
372, 373. 

In the last 50 years, the chick embryo has contributed some of the most important 

general concepts in vertebrate developmental biology. This includes the discovery of the 

mechanisms that pattern the vertebrate limb and the ZPA and AER as signalling regions 

therein (John Saunders, Lewis Wolpert, Cheryll Tickle), the demonstration of the 

movements and fates of the neural crest by Le Douarin, the discovery that the 

notochord (and Sonic hedgehog signalling from it) regulates dorsoventral polarity and 

the location of different neuronal subpopulations within the neural tube by van Straaten 

and Jessell, the importance of somites in controlling segmentation of the peripheral 

nervous system (Keynes and Stern) while the central nervous system is autonomously 

segmented (Lumsden), the discovery of T- and B-cells and the hemangioblast by Le 

Douarin and colleagues, and many more. As molecular biology merged into 
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developmental biology, it was in the chick that the first ‘dynamic’ gene expression 

pattern (Hairy-1 and Lunatic Fringe) was discovered to be correlated with somite 

formation  (Pourquie) and that the first four genes regulating left–right asymmetry were 

found (Sonic hedgehog, Nodal, Activin-receptor IIA and HNF3b) 186. Moreover, the DT40 

cell line has also turned out to be a superb system to study genetic recombination and 

the origin of immunological diversity. 

Table 1-4: Some Major Concepts due to work on Chick Embryos 

It seems extraordinary that despite such a history, in more recent days there have 

been signs of ‘anti-chick’ racism by institutions hiring new young faculty. this animal 

possesses about the same number of genes as humans but is extremely compact and 

with an amazing level of conserved synteny with mammals 312. In the last few years, the 

classical approaches have been enormously enriched by three major technical advances: 

the introduction of new methods for gain- and loss-of-function and promoter analysis, 

the isolation of embryonic stem cells and development of new methods for transgenesis, 

and the sequencing of the chicken genome and establishment of numerous new 

electronic resources 313. These new technical advances promise to give the chick embryo 

Date Concept Discoverer(s) 

1628 
1672–1675 
1817–1828 
1868 
1911 
1929 
1932 
1932 
1932–1937 
1936 
1948–1968 
1953 
1956 
1960–1968 
1964–1970 
1967 
1970 
1975 
onwards 
1976 
1984 
1985–1987 
1988 
1989 
1991 
1993 
1993 
1995 
1995 
1997 

function of arteries and veins, proposed existence of capillaries 
neural tube, somites, capillaries 
germ layers (ectoderm, mesoderm, endoderm) 
the neural crest 
viruses cause cancer (Rous Sarcoma Virus) 
gastrulation cell movements (Polonaise) 
extraembryonic endoderm (hypoblast) regulates embryo polarity/mesoderm 
induction 
hemangioblast proposed (common precursor of endothelium and blood cells) 
Hensen’s node is the amniote organizer 
first genetic map for the chicken 
Apical Ectodermal Ridge controls limb outgrowth 
gut endoderm is derived from the epiblast via the primitive streak 
Zone of Polarizing Activity patterns the A/P axis of the limb 
T- and B-lymphocytes 
provirus hypothesis and reverse transcriptase 
contact inhibition 
importance of extraembryonic endoderm (hypoblast) in head development 
hemangioblast demonstrated 
first cellular oncogene (c-src) 
somites control segmentation of peripheral nervous system 
retinoic acid as a limb morphogen 
the notochord patterns the dorsoventral axis of the spinal cord 
rhombomeres are embryologically and functionally important 
DT40 cells undergo frequent homologous recombination 
Sonic hedgehog patterns the spinal cord (D/V) and specifies motor neurons 
Sonic hedgehog is the ZPA morphogen 
a genetic cascade patterns the dorsoventral axis of the limb 
a genetic cascade regulating left-right asymmetry 
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a huge new impetus as a leading system for developmental biology and many other 

areas. 

1.5  The physiochemical basis of the chicken egg model: 
liquid│liquid interface culture system 

From a technical and biotechnological perspective, the avian egg can be seen as an 

interface of two immiscible liquids, where the blastoderm develops at the interface 

between a protein rich in water (egg white/albumen) and lipid (egg yolk). In the 

conventional cultivation, cells grow on some solid substrates as a monolayer, most 

commonly glass, or non-toxic plastic in contact with tissue culture medium. Typically, 

the substrate may be the inner surface of the vessel containing the medium or may be 

the surface of small solid particle kept suspended in the medium (microcarrier culture). 

In contrast, the process of embryogenesis takes place at the transition zone of two fluids 

(as observed in avian embryogenesis where the blastoderm is located between the egg 

white and yolk). As in nature, cells can also be cultured at the liquid│liquid interface. 

Two immiscible liquids placed together separate from each other creating a liquid│liquid 

interface. One of these liquids can be tissue culture medium and other liquid, relatively 

immiscible with the first one, is hydrophobic, higher density than water and non-toxic to 

living calls. In this cultivation method, anchorage dependent animal cells can anchor, 

spread and grow at the interface 151-153. As is the case of solid substrate, the cells do not 

directly interact with the interface, but rather the proteins adsorb to the interfacial 

junction.  

 

Figure 1.10: Example of interface culture: hanging-drop culture. 

Cells are cultured at the liquid│gas interface. 
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Consider an interfacial surface S bound by a closed contour C (Figure 1.11). One 

may think of there being a force per unit length of magnitude σ in the s-direction at 

every point along C that acts to flatten the surface S. 
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Figure 1.11: A surface S and bounding contour C on an interface between two fluids.  

The upper fluid (+) has density ρ and viscosity µ; the lower fluid (-), ρ̂  and µ̂ . n represents the unit 

outward normal to the surface, and nn̂ −=  the unit inward normal. m the unit tangent to the contour C 
and s the unit vector normal to C but tangent to S. 

Perform a force balance on a volume element V enclosing the interfacial surface S 

defined by the contour C: 

[ ] ∫∫∫∫ +++=
CSVV

dsdSdVfdV
Dt

D
l  )n̂(t̂t(n)  

u σρ   ,                 Equation 1.2 

Here ℓ indicates arclength and so dℓ a length increment along the curve 

·T    t(n). nC =  is the stress vector, the force/area exerted by the upper (+) fluid on 

the interface. The stress tensor is defined in terms of the local fluid pressure and velocity 

field as [ ]Tu)(uI pT ∇+∇+−= µ . Similarly, the stress exerted on the interface by the 

lower (-) fluid is T̂·n   T̂· n̂ )n̂ (t̂ −==   where  [ ]Tp )û(ûˆI ˆT̂ ∇+∇+−= µ . 

Physical interpretation of terms  

dV
Dt

Du
V∫ ρ : inertial force associated with acceleration of fluid within V 

dVf
V∫  : body forces acting on fluid within V 

∫S dSnt )(  : hydrodynamic force exerted at interface by fluid + 

dSnt
S

 )ˆ(ˆ∫  : hydrodynamic force exerted at interface by fluid - 

∫C sdlσ  : surface tension force exerted along perimeter C 



Introduction 
 

S. Haque (2010) Ph.D. Thesis 41 

In 1964 Rosenberg introduced the use of a fluid substrate for the growth of both 

transformed and anchorage-dependent cells 284, 285. In this method, a cell suspension is 

introduced over an inert hydrophobic liquid having a density greater than that of the 

aqueous medium, and cells are observed to spread and divide on the liquid│liquid 

interface between the two immiscible phases. As is the case for solid substrates, the cells 

do not interact directly with the interface but rather with proteins that adsorb to the 

interfacial junction. These proteins presumably denature as their polypeptide chains 

unfold to achieve a low energy orientation with most of the hydrophilic portions 

exposed to the aqueous phase and the hydrophobic portions in the inert nonaqueous 

phase. One of these liquids can be tissue culture medium and other liquid, relatively 

immiscible with the first one, is hydrophobic, higher density than water and non-toxic to 

living calls. In this cultivation method, anchorage dependent animal cells can anchor, 

spread and grow at the interface 151-153. Different membranes can be placed at the 

interfacial zone, which may include natural and synthetic membranes, micro and nano 

structures and biomatrices. 

Interface 

Artificial & natural membranes 

 

Nano-/microstructures 

 

Biomatrices… 

Tissure culture medium 

Liquid substrate 

    
   

     

a 

 

 

b c 

 

Figure 1.12: Principle of liquid│liquid interface cell culture system 

(a) Cells are cultured at the interface between two fluids. Different materials can be used at the interfacial 
zone as culture substrates like different artificial and natural membrane, nano/micro structures and 
biomaterials. (b) 1 and (c) self assembling nanofibres. 
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Cells grown on such substrates can be transferred by simply pipetting the cell 

layer. Such a procedure of cell harvesting is especially important where the effect of 

trypsin or other proteolytic enzymes or chelating agents to passage cultured cells should 

be avoided. The compositions of cell membrane proteins are changed by enzymatic 

treatment or by mechanical scraping 301. Such a procedure is of particular interest in that 

it obviates the use of trypsin or other proteolytic enzymes or chelating agents to passage 

cultured cells and avoids the uncertain effects of such treatments. If the adsorbed serum 

proteins at the interface are crosslinked by glutaraldehyde or if a bimolecular layer of 

proteins is formed by using polylysine as a base coat 88, the patterns of cell growth can 

be altered significantly. This simply means that cell growth can be regulated as desired. 

In addition this method is free from the influence of the technical boundary conditions 

of the substrate and allows freedom of cellular migration similar to the developing avian 

embryo at the interface of egg white and egg yolk. 

There are different materials can be used as liquid substrate for liquid│liquid 

interface culture. Among them perfluorochemicals and silicone oil are most noticeable. 

Flurocarcons are non-toxic, inert, higher density (specific gravity 1.9), immiscible with 

water, low viscosity, thermally and chemically stable, optically transparent, hydrophobic 

and especially high solubility for gases. The fluorocarbon│aqueous interface is well 

suited to provide an inert, nontoxic, hydrophobic substrate for cell growth. It has the 

advantage of being exceptionally homogeneous and reproducible when compared with 

hydrophobic solid surfaces, which, in general, have polar molecular inhomogeneities.  

One other special property of the avian eggs as a culture system is the dynamic 

and permanent changing boundary conditions, which changes permanently in 

accordance with the changing need of the growing and differentiating calls as well as 

the embryo. Traditional in vitro culture of cells, on the contrary, uses static boundary 

conditions for culturing cells. The differentiated cells may have different metabolic status 

and microenvironment then in the undifferentiated state. However, cells are cultured 

with static boundary conditions. It is no surprise that the differentiated cells will have 

altered physiology in the unchanged boundary conditions.  
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2 Objective of the study 

The surface culture of cells is far different from the three-dimensional case in vivo. 

One reason lies in the equipment and the method of in vitro culture of eukaryotic cells. 

The basic principle of the surface culture is actually adapted form nutrient-gel and dish 

culture of Microbiology, which is actually designed for prokaryotic cells. In general, these 

methods are used to culture cells outside the organism. Unlike in vivo, cells there act as 

independent units, much like a microorganism such as a bacteria or fungus. Cell growth 

is governed mainly by the geometry and surface property of the solid substrate. In many 

cases, the appropriate biological, physical and chemical cues are not yet completely 

understood. The ability to control differentiation of stem cells into specialized cell types 

with high yield and precision is a key success factor that will determine the ultimate 

utility of such research.  However, researchers are facing significant challenges in these 

efforts because stem cells are difficult to handle and there are very few automated or 

standardized tools available in this relatively new field.  

a          b    c          d 

 

Figure 2.1: Derivation of liquid│liquid interface culture (computer simulation). 

The open system of avian culture will be technically modified step by step and at the end a complete 
artificial system will be developed to culture mammalian cells which will contain no embryo.  
(a) Chicken egg; (b) surrogate shell open culture system; (c) technically modified surrogate shell open 
culture system optimized for optical imaging, electrodes and sensors implanted for different bioelectrical 
signal acquisition; (d) complete artificial system for in vitro cell culture which contains no chicken embryo 
at the end but cell culture adopt the same principle. Green arrow = channels for culture medium 
exchange; Pink arrow = channels for substrate exchange. Note, at the end the system will contain 
different sensors to monitor culture environment and the whole system will be mounted under especially 
constructed microscope to image at cellular level. 
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The avian egg, in all its complexity, is still a mystery. Unlike mammals, it is 

separated from the mother animal contains everything for the growth and development 

of a multicellular organism from single fertilized oocytes whose cells and tissues have 

adopted differentiated characteristics or fates to perform the specified functions of each 

organ of the body. It is able to maintain the exact microenvironment necessary for the 

dividing and differentiated cells as well as the growing embryo all by itself. This 

remarkable feature had its perfection throughout the evolution of millions of years. 

From biotechnological and technical point of view, the avian egg can be considered as a 

construction plan for new in vitro culture system since it is independent of the mother 

animal and self equipped.  

In birds eye view, the chicken egg looks very simple, having only two components– 

the egg white and the yolk. However, it is a highly complex reproductive cell-essentially 

a tiny centre of life. Because of its independency and completeness, it is much easy to 

observe and study the vital process at the beginning of life at the cellular level in avian 

egg than in the mammals. It has been suggested that tissue neogenesis in tissue 

engineered constructs may involve the same processes present in tissue development 

during embryogenesis. This is supported by studies in which periosteal cells on a 

polyglycolic acid scaffold appeared to first generate hypertrophic cartilage prior to 

mineralized bone formation 357 as in vitro situation where cartilaginous centre of 

ossification appears first which ossifies to bone later stage. The systems biology 

approach to developmental biology emphasizes the importance of investigating how 

developmental mechanisms interact to produce predictable patterns (morphogenesis). 

Careful in vivo observation at cellular level may reveal the secret of organised cell 

migration, cell communication, cell differentiation, tissue formation, organogenesis and 

the development of the whole organism. A better understanding of normal cell 

development will allow understanding and perhaps correcting the errors that cause 

these medical conditions. Studying stem cells will help us understand how they 

transform into the dazzling array of specialized cells that make a complete animal. 

The objective of the thesis is to initiate a bridge between developmental biology 

and cell biology/stem cell research, to make a platform to study the process of 

morphogenesis, organogenesis, as a whole embryogenesis. So that using this ground 

further works can be done in future to develop a bioreactor with more flexible and 
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physiological cell culture conditions avoiding the disadvantages of conventional solid 

surface cell culture system with adjustable boundary conditions; to develop an in vitro 

tool for exact cell differentiation comparable to embryogenesis.  This new approach may 

open a new horizon in the field of in vitro cell culture as well as for tissue engineering. 

The idea behind this thesis is to make gradual technical modifications of the avian egg 

and gradually adapt it for in vitro cell culture. Based on this functional biological system, 

alternative artificial in vitro culture systems should be tested in accordance with 

embryogenesis. Here is the important point of interest, the induced linage specific 

differentiation of stem cells in ovo to provide the basic technology for the routine cell 

culture as well as the observation and documentation at or near the cellular resolution. 

The real-time acquisition of dynamic process will be possible through time lapse and 

slow motion characterization e.g. of cell migration.  

At the heart lies the avian egg with different technical modifications: with the 

change of forms, access for optical observations, installation of sensors to access 

biosignals and high resolution imaging. Preliminary works show (Chapter X4X) that, this is 

possible, since it is possible to demonstrate the complete development of avian embryo 

(from the blastoderm stage to viable hatchlings) in a complete open system of in vitro/ex 

ovo culture or in a complete artificial system. It is the hatching of a viable bird, which is 

regarded as the milestone for the development of a new liquid│liquid interface in vitro 

culture system. Human stem cell research holds enormous potential for contributing to 

our understanding of fundamental human biology. Although it is not possible to predict 

the outcomes from basic research, such studies will offer a real possibility for treatments 

and ultimately for cures for many diseases for which adequate therapies do not exist.  

In this contextthere are three parallel investigations  

• Culture of animal and human cells in unfertilized and fertilized egg, 

• Iterative introduction of technical components to the open system of avian 
culture, 

• Development and testing of complete artificial liquid│liquid interface culture 
system through gradual removal of egg components (e.g. egg shell) 

At first, the liquid│liquid interface of unfertilized or fertilized avian eggs will be 

used to culture cells. There the cell migration, cell communication, and the cell clusters 
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will be investigated. Here the focus lies at the targeted differentiation of stem cells. 

Especially, the effect of vascularisation of differentiated stem cells in ovo will be 

investigated with deep interest. The advantageous immune-incompetent situation of the 

chicken embryo is especially beneficial in this regard as it prevents immune rejection of 

trans-species implantation/injection of cells and tissue constructs. The CAM of the 

developing embryo is highly vascularised and shows the potential for studying the in ovo 

vascularisation for tissue engineering. In parallel, the system is technically modified: 

open as far as possible, so that observation is possible in high resolution, without 

affecting the embryo. At last, systematically an artificial egg will be developed, where 

the requirement of different imaging methods, manipulation system, as also in vitro 

culture technique are suitable for the tissue engineering. Essentially, the system may not 

contain the geometry and the materials of a natural egg, rather will be replaced with 

artificial biomaterial in conjunction with fluidics. 

The advantageous situation of in ovo culture will be imitated in the liquid│liquid 

interface culture system  

• Free migration of cells, 

• Application mechanical stimulation like the egg turning by the bird, 

• Flexible, permeable substrates allowing diffusion, 

• Better access to the cells for manipulation (addition/removal), 

• Huge flexibility to add extra substrates, 

• Easy removal of cells without enzymatic treatment (trypsin free passage), 

• Good access for sensors, imaging and other technical modules. 

Based on these features, a series of key-experiments will be conducted to test the 

feasibility of an alternative physiological in vitro culture approach for stem cells with the 

imitation of the embryonic development in avian egg. For this purpose, it is necessary to 

search for an appropriate stem cell model and to create the technological boundary 

conditions for reproducible experiments under microscopic documentation. 

For the new bioreactor, it is necessary to change different natural egg component 

like shell, egg white and yolk egg membrane, many alternatives will be tested. Materials 

like porous Teflon, polycarbonate and silicone will not only be used, but also innovative 

appendages like hydrogel, and other high viscous or visco-elastic gel and fluids will be 
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investigated too. As substrate material perfluorochemicals, silicone and other material 

will be investigated. Following the key experiments, the components are integrated for 

use as a system for ex ovo culture. This system should be used together with the 

previous integrated imaging for the utilization of the final experiments. 

At the end, characterised cell model should be implemented in the incubator and 

the in ovo situation will also be evaluated there for the establishment of a new in vitro 

liquid│liquid interface culture. Here the interest lies at the targeted differentiation of 

stem cells and neo-vascularisation of differentiated stem cells in ovo.  

2.1 Goal 

 Goal of this thesis is the construction of a “liquid│liquid interface culture system” 

based on the guideline of the embryonic development in a fertilized chicken egg, which 

is intended for in vitro culture of mammalian cells and tissue engineering. Therefore, 

there are the following objectives 

• Non-invasive very high resolution imaging of avian embryogenesis at different stages 
of development in closed eggs 

• Addition of contrast labelled stem cells into the fertilized avian egg and traccking 
non-invasively 

• Cultivation of avian embryos in open systems, bringing them to hatch 

• Cultivation of avian embryo in completely artificial systems 

• Step by step modification of the open system of avian culture and optimization for 
optical imaging 

• Step by step technical modification of the open system of avian culture for 
placement of biosensors to access the bio-signals and installation of fluidics for 
addition and removal of culture medium 

• Installation of micromanipulation system for addition and removal of cells 

• Construction of a fluorescent micro imaging system for in ovo application enabling 
to the observation of cellular process inside the open system of avian culture.   
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2.2 Working plan 

Within the framework of the thesis, liquid│liquid interface culture system should 

be developed and tested. 

• At first, the avian embryogenesis will be observed with a very high resolution 

noninvasively in closed egg. This is necessary to follow the vital process of 

embryogenesis in its natural inhabitant. For the investigation, the fertilized quail egg 

will be incubated and imaged with Microscopic Magnetic Resonance Imaging (µMRI) 

in a very high resolution at different stages of development. 

• During early embryogenesis, a single oocyte divides and an organized spatial 

distribution of cells gives rise to three different germ layers eventually forms a 

complete organism through the process of morphogenesis and organogenesis. The 

freedom of cellular movement and cellular migration will be studied non-invasively in 

its natural inhabitant. Stem cells will be labelled with contrast agent and will be 

injected into a fertilized egg through a small hole on the shell into or near the 

blastoderm. Their fate will be followed with µMRI non-invasively. 

• To reveal the vital process of embryogenesis and to have better access to the 

embryo, the avian embryo will be cultivated in open system and in a completly 

artificial system. The open culture system will consist of surrogate shell taken from 

larger eggs (recipient), which will contain the avian embryo and covered with plastic 

film. The completly artificial system will consist of porous Teflon membrane 

suspended on stainless steel mash and covered with plastic film. This will start the 

gradual modification of natural avian egg towards more artificial system. 

• Gradual technical modification of the open system of avian culture. This technical 

modification is necessary, since avian eggs are not suitable for high-resolution optical 

imaging, and for ultrasound and other possible imaging and measurement methods 

(hard calcareous shell is non-penetrable for ultrasound, opaque, not feasible for 

micromanipulation and there are sterility problem). This technical innovative 

approach will open a new horizon. In the process of technical modification, part of 

the shell will be gradually replaced by biocompatible transparent window material; 

the covering lid will be optimized for optical microscopy and easy access for 
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micromanipulation system for the addition and removal of cells. Besides application 

of different biosensors will be carried out in order to access bio-signals. This may 

include thermal sensors near the embryo, flexible electrode to record bio-electric 

signal and impedance measurement, pH measurement and gas sensors like O2 and 

CO2. Application of fluidics is another very important issue. Since the whole process 

is intended for in vitro cell culture, addition and removal of culture medium is 

necessary for oxygenation, removal of CO2, addition of nutrients and growth factors. 

For future modifications, biochip based sensors can be implemented for biochemical 

and immunoassay which will reveal the secret processes of cellular communication, 

cell signalling, organised cell migration in groups, morphogenesis, differentiation, 

tissue formation tissue, organogenesis and the complete process of embryogenesis. 

This may open a completely new chapter in the history of cell culture and tissue 

engineering. As described in chapter 1, the current process of in vitro cell culture and 

tissue engineering is stuck at a certain point. The researchers are trying different 

ways to overcome the obstacle but there is not much progress. Actually, the non-

physiological way practiced in vitro is getting away from the in vivo situation. 
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3 µMRI of avian embryogenesis in ovo 

3.1 Summary 

Objective: Important procedures in tissue engineering include the isolation and ex vivo 

proliferation organotypic cells and the seeding of these cells into suitable biocompatible 

matrices. However, the limiting factor for the survival, proliferation, and differentiation 

of transplanted cells is the sufficient supply of nutrients and oxygen, which relies entirely 

on diffusion processes. In ovo, this is achieved by angiogenesis, which is not possible in 

vitro until now. During embryogenesis, single fertilized oocyte gives rise to a 

multicellular organism. In the avian embryo, the extensive capillary network of CAM 

achieves this transport for the developing embryo. To understand tissue generation in 

ovo requires very high resolution imaging that allows imaging at cellular level without 

disturbing the normal embryonic growth and development. For in ovo imaging of the 

avian embryogenesis, the calcareous shell is the main obstacle for optical imaging 

methods. A thin layer of gas between eggshell and shell membrane along with 

calcareous shell make ultrasound inapplicable. Computed Tomography (CT) and Positron 

Emission Tomography (PET) could be applicable in this aspect but they rely on ionising 

radiation for imaging contrast, which may load the embryo with the invasive dose of 

ionising radiation. Therefore, the option available is Magnetic Resonance Imaging 

Microscopy (µMRI). 

The main purpose of the experiments in this chapter was to make highest 

resolution (as high as 39 µm × 39 µm) µMRI imaging of quail (Coturnix coturnix) 

embryos within reasonable time. Quail embryogenesis was studied with µMRI imaging in 

ovo keeping the animal alive. Contrast labelled stem cells were injected into quail 

embryos and they were tracked with µMRI. MR terminology follows the common 

convention that microscopic resolution means the ability to distinguish structures equal 

to or smaller than the optical resolution of the human eye (i.e. about 100 µm). 

Methods: A combination of very high magnetic field strength (B0 = 9.4 T), a high 

sensitivity probe and strong magnetic field gradients was employed to record MR 

images from quail (Coturnix coturnix) embryos at different stage of development. Rat 
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pancreatic stem cells (Z29 P24) loaded with Super Paramagnetic Iron Oxide Nanoparticle 

(SPION), injected into fertilized quail eggs and tracked them with µMRI. 

Results: The in vivo microscopic MR imaging series revealed the process of embryonic 

development in different stages. All these processes have been observed in detail before 

but the non-invasive approach taken here allows monitoring the entire embryological 

development of an individual avian embryo inside an opaque eggshell. The opaque 

eggshell represents a major obstacle for optical methods. Furthermore, cellular labelling 

of stem cells with SPION allowed tracking of cellular migration in ovo. 

Conclusions: MRI is capable of revealing the process of embryonic development at very 

high resolution. Besides cell tracking opportunities make it a versatile tool for 

developmental biology and stem cell research. The imaging acquisition techniques of 

MRI are relatively time consuming. Nevertheless it matches with the slow process of 

embryonic development. The embryo begins to move physically in the course of 

development; especially the heart starts to beat very early. This brings motion artifacts 

into the image and makes it more complicated for MRI imaging. Besides construction of 

an incubator inside the imaging magnet was difficult to achieve for in ovo imaging of 

quail embryos (optimization of temperature, humidity, rocking of eggs and more). At 

the end it was concluded that µMRI is not a method to study embryogenesis in ovo. 
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3.2 Materials required for µMRI experiments 

Equipments        Manufacturer    

Centrifuge, 3K18       Sigma-Aldrich, Deisenhofen 
DMX 400 spectrometer with micro 2.5 gradient system  Bruker BioSpin, Rheinstetten 
Lumix FZ50 digital camera         Panasonic, Japan 
Microscope       Olympus, Hamburg 
Magnetic separators MagnetoPURE magnetic plate   chemicell GmbH, Berlin  
Refrigerator (4 °C)      Liebherr, Biberach a. d. Riss 
1T/m gradient system      Bruker BioSpin, Rheinstetten  
9.4 T superconducting vertical bore magnet    Do 
25 mm Bird cage micro imaging coil    Do 
176/M2 Motorbrüter with semiautomatic rocking  Bruja, Hammelburg 

Chemicals       Manufacturer    

Agarose       Peqlab, Erlangen 
Bacillol anti-microbial solution     Bode Chemie, Hamburg 
FluidMAG-CMX/E (Carboxymethyl-Dextran)    chemicell GmbH, Berlin 
Hypochloride solution (200-500 ppm)     VWR International GmbH 
PBS        Invitrogen, Karlsruhe 

Biological agents      Manufacturer/supplier  

Fertilised quail eggs       wachtelei-spezialist, Aletshausen 
Rat pancreatic stem cells (Z29)     Fraunhofer IBMT, Lübek 

Computer Software      Developer    

Amira®        ZIP, Berlin 
ImageJ        NIH, USA 

Accessories       Manufacturer/supplier  

Glassware       Schott, Mainz 
Microinjection syringe      Eppendorf, Hamburg 
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3.3 Considerations for in ovo imaging  

Before going into the detailed discussion of in ovo imaging, the structure of the 

egg shell needs to be explored. Avian egg is covered with a hard, protective shell which 

is opaque. An average egg of 60 g has 343 µm shell thickness has about 12000 pores 

per egg. Average pore length is 300 µm with an average pore diameter of about 3 µm 
340. The true crystalline shell is composed primarily of calcium carbonate in the form of 

calcite with just a trace of aragonite and octacalcium phosphate. The shell is associated 

with double layer shell membranes on the inside and the cuticle (or cover) on the 

outside of the egg. The shell membranes are consisted with a network of fibers several 

layers thick. The two membranes adhere to one another to form a compound 

membrane; except at the blunt pole of the egg where they separate to form the air 

space. Fibers of the inner shell membrane are finer and form a tighter mesh than those 

of the outer membrane. The shell along with its membrane is structurally & 

architecturally a stable structure which is perfectly designed for protecting the 

developing birds even from bacterial invasions. 
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Figure 3.1: Structure of chicken eggshell. 

(a) Radial section through a domestic fowl eggshell showing the main structural features. Numbers on the 
left of the diagram are thicknesses of each layer in µm (redrawn after Tullett, S. G., 1984 352). (b) Eggshell 
removed from the blunt pole of a chicken egg showing the air cell trapped between two layers of shell 
membrane (arrow indicates the air cell). 

The in ovo imaging has to be performed through the hard, opaque eggshell 

keeping the embryo alive. There are different imaging methods offering non-invasive 
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imaging possibilities with their own advantages and disadvantages. These include 

Ultrasound, CT, PET, µMRI, optical methods & others. 

Ultrasound 

Ultrasound relies on the modification of an induced acoustic wave travelling 

through tissue. Ultrasound studies are conducted using a probe to project sound into 

the tissue and recording the time and magnitude of the reflected sound wave using the 

same probe. The analysis of this acoustic echo permits the imaging and measurement of 

tissue acoustic properties. It is used primarily for monitoring tissue structure and motion. 

The resolution of ultrasound is roughly proportional to the wavelength of operation. 

However, the ultrasound is reflected al the interface of changing material density or the 

large change of the sound speed. The egg contents are enclosed in a hard, calcareous, 

bonelike eggshell and there is a thin film of air between the calcareous eggshell and 

shell membrane.  

     

a                     b 
  

 

Figure 3.2: Comparison between Ultrasound and µMRI image. 

(a) Ultrasound image of chickcken embryo at ID 11 295, (b) 3D surface reconstruction of MRI T2 weighted 
image of a quail embryo inside the egg at ID 12. 

In spite of the advantages of ultrasound including the ease of use, portability, and 

relatively low cost compared with MRI, CT, and PET; the amount of tissue 

characterization that can be accomplished with ultrasound is limited. Because of hard 

eggshell and a thin air film in between the calcareous eggshell and shell membrane, it is 

not applicable in the avian eggs.  

Computer tomography (CT) 

CT is basically a three-dimensional x-ray technique that is sensitive to the x-ray 

absorption of the tissue. Contrast can be generated by the differences in tissue 

absorption, with bone providing the most striking intrinsic contrast, or by using contrast 
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agents to enhance the vasculature or specific tissues and conditions. The inherent 

Signal-to-noise ratio (SNR) of CT is very high.  

 

Figure 3.3: Computed tomography coronal section through a whole mouse. 

(Image courtesy of Oak Ridge National Laboratories, Oak Ridge, Tennessee). 

 

Using current technology, full three-dimensional mouse images with 100 µm x 

100 µm x 100 µm resolution can be obtained in a few minutes 107, 154, 252, 397. With higher 

resolution studies approaching potentially 50-µm isotropic resolution, with the one 

limitation being that the amount of energy absorbed by the animal may approach 

“invasive” levels. In case of in ovo imaging, eggshell remains a problem. High radiation 

absorption by the calcareous shell results in high exposure or high-energy imaging. This 

will worsen soft tissue contrast. Besides, high radiation dose and use of ionizing 

radiation makes CT iapplicable for in ovo imaging. 

Positron Emission Tomography (PET) 

PET relies on detection of radioactive probes emitted in the body. Imaging of this 

emission is performed using a combination of detector geometry along with the timing 

of the emissions detection. PET is one of the most sensitive imaging techniques and is 

capable of detecting vanishing small amounts of radiolabelled material. The short-lived 

isotopes 139 used in this approach include 11C 171, 185, 13N, 15O 192, 396 and 18F 139, 396 

isotopes, which are extremely useful in the evaluation of biological processes. The 

sensitivity of PET has resulted in a unique ability to monitor receptor ligand interactions 

in humans and animals with remarkable success. This sensitivity has resulted in PET 

being one of the primary targets in the development of gene expression markers as well 

as the detection of early cancer 258. One of the major drawbacks of PET is the 

requirement for a local cyclotron to generate the probes and a synthesis unit to produce 

the biologically useful probes. Because radioisotopes must be used in these studies, 

vascular access or direct injection of the tracers into the organ of interest is required.  
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Laser scanning microscopy 

Laser scanning microscopy has continued to develop and has proved itself to be an 

excellent tool for in vivo microscopy due to its ability to collect ‘optical sections’ through 

the specimen. By raster scanning a laser beam over the focal plane and blocking light 

from elsewhere with a confocal pinhole in front of the detector, an image largely devoid 

of out-of-focus fluorescence can be generated. Confocal Laser Scanning Microscopy 

(CLSM) works well for imaging near the surface (within 100 µm). At greater depths, 

scattering in the tissue and blurring due to the tissue optics make collection of light 

through a detector pinhole inefficient. A more significant limitation is the photo 

bleaching from CLSM, because it excites fluorescence throughout the depth of the 

specimen even when it is collecting a single optical section. Despite these difficulties, 

CLSM images have offered important glimpses into the developing embryo 279, 374. In 

preparations with no absorbance of the intense infrared pulses and limited light 

scattering, two-photon microscopy has permitted observation of live cells and intact 

tissues with startling resolution 238, 262. Because of hard, calcareous eggshell, Laser 

scanning microscopy is not applicable for in ovo imaging. 

Therefore, in case of in ovo imaging of avian eggs, only µMRI seems to be 

applicable. 

3.4 Microscopic Magnetic Resonance Imaging (µMRI) 

In short, magnetic resonance is the absorption of electromagnetic energy by a 

subpopulation of atomic nuclei in an external static homogenous magnetic field when 

irradiated at an isotope specific resonance frequency directly proportional to the local 

magnetic field strength. When the absorbed energy is released upon return to the 

thermal equilibrium, an inductive signal can be observed which contains chemical and – 

under special conditions – spatial information about the molecular composition of the 

irradiated sample. The concept has repeatedly found comprehensive treatment 

elsewhere – (see, e.g., 2, 306 for spectroscopy and 29, 45 for imaging ) and will therefore 

only briefly be sketched here. 

Atoms exposed to an external magnetic field B0 experience a Zeeman splitting of 

their energy levels such that the magnetic quantum number m can take on all integer 
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values between +I and –I, the extremal values of the spin quantum number I, provided 

that I ≠ 0. Atoms with even numbers of both protons do not fulfill the latter condition 

and neutrons because the individual spins of identical nucleons cancel out. For the 

nucleus most commonly employed in MR studies and in this thesis, 1H, I = 1/2.  

The Zeeman energy difference ∆E = Ei - Ej between adjacent (∆m = 1) energy 

levels Ei and Ej (with Ei < Ej) can then be expressed as  

02
Β=∆Ε γ

π
h

,                                   Equation 3.1                                                         

where γ is the gyromagnetic constant of the isotope (2.67522 . 108 s-1 T-1 for 1H), 

and h = 6.62607 .10-34 J is the Planck constant. 

The equilibrium populations of both energy states follow a Maxwell-Boltzmann 

distribution: 

kTE
ji e /∆−=ΝΝ                                   Equation 3.2                                                        

with Ni, j representing the number of nuclear spins in state i and j with the 

respective energy level, k = 1.38065 .10-23 J/K the Boltzmann constant and T the 

temperature. For 1H in a magnetic field of 9.4 T and a temperature of 300 K, this 

translates into a population difference ji Ν−Ν=∆Ν  of about sixty spins out of one 

million, which severely restricts the sensitivity of the method. 

As a consequence of the population difference, a net magnetisation M0 can be 

observed along the axis (usually named z) of the static field B0. The equilibrium 

distribution can be disturbed by supplying ∆E = hν0 via radiofrequency (rf) pulses 

oscillating at a frequency ν0 around an axis perpendicular to z, which creates an 

additional magnetic field B1. With Equation (1.1), the resonance condition for the 

absorption of this pulse is given by the Larmor relation 

000 2 Β−== γπνω  ,                                  Equation 3.3                                                    

Between the angular frequency 0ω  of the rf pulse and the local magnetic field (for 

the experiments considered in this chapter, B0 = 400 MHz at 9.4 T). Such a rf pulse will 

stimulate transitions from the lower to the higher energy state (as long as ∆N > 0), 

thereby flipping the net magnetisation in the sample by the flip angle 
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flipt1Β= γθ                                          Equation 3.4                                                  

where flipt  is pulse duration time 

When the spins relax by releasing the absorbed energy, a so-called free induction 

decay (or FID) induces a signal S in a receiver coil. For the typical case of a spin echo 

pulse sequence (two pulses corresponding to flip angles of  π /2 and π, separated by an 

echo time TE), the generated signal S (t) is of the form: 

   2/1/ )1()( TTETTR eeCtS −−= ρ ,                          Equation 3.5                                            

where C is a constant for a given sample, while ρ represents the spin density in the 

sample, TR the repetition time (i.e. the interval between the onset of two consecutive rf 

pulse sequences), T1 the longitudinal relaxation time (i.e. the time constant of the 

magnetisation decay longitudinal to the static magnetic field, also known as spin-lattice 

relaxation time), TE the echo time (i.e. the time between the onset of rf pulsing and the 

beginning of signal acquisition) and T2 the transverse relaxation time (i.e. the time 

constant of the magnetisation decay perpendicular to the static magnetic field, also 

known as spin-spin relaxation time). It should be noted that the refocusing function of 

the second pulse at πθ = can alternatively be fulfilled by the administration of 

appropriate field gradients. Such schemes are known as gradient-echo sequences which 

show the same signal decay as described by Equation 1.5, except that T2 has to be 

replaced by the apparent relaxation time T2* which is shorter than T2, as the loss of 

transverse magnetisation in gradient-echo sequences arises not only from the 

microscopic spin-spin interactions causing T2 decay but also from macroscopic magnetic 

field inhomogeneities. 

Fourier transformation of the time domain signal described by Equation. 1.5 

generates a spectrum in the frequency domain where the position, form and ratio of the 

peaks give information about the molecular composition of the sample in terms of the 

employed isotope. This is the basis of MR Spectroscopy (MRS). 

Typically, at least in the life sciences, MRS is performed in aqueous samples but 

methods have also been developed to investigate solids. Such a variant is called Magic 

Angle Spinning (MAS) because the sample is quickly spun around an axis inclined to the 
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static magnetic field by the "magic angle" (about 54.7°) where spatial magnetic dipolar 

interactions between spin pairs are effectively averaged out 14. 

A further implication of Equation. 3.3 is that the magnetic field can be modulated 

in time and space by manipulating radiofrequency pulses such that they create space-

dependent magnetic field gradients )(rG
rr
 supplementary to the static magnetic field: 
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,                               Equation 3.6                                               

In practice, this is achieved by employing a dedicated spatial arrangement of 

gradient coils that send gradient pulses each time an rf pulse sequence is applied. If the 

time that the gradient remains on is varied between consecutive rf pulses but its 

amplitude is kept constant, this regime is referred to as frequency encoding. Conversely, 

phase encoding depicts the concept of varying the gradient amplitudes and keeping 

them on for a constant period. 

The increase of SNR with increasing B0 is the main rationale behind the quest for 

ever-increasing field strengths of MR magnets, especially for spectroscopic applications 

and medical imaging 50. Nonetheless, it should be stressed that the multiparametric 

nature of MR also brings about negative effects of higher field strengths (e.g. eddy 

currents) or positive effects at lower field strength (e.g. line narrowing) on the quality of 

MR data 65, 109 and that even NMR at Earth’s magnetic field strength is possible with a 

vary low sensitivity 46 [the strength of the magnetic field at the Earth's surface ranges 

from less than 30 microteslas (0.3 gauss) in an area including most of South America 

and South Africa to over 60 microteslas (0.6 gauss) around the magnetic poles in 

northern Canada and south of Australia, and in part of Siberia]. 

Small animals permit the use of small magnetic resonance receiving coils, which 

increase the sensitivity to the magnetic fields generated by the nuclides. In other words, 

the closer a coil can be physically placed to a target organ, the better the SNR of the 

measurement (so called filling factor). The SNR of the MRI experiment roughly increases 

linearly with the magnetic field when the sample noise dominates. At the time of this 

writing, mouse studies can be conducted on 11.7 T or even higher field systems in 

comparison to the 1.5-T systems used in humans [T = Tesla or 10,000 gauss; earth’s 

field is 30 microteslas (0.3 gauss) to 60 microteslas (0.6 gauss)]. This means that an 
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approximate factor of 10 or more increase in SNR can be realized using these magnets. 

For example, if an imaging voxel is 2 mm × 2 mm × 20 mm at 1.5 T, the voxel can only 

be reduced isotropically to ≈ 0.9 mm × 0.9 mm × 9 mm at 11.7. Thus, both the 

magnetic field and coil proximity issues must be used to optimize the MRI experiment on 

a small mammal [image optimization using Field of View (FOV), pulse sequences, 

gradient strength, and temperature optimization]. 

Magnetic resonance imaging microscopy (µMRI) is a qualitatively different imaging 

method that is able to distinguish soft tissues within optically opaque specimens. During 

a µMRI experiment, 3D data are collected directly from the intact specimen; thus, no 

artefacts are introduced by the physical deconstruction of the specimen. This non-

invasive method offers several different sources of contrast and makes it possible to 

repeatedly image the same specimen over time 142 

Contrast agents in 1H MRI are usually metal-based agents (including free Mn) that 

modify the magnetic relaxation properties of water. This permits the elimination or 

enhancement of the water signals depending on the agent and detection scheme. 

Specifically, agents to enhance the vascular bed or distribute in the interstitial space 

have been very useful in angiography 30, 179 as well as perfusion 137, 189, tumour detection 
202, 289, and neuronal fibre tracking 253. MRI and MRS methods have been successfully 

applied to the mouse and rat due to the advantageous scaling factors that occur in 

magnetic resonance. Microscopic magnetic resonance imaging (µMRI) offers a powerful 

imaging modality for structures that absorb or scatter too much light. When compared 

to optical methods, MRI is low resolution, but it has the ability to generate startling 

images in even the most difficult preparations. Contrast in the MRI images results from 

differences in the magnetic properties and/or local environment of the water protons 

contained in a specimen. The exact nature of the image contrast can be adjusted by 

altering excitation (pulse) and timing (echo) parameters used for image acquisition. The 

radio frequency radiation is not directly imaged; therefore, MRI is not limited to optical 

properties of the specimen. Beyond being able to ‘see’ deep within opaque specimens, 

MRI can reveal features not easily detectable in optical images. By imaging the diffusion 

tensors, regions that restrict or facilitate water diffusion can be visualized 217. One huge 

advantage of MRI is that the object being imaged is kept intact; the data remains 

inherently registered allowing for rapid 3D reconstruction (e.g. a rare 3D imaging 
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sequence requires 1 h and 8 min  for an image with 128 x 128 x 128 image points with 

a repetition time of 2000 ms und 4 accumulations,  with 8 accumulations double the 

time, 2 h 16 min) 

Unpaired protons placed in a strong magnetic field precess at a very explicit 

frequency. These protons interact with an applied oscillating magnetic field at the same 

(resonant) frequency, absorbing and re-emitting energy in ways that can be spatially 

encoded to generate a digital image. The detection of the naturally occurring nuclide 1H 

found in water and fats is usually used for MRI studies providing an adequate SNR to 

create images with sub-millimetre resolution in vivo. Magnetic resonance microscopy 

(MRM / µMRI) is based on the same physical principles as its clinical cousin, MRI.  

For the aim of the Ph.D. work, the following aspects are interesting for high-

resolution imaging of the avian embryo: 

• µMRI is non-destructive 

• It takes advantage of unique “proton” stains 

• It is inherently 3-dimensional  

• It is inherently digital. 

• The specimen can be sliced along any desired plane 

• The specimen can be scanned in many different ways, at different resolutions, 
through different planes. 

• The two slices can be carefully matched to compare the anatomy. Since no distortion 
occurs from dehydration and physical sectioning, morphometric measurements are 
much more accurate than could ever be made with traditional glass slides. 

3.5 Experimental approaches 

µMRI allows in ovo imaging of avian embryo inside eggshell non-invasively. In this 

chapter fertilized eggs of common quail (Coturnix coturnix) is imaged in ovo at different 

stage of development. Incubation time of the quail is 17 days, the average egg weight is 

≈15 g, and diameter (short axis) of the egg is ≈25 mm. 

3.5.1 Preparation of the embryos  

Fertilized quail eggs were purchased and transported from local farms. On arrival, 

eggs were washed with Chlorine solution (Annexes, egg-cleaning protocol) and 



µMRI of avian embryogenesis in ovo 

S. Haque (2010) Ph.D. Thesis 62 

preserved in a refrigerator at 14 °C for 1 day. Eggs were than incubated in a forced air 

incubator (Bruja Motorbrüter, Model 176/M2 with semiautomatic rocking) at 37.5 °C, 

65% relative humidity and 90° rocking from side to side in an hourly cycle. Embryos 

were prepared for imaging at different stage of incubation. To avoid movement 

artefacts during switching of the gradient coil at the time of imaging, eggs were 

wrapped with Teflon foil and placed tightly inside the µMRI-imaging coil (Bird cage, 25 

mm inner diameter from Bruker BioSpin, Germany). The imaging coil with the embryo 

containing eggs was loaded into the superconducting magnet for imaging.  

3.5.2 Parameters for the high resolution µMRI experiments 

3.5.2.1 Imaging 

Fertilized quail eggs were imaged inside the eggshell with Bruker DMX 400 

spectrometer with micro 2.5 gradient system and 9.4 T superconducting vertical bore 

magnet (He/N2 cooled) from Bruker BioSpin equipped with 1 T/m gradient system. 

Fertilized quail eggs were incubated in a forced air incubator. Incubated quail eggs at 

different embryonic stage were placed inside the imaging coil and the coil is inserted in 

the magnet. Images were acquired using spin-echo sequences (MSME routine, Bruker 

Biospin) inversion recovery and rare sequences (Order rare, Bruker Biospin). Aim of the 

imaging was to get maximum contrast between the developing embryo and egg 

contents. Image processing was performed using ImageJ 138 which is a Java-based image 

processing program developed at the National Institutes of Health and Amira® 4.1.0 

image processing software from Mercury Computer Systems. 

3.5.2.2 Magnetic Resonance Spectroscopy (MRS) 

Magnetic resonance Spectroscopy (MRS) generally gathers the spectral information 

in the magnetic signals from the nuclides, which permits the determination of the 

molecules or metabolites containing a given nuclide. The collection of this additional 

information in MRS along with the fact that metabolites are generally at low 

concentration results in the MRS experiment having a low SNR. These combined effects 

make any images collected with MRS very poor in spatial and temporal resolution. MRI 

and MRS must be conducted in a strong homogeneous magnetic field, which requires a 

specialized magnet as well as receiver coils to detect the nuclide signals. Because the 
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absorption of these oscillating magnetic fields is relatively low in biological tissues, the 

penetration of these signals is excellent in most studies. The detection of the naturally 

occurring nuclide 1H found in water and fats is usually used for MRI studies providing an 

adequate SNR to create images with sub millimeter resolution in vivo. The MRI signal 

from water protons is rich in informationn about the physiology and function of tissues 

because it is the solvent of the cell with very little occurring without some impact on the 

magnetic properties of this molecule 23. This information includes a diverse amount of 

information on blood flow and oxygenation as well as macromolecular composition and 

motion, tissue structure, temperature, contractile activity, nerve and muscle fibre 

orientation, and oedema.  

The aim of the Magnetic Resonance Spectroscopy (MRS) was to differentiate 

between the two different types of egg white: the thin and the thick. 1H and 13C 

spectroscopy were performed with the loaded sample. To improve the resolution, high 

resolution spectroscopy was carried out (Magic angle spinning). 

   10 mm 

a          b 

 

Figure 3.4: µMRI imaging system. 

(a) 9.4 Tesla superconducting vertical bore magnet from Bruker BioSpin, Rheinstetten, Germany. (b) 25 
mm Bird cage micro imaging coil containing a quail egg (scale bar = 10mm) 

3.5.2.3 Magic Angle Spinning (MAS) 

In MAS, thin and thick egg white was loaded in a tiny  ceramic tube (Ø = 4 mm, 

14 mm long) leaving no air inside & the tube containing the sample is rotated at a very 

high rotation speed (up to 20,000 Hz) in homogenous and high magnetic field and 
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spectroscopy was performed. This method gives higher resolution to differentiate fine 

chemical shifts between samples. For both types of egg white, two separate 

experiments were carried out. The data was analysed with Origin8 data analysing and 

graphing software. It is important to notice that MAS was not performed with the 

whole egg. 

3.5.3 Injection of contrast labelled stem cells into the fertilized quail eggs and 
tracking of them in ovo  

Aim of this experiment was to inject contrast labelled stem cells into fertilized quail 

eggs near the embryo and track them noninvasively. Rat pancreatic stem cells (Z29 P24) 

were labelled with Super Paramagnetic Iron Oxide Nanoparticle (SPION) FluidMAG-

CMX/E (Carboxymethyl-Dextran) (chemicell GmbH, Berlin, Germany) and labelled cells 

were injected into a fertilized quail egg through a small hole at the blunt end. The 

whole egg was imaged with MRI to track the cellular fate.  The SPION concentration 

was 25 mg/ml and particle size was 50 nm. 

Among the large family of magnetic materials, ferro- or ferri-magnetic materials 

are found in massive materials or submicroscopic particles: the magnetic susceptibility is 

large, the magnetization increases massively with the magnetic field intensity, a remnant 

magnetization occurs after removal of the magnetic field and, above a critical 

temperature called the Curie temperature (Tc), the ferro or ferri-magnetic behaviour 

disappears. The largest iron oxide nanoparticles belong to this class (e.g., Tc = 580 °C 

for Fe3O4). If their size is below approx 10-20 nm, iron oxide nanoparticles are said to be 

“superparamagnetic” and their main feature is the absence of remnant magnetization, 

limiting magnetic interactions within particle and, therefore, facilitating their 

stabilization as ferrofluids in aqueous solutions. 

SPIONs are composed of magnetite (FeOHFe2O3). These particles have magnetic 

moments that, because of the small crystal size, are unhindered by lattice orientation 

and therefore do not exhibit hysteresis, hence the term “superparamagnetic.” In an 

applied magnetic field, the individual moments are free to align along the field, resulting 

in the formation of a single spin, with a net moment at least four orders of magnitude 

higher than a comparable ensemble of paramagnetic spins. This creates extremely large 

microscopic field gradients for dephasing nearby protons 38, 41. This, in turn, dramatically 

shortens the nuclear magnetic resonance T2 relaxation time, over and far beyond the 
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usual dipole–dipole relaxation mechanism that affects both T1 and T2, as in the case of 

paramagnetic contrast agents. Owing to the predominant T2 effect, these “T2 agents” 

usually create hypointense contrast on conventional spin-echo MR sequences, in 

particular when agglomerated within cells. Agglomeration or intracellular clustering of 

iron oxide nanoparticles dramatically reduces the T1 effect 
39. Iron oxide particles are 

highly suitable for this purpose because they cause a strong local disruption of the 

homogeneity of the magnetic field and a loss in MR signal, which makes labelled cells 

appear black. 

Even though iron is an essential component of many enzymes and proteins, it can 

be toxic in high concentrations 54, 60. In some cells, such as liver macrophages, relatively 

small increases in intracellular iron can have deleterious effects on cellular signalling and 

function 183, 380. Iron accumulation in tissues also catalyzes the Fenton reaction and 

potentiates oxygen toxicity by the generation of a wide range of free radical species, 

including hydroxyl radicals, which are the most active free radicals known and have the 

ability to react with a wide range of intracellular constituents 264, 381 and may lead to cell 

death 83, 111. For stabilization in order to prevent aggregation & to make them 

biocompatible, they are coated with macromolecules like dextran. 

However, the dextran surface of the nanoparticle is unfavourable for inducing 

endocytosis and  for effective MRI visualization of cells in vivo, the concentration of iron 

intracellularly has to be much higher (≈10 pg per cell). This concentration exceeds 

physiological concentrations ≈100-fold. Cellular uptake of dextran coated nanoparticles 

vary from 0:011 to 0.118 pg of iron per cells in different tumour cells and a maximum 

load of 0.97 pg in primary isolated peritoneal mouse macrophages 215, 216, 299, which is 

much lower than the imaging threshold. Incubation of cells with SPION on a magnetic 

plate is claimed to improve magnetic load. However, labelling efficiency was not 

improved much. 

Most current labelling techniques use one of two approaches: extracellular 

labelling by attaching iron particles to the cell surface 114 or internalizing magnetic 

markers inside the cell 39, 188, 297, 398. For intracellular uptake of iron particles, several 

different techniques are used: fluid phase endocytosis 188, 297, conjugated antibodies 398, 

and magnetodendrimers 39. These methods all have their disadvantages. After 

extracellular labelling, either the label can be easily lost or it can interfere with cells to-
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cell interactions. The intracellular methods are either relatively ineffective (fluid phase 

endocytosis), require specialized laboratory techniques (magnetodendrimers), or are cell-

type specific (conjugated antibodies).  

   

a       b 

 

Figure 3.5: Magnetic separators. 

(a) Magnetic separators MagnetoPURE magnetic plate (ChemiCell GmbH, Berlin, Germany), (b) Rat 
pancreatic stem cells (Z29 P17) incubated with FluidMAG-CMX/E with 30 ml culture medium in T175 flask 
of confluent cells (5-7e6 cells) (ChemiCell GmbH, Berlin, Germany). In image (b), magnetic particles are 
concentrated over tiny magnets in the culture flask. 

Lipofection 

Simply incubation the cells with SPION don’t load enough Iron into the cells to be 

used as contrast method. Since egg yolk has much lower T2 weighted value (≈30 ms), 

the Iron content has to be much higher to be detectable with MRI.  
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Figure 3.6: Schematic representation of a spinal crystal structure for superparamagnetic iron 
oxide Nanoparticle (SPION) domain. 

(a) Crystalline arrangement (b) SPION crystal with multiple magnetic domains of random orientation and 
(c) complete SPIO contrast agent particle, with multiple SPION crystals and coating material. Redrawn after 
Wang et al, 2001 377. 

A new labelling technique based upon the use of cationic liposome transfection 

reagentsis free from thesedisadvantages 94. By mixing the SPION formulation and the 

transfection agent, complexes of the two are formed through electrostatic interactions 
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145. When the complexes are added to the cell culture, the transfection agent effectively 

shuttles the SPION into the cell through formation of endosomes. Labelling can be 

improved (≈100-fold) with lipofection technique, generally used for the infusion of DNA 

into cell nuclei 363.  

By using a short incubation time and low extracellular iron concentration, it is 

possible to achieve an efficient iron load without affecting cell viability & physiology. 

With a symmetric cell division and even dilution of magnetic label among progenitor 

cells, Individual magnetically labelled cell with an initial iron content of 25 pg can be 

detected up to at least four cell divisions 40. 

Visualization of intracellular iron 

To visualize intracellular iron content, Prussian Blue staining was performed 

(Annexes for details). A stain for ferric iron as in haemosiderins, using potassium 

ferrocyanide in acetic acid or dilute hydrochloric acid followed by a red counterstain 

such as safranin O or neutral red; various haemosiderins and most mineral irons give a 

blue-green reaction, while nuclei stain red. Perls’ Prussian blue (Perls, 1867) solution was 

freshly prepared  
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3.6 Results 

3.6.1 In ovo µMRI of the quail embryogenesis 

3.6.1.1 µMRI image of the nondeveloped fertilized quail eggs 

Figure 3.7 shows the µMRI image of a fertilized quail egg before incubation. In the 

first image (inversion recovery image) the latebra is clearly visible as a pear shaped bright 

structure inside the egg yolk [green arrow in image (a) and (b)].  

                                                                            a              b c d 
 

Figure 3.7: µMRI image of fertilized Quail egg. 

(a-c) µMRI image of fertilized quail egg and blastoderm before incubation; (d) optical image of the 
blastoderm surface before incubation. (a, c) Inversion recovery image; (b) T2 weighted image. (a-b) 
Longitudinal section through long axis cutting through the blastoderm, (c) zoom MRI image at the 
blastoderm surface. In the inversion recovery image of the whole egg (a), latebra, which is a part of white 
yolk, is clearly visible (green arrow). In T2 weighted image (b), alternating layer of yellow and white yolk 
and latebra is clearly visible. White arrows indicate the air cell. (a-b) Slice thickness  1mm, pixel size = 195 
µm × 235 µm; (c) slice thickness 0.5 mm, pixel size = 39 µm × 39 µm. Scale bar: (a-b) = 5 mm, (c, d) = 
1mm.  

The tail of the latebra ends at the sub-germinal cavity. This is actually a very good 

guide to find the position of the blastoderm. The egg yolk is deposited as concentric 

ring at day and night alternatively. The latebra is a part of white yolk which is deposited 

during the day. In T2 weighted image, the concentric rings of yellow and white yolk are 

visible.  

Figure 3.8 shows comparison of different parts of non-developed egg between 

MRI and schematic view.  
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Figure 3.8: Different parts of avian egg  

(a) Schematic view, (b) MRI T2 weighted view, (c) Intact quail egg. 

3.6.1.2 µMRI image of the quail embryogenesis - after 24 hrs incubation 

Figure 3.9 shows the µMRI image of a quail embryo 24 hrs after incubation. The 

developing embryo is clearly visible as a bright spot in both T1 (image a) and T2 weighted 

image (image b). Latebra is marked with green arrow in image (a) and (b).  
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Figure 3.9 : µMRI image of fertilized Quail egg following 24 hrs of incubation.  

(a) T1 image, slice thickness 1mm, pixel size 195 µm × 235 µm; (b) T2 weighted image, slice thickness = 1 
mm, pixel size 98 µm × 98 µm; (c) T2 weighted image zoomed at the blastoderm, slice thickness 0.5 mm, 
pixel size 39 µm × 39 µm; (d) optical image of the blastoderm following 24 hrs of incubation. Note, 
developing embryo is clearly visible as a bright spot at the end of latebra in both T1 weighted (a) and T2 
weighted image (b). Scale bar: (a-b) = 5 mm, (c-d) = 1.5 mm. 
 

It is clearly visible that the embryo is positioned at the end of the latebra. Image c 

is the T2 weighted zoomed image of the 24 hrs old embryo, which can be compared 

with the optical surface view of the embryo from the top. 

3.6.1.3 µMRI image of the quail embryogenesis - after 96 hrs incubation 

Figure 3.10 is the µMRI image of a quail embryo after 96 hours incubation. At this 

stage a very important noticeable aspect in MRI T2 weighted image is the polarization of 

the whole egg with very high signal intensity in the upper half and low intensity signal in 

the lower half which is probably due to the growth of vitalline membrane. The egg yolk 
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is the lightest part among the egg contents with the blastoderm is the lightest and floats 

at the top.  

 a                    b                              c             
    

 

Figure 3.10: µMRI image of fertilized Quail egg following 96 hrs of incubation. 

(a) Tomographic T2 weighted image through the embryo (embryo is marked by the green circle); (b) 
optical view of a 96 hours old “?” shaped embryo following removal of extra-embryonic membranes, egg 
white and yolk; (c) 3-dimensional surface reconstruction of the whole egg. Slice thickness 1mm, Pixel size 
(a) = 195 µm × 235 µm; voxel size (c) = 195 µm × 195 µm × 235 µm. Scale bar: (a, c) = 5 mm; (b) = 1mm. 

Inside the egg, the yolk is surrounded by thicker part of egg white and the yolk is 

suspended in the middle with chalaza. During development, the yolk sac grows and 

eventually encloses the whole yolk. But the vitelline membrane grows ahead of yolk sac 

and covers nearly the whole yolk by the end of 4th day of incubation (in case of 

chicken). Only egg white remains at the lower part of the egg. The whole yolk with 

growing membrane is seen as very bright object in T2 weighted image. In the three-

dimensional surface reconstruction of MRI data (b in Figure 3.10) this part is seen as 

solid mass since the signal intensity is very low from the egg white at the lower part of 

the egg. The embryo is recognized as bright spots in the dark background. At this stage, 

it is difficult to recognize different parts of the embryo in µMRI image. Eyes of the 

embryo and abdominal cavity are possibly seen in the image as dark spots. 
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3.6.1.4 µMRI image of the quail embryogenesis: after 5 days incubation 

  

  

a b c d 

 

Figure 3.11: µMRI image of fertilized Quail egg following 5 days of incubation.  

(a) T2 weighted MRI tomographic image (coronal section through the head and part of the body). (b) 3-
dimentional surface reconstruction of MRI image. Slice thickness 1mm, Pixel size = 195 µm × 235 µm (1); 
voxel size = 195 µm × 195 µm × 235 µm. (c-d) optical view of a 5 days old quail embryo; (c) along with 
membranes and yolk following removal of the shell  and (d) embryo along with yolk sac following removal 
of yolk. Scale bar = 5 mm. 

Figure 3.11 shows the µMRI image of fertilized Quail egg following 5 days of 

ncubation. Image (a) is the T2 weighted image of the embryo, longitudinal section 

through the body (section through the sagittal plane); image b is the three-dimensional 

surface reconstruction of µMRI data. At this stage of development, the embryo outline 

can be well recognised in MRI image. The eyes, head, body contour, abdomen can be 

clearly seen.  

Since the embryo is closely associated with extraembryonic membranes and yolk, 

and they have MRI signal of similar or closer intensity, it was difficult to distinguish 

clearly between the embryo and extraembryonic membranes. For this reason, the 

embryo image could not be reconstructed perfectly from three-dimensional MRI data. In 

the optical image [image (c) and (d)], it is clearly visible that the embryo is closely 

associated with the extraembryonic membranes [image (c) is taken after removal of the 

embryo from eggshell. In image (d), the yolk and the egg white have been removed to 

expose the embryo optically].  

3.6.1.5 µMRI image of the quail embryogenesis: after 6 days incubation 

Figure 3.12 shows the µMRI image of quail embryo after 6 day incubation. At this 

developmental stage, the embryonic parts have become more distinguished. In image a, 

(T2 weighted MRI image) mid sagittal section through the body shows different 
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structures. The eyeball, head, beak, thorax, abdomen, vertebral column are clearly 

visible. In coronal section through the head shows (image c) shows both the eyeball as 

bright structure. In sagittal section through the mid body plane (image e) shows the 

vertebral column and the trunk (thorax and abdomen).  

Three-dimensional surface reconstructions of µMRI data (image b) did not provide 

any better quality image of the embryo at this stage. Image (d) is the optical image of 

the embryo after removal of the extra-embryonic membranes for better visibility of 

different anatomical structures. Advantage of MRI in this regard is that it is not required 

to sacrifice the embryo to see the internal organs. Actually, the whole embryo is imaged 

in ovo in its natural habitat.  

 a b c 

d e 

 

Figure 3.12: µMRI image of the fertilized Quail egg after 6 days incubation.  

(a) T2 weighted MRI tomographic image (longitudinal section through the head and part of the body); (b) 
3-dimentional surface reconstruction of MRI image. (C) T2 weighted MRI image-coronal section through 
head and part of the body. (d) Optical view of the 6 days old quail embryo. (e) T2 weighted MRI image: 
longitudinal section along vertebral column.  Slice thickness 1mm, pixel size = 195 µm × 235 µm (a, c, e); 
voxel size = 195 µm × 195 µm × 235 µm. Scale bar = 5 mm. 

3.6.1.6 µMRI image of the quail embryogenesis: after 12 days incubation 

Figure 3.13 shows µMRI imaging of a 12 days old quail embryo inside egg. At this 

stage, the embryo is fully developed and different anatomical structures are well 

recognised in MRI image. Quail embryos hatch after 17 days of incubation. At this stage 
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(Incubation Day-ID 12), the embryo is growing and maturing for hatching. In MRI T2 

weighted image, internal body organs can be well recognised. Image (a) in Figure 3.13 

which is coronal section through head and body trunk, shows the eyeball, optic lenses, 

beak, abdominal organs, cross-section of limbs well are recognised. In mid sagittal 

section (image b and c) shows well-developed skull, vertebral column, thoracic viscera 

like lung and heat, abdominal viscera can be recognised very well. 

 

Figure 3.13: µMRI image of the fertilized quail egg at ID 12.  

(a) T2 weighted MRI tomographic image (coronal section through the head and part of the body); (b, c) 

coronal section through the head and spine); (d, e) 3-dimentional surface reconstruction of MRI T2 

weighted image. Slice thickness 195 µm, Pixel size (a, c, e) = 195 µm × 235 µm; voxel size = 195 µm × 

195 µm × 235 µm. Scale bar = 5 mm. (f) optical view of the 12 days old quail embryo. 

In three-dimensional surface reconstruction of T2 weighted MRI data (d, e in Figure 

3.13) shows the well-developed embryo with adult contour. Especially in image (e), the 

body trunk and head are well recognised with limbs. In image (d), the eyeball, part of 

skull and abdominal organs are well recognised. For comparison, optical view of the 

same embryo image (f) is shown in relatively same posture which can be very well 

compared with the three dimensional surface reconstructed data in image (e).   
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Figure 3.14 shows the comparison between MRI and optical imaging of a quail 

embryo at ID 12 showing different external body parts. Image (a) is the three-

dimensional surface reconstruction of T2 weighted MRI image inside an intact egg with 

voxel size = 195 µm × 195 µm × 235 µm. Image (b) is the optical image of the embryo 

following removal of the extra-embryonic membranes. It is possible to acquire similar 

quality image with MRI without even disturbing the embryo in its natural habitat. Since 

the embryo is very closely associated with the extra-embryonic membranes, egg yolk 

and egg white, it is very difficult to observe the embryo optically. Therefore, the egg 

must be opened and embryo must be freed and cleaned of the membrane and egg 

white before it can be optically imaged. 

3.6.1.7 Comparison between µMRI and optical imaging: comparison of the 
embryo externally and internally following dissection 
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Figure 3.14: Comparison between the MRI and the optical image of 12 day old Quail embryo. 

(a) 3 dimensional surface reconstruction of T2 weighted MRI image (voxel size = 195 µm × 195 µm × 235 
µm), (b) optical image. Scale bar = 5 mm. 

Figure 3.15X compares between different internal organs and viscera in MRI image 

and in optical image following dissection. In image (a), green arrow marks the vertebral 

column (T2 weighted image) which is shown in the optical image following dissection in 

image b and c (zoomed) marked by green arrow.  
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Figure 3.15: Comparison between the µMRI and the optical image following dissection of a quail 
embryo at ID 12.  

(a) T2 weighted MRI image through the mid sagittal plane (pixel size 195 µm × 195 µm, slice thickness 
235 µm). (b) & (c) optical image of vertebral column on dissection (green arrow shows vertebral column). 
(d) and (e) 3-dimentional surface reconstruction of internal organs: (d) T2 weighted and (e) proton density 
image). White arrow indicate Gastro-intestinal tract, red arrow is eyeball and blue arrow in image (f) 
indicates gizzard. Scale bar (a, d, e) = 5 mm, (b) = 2 mm & (c) = 1 mm. 

In three-dimensional surface reconstruction of T2 weighted MRI data (d in Figure 

3.15) shows eyeballs and gastro-intestinal tract that have higher water content. Note 

the eyeball in image (d); the optic lenses have low water content and shows as an 

indentation in the eyeball. 3-dimensional reconstruction of Proton density (I0) image (a-b 

in Figure 3.16) shows the intestinal tract having higher water content (blue in image a]. 

Other parts of the embryo show containing less water. In image (b) structures outlined 

in yellow have higher water content. 
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Figure 3.16: Three-dimensional surface reconstruction of the proton density (I0) image (a-b) and 
T2 weighted image of a 12-day-old quail embryo inside the egg. 

The image (a-b) shows the distribution of water (proton) inside the eggshell during development. Blue 
represents higher water content. It is important to note that in the embryo the organs with highest water 
content are the intestinal tract, which can be better recognised in image (b). Other parts of the embryo 
have water content in lower extant. In image (a), other parts of the embryo like the head, eyes can also be 
recognised. Image (c-d) is three-dimentional surface reconstruction of T2 weighted image. 

CAM serves as the organ for gaseous exchange for the growing embryo. It is a 

highly vascular organ covers the whole inner surface of the egg membrane. 

 
 a      b             c 

 

Figure 3.17: µMRI image of extra-embryonic blood vessels. 

Chorio-alantoic vessels located at inner side of the shell membrane. (a) Proton density (I0) image; (b) 
optical view of extra-embryonic blood vessels located in the inner side of the eggshell; (c) T2 weighted 
image. Note in I0 image, the blood vessels appear bright, in T2 weighted image appears dark. 

3.6.2 Magnetic resonance spectroscopy of egg white 

Magnetic resonance spectroscopy of thin and thick egg white with Magic Angle 

Spinning (MAS) NMR spectroscopy (Figure 3.18) shows the 1H (left) and 13C (right) 

spectrum of egg white. 1H (left) spectrum, thinner part of egg white has higher water 

content than the thicker part. Water integral for thin egg white is 8.5; on the contrary, 

the thick egg white has water integral 7.9. In 13C spectrum (right) of thick and thin egg 

white shows roughly similar pattern of spectrum in both the egg whites. 
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Figure 3.18: Magic Angle Spinning (MAS) NMR spectroscopy of the thin and thick egg white.  

The chemical composition is same for both thick and thin egg white, but only water content of the thin 
egg white higher than thick egg white (water integral for thin egg white: 8.5, thick egg white: 7.9). 

The chemical composition of the thick and thin albumen is similar 64 but the thick 

albumen is richer in ovomucin and ovomucin is responsible for the elevated viscosity 319. 

Moreover, the specific gravity of thin albumen is lower than that of the thick albumen 

and also than that of egg yolk.  

3.6.3 Labelling of the stem cell with SPION 

Rat pancreatic stem cells (Z29 P19) are cultured with different concentration of 

FluidMAG-CMX/E (carboxymethyl-cdextran) Magnetic separators MagnetoPURE 

magnetic plate (ChemiCell GmbH, Berlin, Germany) for different period of time and 

labelling efficiency was checked with MRI imaging. Cells were cultured with 30 ml PBS 

(Phosphate Buffer Saline) in T175 flask of confluent cells (5-7e6 cells). The aim was to 

find out the optimum concentration of SPION and optimum incubation time. XFigure 

3.19 is T2 weighted MRI image of rat pancreatic stem cells (Z29 P19) immersed in 

Culture medium labelled with FluidMAG-CMX/E (carboxymethyl-dextran) in a 4 mm 

inner diameter glass tube. Cells were centrifuged before imaging. Cell labelling and 

staining was performed by Dr. Erwin Gorjup from workgroup “Cell Biology and Applied 

Virology” of the Fraunhofer IBMT. 
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Figure 3.19: T2 weighted MRI image of the rat pancreatic stem cells (Z29 P19) incubated with 
different concentration of SPION. 

T2 weighted MRI image of Rat pancreatic stem cells (Z29 P19) immersed in culture medium (m) labelled 
with FluidMAG-CMX/E (carboxymethyl-dextran) in a 4 mm inner diameter glass tube. Cells were 
centrifuged before imaging. (a) Control; (b) 16 hrs incubation with 1mg CMX; (c) 1hr incubation over 
magnetic plate with 1mg CMX (1 hr post magnetic incubation without magnet); (d) 1hr incubation over 
magnetic plate with 5mg CMX From chemicell GmbH, Berlin, Germany) 

Figure 3.20 shows rat pancreatic stem cells (Z29 P24) labelled with SPION without 

lipofection, injected into an agarose phantom (0.025% by weight) and imaged with 

µMRI to check the cell labeling efficiency. It is important to note that T2 weighted value 

of labelled cells incubated with SPION with or without magnetic plate were ≈120 ms 

whereas T2 weighted value of egg yolk was much lower, ≈30 ms. This shows that the 

labelling was not efficient enough for tracking labelled cells inside the egg. 

    10 

50
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Figure 3.20: µMRI image of the SPION loaded rat pancreatic stem cells (Z29 P24) without 
lipofection. 

Rat pancreatic stem cells (Z29 P24) were incubated for 3.5 hrs on magnetic plate with FluidMAG-CMX/E 
(carboxymethyl-dextran) 1mg CMX that was injected into an agarose phantom (0.25% by weight). 
Amount of cells per injection: ≈10,000-20,000 cells. (a) Optical view of the agarose phantom; (b, c) MRI 
T2 weighted image. (b) is cross sectional view, (c) is longitudinal section of the agarose phantom at the 
label of injected cells. (d) T2 weighted MRI image, longitudinal section of a quail egg injected with SPION 
labelled cells with incubation over magnetic plate. T2 weighted value of labelled cells are ≈120 ms (T2 
weighted value of egg Yolk is ≈30 ms). Arrows indicate labelled cells (green arrow indicate ≈20,000 
labelled cells, black ≈10,000) 

Rat pancreatic stem cells (Z29) were labelled with SPION with lipofection and 

different amounts were injected into a fertilized quail egg through a small hole at the 

blunt end of the egg. The labelled cells were injected inside egg white avoiding egg 

yolk, because small puncture in the egg yolk may cause yolk leakage. For control, 
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nonlabelled cells were also injected inside the egg. The cells were centrifuged before 

taking the sample so that the cell bolus contained as little culture medium as possible. 

The location of the injection was marked with small capillary tubes filler with copper 

sulphate solution attached near the location with adhesive tapes.  

 

3.6.4 Cell labelling with the SPION using lipofection technique 

Lipofection 

Figure 3.21X shows rat pancreatic stem cells (Z29) incubated with SPION (CMX from 

chemicell GmbH, Berlin, Germany) and stained with Prussian blue for visualization of 

intracellular Iron (Fe). Iron is stained blue in this staining method. Visual impression of 

the image shows that lipofected cells [image (c, d)] have higher Iron load than non-

lipofected cells [image (a, b)]. Quantitative estimation of cellular Iron content was not 

performed. 

 

1mg CMX /13ml 200x, 125µg/24well, 5mg CMX /13ml 200x, 125µg/24well, 
Optifectamin 

a b c d 

 
Figure 3.21: Cell labeling efficiency of SPION with lipofection: SPION labelled cells stained with 
Prussian blue. 

Rat pancreatic stem cells (Z29) incubated with CMX and stained with Prussian blue for visualization of iron 
(Fe). (a-b) Without Lipofection; (c-d): following Lipofection (c) Lipofectamin, (d) Optifectamin. Visual 
impression of Prussian bluestained cells show higher iron load in lipofected cells than non-lipofected ones. 

3.6.5 Imaging of the SPION into the fertilized quail eggs 

25 µl SPION was directly injected inside a fertilized quail egg and tracked with MRI 

imaging over 24 hours. The aim was to observe the contrast, fate and intensity of SPION 

itself. Figure 3.22X shows the T2 weighted MRI image of a fertilized quail egg injected 

with SPION over 24 hours.  
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Figure 3.22: µMRI T2 weighted image of the SPION injected into fertilized quail egg.  

Amount injected was 25 µl. (Scale bar = 5mm). 

The SPION was injected through a small hole at the blunt end of the egg. The 

SPION sank vertically to the bottom of the egg through the egg white. After 18 hours of 

injection, the SPION reached the bottom of the egg. Gradually it diffused little to the 

side and at the end of 24 hours; the whole track of SPION movement could be detected. 

3.6.6 Imaging of the SPION labelled stem cells with lipofection injected into 
the fertilized quail eggs 

Figure 3.23 shows the T2 weighted MRI image of the fertilized quail egg after 

injecting different amount of SPION labelled rat pancreatic stem cells (Z29).  

 
c d a b 

 

Figure 3.23: µMRI T2 weighted image of CMX labelled stem cells injected into fertilized Quail 
egg. 

MRI T2 weighted image of CMX (Chemicell GmbH, Berlin, Germany) labelled stem cells injected into 
fertilized Quail egg. (a-b): T2 weighted MRI image of a quail egg injected with nano iron particle along 
longitudinal axis through the injected cell site. (a, c, d): immediately following injection, (b) 20 hrs later. 
Amount injected: green arrow: 100 µl, red arrow: 75 µl, blue arrow = 25 µl labelled rat pancreatic stem 
cells (Z29 P24), white arrow = 25 µl non-labelled cells as control indicated at the site of injection. Note 
that it is possible to detect as small as 25 µl cell bolus. White arrowhead marks the capillary tubes to 
localise the site of injection. Scale bar = 5mm 

In this experiment 100, 75 and 50 µl cell bolus were injected into the quail egg. It 

was possible to detect as little as 25 µl cell bolus with MR imaging. The fate of the 

injected cells was also followed over 20 hours. The cells remained nearly at the same 

position. During this experimental procedure, eggs were not incubated. 
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3.7 Discussion 

In ovo µMRI can monitor the process of embryonic development noninvasively 

with very high resolution. Having the advantage of non-invasiveness, µMRI ease the 

process of the whole study where the tedious and time consuming work of sample 

preparation is not required. The avian embryo has long been an experimental model to 

study the process of embryonic development. Traditionally this is done by opening the 

incubated egg at different stage of development and observing the embryonic stages of 

development. 

For µMRI experiments with avian embryo, quail eggs were selected. Because the 

maximum size of the sample possible to image inside the Bird cage imaging coil was 25 

mm. Quails lay small eggs (≈15 g) having short axis diameter about 20-25 mm which 

fits very well into the birdcage imaging coil. Also quail has relatively short incubation 

time (17 days) which shortens the experimental procedure.  

Traditional methods observe the dead embryo at different embryonic 

developmental stages. However, the actual in ovo vital process remains obscure. µMRI 

offers live in ovo real-time imaging at very highe resolution. Being enclosed in hard, 

calcareous, opaque shell, avian eggs are inappropriate for other types of imaging. In 

µMRI the magnetic field is not obstructed and shielded by the calcareous shell. The vital 

process of embryonic development can be observed from outside while the embryo 

remains undisturbed during the process of imaging or spectroscopy. Since the magnetic 

field is non-ionizing, it has no negative influence on the process of embryogenesis. 

Teratogenic and mutagenic impact of strong magnetic fields on embryonic development 

is very low 212, 298, 356. 

During the process of oogenesis, the white yolk is produced at night and contains 

more protein. Most of the white yolk is located directly below the nucleus (the position 

of the possible future embryo) in the latebra and the nucleus of pander. However, as 

egg-laying time grows closer, the egg yolk is produced continually and begins to 

accumulate rapidly. For the last seven or eight days before the ovum is ovulated, yellow 

and white yolk are laid down in rings like those of a tree. When the ovum has 

accumulated enough yolk to grow a chick, it is released from the ovary. In the zoomed 

µMRI view of the blastoderm in image c shows the blastoderm cells as bright ring. Yolk 
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fat is suppressed in inversion recovery imaging sequence. The image (d in Figure 3.7) is 

the optical view of the blastoderm surface placed beside the MRI image for comparison.  

Transplantation of stem or progenitor cells is a revolutionary new technique 

proposed for the treatment of various injured tissues or organs. Because cells can be 

isolated from different tissues, expanded in vitro, and replace or repair defective 

endogenous cell populations 170, 206, 327, 343, they offer new promise for tissue repair and 

disease correction. Cell therapy appears a promising field for the treatment of human 

diseases. As part of this new field, transplantation of smooth muscle cells has 

undergone extensive investigation in recent years as a potential therapy, mainly for 

repair of aneurysm 8 or myocardial ischemia 399 or for cardiac graft 245. Lack of ability to 

track the cell transplants, however, remains a major problem that must still be overcome 

to understand and optimize cell therapy. In fact, most cell transplantation techniques 

involve the use of histological analysis to evaluate cell transfection, proliferation, and 

migration 166, 243, 341. Yet, following the status of stem cells in vivo is critical if therapy is to 

be optimized or evaluated. Because magnetic resonance imaging (MRI) allows for three-

dimensional (3D), high-resolution, whole body imaging and tracking of cells in vivo, it is 

an ideal technique for determining the fate of cells after transplantation and migration 

of cells after injection, without the need for tissue biopsies and histological assessment. 

However, following cells by MRI requires that they contain paramagnetic probes. 

Molecular imaging by chemically modified of SPION surfaces by attachment of 

functional groups and further covalent coupling with biodegradable substances can help 

in precise target oriented study of cellular process. Differentiation of normal vs. 

neoplastic liver tissue is currently the most significant application in the use of SPION, 

which resulted in the 1996 FDA approval of the product Feridex®. The long-term 

viability, growth rate, and apoptotic indexes of the labelled cells were unaffected by the 

endosomal incorporation of SPION, as compared with these characteristics of the 

nonlabelled cells. In nondividing human mesenchymal stem cells, endosomal iron 

nanoparticles could be detected after 7 weeks; however, in rapidly dividing cells, 

intracellular iron had disappeared by five to eight divisions 17. 

The SPION are one of the novel methods used in clinical hepatic MRI imaging, 

tumour imaging and many more. During the last few years, clinical trials have begun to 

evaluate the use of stem cell transplantation for tissue and organ repair. Yet, no good 
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non-invasive method exists for following cells in vivo. Clinically approved cell labelling 

with iron could mean a breakthrough in stem cell transplantation, because it allows 

potential monitoring of the biodistribution of cells over time with MRI and therefore 

may provides a means to track cellular fate. In monitoring transplanted cells in vivo, the 

MR signal intensity and corresponding T1, T2, and T2* values depend on two distinct, 

relevant parameters: first, the density of labelled cells in a given volume, and, second, 

the intracellular particle load in labelled cells. Both parameters are involved in the 

proliferation and migration of transplanted cells within the targeted organ. 

Real-time in ovo imaging of cellular process is a great challenge. In the early stage 

of development, the embryo is optically transparent; which may allow optical imaging in 

conjunction with fluorescently labelled cell to follow in the embryo in an open system of 

avian culture (Chapter 5). Nevertheless, as the embryo grows, it becomes opaque and 

application of optical methods to monitor cellular processes inside the body deep into 

an organ is not possible. MRI can play a key role in this field with SPION as contrast 

media. Taking the advantage of unique “proton” stains, non-destructive, inherently 3-

dimensional nature of MRI can image the internal organs with a very resolution. 

Applying SPION labelled cells as contrast media can reveal vital processes of life at or 

near cellular level.   

One drawback of MR imaging is motion artefacts. The movement of the imaged 

object or a part causes motion artefacts during the imaging sequence. The motion of 

the entire object during the imaging sequence generally results in a blurring of the 

entire image with ghost images in the phase encoding direction. Movement of a small 

portion of the imaged object results in a blurring of that small portion of the object 

across the image. As the embryo grows, it starts to move in the amniotic cavity. The 

heart starts to beat at the end of first day of incubation. Gradually from day 4 of 

incubation, the movement of the embryo increases. In later stage, the embryo actually 

swims in the amniotic fluid. In clinical MR imaging of the thoracic cavity including heart, 

quicker imaging sequences are employed triggered by ECG so that the image can be 

acquired at the same state of cardiac cycle. However, the embryonic movements are 

irregular and solving this problem was difficult. It is even worse in high-resolution 

imaging. Since the image acquisition time of the MR imaging relatively long compared 

to other imaging methods, it was very difficult to obtain high-resolution images.  
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Motion artefacts are very important obstacles of MRI regarding imaging the 

developing embryo. To overcome the problem of motion artefacts, the embryo was 

cooled down to 4 °C with the flow of N2. Even with many advantages over other 

imaging methods, µMRI was not a suitable tool for in ovo real time imaging. 

The signal-to-noise ratio (SNR) of an MR experiment shows – both in the time and 

the frequency domains – a very complex dependence on the characteristics of the static 

field, the rf circuitry, the signal acquisition and transformation techniques applies to 

frequency domain SNR) and, of course, the sample 130. For the purposes of this thesis, 

the most important relationships can be summarised as follows:  
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                                   Equation 3.7                                     

where Vs is the sample volume, while Ts and Tc represent the temperatures of the 

sample and the rf coil, respectively, whose inverse relationships with SNR are good news 

for cryoapplications, as they can partly compensate for the impact of low temperatures 

on the population difference (cf. Equation X3.2X) but bad news for higher temperature 

application. Besides the sample volume Vs is directly proportional to the SNR. That 

means, in high-resolution imaging, the sample size is smaller and the SNR worsens 

further. To compensate that, signal has to be accumulated for longer period. This means 

more accumulation motion artefacts during longer acquisition. To freeze the embryonic 

motion, the egg containing the embryo was cooled down to 4 °C with the flow of N2 

for an hour to kill the embryo before image acquisition. 

The MRI micro-imaging system used in this experiment Bruker DMX 400 

spectrometer with micro 2.5 gradient system and 9.4 T superconducting vertical bore 

magnet (He/N2 cooled) from Bruker BioSpin equipped with 1T/m gradient system had 

smaller imaging coils and allowed maximum size of the probe of 30 mm X 30 mm X 30 

mm. In this small space, it was not possible to construct an incubator maintaining 37.5 

°C temperature, 65% RH and rocking of the sample for continuous in ovo observation. 

The existing thermoregulation provided with the system uses liquid N2 for cooling. 

Gaseous N2 evaporated from fluid N2 is heated with a heating coil and maintains a 

desired temperature through a close loop thermoregulation system. The N2 inlet was 

exchanged with compressed air, but it was not possible to reach 37.5 °C. Besides the 
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thermal sensor is located directly above the heating coil and shows higher temperature. 

The imaging coil is located at a bit higher position and the thermal sensor is showing 

nearly 5°-10° higher temperature than the actual temperature of the probe. Since there 

is very high magnetic field inside of the magnet (9.4 Tesla), precaution had to be taken 

during use of other instruments. Beside, instruments may not function perfectly in high 

magnetic field; especial types of instruments suitable for this purpose had to be used. 

Using extra thermometer probe to measure the actual temperature of the sample 

showed thermal difference of 5-10 °C between the probe and measuring system and it 

was not possible to further raise the measuring probe temperature. Using higher target 

temperature in the system also could not solve the problem. In addition to reach higher 

target probe temperature, it is necessary to pumps more air to make thermal 

equilibrium, which increases the possibility of shaking and vibrating the sample and 

eventually blow the sample out of the imaging coil. To attain humidity, the air stream 

was pumped through water bath heated at 37.5° C. Desired humidity was attained. 

Since relative humidity is dependent on the temperature, humidity attained by the 

mentioned method was much higher approaching 90-100%. Since the temperature was 

low, there was much condensation in the measuring sample, which further worsened 

the situation. 

µMRI can be combined with other methods for a better view into the cellular 

process of embryonic development. These will be illustrated in the next chapters where 

gradual technical modification of avian egg towards a complete artificial egg to use as a 

system for culture of eukaryotic cells will be carried out along with development of 

different techniques to gain information from growing avian embryo will be carried out. 

At the end, it can be concluded that µMRI is not a solution to fulfil the final goal of 

this thesis. It is not feasible for imaging the developing embryo at the cellular level. It is 

important to understand the cellular microenvironment behind linage specific 

differentiation in ovo which is not possible in vitro until now and to fulfil the aim of this 

thesis to construct an artificial egg for culturing cells in vitro at the liquid│liquid 

interface with known boundary conditions. 
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3.8 Outlook 

The avian embryo has a long history as a model system in developmental biology 

and has contributed major concepts to immunology, genetics, virology, cancer and cell 

biology. Traditional study methods were to sacrifice the embryo and make histological 

section and staining to observe the developmental status of the embryo. However, it is 

not possible to observe the dynamic processes involved at molecular and cellular level. 

The traditional cell and tissue culture methods on the contrary, are based on artificial 

systems developed for microbiological studies. Gradually these two disciplines are 

getting further apart. Cells divide in culture and produce cells but It is not yet possible to 

culture tissue-like structures with architecture and different types of cells performing a 

specific type of task in coordination. But this complex phenomenon is happening inside 

fertilized eggs where a single cell differentiates into different types and eventually makes 

a whole animal. 

Perhaps µMRI could be complementary to other methods of microimaging 

methods but alone is not a solution to study rapidly growing and moving embryo. To 

fulfil the definitive aim of this Ph.D. work-“construction of an artificial egg” it is 

necessary to modify the natural avian egg systematically and to check the functionality. 

Hatching of a viable bird is set as the parameter to asses the functionality of the 

modified system. Hatching is an important parameter in this aspect for assesing the 

functionality of the modified system. Since the avian egg is the result of evolution and 

gradual perfection for millions of years, a perfect environment for cellular growth, 

development and differentiation; only that guarantees viable hatchlings. Therefore, to 

imitate the natural process in vitro, it is necessary to asses the functionality of the 

modified system, and hatching is the parameter. If it is possible to bring viable 

hatchlings from the modified system, the functionality of the system can be accepted 

which can be further modified based upon the guideline of hatching. 
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4 Cultivation of avian embryos in  open 
systems 

4.1 Summary 

Objective: As described earlier, the avian eggs are independent of mother regarding 

the logistics for the developing embryo except for the warmth. This make the avian eggs 

very especial for embryological experiments. Such experiments involving mammalian 

embryo is impossible since the embryo develops deep inside the body of the mother 

animal and totally dependent on her. However the opaque, calcareous eggshell of avian 

egg is an obstacle for conventional imaging. It is therefore necessary to culture the avian 

embryo in open systems to bring them to hatching. Only the hatching of a viable bird 

guarantees theoptimum functionality of the open system which can be further modified. 

It will be then possible to study different cellular processes in detail in ovo which is not 

observed in vitro. 

The main purpose of the experiments in this chapter was to culture avian 

embryos in open systems and brings them to hatch. The avian embryo was explanted 

from the egg and cultured in different open systems and was brought to hatch. The 

hatching of a viable chick was set as the standard to asses the the system since only 

hatching guarantees the functionality of the system. The open sysytem can then be 

modified stepwise towards more artificial and technical system in future where different 

boundary conditions will be known.  

Methods: The explanted avian embryos from different avian species were cultured in 

open systems, which consisted of surrogate shells taken from larger eggs than the 

donor and the complete artificial system consisted of Teflon membrane suspended by a 

stainless steel net inside a glass tube. The open ends of the both systems were covered 

with double layer of cling film. 

Results: Embryos from different avian species were successfully cultured and brought to 

hatching in surrogate shell open system. In the completely artificial system, no embryo 

developed until hatching. Because of technical limitations, complete artificial system was 

only applied to the quail embryos. For the first time, effect and influence of surrogate 

shell on avian embryo was identified. 
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Conclusions: The surrogate shell open culture system was found to be effective for 

further experimentation, since hatching rate were higher in this system provided 

cultured in appropriate conditions. Bantam chickens were selected as the model animal 

for further experiments. The hatching rate of the quail in open system was very low, 

because of the difficulties finding appropriate surrogate shell. This open system is a 

revolutionary method which allows in ovo observation of amazing intravital process live, 

in real time in a growing avian embryo.  

4.2 Materials required for the cultivation of avian embryos in the 
open systems  

Equipments      Manufacturer      
Centrifuge, 3K18     Sigma-Aldrich, Deisenhofen 
Eierschalensollbruchstellenverursacher   WMF AG, Germany  
GG 12 Proxon Engraving tool    Proxon, Germany 
Laminar flow cabinet    Heraeus, Hanau 
Lumix FZ50 digital camera       Panasonic, Japan 
Microscope      Olympus, Hamburg  
Pipett      Eppendorf, Hamburg 
Refrigerator (4 °C)    Liebherr, Biberach a. d. Riss 
Top-Profi 240 egg incubator   Hemel Brutgeräte, Germany 
Wather bath     Julabo Labortechnik, Seelbach  
176/M2 incubator    Bruja, Germany 

Chemicals     Manufacturer      
Amphotericin B (250 µg/ml)   Fisher Scientific, USA 
Bacillol AF disinfections solution  Bode Chemie, Hamburg 
Calcium L-lactate hydrate    Sigma-Aldrich GmbH, Germany 
Hypochloride solution (200-500 ppm)   VWR International GmbH 
P/S Penicillin/ Streptomycin   Invitrogen Corporation, USA 

Biological agents    Manufacturer/supplier    
Fertilised quail eggs     Wachtelei-spezialist, Aletshausen  
Fertilised bantam chicken eggs    Anita Nefzger, Leutershausen 
Fertilised White Leghorn chicken eggs  LSL Lohmann Tierzucht GmbH. Cuxhaven 
Unfertilised broiler eggs   Glückliche Eier, Saarbrücken 

Accessories     Manufacturer/supplier    
Cling film     Lakeland, UK 
Disposable syringe    B. Braun, Germany 
Diamond cutter disc                                  Schnarrenberger, Vöhringen 
Diamond cutter rotating disc   Proxon, Germany 
Eierschalensollbruchstellenverursacher   WMF, Germany
Glassware     Schott, Mainz 
MilliWrap     Millipore Corporation, USA 
Parafilm      American National Can. Co., Chicago (U.S.A.) 
Poultry feed  Wachtelei-spezialist, Aletshausen 
Stainless Steel net     Drahtweberei Gräfenthal, Gräfenthal 
Surgical instruments    VWR International GmbH 

Computer software    Developer      

SolidWorks     SolidWorks Corp., Massachusetts, USA 
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4.3 Motivation 

As discussed in Chapter 3, µMRI allows very high-resolution imaging of the 

embryo in closed egg in its natural environment. However, it was limited by longer 

image acquisition time, motion artefacts, insufficient free space inside the imaging 

chamber of the µMRI machine and smaller probe size, which made it very difficult to 

construct an incubator in situ for in ovo imaging keeping the embryo alive inside the 

superconducting magnet of the MRI machine. The MRI micro imaging system consisted 

of a vertical bore superconducting magnet where the imaging probe lies deep inside the 

magnet from the opening. In addition, very high magnetic field (9.4 Tesla) in the 

imaging chamber made it difficult for installation of traditional micromanipulation 

system; which are mostly constructed of magnetic materials. On the contrary, optical 

imaging methods are very effective offering very high-resolution imaging at the cellular 

level with ease. In addition, these methods are relatively inexpensive than µMRI. 

However, the practical problem remains with the hard, non-transparent shells of the 

avian eggs, which make optical and other imaging methods inapplicable. It was 

necessary to remove the eggshell tfor imaging. Removing a part of the non-transparent 

eggshell and observe the embryo through the window would be one of the possibilities. 

However, the eggshell is tightly packed with its contents and it is quiet inconvenient to 

work in such system. Moreover, the imaging probe has to be adequately illuminated for 

optimum imaging which is difficult in windowed egg.    

The method of avian culture in open system is not new; it has been used by the 

biologists to produce transgenic chickens as bioreactors for pharmaceutical protein 

production in eggs 124, 141. In the early days, the experiments started with the windowing 

of the eggshell, which is simple. Transduction of embryos with retroviral vectors 146, 205, 

257, 292 through a small window in the eggshell, which was sealed 11, 35, 123, 124, 290, 308 but 

often results in low hatch rates 308. Later an improved sealing technique was developed 

to avoid trapped artificial air bubbles during sealing, resulted in 45% hatchability 11. 

Egg-shell windows are tedious to make, often induce inflammation in the CAM 91, and 

are too small to adequately visualize the activity inside. In contrast to simple windowed 

eggs, surrogate eggshells provide a potentially better accessibility for the manipulation 

of the embryos and allow for multiple operations to be performed during incubation 218. 

Besides, culture in complete artificial system has also been reported 147. The basic 



Cultivation of avian embryo in open system 

S. Haque (2010) Ph.D. Thesis 90 

method has been modified a little and used for the production of transgenic birds. But 

there were not much progress regarding the optimisation and use this method for real 

time observation of the process of embryogenesis and apply the knowledge for in vitro / 

in ovo cell culture. Unlike mammalians, avian eggs are independent of the mother and 

this makes the egg very especial for such experiments. Such embryological experiments 

involving mammals would require immense technological support and of course 

financial involvement to monitor the embryonic process at cellular level real time in vivo, 

since the mammalian embryo develops inside the uterus of the mother animal and 

totally dependent on her for nutrition, gaseous exchange and all other sort of support. 

For experimental purpose, it was necessary to construct a stable and durable 

system whose parameters and different boundary conditions are known. In case of 

traditional monolayer in vitro culture of cells, boundary conditions are relatively limited. 

In comparison to the embryogenesis, the embryonic development is very complex and 

most of the parameters are unknown. Today’s avian egg is the gradual result of 

perfection through the evolution of millions of years. It is quiet easy and logical to study 

an existing perfect functioning system than to search for something new. The embryonic 

stem cell differentiation in in vitro culture is uncontrollable and the process is more or 

less stochastic. Nevertheless, the same cells in ovo differentiate into all different types of 

cells and eventually form a complete viable organism after a period of 21 days of 

incubation (for chicken). It is very important to find out the boundary conditions in ovo 

for targeted in vitro stem cell differentiation into desired cell type and for tissue 

engineering. Since the viable hatchling is set as the evaluation standard to check the 

durability of the constructed system, it was very important to characterise different 

parameters of the constructed system, which can be used as parameters for further 

experimentation. 

4.4 Review of previous works 

The culture of the explanted chicken embryo has long been an elegant method to 

study the early development 237. The embryonic lifespan of the chick is 22 days. 

Development in the first day takes place in the oviduct and in the remaining 21 days in 

the shelled egg. The development of chick embryo had been divided into three periods: 

fertilization to blastoderm formation (stage I) which lasts for one day 165, embryogenesis 
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(phase II) lasts for three days and embryonic growth (phase III) for rest eighteen days 113. 

Fertilization takes place in the anterior oviduct, after which the yolk-laden ovum is 

encased in albumen secreted by the magnum. Around the time of the first division of 

zygote takes place, some 4.5 hours after ovulation, the shell membrane is deposited in 

the isthmus and the albumen is doubled in volume by the absorption of uterine fluid. In 

the final 18 hours of the oviductal phase, the shell is calcified. The second and third 

phase takes place in shelled egg. There had been attempts to culture both oviductal 237 

and postlaid embryos.  

Use of polyethylene bags has permitted development of the postlaid embryos for 

10 to 12 days 81, 296 and modification involving especially constructed glass dishes in 

combination with polyethylene bags have permitted some survival up to 16 days 58. 

Especial incubators were constructed to improve the embryo explants 269. Shell less 

culture allows continuous observation and access to the embryo. In 1974, Auerbach et 

al 20 developed methods for culturing chicken embryos in Petridish with 1-2% CO2 

mixed with air.  Dunn, Dugan and Ausprunk also experimented in this field 21, 72, 74. 

Rowlett and Simkiss 288 first reported that 3-day incubated chicken embryos inside the 

egg could be cultured to hatching using turkey eggshells.  

Then, Perry 255 devised a complete three-step culture method for the chicken 

embryos from the single-cell stage obtained from the posterior region of the magnum 

to hatching using glass jars and chicken eggshells. In this method (system I), the 

germinal disc was covered with a dense albumen capsule. This embryo culture system 

was applied for culturing early cleavage stage embryos (stage II) 87 obtained from the 

anterior region of the uterus by hormonal treatment 224. Naito et al. 222 found that a 

dense albumen capsule surrounding the ovum was not essential for the normal 

development of the embryos from stage X (System I) 87 onward and could be substituted 

by thin albumen. Based on this discovery, they devised a modified method for culturing 

chicken embryos from the single-cell stage to hatching, that is, removing the dense 

albumen capsule from the stage X onward (systems II and III), and achieved a high rate 

of hatching (34.4%). After that, Naito et al. 223 succeeded in culturing the chicken 

embryos obtained from the anterior region of the magnum to hatching. In this case, a 

thin layer of dense albumen capsule was formed around the ovum, and the germinal 

disc region of the ovum was covered with gauze. Kamihira et al. 147 succeeded to culture 
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quail embryo in chicken surrogate shell and complete artificial system with viable 

hatchlings. They preincubated the embryos inside the egg for two days. Than quail 

embryos were transferred to a complete artificial system consisted of porous Teflon 

membrane suspended on a stainless steel mash inside a glass tube with holes. They used 

calcium supplementation for shell less culture (calcium lactate or egg shell powder).  

4.5 Experimental approaches 

As described earlier, the embryonic lifespan of the chick is 22 days. Development 

in the first day takes place in the oviduct and in the remaining 21 days in the shelled 

egg. By the time the egg is laid, the embryo has already reached the blastoderm stage. 

Here in this chapter and rest of the thesis, the experiments were designed for the 

cultivation of the chicken and quail embryos only from the blastoderm stage to hatching 

(postlaid eggs) in surrogate shell and complete artificial system. Due to technical 

limitations, the complete artificial system was only applied to the quail embryo. Embryos 

were handled according to the guidelines of German animal protection laws 

[Tierschutzgesetz (TierSchG) in der Fassung der Bekanntmachung vom 18. Mai 2006 

(BGBI.IS. 1206 ff. ber. S. 1313) und dem Gesetz über das öffentlische Veterinärwesen 

und die amtliche Lebensmittelüberwachung (VetALG) vom 19.05.1999 (§ 1 Abs. 3 

Amtsbl. S 844, 851)]. 

4.5.1 Culture of the avian embryos in surrogate shells  

For cultivation of avian embryo in surrogate shell, the embryo was harvested from 

the egg after preincubation (72 hrs for chicken and 48 hours for quail) and explanted 

into a a surrogate shell prepared from larger eggs for further incubation. The opening of 

the surrogate shell was closed with a double layer of cling film (from Lakeland, UK) and. 

further until hatching. 

4.5.1.1 Preparation of the donor embryos 

Donor embryos were prepared from commercially available fertilized chicken 

(Gallus gallus domesticus) and quail (Coturnix coturnix) eggs. For good fertilization, least 

male to female ratio of 1:6 were ensured. For chicken embryos, bantam and White 

Leghorn strain and for quail embryos, commercially available breed in Germany were 
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chosen. On arrival, eggs were cleaned and disinfected with hypochlorite solution 

(Annexes) and stored in a refrigerator for 24 hours at 14 °C. Eggs with cracked and 

irregular shells, rounded contour and too large or too small size were discarded. On the 

following day, eggs were placed inside a forced air incubator at 60% relative humidity, 

37.5 °C temperature and 90° side to side rocking for 72 hours (48 hours for quail). 

4.5.1.2 Preparation of the surrogate shells 

Selection of the surrogate shells 

As described in section 4.4, explantation culture of avian embryo in surrogate shell 

is an established method for production of transgenic birds. There had been some 

experiments involving culture of different avian species like quail embryos in chicken egg 

shell 147, 150, 239, 240, 242 or chicken in turkey (Meleagris gallopavo) egg shell 34, 288 but these 

data could not be used generally for other species of birds. Especially to find matching 

surrogate shell for the donor embryo for other avian species is especially challenging, 

where the egg size is different from the chicken. In different experiments researchers 

used different specific criteria for selection of surrogate shells (27-30 g heavier than 

donor eggs, double-yolked eggs of a commercial broiler strain 288, suitable recipient 

chicken egg shell 34, 30 g heavier 222, 27-30 g heavier 255, bigger bed shells prepared for 

quail embryos from small chicken eggs by removal of their blunt-end halves 239, 240, 

cutting narrow end of the chicken egg at 35 mm diameter for quail 241).  Because of 

such specific criteria, it was rather difficult to select surrogate shell with different avian 

species laying eggs of different sizes, or even smaller or larger eggs of the same species. 

It was an important question to be answered whether the same criteria is applicable for 

all sizes of eggs or not, since avian eggs vary a lot in size and shape; like ≈0.5 g for 

Hummingbird and ≈1.5 kg for Ostrich (Struthio camelus) and shapes also vary from the 

nearly spherical eggs of owls to the sharply pointed eggs of murres and gulls 248. 

The oxygen available to the avian embryo during development depends on 

diffusion across the eggshell and shell membranes, hence on the oxygen conductance 

(Go2) of these structures. Eggshell conductance represents an important limitation to 

availability of oxygen in the embryo 204, 209, 211. If embryos of different avian species had 

the same oxygen requirements (Vo2/kg), the availability of oxygen would be more 

limited in the embryos of the larger eggs (usually laid by larger birds), since the surface 
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area/egg weight and Go2/egg weight ratios are lower than in smaller eggs 
16, 248. 

However, interspecies analysis reveals that this is not the case. The Vo2 of the avian 

embryo matches the structure and the Go2 of the eggshell in such a way that the O2, 

CO2 and water vapour pressure difference across the shell are the same for a wide range 

of species, from the few gram eggs of the sparrows and quails to the 1.5 kg egg of the 

ostrich, implying a constant arterial oxygen tension among species 16, 133. If the embryo's 

metabolic rate was a species characteristic, possibly genetically determined, then the 

mass of the egg may have some effects on the development of the embryo due to 

differences in oxygen availability and O2 availability and Vo2 are limited in the avian 

embryo incubated in 21% O2, and that the conductance of the eggshell represents the 

limiting structure. Intra-species differences in egg mass and the embryo's Vo2 is not an 

invariable species characteristic, but a variable dependent on O2 availability. The 

adaptability of Vo2 to O2 availability is a property most likely related to the degree of 

functional development of the compensatory mechanisms against changes in the partial 

pressure of oxygen (Po2). In the early stages of development the total O2 requirements 

are very small, hence probably not limited by O2 availability 
392. Limitation to O2 

availability becomes apparent at later stages of development, at which time the 

embryo's Vo2 increases substantially (Figure 4.1). The permeation of air through the 

eggshell and the shell membrane is one parameter that affects the hatchability 353. Since 

chicken eggshell is double in thickness than the quail and has different porosity which 

will influence the gas exchange across the shell and hence the embryonic growth and 

hatching. 
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Figure 4.1: Oxygen uptake of bantam hen embryos incubated in normal air and pure Oxygen. 

Redrawn after 129. 
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Assuming that an egg shell is a surface of revolution generated by revolving a 

curve y = ƒ(x) about the x-axis (in this case the long axis of the egg), the surface area A 

is given by 248 

dx
dx

dy
y

b
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+=Α π                                     Equation 4.1 

where a and b are limits of integration as shown in Figure 4.2. If the functional 

relation y = ƒ(x) is an analytical function, it may be possible to perform the integration 

directly. Since y as a function of x is not known in general, we resort to an 

approximation. 

 

Figure 4.2: Profile of egg showing division into 16 segments. The direction of rotation is shown 
by the arrow 248. 

Since there are a lot of natural variations among the eggs of different species, and 

even the egg laid by the same bird, an approximation will serve this purpose. Moreover, 

the measurement of the length and width of an egg is a tedious job, especially 

concerning the experiments conducted with hundreds of samples. Measurement of the 

weight would be rather easier. The relation between the surface area of the egg and 

weight can be calculated using following equation 248 

662.0835.4 WA =                                   Equation 4.2 

Where A = surface area of the egg in cm2, W = weight of the egg in g. 

There is natural variability in egg shape and this variability can be characterized using a 

shape index (SI) 13 and sphericity (Φ) 9  
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Where SI = Shape Index, W = width of the egg in mm and L = length in mm 
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=Φ                                 Equation 4.4 

Where Φ = sphericity (%), L = length and W = width of the egg in mm.  

 Since the CAM covers the whole inner surface of the egg and the eggshell is very 

thin and therefore negligible. The surface area of an egg can be considered as the 

approximation of the surface area of the CAM. Eggs can be characterized by the SI as 

sharp, normal (standard) and round if they have an SI value of <72, between 72 and 76, 

and >76, respectively 293. Normal chicken eggs have an elliptical shape. Egg size and the 

eggshell thickness are strongly related to each other 116. Eggshell quality depends on egg 

size and weight. 

For all the experiments conducted in this thesis, eggs with shell index (SI) between 

72 and 76 (normal/standard) were used. For selection of the surrogate shell, the ratio 

between the surface area of the donor egg and that of surrogate/recipient egg (SR) was 

used as an index, which was calculated using the following equation 

100 X 
 (donor) Surface

  )(surrogate Surface
SR 







=                       Equation 4.5 

Where SR = Shell Ratio, Surface (surrogate) = Surface area of the Surrogate 

shell, and Surface (donor) = Surface area of the Donor egg; surface area was 

calculated using Equation 4.2.  

Since different avian species have different incubation time, avian Embryonic Survival 
(ES) was calculated using following equation (%) 

100 X 
IP

(ID) survival Maximum
ES 




=                     Equation 4.6 

Where ES = avian Embryonic Survival in %, Maximum survival (ID) = 

Maximum survival of the avian embryo (Incubation Day) and IP = Incubation 

Period of the regarding avian species till hatching in days. Here, ES = 100% means 

viable hatchlings at 21st day of ibcubation for chicken and 17th day for quail. 
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Table 4-1: Surface areas and volumes of eggs of different avian species 248. 

 

Species 
 

Weight 
(g ± SD) 

Long axis 
(cm ± SD) 

Area 
(cm2 ± SD) 

Volume 
(cm3 ± SD) 

Coturnix coturnix  
(Japanese Quail) 

9.62 ± 0.66 3.09 ± 0.10 53.89 ± 2.13 8.80 ± 0.67 

Gallus gallus domesticus  
(Domestic Chicken) 

53.89 ± 2.13 5.67 ± 0.16 68.00 ± 8.51 50.95 ±11.40 

Phasianus colchicus  
(Ring-necked Pheasant) 

33.84 ± 2.34 4.61 ±0.19 48.05 ±2.23 30.81 ± 2.05 

Preparation of the surrogate shell  

The donor eggs are checked thoroughly for cracks, contour, shape and roughness 

of the shell. Eggs with cracked shell, rounded or slender shaped, irregular contour and 

rough irregular shell surfaces were discarded. Eggs were cleaned and disinfected with 

chlorine solution (Annexes). After drying in the air, they were stored in a refrigerator at 

14 °C temperature. During experiment, the shell was again wiped with Bacillol anti-

microbial solution and air-dried.   

A circle of a suitable diameter was marked at the blunt end of the egg (containing 

the air cavity) with a pencil. The shell was than cut with a fine diamond cutter rotating 

disc (Proxon Engraving tool) leaving the shell membrane intact. The eggs were than held 

cut end downwards and rinsed with autoclaved distilled water to remove shell powder. 

Top of the shell was than removed with a scalpel and the content of the egg was 

drained out. Shells were again rinsed inside and outside with autoclaved distilled water. 

The prepared surrogate shells were than placed on an autoclaved tissue paper moisten 

with distilled water to avoid drought (Figure 4.3).  

  

a     b
  2 

 

Figure 4.3: Preparation of the surrogate shell. 

(a) Cutting the blunt end of the shell with diamond cutter; (b) prepared shell is placed on a wet paper 
towel to avoid drought. 
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4.5.1.3 Transfer of the preincubated avian embryos into the surrogate shells 

Harvesting the donor embryos  

For harvesting donor embryo, fertilized eggs from bantam chicken (Gallus gallus 

domesticus) or quail (Coturnix coturnix) were used. Bantam chicken lays relatively 

smaller eggs than the commercially available variety (White Leghorn or Rhode Island 

Red). Embryos are relatively stable on handling and have higher hatching rate than the 

commercial variety. On arrival, eggs were washed with water to clean and disinfected 

with hypochlorite solution (appendix), air-dried and sorted in a refrigerator at 14 °C for 

24 hours. Eggs weighing 55±5 g for chicken and 14±1 g for quail were selected as 

donor for embryos. On the following day, they were placed in an incubator (Bruja 

Motorbrüter) at 37.5 °C temperature, 60% relative humidity and 90° rocking angle. 

chicken eggs were incubated for 72 hours and quail eggs were incubated for 48 hours. 

Eggs were rocked every half an hour.  

The rest of the procedures were performed under a laminar flow cabinet adopting 

sterile techniques as far as possible. Figure 4.4 shows the complete procedure of avian 

culture in surrogate eggshell. Chicken eggs were taken out after 72 hours and quail 

eggs after 48 hours of preincubation, opened and transferred into the surrogate shell.  

The trickiest part of the whole experiment was the transfer of the pre-incubated 

embryos into the surrogate shell. With the growth of the vitelline membrane following 

incubation, the egg yolk becomes very sensitive and vulnerable to shock, shake and 

movement especially during opening of the fertilized incubated eggs and shock from 

falling to the bottom of the container or even inside shell. Adequate care was taken 

during opening and pouring out to avoid any type damage from shaking or injury by the 

cracked shell spikes.  

For harvesting preincubated embryo, incubated chicken eggs were opened with 

“Eggshell breaking and perforating device” (Eierschalensollbruchstellenverursacher) 

and quail eggs were opened with forceps (Figure 4.5). This method (applied only for 

chicken eggs) was found to be quick and easier than other methods described in the 

literature, especially for the fertilised incubated egg containing the growing embryo.  
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Figure 4.4: The complete schematics of cultivation of avian embryo in open system.  

(a) 36 hrs old chicken embryo in cling film on a small dish; (b) Lifting the embryo by holding the four 
corners of the cling film; (c) pouring the embryo into the surrogate shell; (d) embryo along with the cling 
film inside the surrogate shell; (e) stretching the cling film in fan shaped manner; (f) taking out the cling 
film; (g) adding antibiotics; (h) rotating the shell for better mixing of antibiotics; (i) covering with cling film; 
(j) complete surrogate shell construct along with embryo; (k) internal pepping; (l) hatching (Imaging done 
at Roslin Institute, Midlothian, Scotland, UK). 

  

a                                      b 

 

Figure 4.5: Methods for opening the donor egg for preincubated embryo.  

(a) Quail eggs were opened with forceps, (b) chicken eggs with an 
“Eierschalensollbruchstellenverursacher” (Eggshell breaking and perforating device). Scale bar (a) = 5mm; 
(b) = 20 mm 
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Transfer of the harvested pre-incubated embryo into the surrogate shell 

For transferring harvested pre-incubated embryos into the surrogate shells, either 

the method discrived by Rowlett and Simkiss 288 (Figure 4.4) was adopted or directly 

poured into the surrogate shell using a weighing boat. Normally the embryo floats at 

the top being the lightest of all. Otherwise, the yolk was turned with a spoon to bring 

the embryo to the top. Parts of broken shell were removed, if present. Following 

transfer of the preincubated embryo, 1 ml (for chicken, for quail 0.2 ml) of Penicillin and 

Streptomycin solution (P/S, Annexes) was added inside the surrogate shell taking care 

not to pour directly over the embryo. If necessary, little bit of thin albumin pre-warmed 

at 37 °C was added staying 8-10 mm belog the brim (3-5 mm for quail) of the surrogate 

shell. 

Surrogate shells were painted with glue made from thin albumin (Annexes) on the 

outside wall of the shell from 5-10 mm from brim margin (3-5 mm for quail). A small 

piece of cling film was stretched with finger, placed over the open end of the surrogate 

shell, and wiped with a sterile paper towel. In the same way, a second layer was made 

over the first one. Excess part of the cling was trimmed.  

4.5.1.4 Incubation of the avian embryos in the open system 

The surrogate shell-embryo construct was incubated in an automatic incubated 

(Top-Profi 240) at 37.5 °C temperature, 60% relative humidity 30° side to side rocking 

(once every hour) for next 7 days. Than, rest 8 days with 60% humidity for chicken and 

6 days for quail with 80% humidity without rocking. At day 18 of total incubation (for 

quail day 15), the embryo cultures were transferred to the Hatcher-incubator. The 

Hatcher temperature was maintained at 37-39oC with high humidity provided by the 

evaporation of water located at the base of the unit. Embryos were checked for internal 

pepping (IP).  

After incubation day (ID) 18, excess egg white was pipetted out to keep nostrils 

free to breath and prevent aspiration (ID 16 for quail). On the following days, after the 

establishment of pulmonary respiration, holes were made on the cling film cover to 

ensure air circulation according to breathing rate. Later at day 20, the covering cling 

films were loosened and if necessary, the beak of the cheek was freed from other body 

parts especially if it was covered by the wing and nostrils kept open for breathing.  



Cultivation of avian embryo in open system 

S. Haque (2010) Ph.D. Thesis 101 

   

a                                                       b 

 

Figure 4.6: Avian embryos after internal pipping in open culture.  

At this stage of development, the pulmonary respiration is established and the embryo is preparing for 
hatching (video supplied). (a) Quail embryo at ID 16 and (b) chicken embryo at ID 20 day in surrogate shell 
after internal pipping 

If the embryos were dry, the under surface of CAM was moisten with distilled 

water soaked cotton bud. Normally the blood is withdrawn from the CAM circulation, 

and the embryo is ready to hatch. In normal cases, it came out of the shell through the 

loosened cling film at day 20 to 21 of incubation. In case of delay, embryos were 

manually removed and bleeding vessels were ligated with sterile threads. The chicks 

were than wiped with a dry tissue paper and returned to the Hatcher-incubator. Food 

(mashed poultry feed) and drink (fresh water with vitamin and mineral supplement) was 

provided on demand basis. For water, care was taken to avoid drowning of the 

hatchlings.  

 

*  

 

Figure 4.7: The open system of avian embryo culture consisting of surrogate shells inside a 
Hatcher-incubator.  

Chicken and quail embryos after internal pipping. At this stage of embryonic development, embryos start 
breathing; holes were made on the cling film according to the breathing rate. (Red arrowheads indicate 
quail embryo in chicken shell). Inset shows a bantam chicken (asterisk) and a quail (green arrow) donor 
egg for comparison. Scale bar = 25 mm. 
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Figure 4.8: The hatchlings immediately after hatching form surrogate shell.  

(a) Quail, (b) chicken. Scale bar = 5 mm. 

4.6 The culture of the avian embryo in the completely artificial 
system 

The complete artificial system for avian embryo culture contained no natural part 

of the egg except for the embryo with the egg yolk and egg white. The whole system 

consisted of a porous Teflon membrane (MilliWrap) suspended by a stainless steel (SS) 

net in a glass tube. The idea was to imitate the natural egg with complete artificial 

materials. The Teflon membrane replaced the egg membranes; SS gave the structural 

support to the embryo and the developing extra-embryonic membrane and calcium in 

organic form was added to the system for calcium supplementation for the growing 

embryo. In the natural eggs, the egg shell and the shell membrane protects against 

bacterial infiltration. In complete artificial system antibiotics were added to the system to 

prevent bacterial contamination. 

When chicks were dry, fluffed and able to move around, they were transferred to 

a brooder box under a ceramic heat-lamp maintaining a temperature of around 35 °C. 

The hatchlings were obligatorily supplied with fresh water (with vitamin and mineral 

supplement) and food (mashed poultry feed) all the time. 
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4.6.1 The preparation of the completely artificial system 

   

a        b        c 

*  

 

Figure 4.9: The complete artificial system of avian embryo culture. 

(a) Complete artificial culture system; asterisk = plastic cover, arrow = glass container; (b) Open system 
containing 48 hours old quail embryo in Teflon membrane; (c) 96 hours old quail embryo in complete 
artificial system. Arrowhead indicates quail eggshell powder used for Ca2+ supplementation. 

 

As mentioned earlier, the complete artificial system of avian culture was designed 

for culturing quail embryos. The system consisted of a glass container, stainless steel (SS) 

net (mesh width 1.4 mm, thread thickness 0.2 mm), a plastic cap and Teflon membrane. 

The glass container had an inner diameter of 30 mm, 45 mm high with diagonally 

placed four holes of 5 mm diameter in the middle circumferentially.  

The SS net was pushed to form like a rounded bottom cup inside the glass 

container. The free end of the net was covered with a plastic cap. The whole system was 

autoclaved before use. 1 ml of distilled water was added inside the glass container at 

the beginning of the experiment. PTFE membrane (supplied as 5 cm width role, 

MilliWrap®, from Millipore Corporation; had 0.45 µm pore size) was cut into 50 mm 

square pieces and pushed into the artificial culture system with a rounded head pastel 

so that the Teflon lies on the SS net. Free ends of the Teflon membrane were trimmed. 

4.6.2 Transfer and incubation of the preincubated quail embryos into the 
completely artificial system  

The fertilized quail eggs were purchased from local farms. Sterilization was 

performed as before. Eggs were pre-incubatied for 48 hours in an automatic incubator 

at 37.5 °C temperature, 60% relative humidity and 90° rocking at 30 minutes cycle. 

14±1 g eggs were chosen as donor for quail embryo. At the end of pre-incubation, eggs 

were opened with forceps very carefully and poured into a flexible weighing boat 
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(Figure 4.5). The embryos were inspected for developmental abnormalities. Parts of the 

broken shells were removed. Calcium lactate (Calcium L-lactate hydrate from Sigma-

Aldrich GmbH, Germany) solution was prepared by suspending into the quail thin 

albumen at a concentration of 70 mg/ml. Quail eggshells were milled to form fine 

powder. 10mg quail shell powder, 25 mg calcium lactate or both were added to the 

artificial system prior to embryo transfer.  

 

Surrogate shell 

 

 

Artificial system 

  

 

 

 

 

 

Avian development in open culture –  
in surrogate shell or complete  

artificial system 

 

 

Quail 

Chicken 

 

 

Figure 4.10: Overview of the open system of avian culture in surrogate shell or complete 
artificial system 

The weighing boat containing the embryo was gently bent to form like a funnel 

and the embryo was slowly slipped into the artificial system. 0.2 ml antibiotics (P/S- see 

Annexes) were added to the culture at the side of the embryo avoiding pouring directly 

on to the embryo. The opening was closed with double layer of cling film and secured 
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with rubber ring. The whole system was than incubated at 37.5 °C temperature, 70% 

RH and 30° side to side rocking angle for next 10 days (day 13 of incubation). At day 

14, rocking was stopped and the whole culture system was transferred to a Hatcher 

incubator with 60% RH and 37.5 °C temperature. 

4.7 Results 

Table 4-2 shows the summarized results of the culture of avian embryo in open 

system. It is important to note that the bantam chicken (SR = 133±5) had higher 

hatching rate (67 %) than white Leghorn breed (SR = 125±3 %, hatching rate 20%) 

even though they were cultured in the same system under similar culture conditions. 

Quail embryo cultured in bantam chicken surrogate shell (SR = 176±12 %) had only 

14% hatching rate, whereas no quail embryo hatched when cultured in broiler 

surrogate shell (SR = 307±31). No quail embryo survived until hatching in completely 

artificial system. 

Table 4-2:  Summarized results of the culture of avian embryo in open system 

Embryo 
Incubation 
period 

Surrogate 
shell 

n 
Hatching 
rate % 

SR % 
maximum 
viability 

Comment 

Bantam 
chicken 

21 days 
Broiler 
eggs 36 66.7 133±5 

Hatch, 
ID 21 

Higher hatching rate than 
broiler eggs, embryos are 
relatively stable on handling 

White 
Leghorn 
chicken 

21 days 
Broiler 
eggs 

15 20 125±3 
Hatch, 
ID 21 

Lower hatching rate than 
bantam chicken cultured under 

same conditions 
Broiler 
eggs 

62 0 307±31 ID 16 No one survived until hatching 

Bantam 
eggs 

37 13.5 176±12 
Hatch, 
ID 17 

Very low hatching rate because 
of larger and thicker surrogate 
shell. 80% hatchlings had 
congenital malformation 

Quail 17 days 

Artificial 
system 

65 0 - ID 8 

No one survived until hatching, 
maximum survival was ID 8. 

Teflon is not a suitable material 
in vitro culture of avian embryo. 

Figure 4.11 shows the graphical representation of the viability of different chicken 

embryos in broiler surrogate shell. It is important to note that only 20% of White 

Leghorn embryos managet to hatch in contrast to 67 % hatching rate for bantam 

chicken embryo, eventhough they cultured under similar conditions. 
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Figure 4.11: Viability of the chicken embryo in open system. 

The open system consisted of surrogate shell and double layer of cling film. Note the hatchability was 
higher for bantam chicken embryos (≈66.66%) than White Leghorn variety (≈20%). After day 17 there 
was sharp decrease in the viability (≈16.66% for bantam and 53.33% for white leghorn). From the 
experiment it is quiet evident that the bantam chicken are more stable than the White Leghorn variety 
may be because the bantam is more wild breed than the White Leghorn which is genetically modified for 
commercial egg and meat production.  

Figure 4.12 shows the graphical representation of the viability of quail embryo in 

different open system, which include surrogate shell from broiler and bantam chicken 

eggs, and complete artificial system. It is important to note that no embryo survived till 

hatching in broiler surrogate shell or complete artificial system consisting of Teflon 

membrane. 
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Figure 4.12: Viability of the quail embryo in open system.  

In broiler surrogate shells, no quail embryo hatched, in bantam surrogate shell, 7% quail embryos 
hatched, in completely artificial system, no quail embryo hatched. Maximum survival of the quail embryos 
in completely artificial system were ID 8. 

Figure 4.13 shows the graphical representation of ES (calculated by Equation 5) in 

relation to SR (calculated by Equation 4). It shows that the embryonic survival decreases 

with the increase of SR. This indicates that the embryonic viability is inversely 
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proportional to the surrogate shell size in open culture. Eventhough the graph is not 

linear, but gives an estimate about the inverse relationship. SR = 261 ± 8% in Figure 

4.13 shows an upwords swing of the graph, which is probably caused by different 

surrogate shell used then the previous category (SR = 205.4 ± 4%).  
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Figure 4.13: Effect of SR on the hatchability of avian embryo in open system.  

SR was plotted against ES. From the graph, conclusion can be drawn about the inverse relation of SR with 
ES. Which literally means that embryonic survival decreases with increased of surrogate shell size. Here, 
influences other than SR were not considered. The graph is not linear because of different surrogate shell 
used for explantation culture may have different physical property that my have influenced embryonic 
growth and development. 

Table 4-3 shows the health status of the hatchlings in poen culture system. Only 

2.7 % chicks had notable congenital malformations in contrast to 80% in case of quails. 

In survival cases, SR was 133 % for bantam chicken than SR = 186 ± 6 % for quails. 

This result certainly gives a hint about the detrimental effect of larger surrogate shell in 

open culture system. 

Table 4-3: Congenital malformations of the hatchlings 

 

 
 
 

Embryo SR (%) % of malformations Comment 

Bantam chicken 133.4±0 2.7% Abduction deformity of right leg 

Quail 185.6 ±6 80% Split leg deformity 
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Figure 4.14: Culture of the chicken embryos in the open system. 

4.8 Discussion 

Culture of avian embryo is a magnificent way to study the avian embryogenesis 

realtime in ovo. Since it has a large opening covered with an optically transperant 

material, it might allow simultaneous observation and micromanipulation at the cellular 

level. However, it is necessary to identify different influential boundary conditions and 

factors to construct a stable system that can be further modified in future. 

4.8.1 Effect of the surrogate shell size on embryonic survival 

Figure 4.13 shows the relationship between SR and ES. Even though it was not 

possible to maintain similar culture conditions like SR and surrogate shell thickness 

similar to donor eggshell, but overall impression tells about an inverse relationship 

between hatching rate and SR; which literally means that surrogate shell has to be as 

close as possible to donor egg in surface area for having viable hatchlings. No embryo 

hatched when cultured in surrogate shell SR>190. 

The architecture of the avian egg is of fundamental importance to the successful 

development of the embryo". Thus, "not only would manipulating of the ovum within 
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the calcareous shell be difficult" but if, as an alternative, a newly released ovum was 

used it was unlikely "that the remaining phases of egg formation—albumen and shell 

formation—would be achieved in the same or surrogate hen 97. The problems with in 

vitro culture can be related to two main deficiencies. Firstly, the embryo is restricted 

both by the shape of the receptacle in which it is cultured and by the spatial constraints 

on the formation of the extraembryonic membranes. As a result, there is incomplete 

absorption of the egg albumen. Because it is a major source of water, electrolytes and 

protein for the embryo, it is not surprising that the embryos are retarded. Secondly, 

since the cultures are shell-less and since the eggshell normally supplies 80% of the 

embryo's calcium requirements, the embryos are hypocalcaemic and bone 

mineralization is grossly retarded. In fact the CAM, which normally transports calcium 

from the eggshell into the embryo 61 does not develop functionally unless the shell 

membranes are adjacent to it 73, 344. The other abnormality of the shell-less culture is the 

absence of support for the embryo by the culture vessel. 

The embryo on the yolk surface is fixed in an egg at the right position with two 

chalazae and may turn about inside its eggshell according to the gravitation force. It 

acquires the natural position by itself, what is necessary for formation of area pelllucida 

and body axis. Therefore, it is important not to disturb its natural position at the early 

stages. 

                                                              

   a                 b                  c 
                                      CAM 

                CAM                                                          
    

 

Figure 4.15: Arrangement of embryo and extra embryonic membranes in normal egg and 
different explantation culture.  

Growth of CAM (a) in a normal egg (b) and surrogate eggshell (c) shell-less culture. Note the abnormal 
position of the embryo in the yolk and the superficial development of the CAM in the shell-less culture. 
ALB = albumen; CAM = ChorioAllantoic Membrane; Y = yolk (Modified after Rowlett et al, 1987 288). 

By ID 4 allantois has fused with the chorion to form the CAM. This latter 

membrane continues to develop until at about ID 12 and it completely lines the inner 

surface of the inner shell membrane and is highly vascular. The chorioallantois becomes 

the major site for the exchange of respiratory gases until the embryo ventilates its lungs 
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during the hatching process 282. The CAM surrounds the egg contents by ID 11 to 12 of 

incubation and fuses with the acellular ISM soon thereafter 57. The ISM is bound to the 

overlying acellular OSM everywhere except in the air space region. Thus, in ovo the 

exogenous microenvironment of the developing CAM includes one or both shell 

membranes, a variable amount of Ca2+ and a steadily increasing concentration of CO2 

378. 

4.8.2 Effect of the surrogate shell shape and thickness on embryonic survival 

As described earlier, for all the experiments conducted in this chapter, surrogate 

shell with shell index (SI) between 72 and 76 (normal /standard) were used for open 

system. It was not possible to maintain similar SR for all species of embryos (quail and 

chicken). For bantam chicken embryos, surrogate shells were selected from broiler eggs 

with SR 136 ± 5% (Equation 4-5) and the hatching rate was ≈67 % (Table 4-2).  

Table 4-4: Shell thickness and pores of non-incubated eggs from several species 
of birds 16, 280. 

Species 
Egg 
weight 
(g) 

Incubation 
time (day) 

Shell pore 
volume 
(%) 

H2O loss 
(mg/day) 

conductance 
mg 

H2O/day.Torr 

Pore 
length 
(µm) 

Pores 
/ egg 

Shell 
thickness 
(mm) 

Coturnix 
coturnix 

9.60 17 0.47±0.06  14.40 170 3026 0.15±0.00 

Gallus Gallus 
domesticus 

60 21 1.47±0.21 343 3.10 350 12000 0.34±0.01 

For quail embryos Instead, SR was 257 ± 68% and bantam chicken eggshells were 

used as surrogate shells- which has twice the thickness of quail eggshell (Table 4-4) and 

survival was only 5%. Bantam eggshells are different from quail in physical properties 

(Table 4-4). The egg yolk floats on to the egg white and blastoderm remains at the top 

being the lightest. If SR is higher, as was the case of quail embryo in large surrogate 

shell taken from chicken eggs, the egg yolk does not float on egg white, rather 

becomes flat. Figure 4.16 shows the computer simulation of quail embryo in chicken 

shell (b) and bantam embryo in Broiler eggshell (c). It was obvious from the experiment 

results that such case never led to hatching and nearly half of the embryos died in first 

week. In such cases of SR ≥ 191%, only 9 % quail embryos managed to survive until 

ID16. With SR 162-190 %, only 17 % quail embryos hatched. However, among the 

quail hatchlings, only 20% were normal; rest 80% embryos had congenital 

malformations- split leg deformity (Figure 4.17).  
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    a           b                                               c                               d 

 

Figure 4.16: The effect of the large surrogate-shell on the developing embryo in 
open culture. 

(a-b) Avian embryos after internal pipping: (a) quail embryo in a surrogate shell (SR ≈400%) at ID 16, (b) 
chicken embryo in a surrogate shell (SR ≈120%) at ID20. (c-d) Computer simulation of the effect of SR on 
open culture system. Note that the egg yolk is not round, rather became oval and flat in large surrogate 
shell (c) which was the case of quail embryo with surrogate shell from chicken egg (a). At later 
developmental stage, the embryo grows flat with incomplete development of CAM due to relatively large 
and flat surface. CAM formed double layer due to huge open surface which is evident by crisscross 
pattern (arrow) of CAM blood vessels in image (a). This was perhaps one of the reasons behind the 
maldevelopment of quail hatchlings in such system. This may have caused the incoherent growth of 
muscles and ligaments to the bone caused the maldeveloped limbs (Figure 4.17, Figure 4.18). (b, d) 
Chicken embryo in relatively smaller surrogate shell (SR ≈120%) grew normally with normal CAM 
formation and hatchlings were also normal. 

This hatching rate and congenital malformation can not be generally in explained 

in terms of SR, since the culture conditions were not same for quail and chicken. 

However, the congenital malformation can be correlated with large SR (a-b in Figure 

4.16). Normally the egg is full with the contents except for the blunt pole, and the 

embryo gradually attains the flexed posture following the curvature inside the eggshell 

(c-d in Figure 4.16). In open culture with large SR, the embryo develops relatively flat 

and legs are relatively extended. Perhaps the incoherent growth of muscles and 

ligaments in relation to bones is the reason behind such congenital malformations 

(Figure 4.17, Figure 4.18). 

4.8.3 Congenital malformations: split leg deformity 

As mentioned in section 4.8.2 of the current chapter, split leg type of congenital 

malformation were observed in the hatchlings where the SR was larger. In general, SR is 

an important factor that influence the hatching rate and the health of the hatchlings. 

Quail hatchlings born in such systems with large SR had split leg deformity, which is 

marked by the inability of the hatchlings to stand on the feet.  
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Figure 4.17: Congenital malformations, split legs.  

Effect of too large surrogate shell on the embryo; hatchlings were born with congenital malformation of 
the legs (black arrow). They are not able to stand up on the feet. The left embryo is normal which was 
cultured in open system with SR 175%. 

As described earlier, normally embryos develop in flexed posture tightly packed 

inside the shell. As the embryo grows, it gradually attains the flexed posture in its final 

position inside the curvature of the egg. This flex posture probably helps to develop the 

muscle and tendons coherently with the bone in the flexor and extensor surfaces. In 

surrogate shell with larger SR offers plenty of room for the developing embryo, which 

disturbs this flex posture (Figure 4.16) and perhaps the cause of incoherent growth of 

different groups of muscles and tendons that may have caused the deformity. Although 

this hypothesis could not be generalised because of different influential parameters in 

different experiments like different surrogate shell, SR, different species; but generally it 

can be concluded that if the SR is too large (SR>209), there were no hatching; if 

intermediate (209-183 %), the hatchlings had maldevelopment of both the legs (split 

leg, Figure 4.17). However, if the SR is somewhat smaller (133.4%), they had 

maldevelopment of single leg (Figure 4.18) and most often in the right leg.  

The probable explanation for right leg deformity could be explained by the normal 

developmental posture of the avian embryo. Normally the head of the embryo is 

oriented towards the blunt pole containing the air cavity (in surrogate shell towards the 

opening) lies on its left (Figure 4.16). In general, if the SR of the surrogate shells lies in 

the border zone (155 %), the right leg develops relatively in extended posture; left leg 

remains flexed under the head (d in Figure 4.16) and is probably the cause of mal-

development. In such cases, the malformation was treated by immobilization for for 24 

hrs with spica (Figure 4.18). 
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Figure 4.18: Congenital malformations (abduction deformity) of the limb and management.  

In case of relatively smaller SR than in Figure 4.17, hatchlings had deformity in the right limb.  Hatchling in 
image (a) had abduction deformity of the right lower limb. The deformity was treated with spica. The 
hatchling was put back into a larger shell for 24 hours for immobilization. (d) Same hatchling at day 5. 

4.8.4 Congenital malformations: non-internalization of the yolk 

 a         b                                                                                                  c 

 

Figure 4.19: Congenital malformation: non-internalization of the yolk. 

(a) Hatchlings (White Leghorn) with non-internalised yolk; (b) management; (c) same chick one month 
post management. 

Non-internalization of the remains of the egg yolk is one of the common 

congenital malformations encountered during the avian embryo culture in open system. 

The egg yolk supplies the nutrition for the developing embryo. With the onset of 

pulmonary respiration the remains of the egg yolk is drawn inside the body cavity as the 

embryo prepares for hatching after internal pipping (around ID19/20 for chicken, 

ID16/17 for quail). These remains of the egg yolk supplies the nutrition for the 

hatchlings for the first two days of life post-hatching. Precocial species learn to find food 

by that time (altricial hatchlings are fed by their parents).  

In case, the yolk is non-internalized and the remains are small, it was pushed inside 

the abdomen using a sterile cotton bud adopting sterile techniques  and secured in 

position by surgical adhesive tapes (Figure 4.19). If the external part of the non-

internalised yolk is too large to push in, it can even be ligated using a sterile thread and 

removed after cutting with a sterile scissor taking care not to trap intestinal loops or 

large blood vessels in the ligature.  
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4.8.5 Absorption of Ca2+ from the shell 

1-day-old chicks contain 26 mg of calcium, while both yolk and albumin contain 

only 6.4 mg. Therefore, during embryogenesis, it is estimated that this difference (19.5 

mg of Ca2+) is mobilized from the eggshell and accumulated in the embryo 80. The CAM 

functions not only as a respiratory epithelium for the embryo 210 but also a mediator for 

asing of calcium from the eggshell and transport of calcium to the embryo for use in 

skeletogenesis 246, 247. The transport of calcium involves a calcium-ATPase and a calcium 

binding protein and probably occurs via compartmentalization of calcium while it 

traverses the cytosol of capillary covering cells, the specific cell type that presumably is 

responsible for calcium transport 4, 5, 345-347.  

    

a                        b        c 

 

Figure 4.20: Calcium absorption from the surrogate shell in open system. 

 (a) A quail embryo with CAM after internal pipping (ID 15); (b) surrogate shell with extraembryonic 
membrane after removal of the dead embryo at ID 17; (c) trans-illumination imaging of the shell shows 
the area of the shell has become thin at the location of CAM due to Ca2+ mobilisation.  

The CAM synthesizes receptors for the vitamin D hormone (1,25-

dihydroxycholecalciferol or 1,25(OH)2D3), and the hormone from precursors 
59, 79, 80, 226, 228-

230, 263. Moreover, embryos (domestic fowl and Japanese quail) that are functionally 

deficient in 1,25(OH)2D3 are hypocalcaemic, calcium deficient, rachitic, and do not hatch 
77, 78, 80, 121, 122, 127, 228, 231, 232, 322. This Calcium resorption from the eggshell makes it 

gradually thin and it plays an important role in water loss and gas exchange through the 

egg shell which match exactly with the growing O2. As the eggshell becomes thinner 

gradually at the later stage of incubation, evaporation of water and gas exchange also 

increases gradually. This Ca2+ absorption can also be observed in surrogate eggshell 

where the shell underlying the CAM becomes thin (Figure 4.20).  
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4.8.6 Gas exchange through the eggshell 

During the 21 days of incubation, the chicken embryo takes in ≈ 6 l of O2 and 

eliminates 4.5 l of CO2. For the majority of this time gas exchange takes place between 

the nest/incubator air and the blood capillaries in the CAM by diffusion across the shell 

and its associated shell membranes. O2 consumption via the CAM increases 

exponentially as the embryo develops, but the diffusive process is inadequate to provide 

the energy required for hatching (Figure 4.1). The transition from diffusive gas transport 

via the CAM to convective transport via the lungs is accomplished within ≈24 hrs. O2 

consumption rises again when the chick chips the shell (external pipping) and continues 

to rise throughout hatching 43.  

The increased embryonic demand for O2 as incubation progresses leads to 

progressive changes in the blood. Although during the latter half of incubation the 

haemoglobin concentration in the red blood cells remains unchanged the total amount 

of haemoglobin in the blood increases due to an increase in the number of red cells. As 

a result, there is a change in oxygen capacity of the blood from about 8 cm3/100 ml at 

ID 10, to about 13 cm3/100 ml at ID 18 329. The oxygen affinity of the blood also 

increases due to falling concentrations of intra-erythrocytic ATP 214. This results in CAM 

blood remaining 85-90% saturated with oxygen despite the decreasing air cell gas 

tension 329. The barrier to gaseous exchange between the inner shell membrane and the 

capillary lumen also decreases because both the blood flow through the CAM and the 

capillary volume increase. The vascular bed of the CAM is supplied with blood by the 

allantoic artery, which forms a single stem as it leaves the embryo’s body via the 

allantoic stalk. This stem divides into the right and left branches while passing on to the 

CAM.  

4.8.7 Bacterial contamination in the open system 

Bacterial contamination is one of the problems encountered during later half of 

incubation in the open culture system. The whole procedure was performed inside 

Laminar flow cabinet using all sterile materials adopting sterile procedures as far as 

possible. In addition, antibiotics (P/S) were also added to the culture system (1 ml for 

chicken ≈70 g donor egg, 0.2 ml for quail ≈14 g donor egg) during embryo transfer 

process. Even though, in many cases the culture system was contaminated with bacteria 
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from middle of the second week of incubation. The egg white appears milky in the 

contaminated culture (Figure 4.21).  

  

a        b 

 

Figure 4.21: Bacterial contamination in the open system. 

(a) Milky appearance of allantoic fluid of a chicken embryo in open culture at ID 16, (b) contaminated 
embryo after treatment with antibiotics at ID 18. 

Though some embryos managed to hatch from the contaminated culture, most of 

them died before reaching the full maturity. One probable reason behind bacterial 

contamination could be the embryo transfer method using cling film descrived by 

Rowlett and Simkiss 288 (Figure 4.4). It was not possible to sterilize the cling film. Couple 

of turns of cling film from the role was discarded and the rest was used for experiments. 

Since the embryo along with the egg white comes in direct contact with the cling film 

during embryo transfer, the chance of contamination from the cling film is much higher. 

The quail embryo transfer was performed with sterile weighing boats, and there was no 

contamination in quail embryo culture.  

In such contaminated cases, antibiotics (P/S) were added to the allantoic fluid. For 

chicken embryos, 1ml of P/S (0.2 ml for quail embryo) was taken in a sterile disposable 

syringe with a long needle and the needle was pushed into allantoic fluid through the 

double-layered cling film and the CAM avoiding large blood vessels. The antibiotics were 

injected underneath into allantoic fluid. The opening in the cling film was sealed with 

transparent adhesive tapes. Later the fluid became clear again indicating the 

functionality of the antibiotics (image b in Figure 4.21) and embryo managed to hatch in 

most of the cases. 
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Figure 4.22: 2 days old chicken hatchlings cultured in the surrogate shell explanation culture. 

4.8.8 Egg turning 

Most avian eggs need to be turned during incubation for normal embryonic 

development. The hatch rate decreases when eggs are not turned. Periodic turning of 

eggs is necessary for the complete achievement of normal development 400. The 

unturned eggs showed regionally different decreases in the width of limiting 

membranes during embryonic development, it being delayed on the lower side of the 

eggs. Egg turning may affect other important factors involved in the production of 

chicks.  Failure to turn eggs resulted in retarded development of the area vasculosa and 

extra-embryonic membranes, retarded embryonic growth, and reduced oxygen uptake 

and albumen absorption. Lack of egg turning results in poor chick hatching rate and 

delays the hatch for a few days. Reported explanations of increased mortality in 

unturned eggs are the embryos or extraembryonic membranes adhere prematurely to 

the shell membranes 236, the embryos fail to stimulate growth of the area vasculosa 66 or 

the embryos fail to line the entire interior of the shell membranes with the CAM.  

However, the hatch rate of unturned eggs with perfectly developed CAM is lower than 

that of turned eggs. The limiting membrane is made thin during the development over 

the whole surface with egg-turning, possibly through digestion of still unknown agents, 

and this thinning accelerates the rate of water permeation through the membrane.  
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The permeation of air through the eggshell and the shell membrane is another 

parameter that affects the hatchability 353. The CAM structures are deeply engaged in 

calcium uptake from the egg shell, gas exchange, and egg-white resorption, thus 

sustaining the growth of the embryo and its normal hatch 55, 56, 75, 126, 227, 328, 345, 349, 350. 

Ability of the CAM to spread around the inner surface of the shell membrane affects the 

growth of the embryo and that turning is especially important for embryonic 

development 354. The thinning of the limiting membrane occurs in accordance with the 

development of the CAM and the thinning makes it easier for calcium and gases to 

enter or leave the CAM. Therefore, it is important that avian eggs should be turned for 

the limiting membrane of embryos to obtain enough thinned surface area to ensure a 

higher hatching rate 400.  

4.8.9 Humidity and water loss from the egg 

Water is important in the development of avian eggs that are laid on land. A 

certain amount of water must be around embryos to protect them from drying out at an 

early stage of development. Conversely, at a later stage of development, the drying of 

embryos is necessary for the embryos to initiate air breathing and adapt to living on land 

and to open the cloacal membrane 22, 267. The eggshell and shell membrane may 

regulate evaporation of water from eggs. About 10 to 11% of the water is lost through 

these envelopes in domestic fowl eggs during the incubation period 354. However, water 

vapor conductance of the eggshell (probably with shell membrane) is unrelated to the 

increased mortality of unturned eggs 354.  

The main body of the shell membrane is made up of roughly parallel, intertwining 

fibers. The inner surface of the membrane is coated with a thin sub-layer called the 

limiting membrane or inner lining 128. This layer is possibly composed of the same 

material as the cortex of the fibers 26 and may be important in directing the growth of 

the CAM during embryogenesis 42. It may be the limiting membrane that retains the 

water and albumen because the spacing (8.0 µm × 37.5 µm) 25; of the meshwork of the 

main body are large enough for water to pass through. During early stages of 

incubation, water might be kept inside the shell membrane by the limiting membrane in 

association with a colloid osmotic effect of the albumen.  
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Table 4-5: Water loss from avian eggs 282 

Fresh egg Hatchling 

Mass (g) Water content (%) Mass (g) Water content (%) 

60 73.6 40 72.5 

However, at later stages of incubation, it is absolutely necessary for water to move 

smoothly into and out of the space between the limiting membrane and the eggshell. 

About 80% of the calcium in the chick is obtained from the eggshell 143, 242, 305 and water 

is indispensable in the mobilization of calcium from the eggshell. Water permeability 

through the shell membrane increased at these stages in accordance with the decrease 

in the width of limiting membranes.  

  
Figure 4.23: A dead quail embryo at ID 17 open system.  

Note the embryo had internally pipped and dried in spite of 60% humidity inside the incubator. 

However the incubation of quail embryos according to the incubation protocol 

used for chicken embryo in surrogate shell resulted in drought of the embryo (Figure 

4.23). To prevent the drought, the humidity of the incubator was increased to 80% at 

ID14. Most of the scientific literatures in this regard are concerning chicken embryos and 

perhaps the water loss through the surrogate egg shell containing the quail embryo is 

different than chicken embryo. 
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4.9 Outlook 

From a technical and biotechnical outlook, the eggshell is a sophisticated, highly 

developed, automated, dynamic culture system, which changes the boundary conditions 

permanently in accordance with the changing need of the developing embryo. In vitro 

culture of cells, in contrast is more static system where the boundary conditions are 

constant all the time; which is also reflected by the outcome of the system- cells divide 

and grow in a monolayer but remains as cells, much like microorganisms.  

The zygote starts to develop soon after fertilization and as it comes down the 

oviduct, wrapped in egg white putting the cells at the liquid│liquid interface of two 

immiscible fluid- the egg white and egg yolk. Finally, the egg contents are packed with 

shell membrane and eggshell in CO2 rich environment, which is essential for the cell in 

early days of embryogenesis. The cell division stops after the egg is laied due to cooling 

down. Even though porous, the egg is less permeable to gas at this early stage. It is able 

to maintain osmotic gradient at this stage even after drowning into water. With 

favourable temperature, the cell division resumes and the shell change its property 

gradually, synchronously and permanently with the growing demand of the growing 

embryo. At the end of incubation, the embryo consumes everything and strong enough 

to break the hard calcareous shell alone. 

The experimental investigations in this chapter explored a spectacular method for 

observation of the vital processes during embryogenesis. The open system needs further 

modifications to make feasible for imaging methods, which will be emphasized in the 

next sections of this thesis. Technical modification of the open system consisting of 

bantam chicken embryo in broiler surrogate shell will enable to apply different imaging 

methods in ovo without interrupting the normal embryonic growth and development. 

Since optical imaging methods allow only imaging the optically transparent probes and 

only imaging at the surface, it is necessary to apply other imaging methods like µMRI in 

combination with long distance microscopes coupled with fibre optics to allow 

simultaneous imaging with optical microscope and µMRI. 
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5 Technical modifications of the open system 
for in vivo optical imaging and other 
methods  

5.1 Summary 

Objective: The overall all aim of the thesis was to make stepwise modification of the 

avian egg and develop a complete artificial egg system for in vitro culture of cells at the 

liquid│liquid interface imitating the same natural principle at the end. High resolution 

imaging play a very important role in studying the cellular behaviour in vivo to reveal the 

secret behind the organised cell migration, differentiation, tissue formation and 

formation of a complete viable organism at the end which is not possible in vitro. The 

main purpose of the experiments in this chapter was to make stepwise technical 

modifications of the open culture system and adapt for high-resolution optical imaging 

at the cellular level. Hatching of a viable bird was regarded as the parameter to asses the 

functionality of the modified system. Other methods of observations other then optical 

and characterization of the vital process of embryonic development were also 

considered; like recording of bioelectric signals and impedance measurement with the 

implantation of flexible electrode.  

Methods: A combination of technical modification of the surrogate shell open culture 

system for better illumination and microscopy, construction of long distance 

fluorescence micro-imaging system, suitable cell manipulation system for in ovo 

application was developed and employed for addition/removal of cells to/from the 

culture system and monitoring them at cellular level. In addition, special flexible 

electrodes were constructed for in ovo application to measure the bioelectric signals 

from the developing embryo and characterise the embryonic development with 

impedance measurement. 

Results: It was possible to make optical imaging of the developing chicken embryo from 

beginning of incubation until hatching with a very high resolution. The constructed 

micromanipulation system enabled injection of fluorescents labelled cells in the system 

at a desired location, which can be used for further experiments designed to follow the 
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fate of the injected fluorescence labelled cells during embryonic development without 

disturbing the embryo, which is normally done by histological methods.  

Conclusions: The constructed system along with the modified surrogate shell open 

system can be used to study the organised cellular migration, cell differentiation, tissue 

formation non-invasively at least in the early stage of embryonic development when the 

embryo is relatively transparent. Application of such a system in the field of stem cell 

research, as well as for the embryology might provide a clue to the linage specific cell 

differentiation during embryogenesis. It may help to remove drawbacks of traditional 

cell culture methods, for better understanding of the process and the environment of 

the stem cell differentiation and tissue formation during embryogenesis in vivo. In 

addition, characterization of the whole process of embryonic development with 

impedance measurement with implanted flexible electrode array can bring additional 

valuable information to the existing field. 
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5.2 Materials required for the technical modifications of the open 
system 

Equipments       Manufacturer     

CCD Camera      Sony corporation, Japan 
Filter       Edmund Optics, Karlsruhe 
Thermocouple      Omega engineering, Deckenpfronn 
Impedance analyzer      solatron Analytical, Farnborough, UK 
Infrared camera     Jenoptik, Dresden 
InfinityTubeTM stand in-Line assemblyTM   Infinity, USA 
LED       Avago Technologies 
Linear stage       OWIS, Germany 
Manual micromanipulator     World precision instruments, USA 
Rotary Measuring Stages    OWIS, Germany 
Top-Profi 240 egg incubator    Hemel Brutgeräte, Germany 
Ultra long working distance objective    Mitutoyo corporation, Japan 
8 channels thermocouple input module  Omega engineering, Deckenpfronn 

Chemicals      Manufacturer     

Amphotericin B (250 µg/ml)    Fisher Scientific, USA 
Bacillol AF disinfections solution   Bode Chemie, Hamburg 
Calcium L-lactate hydrate     Sigma-Aldrich GmbH, Germany 
Fluoresceindiacetate (FDA)    Invitrogen, Karlsruhe 
Hypochloride solution (200-500 ppm)    VWR International GmbH 
PBS        Invitrogen, Karlsruhe 
P/S Penicillin/ Streptomycin    Invitrogen Corporation, USA 
Silicone adhesive     NuSil Technology, USA 
100% ethyl alcohol     Merck, Darmstadt 

Biological agents     Manufacturer/supplier   

Fertilised bantam chicken eggs     Anita Nefzger, Leutershausen 
Fertilised White Leghorn chicken eggs   LSL Lohmann Tierzucht GmbH. Cuxhaven 
Unfertilised broiler eggs    Glückliche Eier, Saarbrücken 
L929 Mouse fibroblast cells    DSMZ, Braunschweig 

Accessories      Manufacturer/supplier   

Gold wire      Alfa Aesar GmbH, Karlsruhe 
ITO glass       Präzisions Glas & Optik, Germany 

Computer Software     Developer     

IRBIS V2.2      Jenoptik, Dresden  
LabVIEW      National Instruments, USA 
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5.3 Optimization of the open system for optical imaging 

5.3.1 Background 

Optical imaging is an extremely sensitive technique that can detect a single 

molecule using fluorescence techniques. It is usually performed in two modes: simple 

transmission absorption imaging and fluorescence imaging. In simple transmission 

absorption imaging, either transmitted or reflected light is used with tissue or optical 

probes, providing differential absorption to generate useful tissue contrast. Fluorescent 

imaging is performed by irradiating the tissue with a frequency of light higher than the 

emission fluorescence from intrinsic or extrinsic probes under investigation. Fluorescence 

imaging is the most sensitive approach, and it has gained great interest with the 

development of genetically encoded highly efficient fluorescent probes based on green 

fluorescence protein. The major limitation of light is the high absorption and scattering 

that occur in biological tissues and limit the penetration of the light through the body. 

Time-lapse microscopy has long been used to capture the dynamic nature of 

embryogenesis. Optically transparent embryos of animals such as Caenorhabditis 

elegans 321, sea urchin,86, 110 and fish e.g. fundulus 342 or zebra fish 158, are well suited to 

studies of cell and tissue movement by time-lapse imaging using transmitted light (e.g. 

differential interference contrast 48 and various fluorescence microscopes. Fluorescent 

time-lapse microscopy has allowed the dynamic behaviours of labelled single cells or 

subpopulations of cells to be tracked in vivo. Of course, light cannot penetrate the hard 

shell, but can be applied in open systems. Since the embryo remains optically translucent 

in early stage of development, optical imaging with long distance objectives in 

conjunction with fluoresces can provide valuable information at or near cellular level. 

Table 5-1: Effective permeability of cling film types used as covering materials in 
surrogate eggshell culture systems II and III 34 

  Effective permeability (a) 

 Thickness(µm) O2 CO2 H2O (b) 

Saran Wrap 500 3.0 19.96 0.90 

Handi Wrap 500 1600 7920 4.0 

(a) Effective permeability = permeability [in mL/100 in (a) per 24 h/atm]. 

(b) Effective permeability to water vapour = permeability (in g/100 in (a) per 24 h/atm). 
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The open system of the avian embryo culture was originally constructed with 

chicken eggshell covered with double layer of cling film (from Lakeland, UK). The optical 

properties of the cling film is not very good for imaging. Furthermore, double layer of 

cling film make it even worse with trapped air in between the layers. Although the cling 

film is permeable to water vapour (Table 5-1), water condenses underneath the film 

cover giving the film foggy appearance which interrupts optical imaging. Gradually 

water droplets appear as the embryo grows. It was necessary to replace the cling film 

cover of the surrogate shell culture having materials with better optical properties. As 

discussed in Chapter 4, the explanation culture of chicken embryos in surrogate shell is 

an established routine procedure used for the production of transgenic birds. As the 

established system is functioning well, serving the purpose for transgenic bird 

poduction, there is not much attention to this issue. Since this method was designed for 

explantation culture, not for imaging and other types of experiments, scientific 

literatures are also not available in this field.   

There are scientific literatures available regarding the permeability of the cling film 

to water vapor (Table 5-1). But an important question remained unanswered, “whether 

this permeability is necessary for the embryo survival or not”. What happens if a 

material non-permeable to water vapor is used as a covering lid of the surrogate shell 

explantation culture? Because in the course of embryonic development, water is 

gradually evaporated from the egg and it is necessary for normal embryonic growth and 

development; especially at the later stage of the development, when CAM absorbs Ca2+ 

from the egg shell. Evaporation of water through the egg shell plays an important role 

at that time. All these issues were considered during the construction of the new 

covering lid for the surrogate shell.  

5.3.2 Optimization of the covering lid for better optical imaging 

The cling film cover was replaced with different material with better optical 

properties. This includes poly (methyl methacrylate) (PMMA) (Plexiglas), glass, and 

polycarbonate. Since the open system is rocked only to an angle of 30° during 

incubation, the upper part of the shell close to the opening is not exposed to the CAM. 

That was the reason behind the nonconsideration of biocompatibility of the cover 

material. After different trial, Plexiglas window with a groove filled with medical grade 

silicone was found to be feasible and finalized (Figure 5.1). 
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a                      b 

 
Figure 5.1:  New lid constructions for the open avian embryo culture system. 

(a) PMMA lid with silicone adhesive, (b) PMMA lid with silicone adhesive containing double glass window 
(black arrow) and tubing for warm air circulation (white arrow). (c) Chicken embryo at ID 5 in an open 
culture system with Plexiglas covers. 

Plexiglas has very good optical transmission and it is suitable for optical imaging 

methods. Filling the groove on the side of the Plexiglas lid with a sticky medical grade 

silicone (NuSil Technology, USA) enabled placement of the lid without further 

preparations. It eased the whole embryo culture procedure where tedious process of 

placement, gluing, trimming and fixation of cling film could be avoided. The same cover 

could be reused after sterilization with 100% ethyl alcohol. After degradation, old 

silicone can be replaced with new one and is ready for use. It reduced the total time for 

the experiment and eased the process of preparation of large number of samples. 

Besides, both of the materials used in the construction of the lid are also biocompatible. 

The surrogate shell was opened with a fine diamond cutter and the new lid could be use 

as a cover like the cap of a glass container, which is easy to open and close.  

Functionality and durability of the constructed lid was checked in terms of the 

hatchability of cultured chicken embryos. The chicken embryo explanted into a 

surrogate shell was closed with new Plexiglas lid and cultured until hatching (for shell 

measurement, look Chapter 4). The hatching of viable bird was regarded as the 

parameter to test the functionality and durability of the system. Figure 5.2 shows the 

results of the of the bantam chicken embryo cultured in the new system where ≈77% 

of the birds developed normally and came to the stage of hatching which was identical 

to the cling film system (67%).  

These results indicate that the evaporation through the cling film had no 

significant effect on the hatching of the chicken embryo. The evaporation through the 

shell was sufficient to maintain the normal embryonic growth and development. 
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Figure 5.2: Viability of the chicken embryo in open system with Plexiglas lid and cling film.  

≈77% of the embryos developed till hatching in open system with new constructed lid in contrast to 67% 
hatching rate with control. (N: Control =36, Plexiglas lid = 30). 

5.3.2.1 Condensation underneath the covering lid 

 The open system was incubated inside a forced air incubator with active humidity 

control (Top-Profi 240). Chicken embryos develop their own mechanism of 

thermoregulation as they grow (they pass through a transitional stages from 

poikilothermy to homeothermy in precocial species of birds). In the early days of 

embryonic development they are not able maintain their own body temperature. 

Nevertheless, with the gradual development of thermoregulation, embryos develop their 

core body temperature, which is higher than the incubation temperature. An incubating 

bird uses the brood patch (a bare patch of skin that develops on the breast of many 

incubating birds) to keep its eggs at a temperature appropriate for incubation. Because 

an incubated egg is warmed only at one surface, it is rarely uniform in temperature. 

Temperature in the centre of the egg, or on the egg surface antipodal to the brood 

patch, are always cooler than the brood patch temperature (incubating bird sometimes 

use the brood patch to keep the egg cold in a very hot environment) 355. The shell 

temperature (skin temperature) of the animal is at least 1-2 °C lower than core 

temperature 276 which means that the eggs are incubated at a lower temperature than 

the core temperature of the adult animal.  

With the development of the embryo thermoregulation a thermal gradient 

develops across the optical window (inside warmer than outside) and therefore water 

vapour begins to condense at the inner surface of the window.  
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Figure 5.3: Gradual appearance of condensation with the growth of the quail embryo. 

(a) ID 13, (b) ID 15, (c) ID 17, (d) ID 19. Note water droplet appears gradually with the development of the 
embryo. 

5.3.3 Measurement of the thermal development of the chicken embryos 

Although, the temperature of the egg content outside the embryo do not 

correspond to the actual core temperature of the developing embryo (at least in the 

later half of incubation), but thermal measurement of the fluid surrounding the embryo 

(egg white and later allantoic fluid) may give a clue to the thermal status of the 

developing embryo. In the incubator, the temperature is more homogenous. To 

investigate the reason behind condensation, thermal measurement of the developing 

chicken embryo was carried out. 

5.3.3.1 Infrared thermography of the open system  

Infrared thermography allows measuring the heat radiation from the surface. It is a 

very sensitive method to distinguish among the thermal radiation from the different 

point of a surface. Visible light cameras image in the 450–750 nm range of the radiation 

spectrum, Infrared cameras operate in wavelengths as long as 14 µm Instead.  

The thermal imaging of the open system was performed to find out the thermal 

development. Thermal imaging was performed with a “VARIOSCAN 3021-ST” Infrared 

camera (from Jenoptik, Dresden, Germany). It had a Temperature resolution of ±0.03° 

measured @ 30 °C. Image analysis was performed with IRBIS V2.2 software provided 

with the system. Since thermographic cameras image the infrared radiation from the 

surface, thermal imaging of the developing embryo was not possible through the 

calcareous shell or the opening covered with lid.  

Figure 5.4 shows the thermal image of the developing chicken embryos in open 

system at ID 15. In image (a), developing embryos show higher temperature than the 

control. In the zoomed image of the 15-day-old embryo in surrogate shell (b) and 
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control (c) shows the thermal difference between them and it is evident from the 

thermal image that living embryos have higher temperature than controls. During this 

experiment, the incubator door was opened, and time was allowed for thermal 

equilibrium. During this brief period, the control (unfertilised eggs) lost the heat but the 

embryos maintained. This indicates that at this stage of development, the embryos have 

developed their own thermoregulation. 
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Figure 5.4: Thermal imaging of developing chicken embryos. 

(a-c) Thermal imaging of the developing chicken embryo in open culture at ID 15 taken with a 
“VARIOSCAN 3021-ST” Infrared camera (from Jenoptik, Dresden, Germany). At this stage of 
development, embryos develop their own thermoregulation and they have a higher temperature than the 
incubation temperature. Four unfertilised eggs were place beside the growing embryos as control [black 
arrow head in image (a, d)]. Note in image (a), developing embryos show higher temperature [asterisks in 
image (a, d)] than the control (arrowhead). In thermal image of the control, the air cells (black arrow) are 
also visible as areas with low temperature. In the zoomed image of the developing embryo (b) and control 
(c) show that the developing embryo has at least 1 °C higher temperature than the control. In the thermal 
image of the embryo, the upper part of the shell shows lower temperature than the lower part because 
the CAM is not covering the inner surface of the surrogate shell completely, which can be seen in optical 
image (d) taken in the same position as the image (a) for comparison. All images were taken in the same 
scale. 

To reveal the causebehind the condensation further, thermal development of the 

developing chicken embryo was carried out with thermocouple implantated inside 

fertilised chicken eggs. 
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5.3.3.2 Thermal measurement of the developing chicken embryos with 
thermocouple 

   
Thermocouple wires were electrically insulated with a thin film of medical grade 

silicone (NuSil Technology, USA) and dried before the experiment. Butt-Welded 

Unsheathed Fine-Gauge Copper- Constantan thermocouple (Omega engineering) was 

connected to an “OMR-6018” 8 channels thermocouple input module (from Omega 

Engineering, Inc) and interfaced with the computer via RS-485 port. Custom written 

software in LabVIEW 8.5 was used for data acquisition (written by Dr. Robert Johan, 

“department of Ultrasound”, Fraunhofer IBMT). Thermal measurements were plotted in 

a graph once every hour from the begining of incubation to external pipping (day 21 of 

incubation).  

Implantation of the thermocouple into fertilised chicken eggs 

Thermocouple implantation site was selected at the middle of the egg. Eggshell 

was ground off with a fine diamond-grinding tool leaving the shell membrane intact. 

The egg was rinsed with distilled water to remove grinded shell powder and wiped with 

a paper towel to dry. Previously prepared Silicone coated Fine-Gauge Copper-

Constantan thermocouple was slowly implanted into the egg and surrogate shell. The 

opening was sealed with a small piece of sticky tape and the thermocouple implanted 

eggs were incubated further. The thermocouple was connected to the measuring 

system. Measurement was started nearly one hour later to allow the stabilization of the 

eggs in the incubator temperature. One thermocouple was placed inside the incubator 

for reference measurement. Figure 5.5 shows the image of experimental setup for 

thermal measurement with thermocouple.  

Results of the thermal measurement of the developing chicken embryo 
measured with thermocouple 

Figure 5.6 shows the results of the thermal measurement of the developing avian 

embryo during the whole period of avian embryogenesis measured with implanted 

thermocouple.  

 



Technical modification of the open system for in vivo optical imaging and other methods 

S. Haque (2010) Ph.D. Thesis 131 

 
Figure 5.5: Experimental setup for the thermal measurement of developing chicken embryo 
with the sthermocouple.  

Measurement of allantoic fluid temperature as an index of deep body temperature of developing 
chicken embryo. Copper-constantan thermocouple was placed inside the open system of the avian 
culture, which was in closed contact with the developing embryo 

Note that the temperature of both developed and nondeveloped eggs remains 

nearly half a degree Celsius lower than the incubation temperature. Temperature of the 

developed egg starts to rise at around ID 12 and a thermal gradient of 1-2 °C develops 

gradually across the covering lid with colder outside than inside of the egg. This 

temperature gradient across the lid is the cause of water condensation underneath the 

lid. Temperature of the nondeveloped eggs remains the same throughout the whole 

period. 
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Figure 5.6: Thermal measurement of developing chicken embryo. 

From the graph, it is clear that a difference in temperature develops between the embryo and the 
incubator in the second half of the embryonic development. Note the temperature rise of the developing 
embryo on ID 12. 
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With further growth of the embryo and persisting thermal gradients, condensation 

become intense and imaging becomes difficult. At a later stage, water droplets begin to 

appear. It was necessary to develop a special lid to remove the condensation quickly. 

This water vapour condensation interrupts imaging not only in the later stage of 

incubation, but also in the early days when opening the incubator door for short period 

create foggy condensation underneath the lid which takes long period to evaporate. 

5.3.3.3 Removal of condensation: Resistive heating with Indium-Tin-Oxide (ITO) 
coated glass cover 

In the early days of incubation, the condensation takes considerable time until it 

evaporates (nearly half an hour) when the temperature equalizes inside the incubator. 

However, for that latent period taken for evaporation of the condensed water, the 

imaging was not possible. In the later half of incubation, with persistent thermal 

gradient, condensation increases.  

To solve the problem of condensation, different approach has been tried. Which 

include antistatic optical spray on Plexiglas window, Plexiglas ring with double glass 

plate on top and bottom, warm airflow between two glass plates, resistive heating with 

electro-conductive glass plate and others (Figure 5.7).  

                                                          

 

a                                                                b             c 

 
Figure 5.7: Different lid construction for the removal of condensation. 

(a) Plexiglas lid with double glass window with possibility of warm air flow between the layers; (b) 
Plexiglas ring with double glass plate on top and bottom; (c) Plexiglas lid with silicone. Image (b) and (c) 
shows the effect of condensation under different types of lid construction at 14 day old embryo. Mark In 
image (b) (double glass window), condensation is less than normal Plexiglas lid (c), but not good enough 
for imaging. 

Among all trials, warm airflow between double glass plates and resistive heating 

with electro-conductive glass plate found to be effective. Warm airflow requires extra 

set up, which is time consuming and with many samples together make the whole 
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procedure complicated. On the contrary, resistive heating with electro-conductive glass 

plate was effective and easy to use, quick to setup and temperature regulation is also 

simple. 

ITO coated CEC020S glass was used as optical window (from Präzisions Glas & 

Optik GmbH, Germany). The glass was 1 mm thick, electrical resistance is 15 Ω/sq. and 

had 100 nm thick coating with ITO. It has very good optical transmission in visual region 

(≈90%). ITO glass was glued on a PMMA ring from the top. The window was heated 

with the flow of 20-40 mA DC current and the temperature was monitored with a 

Pt100 thermal sensor. Temperature was kept between 37.5 °C to 38 °C just to keep the 

lid window free of condensation (Figure 5.8). The upper limit of the heating was limited 

to 39 °C for a short period for avoiding thermal injury to the developing embryo. This 

method was very effective and found to be practical for long term imaging purpose.  

   

a   b 

 

Figure 5.8: Removal of condensation: resistive heating. 

chick embryo in open culture at ID18; (a) before and (b) after heating. Heating was accomplished with the 
flow of 20-40 mA DC current through ITO coated glass. The window temperature is monitored directly 
using a Pt100 thermal sensor mounted on the window (arrow).  

5.4 Construction of a fluorescence microimaging and micro-
manipulation system for manipulation and imaging of cells 
in vivo  

The objective of this part of the current chapter was to construct a fluorescence 

micro-imaging and a micro-manipulation system for in vivo application that may allow 

the addition and removal of fluorescence labelled cells at the liquid│liquid interface of 

the chicken egg and track them in vivo in real time without the need of the histological 

preparation of the sample by secreficing the embryo. Since the embryo remains 
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relatively transparent in early days, the method can observe the cellular migration in vivo 

without disturbing the embryo. 

5.4.1 Considerations for in ovo optical imaging 

The open system is technically modified gradually and optimised for optical 

imaging. The yolk is the lightest part among the egg contents (specific gravity of egg 

yolk is 1.029, thick albumen 1.036 and thin albumen 1.040) 320. The chemical 

composition of the thick and thin albumen is similar 64 but the thick albumen is richer in 

ovomucin which is responsible for the elevated viscosity 319. Moreover, the specific 

gravity of thin albumen is lower than that of the thick albumen and also than that of 

egg yolk. If thin albumen is used, the ovum will float on the culture medium and the 

germinal disc may touch the upper lid. By contrast, if thick albumen is used, the ovum 

may sink into the medium and contact between the germinal disc and the cup that 

served as a lid can be avoided (Chapter 5). Contact of embryos with the solid plastic lid 

may harm their development. During these periods, the differences in the specific 

gravity among the yolk, thick albumen and thin albumen play a very important role in 

the normal development of chicken embryos 320. 

Following embryo transfer, the surrogate shell was filled with thin albumen leaving 

nearly 10 mm free from the brim so that the embryo and the CAM do not touch the 

covering lid during rocking (Figure 5.9). For optimum imaging, good illumination is 

necessary; space is required between objective and the covering lid for illumination for 

reflection imaging.  

Traditional optical imaging methods provide very high-resolution image. However, 

in most of the cases the short working distance of the microscope objectives makes it 

inapplicable for in ovo imaging. In addition, the eggs need to be rocked for optimum 

development of the embryo. Parallel cultivation of multiple embryos and observation at 

the same time requires an automated sample changing and rocking device. On one 

hand the whole system has to be robust and reliable, precise in movement in the range 

of micrometers for imaging at cellular level on the other. The imaging has to be 

performed in micro and macro scale: screening the whole embryo with macro lens to 

find out desired location for microimaging. Continuous illumination may have 

detrimental influence on embryonic development 326. For long-term time lapse imaging, 
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it is therefore necessary to turn on the illumination only during imaging procedure and 

turn off afterwards. Traditional microscopes use incandescent or mercury-vapour lamps 

for illumination. Such lamps produce very intense light, which is than filtered to have 

desired frequency. However, they take quite a while to warm-up for emiting adequate 

intensity of light. It is very difficult to switch on and off such lamps within a short period.  

  

a          b 

 

Figure 5.9: Position of the different contents of avian egg in open system. 

(a) Computer simulation of egg contents (sectional view) shows the blastoderm floating at the top of the 
egg contents; (b) a 4-day-old chicken embryo in an artificial egg showing the developing embryo is 
floating at the top. Inside avian egg, the yolk is kept in position by chalazae, the yolk can rotate with the 
influence of gravitation, and the blastodermis uppermost being the lightest of all. 

5.4.2 Construction of a long distance fluorescence micro-imaging system  

It was difficult to adapt traditional microscopes for in ovo imaging. So for this 

especial purpose, an especial long distance fluorescence microscope was constructed 

with robust programmable microscope rocking stage with computer-controlled 

illumination for in ovo application. All processes were computer controlled and could be 

synchronised with each other.  

Fluorescence micro-imaging system was constructed with an InfinityTubeTM stand 

in-Line assemblyTM standard series (from Infinity Photo-optical company, USA) with 

Mitutoyo 10×, 33.5 mm ultra long working distance objective (M Plan Apo objective 

378-803-2 from Mitutoyo corporation, Japan) with 478-495 nm excitation Filter, 510-

555 nm barrier filter (Blue excitation/Green emission) for green fluorescence imaging. 

Illumination module was made with nine pieces of “ASMT-JB31-NMP01” 3 W each mini 

power LED (from Avago Technologies). LEDs have dominant wavelength of 470 nm, 

Luminous Efficiency is 16 lm/W each. Nine LEDs were soldered on a 20 mm Bread Board 
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which was mounted on a round piece of aluminium with thermal paste in between for 

adequate heat transfer. A Sony “DFW-SX910” Colour Firewire CCD Camera was 

installed into the constructed micro-imaging system. The camera has an output image 

size (Horizontal x Vertical) of 1,280 x 960 pixel (SXGA) and it was interfaced with the 

computer via “IEEE 1394-1995” Digital interface. 

  
Figure 5.10: Fluorescence microimaging and micromanipulation system constructed for in ovo 
application.  

Blue rectangle = constructed long working distance microscope mounted on high-precision linear stage; 
red rectangle = SMS 60 motor controller for controlling the microscope stage and camera auto focus; 
blue arrow = LED illumination; red arrow = micromanipulation system; white arrow = computer controlled 
XY stage for placement of culture systems for imaging; white arrowhead = camera mounted on the 
microscope; inset shows LED illumination module for fluorescence microscopy. In the computer display 
shows the L929 Mouse fibroblast cells (≈20µm size) stained with fluoresceindiacetate (FDA) imaged with 
the constructed system. 

The XY Stage was made with two units of 41.091.036 C high-precision linear 

stage with 210 mm travel, 2-phase step motor and mechanical limit switches (OWIS 

GmbH, Germany) placed one over the other at 90° angle. Egg turning stage was made 

with a DMT 65 Rotary Measuring Stages (OWIS GmbH, Germany) placed on the XY 

stage. The Z-axis was consisted of another 41.091.036 C high-precision linear stage 

placed vertically on the XY stage. The camera was mounted on the Z-axis. A SMS 60 

motor controller (OWIS GmbH, Germany) controlled the whole system. SMS 60 was 
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interfaced with computer via RS232 port. Custom written software in LabVIEW 7.1 was 

used for the stage control, camera auto focus and illumination (written by Leonora 

Petra, from “Ultrasound Department” of Fraunhofer IBMT). The advantage of the 

constructed system was all the processes could be synchronised with the custom written 

software and it was also possible to include necessary features on demand in the 

software to be controlled synchronously as required. 

Results 

The functionality of the constructed long distance fluorescence micro-imaging 

system was checked with imaging L929 Mouse fibroblast cells (≈20µm size) stained with 

fluoresceindiacetate (FDA) (Figure 5.10). Employing the new open system modified for 

optical imaging and the long distance fluorescence micro-imaging system, it was 

possible to image the whole period of the embryonic development of a chick in the 

form of time lapse imaging (Figure and movie 5.11). Still images taken from the time 

lapse video of the complete chicken development was placed in this figure for 

demonstration. It is important to note that the posture of the embryo and image 

contrast changed during the whole period of development due to extensive embryonic 

movement at later phase of development and resuscitation of the embryo during 

hatching. Note the embryo is relatively transparent during the early developmental 

phase that is extremely helpful for the tracking the fluorescence labelled cells injected 

into the embryo. 
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Figure and movie 5.11: Imaging of complete chicken embryo development in technically 
modified open culture system. 

Still images taken from the time lapse video of the complete chicken development is placed in this figure 
for demonstration. 

5.4.3 Construction of a micromanipulation system for in ovo application 

Traditional micromanipulation system was modified for in ovo application. Micro-

manipulation system was constructed with a M3301-M3-R manual micromanipulator & 

tilting base (right-handed) (from World precision instruments) and a CellTram® vario 

system for microinjection and manipulation of cells (from Eppendorf, Germany) (Figure 

5.12). The micromanipulator had vernier scales for readings to 0.1 mm & x-axis fine 

control for readings to 10 µm. It generates pressure with piston/cylinder system. It had a 

rotating knob for changing the volume, the volume change per revolution of the knob 

was 9.5 µl / 950 nl with total settable volume of 950 µl. The whole system was fitted 

with microcapillaries transfer tip (from Eppendorf, Germany). It was connected with a 

multiple channel valve regulator for attaching additional microsyringe so that the system 

could be used not only for addition of cells but also withdrawal of samples. This system 

was very convenient for injecting cells at a precised location or collecting small amount 

of samples. Since the whole system worked in conjunction with long distance 

microscope, precise manipulation was possible at cellular level. 
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a          b 

 

Figure 5.12: Micro-manipulation system constructed for in ovo application. 

Micromanipulation system constructed for cell manipulation in ovo, for addition and removal of cells, 
injection/withdrawal of samples from the culture system. (a) Micromanipulation system in working 
position in an artificial egg; (b) zoom up view of the artificial system along with the microcapillary placed 
at the tip of the micromanipulation system. 

5.5 Application of flexible electrode array for bio-electric signal 
acquisition and impedance measurement 

The heart is one of the first organs to develop in the chicken embryo. The 

primordial heart begins to beat at around 30 hrs of incubation 282 which is also evident 

from the time lapse imaging of the chicken development (video supplied). In the early 

stage of development, the heart is very small. However, gradually, the primordial tubular 

heart forms the four-chamber configuration. The embryonic HR steadily increases, 

followed by relatively slow changes in HR during the late incubation period. Changes in 

heart rate (fH) during growth reflect the changing metabolic requirements and the state 

of the central nervous control of the organism. Functional vagal innervations appear on 

chicken embryonic heart on ID 12 250, 251. For that reason, measurement of Instantaneous 

heart rate (IHR), which is calculated from the beat-to-beat intervals of the heart and ECG 

could be an index of embryonic development and can provide additional information on 

physiological status and growth of the embryo. In addition, characterisation of the 

embryonic growth with impedance measurement could provide additional information. 

Various methods and systems have been developed to detect cardiogenic signals 

through the eggshell. Those include electrocardiography (ECG), impedance-

cardiography (ICG), ballistocardiography (BCG), acoustocardiography (ACG), 

catheterization of allantoic blood vessels and pulse oximetry. Each method has its 
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advantages and disadvantages and should be used individually depending upon the goal 

of investigations of embryonic HR.  

Electrocardiography 

The electrical activities of the heart in chick embryos within an eggshell were 

measured by Bogue as early as 1932 31. The electrocardiogram (ECG) was measured by a 

string galvanometer and the average HR was determined from day 1 to day 19 of 

incubation and after hatching.  

Measurements of both ACG and arterial blood pressure become difficult toward 

the end of incubation due to augmented embryonic activities and respiratory 

movements, which disturb the ACG signal, and due to shrinkage of the allantoic artery, 

which makes it difficult to implant a catheter. Toward the end of incubation, the 

embryo pierces the air cell with its beak through the CAM and the inner shell membrane 

(internal pipping IP) and thereafter breaks the eggshell with its egg tooth (external 

pipping EP). During IP and EP period, which is defined as the perinatal (or paranatal) 

period, the embryo begins to breathe air and the gas exchange is switched from the 

CAM to the lungs. Both the BCG and the ACG can be detected sometimes even during 

the perinatal period when the embryos are quiescent, provided an adequate position for 

detection is found on the eggshell for placement of the transducers 330, 331, 333, 336. 

However, neither method can detect the cardiogenic signals from early embryos 

because the BCG and ACG signals are weak or are not produced during the early 

incubation period. Alternatively, the ECG and ICG can be detected from early embryos, 

although the implantation of electrodes injure, albeit minutelyl 6, 131, 254.  

Due to the availability of avian embryo especially the chicken and interests of the 

electro physiologists, there had been a lot of study on the electro-physiological 

measurement on avian embryo 44, 115, 180, 254, 259, 268, 334, 335, 332, 376. However, most of the 

experiments were concerned regarding the studies during middle and end of the 

incubation. Since the primordial heart is very small at the beginning and the electrical 

signal amplitude is very low, it is not possible to measure such feeble electrical signals 

with the electrodes placed on the side of the eggshell. On the other hand, placement of 

conventional needle or other electrode with hard materials in early days of incubation in 

close proximity to the embryo will certainly injure the embryo and the egg yolk. In the 

later stage of development, physical movement of the embryo brings motion artefacts 
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into the ECG signal. Flexible electrodes constructed with biocompatible substrate placed 

closer to the embryo may ease the process. 

5.5.1 Flexible polyimide-based electrode array for in ovo application 

A special flexible and thin platinum microelectrode was constructed with 

biocompatible substrate to match the demand of electrophysiological measurement in 

the open system from beginning of incubation until hatching. The electrode material is 

platinum deposited on polyimide substrate and 10 µm thick. The whole electrode 

construct is 50 mm long and had 4 electrodes placed at the end with 1 mm diameter 

each 5 mm apart from each other. (Figure 5.13) Such electrodes are designed for 

implantation into the human body (Neuroprosthetics) for recording bioelectric signals 

from the human body or stimulation 49, 52, 162, 174, 182, 233, 234, 287, 315 .    

  

Figure 5.13: Flexible polyimide based electrode array for in ovo application. 

Especially fabricated flexible polyimide based electrode array with four platinum electrodes electrode 
(thickness 10 µm) for recording bioelectric signal from developing chicken embryo and for impedance 
measurement. The electrodes are made of platinum (black arrow), exposed area 1 mm in diameter, and 5 
mm apart from each other. Only the electrode surfaces are open, rest of the parts including the 
connections are insulated. The whole electrode is 50mm long. It has a connector jack (black arrowhead) 
to connect with bio-amplifier. Scale bar = 5 mm. 

Flexible electrode structure was microfebricated by Thomas Dörge from the 

“department of Neuroprosthetics” of Fraunhofer IBMT in accordance with the need of 

the developing chicken embryo. For the fabrication of the microelectrode, the process 

technology was used as described 314, 316. As substrate and insulation material, flexible 

Polyimide PYRALIN Pl 2611 (Du Pont) was used since it has a low water absorption and 

low conductivity 67, 82. Platinum was used for the electrode material due to its 

biocompatibility 338 and electrochemical stability 294. 

5.5.2 Measurement of the electrical characteristics of the flexible electrode 
array 

The impedance characteristic of the electrode structure in two-electrode and four-

electrode configuration was determined experimentally in electrolytes with known 

electrical properties. The impedance spectrum of the fabricated electrode array was 



Technical modification of the open system for in vivo optical imaging and other methods 

S. Haque (2010) Ph.D. Thesis 142 

calculated using an impedance analyzer and interface (solatron Analytical, Farnborough, 

UK). From the measurement of two- and four-electrode method (WennerAlpha type), it 

was investigated how much the electrode impedance contributes to the total measured 

impedance (electrode characterization is performed by Dipl.-ing. Christian Kurz from 

workgroup “Biohybrid System” of Fraunhofer IBMT). It was not possible to record bio-

electric signals from the developing chicken embryo cultured in modified open system 

with the help of implantated flexible electrode array due to short of time. 
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Figure 5.14: Impedance spectra of PBS electrolyte at room temperature measured by two, three, 
and four-electrode method with fabricated electrode array 

5.5.3 Study of the stability of the open system with implantation of a 
platinum-polyimide micro-electrode 

Even though the biocompatibility of such platinum-polyimide microelectrode is 

proven and routine animal experiments are performed using such electrodes, but the 

scenario could be different in the developing embryo. Since the hatching of a viable 

chick from the open avian culture system was set as the gold standard to asses the 

functionality of the system, it was necessary to asses the effect of the implanted 

electrode on hatchability before the electrical signal measurement. 

The flexible Pt-polyimide electrodes implantation into the surrogate/recipient egg 

was performed a day before the embryo transfer in the intact donor egg. A point close 

to opening of the recipient egg was marked as the location for electrode implantation. 

Egg shell from the selected region was ground off from ≈2 mm diameter circle leaving 

the egg membrane intact. The egg was than rinsed with distilled water to remove egg 

shell powder and wiped with sterile paper towel. The electrode tip was held with a pair 

of forceps and implanted through the shell membrane. The hole was than sealed with 
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silicone. Distilled water was sprayed on the egg and the egg was than returned to the 

refrigerator at 14 °C temperature. Silicone releases Acetic acid during the process of 

polymerizations which will certainly change the PH of the culture environment and may 

have detrimental effect on the embryonic development. That is why the electrode 

placement was performed in an intact egg with its contents inside and acetic acid 

produced during polymerization of the silicone was diluted in the egg white which was 

discarded later during the shell transfer. The egg was thoroughly rinsed with distilled 

water again on the next day before the embryo transfer procedure. 

 On the following day the surrogate shell was prepared as described in chapter 

4.5.1. Three days preincubated bantam chicken embryos were transferred into the 

surrogate shell containing the electrode. The opening was closed with a lid / cling film 

and the whole construct was incubated at 37.5 °C temperature, 60% RH and 30° side 

to side rocking.  

     

a                                                      b                                     c 

 

Figure 5.15: Platinum-polyimide electrode implanted in the open system.  

Bantam chicken embryo in surrogate shell with implanted Pt-polyimide electrode at (a) ID10 and (b) ID 20. 
Note the close proximity of the electrode to the embryonic body, which is essential for high SNR. (c) 
Surrogate shell after removal of the embryo at ID 20 shows the electrode position underneath the CAM 
(green arrow indicates electrode, black arrowhead indicate the holes made on surrogate shell for insertion 
of electrode sealed with silicone). 

Figure 5.16 shows the result of the culture of bantam chicken embryos in open 

system containing Pt-polyimide electrode. 75% embryos survived until hatching. In 

comparison to the control culture in chapter 4.5.1 (≈67%) the results show that there is 

no significant influence of the electrodes on the hatching of the chicks. Figure 5.15 

shows the image of the embryo culture where the electrode is integrated into the CAM 

and closely associated to the developing embryo. Such close contact is essential to 

measure very low amplitude electrical signals like ECG in the early days of 

embryogenesis. Because of the above mentioned advantages of flexible electrode, it will 

ease the measurement of electrical signal throughout the whole developmental period 
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especially at the end of incubation when the pulmonary ventilation is activated. It should 

bring less motion artifacts and noises as mentioned by different investigators where they 

placed small electrode between the egg membrane and CAM since the electrode was 

flexible and can move along with the embryo. This method also avoids injury to the 

CAM because the electrode was implantated before the formation; CAM incorporates 

the electrode within during formation improving the SNR.  
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Figure 5.16: Viability of bantam chicken embryo cultured in open system implanted with Pt-
Polyimide electrode.  

75% embryos survived until day 21, which correlates with the data with the control experiment in chapter 
4.5.1 (≈67% viability at day 21). 

5.6 Discussion 

   The method of explantation culture in surrogate shell has long been used for the 

production of transgenic birds by the biologists. However, this was not used to study the 

process of targeted cell differentiation that happens during embryogenesis. The study of 

embryogenesis is easier in avian embryos over mammals. The avian embryos are 

complete in terms of the nutritional and other requirements. Mammals are completely 

dependant on their mother. It is necessary to have insights into the developing embryo 

to understand the cellular microenvironment essential for linage specific differentiation 

of stem cells, which is not yet possible in vitro. It was necessary to modify the existing 

open culture system for optical imaging methods. In addition, it was also necessary to 

construct special systems for in vivo application. With the both, it was possible to 

observe the whole period of embryonic development in a very high resolution. Such 

experiments involving mammals are impossible. 
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Since the imaging of the embryonic development was performed without contrast 

labelling, it was not possible to distinguish between different cell groups. Enhancement 

of contrast by some means is necessary for studying the processes of cell differentiation 

and migration. This obstacle can be removed by the injection of contrast labelled cells 

into the embryo and following their fate with the long distance fluorescence micro-

imaging system. Further experiments are necessary in this field. Different cell labelling 

techniques combined with modified open system may reveal many secrets regarding 

stem cell.  

Several studies have shown that mammalian cells and tissues transplanted to avian 

embryos can respond to local cues and develop into tissues appropriate to their location 

in the host 93, 106, 385. Hematopoietic stem cells (HSCs) from adult human bone marrow 

Implanted into lesions of the developing spinal cord in the chicken embryo differentiated 

into full-fledged neurons but never express a chicken-specific antigen. This suggests that 

the microenvironment in the regenerating spinal cord of the chicken embryo stimulates 

substantial proportions of adult human HSCs to differentiate into neurons 304. Such 

targeted differentiation of stem cells in vitro is not yet possible until today. Therefore, 

the investigation regarding the cellular microenvironment in ovo could reveal secrets 

behind the differentiation of stem cell, which is not possible, in vitro. 

Although the especially designed flexible electrode array was constructed and 

characterised, it was not possible to record bio-electric signals due to the shortage of 

time. Measurement of bioelectric signals from the developing embryo could provide 

with valuable information. Until now, most of the experiments regarding bioelectric 

signal acquisition have been concerned with the middle and the later part of the 

development of chicken embryo. Because of feeble electrical signal from the primordial 

heart in the early stage of incubation, it is difficult to measure the ECG in the early stage 

of development. However, the flexible Polyimide-platinum electrode array was designed 

keeping this special interest in mind. Preliminary experiments with implanted electrode 

in open culture system showed no significant effect of the electrode array on hatching 

rate of the chick (Figure 5.16). The flexibility of the electrode array will ensure the close 

apposition of the electrode to the embryo without injury and improve SNR.  

This electrode can be applied to study the evoked potentials (visual, auditory and 

others) of the developing embryo. Characterisation of embryonic development with 

impedance spectroscopy is of especial interest in this field. The avian egg consists of lipid 
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nucleus (egg yolk) surrounded by albumen rich in water. Both the egg yolk and the egg 

white are consumed by the developing embryo, which will change the electrical 

impedance of egg contents. Characterization of a developing chicken embryo with 

impedance spectroscopy will provide valuable information in this field. It is necessary to 

further investigate in this field to exploit the advantage of impedance spectroscopy.  

5.7 Outlook 

Experimental investigations in this chapter were mainly concerned with the 

preparation for the future experiments that will explore the world of cell differentiation 

in vivo. This involved the modification of the open culture system applicable for optical 

imaging, construction of especially designed fluorescence micro imaging and 

micromanipulation system for in vivo application, construction of flexible electrode array 

in ovo application. It was possible to image the whole period of embryonic development 

of a chicken embryo from the beginning of the incubation until hatching using the 

developed system. Even though it was not possible to use the especially designed 

flexible electrode array for acquisition of bioelectric signal and impedance measurement 

due to shortage of time, but the electrode is characterised and implantation into the 

modified open system showed that there is no significant effect on the hatchability. 

Further experiments are needed in this field in future.  The whole system can be 

employed to monitor the process of embryonic development, to reveal the secret behind 

organised cell migration and differentiation that makes a living organism from a single 

cell. 
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6 Gradual technical modifications of the open system 
towards liquid│liquid interface culture 

6.1 Summary 

Objective: The experimental investigations in this chapter were aimed to investigate the 

functionality of the open system as a liquid│liquid interface culture system and to 

identify different influential parameters, especially to study the dynamic nature of the 

eggshell as a culture system, which adapt the boundary conditions synchronously and 

permanently in accordance with the changing need of the developing embryo. Based on 

results of the experiments in this chapter, some suggestions are made at the end of the 

work that will help in future to design newer ways to realise a liquid│liquid interface 

culture system for culturing mammalian cells at the interface of two immiscible liquids. 

The final system may not be similar in geometry to the avian egg but will use the same 

principle for culturing cells. 

Methods: This chapter includes the studies of the eggshell and shell membrane with 

scanning electron microscopy to reveal the ultra structure, study of the biocompatibility 

of unknown materials, replacement of part of the surrogate shell with biocompatible, 

optically transparent materials gradually to study the influence of different materials on 

the growth of CAM in the open system. Based on the results of these experiments, 

different model systems were constructed that applied fluidics for culture medium 

exchange and channels for monitoring of gaseous environment and exchange.  

Results: The shell membrane is porous and composed of very fine fibrous structures 

that separate the egg contents (especially CAM) from being in direct contact with 

calcareous egg shell. It was not possible to replace the eggshell with the available 

materials. At the end of this chapter, different models are constructed for the 

demonstration of the potential of chicken egg. 

Conclusions: The results of the experiments demonstrate the dynamic nature of the 

eggshell. It was not possible to replace the eggshell with available materials having static 

propertyies. It will, therefore be necessary in future to adjust the culture environment in 

accordance with the changing need of the growing embryo with feedback control using 
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different biosensors. It is also necessary to search for materials with adjustable properties 

for the future experiments. 

6.2 Materials required for gradual technical modifications of the 
open system towards liquid│liquid interface culture 

Equipments       Manufacturer     
Fluidic panel       Evotec technologies, Germany 
LKB 2249 gradient pump       Bromma, Sweden 
Top-Profi 240 egg incubator    Hemel Brutgeräte, Germany 

Chemicals      Manufacturer     

Amphotericin B (250 µg/ml)    Fisher Scientific, USA 
Bacillol AF disinfections solution   Bode Chemie, Hamburg 
ECM       Merck, Darmstadt 
Fibronectin      Merck, Darmstadt 
Gelatine      Merck, Darmstadt 
Hypochloride solution (200-500 ppm)    VWR International GmbH 
PBS        Invitrogen, Karlsruhe 
Poly-L-Lysin      Merck, Darmstadt 
P/S Penicillin/ Streptomycin    Invitrogen Corporation, USA 
Silicone adhesive     NuSil Technology, USA 

Biological agents     Manufacturer/supplier   

Fertilised bantam chicken eggs     Anita Nefzger, Leutershausen 
Fertilised White Leghorn chicken eggs   LSL Lohmann Tierzucht GmbH. Cuxhaven 
Fluoresceindiacetate (FDA)    Invitrogen, Karlsruhe 
L929 Mouse fibroblast cells    DSMZ, Braunschweig 
Unfertilised broiler eggs    Glückliche Eier, Saarbrücken 

Accessories      Manufacturer/supplier   

Bioglass (FluoroDish)     World precision instruments, USA 
Cell culture petridish     Greiner Bio-One, Frickenhausen 
Egg shapped plastic container    GALERIA Kaufhof, Saarbrücken 
ITO glass       Präzisions Glas & Optik, Germany 
Polyamide      Fraunhofer IBMT 
Plexiglas      Alois Schmitt GmbH, St. Ingbert 
Thermonox® Plastic Coverslips    Nunc, Langenselbold 

Computer Software     Developer     

LabVIEW      National Instruments, USA 
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6.3 Background 

The eggshell is a dynamic culture system, which is changes the property 

permanently during the whole period of embryonic development and adapting 

according to the need of the developing embryo. At the beginning of incubation, the 

internal environment in ovo is rich in CO2, which is essential for the avian embryo at an 

early stage. This is the reason behind the pre-incubation of the embryo inside egg 

before transfer into surrogate shell; otherwise, it has to be cultured in CO2 rich 

environment. As the embryo grows, O2 becomes essential. The eggshell gradually 

adapts, increasing of the gas exchange. This is achieved by gradual thinning of the shell 

by mobilisation of Ca2+ CAM. This also increases the rate of evaporation of H2O across 

the eggshell which is necessary for the growth of the embryo. The Chicken egg is a 

dynamic system which regulates water loss about 380-490 mg/day 15. About 10 to 11% 

of the water is lost through egg shell and shell membrane in domestic fowl eggs during 

the incubation period of 21 days 354. This water loss is not constant; it increases as the 

eggshell thins. 

                                                                   

Structure and stability 
Gradual increase of O2 intake 

Gradual increase of CO2 ventilation 
Gradual increase of H2O loss 

Protection against microbial invasion 
Ca2+ reservoir 
Camouflage 
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Figure 6.1: Schematic representation of egg shell functions.  
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6.4 Influences of different physical conditions of the surrogate 
shell on the viability of the chicken embryos 

The aim of the experiments was to find out the influence of different physical 

conditions of surrogate shell like drought and removal of shell membrane on developing 

chicken embryo. Scanning electron microscopy of eggshell and shell membrane was 

performed to find ultra structural changes of the eggshell and shell membrane in 

different physical state. 

6.4.1 Culturing chicken embryos in surrogate shells without the shell 

membrane 

Aim of this experiment was to find the effect of calcareous eggshell without shell 

membrane on the viability of chicken embryos. Eggshell is the main source of Ca2+ for 

the developing embryo. However, the calcareous eggshell is totally isolated from the 

CAM responsible for calcium absorption from the shell.  

For this experiment, the surrogate shells were prepared as described in Chapter 4. 

The inner and the outer shell membranes were stripped off from the surrogate shell 

leaving the calcareous eggshell bare. The eggshell without the shell membranes was 

rinsed with distilled water. Transfer of the 36 hrs old embryo and incubation was 

preformed as described in Chapter 4. 

6.4.2 Effect of egg shell drought on the viability of chicken embryos 

The aim of this experiment was to study the effect of drought of surrogate shell on 

the viability of the avian embryo. As routine procedure for explantation culture (Chapter 

4), the donor egg was emptied of the egg contents to prepare the surrogate shell, 

which is washed with distilled water to prevent drought before transfer of the 

preincubated embryo. 

For this experiment, the surrogate shells were prepared as described Chapter 4. 

The inside and outside of the shell was thoroughly rinsed with distilled water to remove 

egg white and chalazae. The clean shells were then placed inside a laminar flow cabinet 

on a custom-made holder with the opening placed upwards and kept there for 24 hrs to 

dry. On the following day, the dried shells were thoroughly washed and wetted with 
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distilled water, filled with thin egg white taking care not to spill and kept for half an 

hour. Egg white was than discarded. Transfer of 3-day-old chicken embryo to the dried 

surrogate shell and incubation was carried out as described in Chapter 4. 

Figure 6.2 shows the effect of different physical conditions- drought and removal 

of shell membrane from surrogate shell on viability of the chicken embryos. It is 

important to note that no embryos survived beyond ID 5 when cultured in bare 

surrogate shell without shell membrane. Figure 6.3 shows the growth of the CAM in 

explantation culture in complete transparent system.  
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Figure 6.2: Effect of different physical conditions- drought and removal of shell membrane from 
surrogate shell on viability of the chicken embryos. 

When cultured in bare surrogate shell without shell membrane, no embryo survived beyond ID 5. In case 
of drought of surrogate shell, maximum embryo survival was ID 9.  

a                                     b 

 

Figure 6.3: Growth of the CAM in open culture consisting of a completely transparent system 

Chicken CAM at (a) ID 4 and (b) ID 5. Notice by ID 5 the CAM grows and touch the side wall of the 
explantation culture system (arrow in image b marks the CAM boundary). 

It is clearly visible that by ID 5, the CAM touches the calcareous wall. Eggshell is 

known to triggers inflammation in the CAM 163. Since in surrogate shell culture, the shell 

membrane remains intact, and the CAM doesn’t come into direct contact with the 

calcareous shell. In this experiment the shell membrane was removed and by day 5 the 
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CAM comes in direct physical contact with the calcareous shell. This could be the reason 

that all the embryos were dead by day 6 of incubation. However, when cultured in dried 

surrogate shell, t embryo survival was longer, ID 9. There was a sharp decrease of 

viability on day 8 of incubation and on the next day, all embryos died. To investigate the 

fact further, scanning electron microscopy of the dried eggshell and the egg membrane 

was performed. 

 
Figure 6.4: 36 hrs old chicken embryo after removal of eggshell and outer shell membrane from 
the blunt pole of a chicken egg.  

Inner shell membrane is kept intact for demonstration. Note that the egg contents are completely isolated 
from the calcareous shell (white arrow) by inner and outer shell membrane (black arrow). Green arrow 
indicates the developing embryo inside inner shell membrane. 

6.4.2.1 Scanning Electron Microscopy (SEM) of chicken eggshell and shell 
membrane 

For SEM of eggshell and shell membrane, samples were taken from freshly laid 

eggs of Rhode Island Red chicken. Samples were washed thoroughly in distilled water to 

remove traces of egg white. Eggshell with shell membrane was dried in air before 

sample preparation. 

 The samples were fixed with a cacodylat-based fixation buffer. Afterwards they 

were incubated with a cacodylat solution, followed by osmium buffer and tannin acid- 

incubation. After dehydration with ethanol the samples were analyzed by “LEO 435 vp” 

scanning electron microscope at 15.0 KeV (the preparation of the samples for scanning 

electron microscopy was done by Dipl.-Leb.Chem. Yvonne Kohl from the workgroup 

“Biohybride system” of Fraunhofer IBMT and the imaging was done in Zweibrücken, 

Germany at the “department of Informatics and Mikrosystemtechnik” of FH 

Kaiserslautern by Dipl. Ing. Rainer Lilischkis). 
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Figure 6.5: Scanning electron microscopic image of eggshell and shell membrane of Rhode 
Island Red chicken egg.  

(a) Egg shell from outside, (b) egg shell from inside along with shell membrane; (c)  acellular inner shell 
membrane, (d) prepared sample for scanning electron microscopy (black arrow = egg shell membrane, 
white arrow = inner side of the egg shell along with membrane). Note in image (b) furrows appeared in 
the shell membrane due to drought during preparation which can be better observed in the inset. In 
image (c) the fibrous structure of the shell membrane is visible. Scale bar (a) = 10µm; (b) = 150 µm; (c) = 
50 µm; inset in (b) = 50 µm. 

Figure 6.5 shows the SEM image of the dried eggshell and shell membrane. Notice 

the fibrous and porous structure of the shell membrane. There are creases in the shell 

membrane located at inner side of the eggshell in image (b) which was probably due to 

the shrinkage of the egg membrane due to dehydration. These furrows expose the 

calcareous eggshell to CAM. This explains the result of the experiment showed in Figure 

6.2. Since the CAM was minimally exposed to the calcareous eggshell through the 

furrows on the dried shell membrane, maximum survival of chicken embryos were 

longer (day 9) than the previous experiment where the embryo was cultured in 

surrogate shell without shell membrane (Figure 6.2). 
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6.5 Windowing of the surrogate shell with transparent 
biocompatible materials  

The idea of this windowing experiment was to find out the property of different 

materials, to see their effect on the growth of CAM and their effect on hatchability. This 

can help to identify the appropriate material for construction of complete artificial 

system. Since the opaque calcareous eggshell is not suitable for optical imaging, it 

should be replaced with transparent biocompatible materials suitable for in vivo 

application. In addition, this can be used for illumination for optical imaging or 

observation window. In this experiment, part of the eggshell was removed and replaced 

by different optically transparent, biocompatible materials. For unknown materials, the 

sample was coated with different extracellular matrix (ECM) protein and amino acids 

and biocompatibility was examined with fibroblast proliferation assay. There is no 

scientific data available in this regard and it was very important to understand different 

properties of the egg shell to allow reconstruction of the whole system artificially. 

6.5.1 Tests for biocompatibility: material coating and fibroblast proliferation 
tests 

Different materials were used for windowing experiments, these were traditional 

cell culture Petri dishes, Polyimide membrane, plastic cover slips, Bioglass (taken from 

FluoroDishTM from World precision instruments), CEC020S Indium-Tin-Oxide (ITO) coated 

glass (From Präzisions Glas & Optik GmbH, Germany), Plexiglas. Most of the materials 

are routinely used for cell culture. ITO coated glass was subjected to cellular proliferation 

test (Fibroblast proliferation assay) (the biocompability experiments were performed by 

M.Sc. Ina Meiser from “Biophysics & Cryotechnology department” of Fraunhofer IBMT). 

ITO coated glass was coated with different extracellular matrix (ECM) protein and 

amino acids like (a) 0.01% Fibronectin in PBS, (b) 1:20 ECM in culture medium (c) 0.1% 

Gelatin in PBS (d) 0.1% Poly-L-Lysin in PBS assessed for cellular proliferation. As a cell 

system, L929 Mouse fibroblasts are used. The cellular proliferation process was 

monitored over 24hrs in Nikon Biostation CT.  

Figure 6.6 shows the results of fibroblast proliferation assay of ITO glass. From the 

result, it is evident that there is no significant difference between treated and non-
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treated surface (a in Figure 6.6 is the control - without coating). It can be concluded that 

ITO coated glass has no toxic effects to cells and it is biocompatible.  
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1h                     5hrs                  9hrs             13hrs       17hrs                  21hrs  
Figure 6.6: Results of material coating & cell proliferation test for CEC020S ITO coated glass. 

(a) control (without coating); (b) 0,01 % Fibronectin in PBs, 30min Incubation time at 37 °C; (c) 1:20 ECM 
30min Incubation time at 37 °C; (d) 0,1% Gelatine 1h Incubation time at 37 °C; (e) 0,1% Poly-L-Lysin in 
PBS, 30min Incubation time at 37 °C. Results show no significant difference between coated and non- 
coated surface of ITO coated glass. Scale bar = 50 µm. 

6.5.2 The windowing experiment  

In windowing experiment, part of the surrogate shell was replaced with different 

biocompatible and transperant materials and used for bantam chicken embryo culture. 

The eggshell was removed from 3.14 cm2 (Ø 20 mm) area at different locations of the 

surrogate shell and the window material was glued with medical grade silicone. Along 

with the biocompatibility of the window materials, the window area is also crucial for 

the growth of the embryo. Because in open system, the CAM is in contact with natural 

shell membrane of the surrogate shell, and no part of CAM was in contact with artificial 

materials. The upper surface of CAM was not in contact with the shell membrane and 

not taking part in the normal CAM functions necessary for embryonic development, 

especially calcium transport and gas exchange (Figure 4.15). The opening diameter of 

the surrogate shell was ≈45 mm (Ø) which is nearly 15.89 cm2, that corresponds to 
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approximately 18% of the total CAM surface of about 87 cm2 on 10th day of incubation 
32. It was also considered that additional removal of bioactive surface from the CAM 

might be detrimental to the growth and development of the embryo. 

6.5.3 Preparation of the surrogate shell for windowing experiment 

Recipient eggs were chosen for preparation of surrogate shell as described earlier 

(Chapter 4). The recipient egg shell was wetted with distilled water. At different region 

of the egg, the shell was ground-off for a 20 mm circular area keeping an egg shell 

island in the middle surrounded by the intact shell membrane. The egg was thoroughly 

rinsed with distilled water to remove traces of egg shell powder. The ground region of 

the recipient shell was thoroughly checked for any shell remains; if there were any, 

cleaned again so that no shell parts remained on the shell membrane. The egg was then 

placed in horizontal position with the window location upwards. The shell island in the 

middle surrounded by shell membrane was carefully cut with a scalpel and removed 

with a pair of forceps leaving the egg membrane intact.  

  

a                                      b 

 

Figure 6.7: Surrogate shell preparation for windowing experiment.  

(a) The prepared shell with its contents; (b) zoomed view at the window shows the shell membrane is 
hanging beyond the shell (arrow head) to prevent CAM contact with the calcareous shell. 

Medical grade silicone was applied at the rim of the window prepared in the 

recipient egg to cover the bare end of the egg shell margin that no part of the ground 

shell margin remains uncovered. The window material was applied on the window 

opening and pressed firmly in such a way that the window became airtight. The egg 

was kept in horizontal position with the window facing upwards until the glue dries. 

Then the egg was returned to the refrigerator at 14 °C with long axis vertical (Figure 

6.7) and stored there for next 24 hrs. On the next day, the surrogate shell was prepared, 
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36 hrs old chicken embryos were transferred to the windowed surrogate shell and 

incubated as described earlier (Chapter 4). 

6.5.4 Results of the windowing experiment 

Figure 6.8 and Table 6-1 shows the summerised results of chicken embryo cultured 

in surrogate shell open system windowed with different biocompatible materials. 

Although most of the materials are biocompatible and used routinely in the laboratory 

for cell culture, the experiment results were not satisfactory. The window area covered 

only 4% surface ares of CAM at ID 10. This indicates that the material properties should 

identical to the shell membrane for constructing a completely artificial egg. 

Table 6-1: Summarised results of windowing experiment with different 
biocompatible materials 

Material 
Total 
sample 

Max. 
survival 

Window 
location 

Comment 

Polystyrene 
coverslips 

10 Day 20 
Mid-equatorial 

region 

CAM released or  blood vessel disappeared from 
the window before death, regular pattern of 

blood vessel growth 

Bioglass 10 Day 17 
Mid-equatorial 

region 
CAM didn’t grow well on bioglass, regular pattern 

but incomplete growth of CAM blood 

Polyamide 10 Day 14 
Mid-equatorial 

region 
blood vessel disappeared from the window before 
death, irregular pattern of blood vessel growth 

Cell culture 
petridish 

10 Day 20 Pointed end 
blood vessel disappeared from the window before 

death 

Cling film 10 16 Pointed end Viability decreased sharply at day 6 

Plexiglas 10 15 Pointed end Viability decreased sharply at day 6 
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Figure 6.8: Results of the culture of chicken embryos in surrogate shell windowed with different 
biocompatible materials. 

Among all investigated materials, bioglass and polystyrene cover slip had better results if the maximum 
viability of the embryo is concerned. Embryos grown in surrogate shell windowed with polystyrene cover 
slip had maximum viability at day 18 of incubation (≈60%). Besides, CAM growth on the polystyrene 
cover slip window was also normal and CAM blood vessels gradually grew from above to below and 

eventually covered the whole widow surface (Figure 6.10). On the other hand Polyimide membrane 
(even though used for manufacturing of implantable electrodes) and cling film (used to cover the 
surrogate shell opening) had worst outcome among all. 

Bioglass 

Figure 6.9 shows the outcome of culturing chicken embryos in surrogate shell 

windowed with bioglass (taken from FluoroDishTM from World precision instruments).  

  
Figure 6.9: Growth of chicken embryo in windowed surrogate shell with bioglass taken from 
FluoroDishTM (Ø20mm). 

(a) ID 7, (b) ID 11, (c) ID 12. The maximum viability embryo in this system was ID 11; embryo died on the 
next day which is evident by disappearance of CAM blood vessels. Note the growth of CAM was not 
complete (which is evident by the visible lower limit of the CAM [the lower limit of CAM is marked by 
black arrow in the image (a) and (b)]. But CAM blood vessels grew in normal parallel pattern.  
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The CAM grew on bioglass gradually from above to down. The lower margin of 

CAM is marked by black arrow (a-b in Figure 6.9). However, the CAM growth was not 

complete. Eventually the CAM blood vessels disappeared from the window at ID 12 

indicating the death of the embryo. 

Polystyrene 

Figure 6.10 shows the growth of the CAM of developing chicken embryo through 

the polystyrene window in surrogate shell. CAM gradually grew from above to below 

and eventually covered the whole window by ID 16. The pattern of the CAM blood 

vessels was normal. At ID 19, CAM blood vessels disappeared from the window 

indicating the death of the embryo. 

  
Figure 6.10: Growth of chicken embryo in windowed surrogate shell with polystyrene cover slip 
(Ø20mm). 

(a) ID 6, (b)11th  day, (c) ID 14; (d) ID 16; (e) ID 18; (f) ID 20. Note gradual growth of CAM from up 
to downwards and eventually covered the entire window surface with normal pattern of CAM blood 
vessels. Maximum survival was ID 19 (e), afterwards blood vessels disappeared and eventually the embryo 
died. In some of the cases, the CAM was released from the Polystyrene window and eventually the 
embryo died (Figure 6.11). 

In some cases, the CAM was separated from the window after growing (Figure 

6.11). This separation of CAM from the window in surrogate shell led to the death of 

the embryo. This indicates that the window material was not favorable for CAM 

attachment. 
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Figure 6.11: Growth of chicken embryo in windowed surrogate shell (Ø = 20mm) with 
polystyrene cover slip.  

Note the CAM is separated from the Polystyrene cover slip at 14th day of incubation. This indicates that 
CAM couldn’t attach firmly to the window though the polystyrene cover slips are routinely used for cell 
culture in the laboratory. (a) Trans-illumination, (b) reflection imaging. 

Polyimide 

In Figure 6.12 the growth of CAM on polyimide membrane is shown. The pattern 

of the CAM blood vessels on polyimide membrane was not regular and the CAM didn’t 

grow completely. At ID 12 the CAM blood vessels disappeared indicating the death of 

the embryo. 

 

   

a 

 

Figure 6.12: Growth of chicken embryo in windowed surrogate shell with polyimide membrane 
(Ø10mm). 

(a) ID 6, (b) ID 11 and (c) ID 12. Note the irregular pattern of CAM blood vessel growth from the 
beginning and the CAM did not grow completely on Polyimide membrane. Maximum viability was day 11 
of incubation. 

Cling film (polyvinyl chloride) 

Figure 6.13 shows the preparation of windowed surrogate shell with cling film and 

Plexiglas at the pointed end and culture of chicken embryo in the windowed system. 

Even though the maximum viability of the chicken embryos in this system ID 16 for cling 
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film and ID 15 for Plexiglas, there were a sharp decrease in viability of the embryos at ID 

6. 

    

a      b           c                           d 

 

Figure 6.13: Growth of chicken embryo in windowed surrogate shell with cling film and 
Plexiglas (Ø30 mm). 

Image (a-c): Cling film window and (d) Plexiglas-window at the narrow end of the surrogate shell. (c) 
Chicken embryo in surrogate shell with cling film window at ID 8. Maximum embryo survival in such 
windowed system was ID 16 for cling film and ID 15 for Plexiglas. Viability of the embryo decreased from 
ID 6 and ID 8 sharply for cling film and Plexiglas windowed surrogate shell accordingly. 

                                                                                                                      

a       b           c             d 

 

Figure 6.14: Examples of different modifications of open system of avian culture for future 
considerations 

(a) 10 mm window at the pointed end with Plexiglas-silicone lid (not visible in the image); (b) multiple 20 
mm window on the side and bottom with Plexiglas-silicone lid; (c) 30 mm windows on the side with 
Plexiglas-silicone lid with ITO heating glass; (d) multiple 10mm windows circumferentially with Plexiglas-
silicone lid. Image (a) contains 96 hours old chicken embryo, others contain 36 hours old chicken 
embryos. 

Figure 6.14 shows some different variations of windowing experiment that could 

help to design further investigations in future to asses the material property. Even 

though the complete experiments were not conducted in such systems, but these can 

be used as examples for future experiments with different window materials that can 

help to find the appropriate materials for construction of completely artificial systems in 

the future. 
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6.6 Installation of fluidics and channels into the open system for 
exchange of culture medium and gas 

To fulfil the final goal of this thesis, natural avian eggs are technically modified and 

finally reconstructed for culturing cells at the liquid│liquid interface. It is necessary to 

exchange the culture medium, substrate and gas which requires fluidic channels 

installed in the system. Figure 6.15 shows the model where the fluidic inlet and outlet 

channels are installed into the surrogate shell that can be used for exchange of culture 

medium. Additional channels can be installed for exchange of substrate if necessary. It 

was not possible to conduct the complete experimental investigations into the feasibility 

of such installation. Nevertheless, this can be an outline for future investigations.  

  

Figure 6.15: Application fluidic channels in surrogate shell for addition and removal of culture 
medium. 

Gradual adaptation of the open system of avian culture for in vitro culture of cells: application fluidic 
channels for addition and removal of culture medium. (a) and (c): modified open system consisting of 
White Leghorn egg shell, PMMA double glass cover with inlet and outlet channels; (b) bantam chicken 
embryo at ID 5 inside Rhode Island Red egg shell modified system with fluidics and PMMA cover. 

However, it is necessary to asses the feasibility of such system in terms of the 

viability of chicken embryo. As described earlier, the hatching of a viable chick was 

regarded as the standard for assesing the functionality of the system. Even though it is 

not necessary to have any extra means for the avian embryo, since it is a complete 

system, self equipped with everything that is necessary for a developing embryo. 

However, culturing cells at the liquid│liquid interface will certainly require for exchange 

of culture medium and substrate. In such cases, exchange of culture medium and 

substrate through existing fluidics will be more convenient. 
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6.7 Completely artificial and transparent eggs 

It is necessary to understand all the boundary conditions to enhance 

reproducibility, when constructing a completely artificial system for culturing cells at the 

liquid│liquid interface. It is advantageous to have completely artificial materials instead 

of natural eggshell. It is advantageous to have a completely artificial and transparent 

egg, easy to observe with optical imaging methods. Stepwise technical modification is 

necessary for complete replacement of the avian egg; change of too many parameters 

at once will lead to inappropriate trouble shooting.  

  

a           b 

 
Figure 6.16: Computer simulation of a hybrid (semi artificial) egg. 

Such hybrid /semi artificial system consist of a part of the natural eggshell and suitable artificial materials. 

Figure 6.16 shows a hybrid egg where the lower part of the eggshell is replaced 

with artificial material. It is necessary to investigate the properties of material suitable for 

in ovo application. The windowing experiment in the section 6.5 of the current chapter 

may provide with some clue in this regard. The idea behind stepwise modification of the 

complete natural functioning system is to identify the problems. If too many parameters 

are changed at a time, it will be difficult to identify the reason behind the non-

functionality of the system.  

Figure 6.17 shows some examples of completly artificial eggs. Although until now, 

it was not possible to culture avian embryos to hatching or culture cells at liquid│liquid 

interface in such system, further investigations may overcome these obstacles. Image (f) 

in Figure 6.17 shows the example of such artificial eggs with installed fluidics and 

channels for culture medium and gaseous exchange. Please note that these models are 

constructed with the outline of the previous experimental investigations conducted 

earlier in this thesis so that it will help to extend the imagination in future. Figure 6.18 
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shows a complete outline of the experimental setup for in vitro culture of cells at the 

liquid│liquid interface.  

  

Figure 6.17: Chicken embryo in completely artificial and transparent egg system. 

(a) Chicken embryo (96 hrs old) is separated from the air cavity with a porous Teflon membrane (arrow). 
(b), (c) and (d) Chicken embryo in egg shaped oval plastic container; (e) egg shaped oval plastic container 
with flat observation window at the top; transparent egg with installed fluidics (curved red arrow) for 
exchange of culture medium, channels for gaseous exchange with the possibility to use 
micromanipulation system for addition of cells/factors of removal of samples form to the system. (a), (b), 
(d) and (f) contain 36 hrs old, (c) and (e) contain 5 days old chicken embryo. In image (c) outer margin of 
the CAM touching the container wall is marked by green arrow. (d) Side view of the transparent egg 
showing the free border of the vitelline membrane (red arrow).  

As described earlier, the system will not contain any chicken embryo in the long 

run, but cells will be cultured on the same principle. It is necessary to have such 

automated and integrated setup for future investigations. In spite of little success, there 

are a lot of questions remained unanswered that have to be addressed in future. 
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Figure 6.18: Complete technical setup for in vitro culture of cells at liquid│liquid interfaces.  

The whole system consists of modified open system of avian culture, constructed long distance 
fluorescent microscope, constructed micromanipulator system (black arrowhead) with micro fluidic 
controller, a programmable rocking stage for automated rocking and sample changing (green ellipse in 
image a and image b), SMS 60 motor controller for controlling camera auto focus and automated rocking 
stage; red rectangle = automated pumping system (LKB 2249 gradient pump from Bromma, Sweden) 
with fluidic panel (evotec technologies, Germany) for medium exchange through fluidics, air channels for 
monitoring and exchange of air (double head white arrow), (c) camera. 

6.8 Discussion 

Even though Ca2+ is an essential macro-nutrient for the developing embryo and 

require in bulk for osteogenesis, the experiments with dried eggshell or eggshell without 

membrane revealed that the calcareous egg shell can induce inflammation of the CAM. 

Electron microscopy has revealed the fibrous and porous structure of the shell 

membrane, which prevents the egg contents contacting the calcareous shell. As 

described earlier, during embryonic development, around ID 10-12, the CAM becomes 

attached to the porous, acellular shell membrane adjacent to the eggshell but remains 

completely isolated. At the same time, the outermost ectodermal layer of the CAM 
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undergoes distinct differentiation into two major cell types, the capillary-covering and 

the villuscavity cells 57, and commences to transport calcium 337 with the concomitant 

expression of calcium-binding protein- CaBP 348 and carbonic anhydrase 351. Calcium 

transport by the CAM is a development-specific function, beginning on ID 12-14, and 

continues until hatching 281, 337, 351. In the process of calcium transport by the CAM, 

carbonic anhydrase is involved in the enzymatic acidification and dissolution of the shell 

mineral (CaC03) and/or the subsequent metabolic scavenging of the liberated 
-HC03 

351. 

For the windowing experiment of surrogate shell, it was important to prevent direct 

contact of CAM with calcareous eggshell. It is known that eggshell induce inflammation 

in the CAM 163. For that reason, the egg shell was ground at least 1 mm beyond the 

shell membrane during preparation of the window in recipient egg. Dissection of the 

dead specimen also revealed the same story (image not shown), CAM attached firmly to 

the exposed egg shell at the window. Since the calcareous eggshell is the main source 

of Ca2+ for the developing embryo, and the artificial system contains no eggshell, the 

culture medium should contain Ca2+ in organic form (Ca lactate, CaCl2 is rather 

harmful). It was not clear why some researchers used egg shell powder as calcium 

supplementation in complete artificial system 147. 

There are some points to be considered for the construction of artificial systems 

that will replace the calcareous eggshell. Since such artificial systems will contain no 

eggshell, which is the main source of Ca2+ for the developing embryo, the alternative 

can be a sustained supply of Ca2+ to the system according to the necessities. As 

described earlier in chapter 4, Ca2+ can be supplied in organic form to the culture. Ca2+ 

is very important for the developing embryo and has to be supplied in bulk. 

Requirement is high especially during osteogenesis, addition of Ca2+ in such high 

concentration may be toxic to the embryo. Avian embryos gradually mobilise Ca2+ from 

the shell. This means that there should be a sustained supply of Ca2+ to the system. One 

opportunity could be to supply of Ca2+ through the installed fluidics dissolved in organic 

form in the culture medium (Figure 6.15, Figure 6.17). Another option could be to 

integrate Ca2+ with the new material used in exchange of the eggshell. This is a very 

important consideration in bone tissue engineering where the osteoblasts require a large 

amount of calcium for ossification of the bone. In traditional tissue engineering the 

limiting factor for the survival, proliferation, and differentiation of transplanted cells is 
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an insufficient supply of nutrients and oxygen. For mass transfer requirements, the 

angiogenesis of the tissue-engineered construct has to be considered too. 

The materials mimicking the shell membrane has to be porous and biocompatible. 

Since the eggshell triggers inflammation in the CAM 163, incorporation of Ca2+ into the 

container material may lead to direct contact of CAM to the Ca2+ salts which might 

again cause inflammation. Since transparency is a desired material property in this 

aspect, gradual release of calcium from the artificial system may degrade the optical 

quality. It is necessary to undertake a thorough investigation to study the property of the 

shell membrane which will guide for the selection of the new material for construction 

of artificial egg.  

The windowing experiment (Chapter 6.5) gave some clue about the properties of 

materials used to construct an artificial egg. Most of the window materials used in the 

windowing experiments are routinely used for cell culture in the laboratory and 

polyimide is the material of choice for fabrication of implantable micro electrode. The 

biocompatibility of the materials is beyond doubt. However, the results of windowing 

experiment with polyimide membrane came out with the worst outcome (Figure 6.12), 

maximum embryo survival was ID 11 and growth of the CAM blood vessels was not 

normal. On the other hand, polystyrene cover slips showed better outcome than other 

materials used for windowing of surrogate shell (Figure 6.10). Maximum embryo survival 

was day 19 of incubation and 60% embryos were viable at incubation day 18. However, 

the material is non-porous and no gaseous exchange is possible.  

The window area covered only ≈3.6% of the CAM surface on 10th day of 

incubation 32 which slightly blocks gas exchange and Ca2+ absorption from the surrogate 

shell; but the results of the experiments told a different story. They indicate that there is 

lot more than the biocompatibility if the growth of the CAM or the embryo is 

considered. Bioglass taken from FluoroDishTM is porous and predicted to be suitable for 

this experiment since gaseous exchange can take place across the bioglass window. But 

the result showed different scenario (Figure 6.9). The maximum survival of chicken 

embryo in surrogate shell with bioglass window was day 16. There was a sharp decrease 

in the viability of the chicken embryos at ID 9.  
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The window location at the surrogate shell is also an important factor that 

influence the embryo viability. In surrogate shell the CAM grows from the top and 

gradually grows towards the sharp end (since the opening is made at the blunt end to 

prepare surrogate shell and the shell is placed vertical during culture period). The shell is 

thicker at the poles than at the equatorial region and the rate of gas exchange is also 

not same. Cell culture Petri dish was placed at the pointed end of the egg as window 

and survival was longer (ID 20).  

Question might arise regarding the necessity behind the construction of a 

completely artificial egg, as the avian egg is a complete system. It is advantageous to 

have complete artificial materials instead of natural eggshell because of the 

reproducibility of the system and known boundary conditions. It is necessary to 

understand all the boundary conditions associated with the culture system. Biological 

system is variable, sometimes unpredictable and non-reproducible. It is necessary to 

have a reproducible system constructed with materials of known property and 

understand the related boundary conditions where the results of the experiments can be 

predicted, than to have a system with stochastic behaviour. Such a system is necessary 

for understanding the mystery behind the defined cell migration, differentiation, tissue 

formation and organogenesis during embryogenesis. To reveal the secret will answer the 

question that the scientists had been looking for – what makes a complete organism 

from a single cell, that is not possible in vitro. This may lead to the way to culturing 

tissue or even organs in the lab from the stem cells. 

However, a key point for tissue engineering is angiogenesis, which in vitro is not 

working in the constructed model systems untill now; this is also the main obstacle in 

current tissue engineering approach. Never the less, the technically modified open 

culture system is a very useful tool to study the complete process of embryogenesis 

especially angiogenesis. Since the modified open system has been modified to bring 

different imaging and assay method as close as possible to the embryo and was tasted 

against the gold standard of hatching of a viable bird, it will help to reveal the secret of 

angiogenesis in ovo, which is not possible in in vitro state. 
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6.9 Conclusion 

Experiments in this chapter highlighted the basic difference between the avian egg 

as a culture system and the current in vitro culture - the changing boundary conditions. 

The egg shell is not only a housing for the growing cells and the future embryo, but also 

a Ca2+ reservoir and an intelligent ventilator that dynamically changes the property to 

regulate gas and water exchange to maintain the appropriate microenvironment for the 

differentiated cells. The shell membrane plays a vital role in regulation of gas exchange, 

water evaporation, Ca2+ regulation, provides support for CAM growth and much more. 

It is, therefore, necessary to study the physiochemical properties of the shell membrane 

of chicken eggs. In these experiments, it was not possible to replace the eggshell with 

traditional materials. Since such clever material is not available, it is therefore necessary 

to change incubation conditions to the needs of differentiated cells. Based on the 

experimental results in this chapter, some material properties can be highlighted which 

is useful for future design.  

The results of the experiments showed that emphasis should be given on the 

following parameters while constructing an artificial transparent egg: 

• The material should be increasingly porous to allow gradual increase of gaseous 

exchange to meet the changing demand of the growing embryo. This gradual 

increase of gaseous exchange can be achieved by medium exchange through the 

fluidics and adaptive changing of culture environment. 

• Since materials with changing physical property is difficult to fabricate, an 

alternative should be a variable culture environment regulated in accordance with 

the changing microenvironment of the embryo. 

• There should be a feedback control to regulate different physio-chemical status 

of the culture which can be easily done by implantation of biosensors and 

especially “Lab-On-Chip-Technology” can be implemented in conjunction. 

• The material should be biocompatible. The best would be to study the structure 

of the shell membrane in detail and to find out the specific material property 

necessary. 
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• Should have the surface property similar to the shell membrane that allows the 

firm attachment and growth of CAM. 

• Ca2+ in organic form can be supplied to the culture system by fluidics dissolved in 

the culture medium since constant supply of Ca2+ in high concentration may be 

toxic to the developing embryo. 

• For better optical access, the material should be of high optical quality. 
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7 General discussion and outlook 

From the technical and biotechnological point of view, the avian egg is a highly 

sophisticated, automated and dynamic culture system that changes boundary conditions 

permanently. Experimental investigations of avian eggs in this thesis reveal some striking 

features making them distinct as a culture system. Those include growth of cells at the 

liquid│liquid interface and the changing boundary conditions in accordance with the 

necessities. At this liquid│liquid interface follows the cell division, cellular migration, cell 

differentiation, and tissue formation during the process of embryonic development. 

During embryogenesis–dominated by cell microenvironment and orderly cell migration 

in groups – a single fertilized oocytes gives rise to a multicellular organism whose cells 

and tissues have adopted differentiated characteristics or fates to perform the specified 

functions of each organ of the body. Here the cells are not guided or dominated any 

solid substrate. During embryogenesis, (dominated by cell microenvironment) orderly cell 

migration in groups – form the germ layer, the tissue, organ and at last a functional 

organism. Apparently, this three-dimensional freedom of movement facilitates for cell 

division and migration as well as far reaching freedom of the embryo. 

Table 7-1: Speciality of the avian egg as culture system 

• Complete system in terms of the logistic requirement for the developing embryo 
• Independent of mother other then temperature, humidity and mechanical movement  
• The cell division stops as it cools after the egg is laied and resumes again on incubation 
• The thick eggshell provides the structure, stability, camouflage and protection against bacterial 
invasion. 

• Calcareous eggshell remains separated from the rest of egg contents and CAM by double layer of shell 
membrane since bare eggshell cause inflammation. 

• Gradual and permanent change of boundary conditions according to the changing microenvironment 
♦ Maintains CO2 rich environment necessary for early embryogenesis 
♦ Gradual thinning of the egg shell with gradual mobilization of Ca2+ from the egg shell 
♦ Gradual increase of O2 and CO2 permeability 
♦ Gradual increase of water loss 
♦ Thinning of the eggshell helps for external pipping of the embryo. 

• Automated resorption of Ca2+ from the egg shell by CAM, which is completely separated by the shell 
membrane, and synthesize all necessary factors for Ca2+ resorption. 

• Complete automated process with feedback control to maintain the microenvironment for the dividing 
and differentiating cells 

• Active supply with rich capillary network of CAM 
• The embryo consumes the remains of the egg contents and comes out of the egg leaving nothing 
behind except for the extraembryonic membranes. 

• Full sterility in a contaminated environment 
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This thesis was the first and a very important step towards the realization of a new 

culture system for in vitro cell culture at the liquid│liquid interface imitating the same 

natural principle of an avian egg. The open culture system for the avian embryo with 

transparent window and culture of avian embryo till hatching indicate the progress 

towards the construction of complete artificial system and is the proof for the feasibility 

of such system. Even though it was not possible to demonstrate lineage specific 

differentiation of stem cells in vitro or to culture tissue in vitro out of them. But this 

phenomena is present in avian egg which attained the perfection through the evolution 

of million of years and gradual modification of the open system will enable that in 

future. Since the avian egg is complete and independent of the mother, it is easier to 

study the cellular processes in the developing embryo. The constructed open system in 

conjunction with the micro-imaging and micromanipulation system brought the field an 

important step ahead. 

In spite of considerable success of current tissue engineering approach, it has 

reached to a dead end- tissue engineering is not possible without angiogenesis and it is 

also not possible to initiate angiogenesis in the tissue engineering constructs. The 

limiting factor for the survival, proliferation, and differentiation of transplanted cells is 

the sufficient supply of nutrients and oxygen. The current tissue engineering approach 

relies entirely on diffusion processes for this supply. Furthermore, to supply tissue-

engineered constructs thicker than a few millimetres, initial vascularisation from the 

surrounding host tissue is necessary.  

The CAM has become an ideal substrate to investigate the process of embryonic 

angiogenesis and vasculogenesis at the cellular level. However, to study these 

phenomena, an open system is required that allows access of different high-resolution 

imaging methods. µMRI provides high-resolution and non-invasive imaging possibility, 

which is very advantageous for in ovo application but seems not to be a solution with its 

disadvantages, especially the motion artefacts and longer image acquisition time. The 

modified open system on the contrary allows different optical imaging methods and 

provides a very high resolution, real time in ovo imaging at the cellular level. Co-

application of micromanipulation system with the constructed microimaging system will 

allow contrast labelled cells/samples to implant/inject into the embryo and image to 
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follow the fate; withdrawal of sample from the desired location will allow parallel 

biochemical and histological analysis of the samples to extract additional informations. 

Table 7-2: Summerised results of the complete experiments in this Ph.D. work  

Methods/Procedure Results/Comment 

Noninvasive 3D Imaging of avian embryogenesis in ovo 
with µMRI 

Allowed very high resolution (39 µm ×39 µm), 3-D 
imaging, but limited by too long image acquisition 
time, motion artefacts, and smaller probe size. µMRI 
was not a solution for the current study. 

Avian embryo culture in open system 

• Bantam embryo in broiler egg shell –67 % hatching 
• Broiler embryo in broiler shell –38 % hatching 
• Quail embryo in bantam egg shell – 5% hatching 
• Quail embryo in complete artificial system- 0%hatching 

For the first time, different influential parameters for 
the open culture system were identified. The open 
system is a very useful tool for further experiments that 
will enable to construct a liquid│liquid interface culture 
system for in vitro cell culture. 

Technical modification of the open system for optical 
imaging in vivo 

• Construction of especial lid for the open system for optical 
imaging. 

• Construction of long distance fluorescence microimaging 
and micromanipulator system,  

• Construction of especial flexible microelectrode array for in 
vivo application 

Imaging of the complete chicken development from 
the beginning of incubation until hatching with 
changing magnification to image the desired part of 
the developing embryo. Constructed long distance 
fluorescence microimaging and micromanipulator 
system enabled to inject /remove fluroscence labelled 
cells into the transperant embryo at the early stage that 
will help to study cellular physiology in ovo. 

Technical modification of the open system towards 
liquid│liquid interface culture 

• Scanning electron microscopy of egg shell and SM to study 
the ultrastructure 

Open system consisted with 
• Surrogate shell without shell membrane- 0% hatching 
• Dried surrogate shell –0% hatching 
• Windowed of surrogate shell with 

♦ Polystyrene- max. survival ID 20 
♦ Bioglass - max. survival ID 17 
♦ Polyamide - max. survival ID 14 
♦ Cell culture Petridish - max. survival ID 20 
♦ Cling film - max. survival ID 16 
♦ Plexiglas - max. survival ID 15 
♦ Complete artificial and transparent egg - maximum 
survival was ID 5 

 The experiments provided an outlook for construction 
of a complete artificial liquid│liquid interface in vitro 
cell culture system for routine cell culture as well as for 
Tissue Engineering. Eventhough it was not possible to 
culture embryos untill hatching (which is regarded as 
the assessment parameter for the system) and 
angiogenesis remains to be a key point to be solved for 
the tissue engineering in the complete artificial and 
transparent egg. Never the less, the process of 
angiogenesis works perfect in the avian egg open 
culture system. Careful study and modification of this 
system will enable to construct a complete artificial 
system adopting the same physiochemical principle of 
avian egg where the problem of angiogenesis will be 
overcome in future. 

One distinguishing feature of avian egg as a culture system is the permanent 

changing boundary conditions which adapt in accordance with the changing demand of 

the dividing and differentiating cells. Unlike the static boundary conditions in in vitro 

culture of cells, egg shell with its membrane provides more dynamic conditions to the 

cells inside. By the time the egg is laied, the embryo reaches the blastoderm stage with 

several thousand non-differentiated cells. Cell division stops due to drop of temperature. 

With incubation, cell division resumes. O2 is toxic to the cells at this stage and therefore 

the climate is rich in CO2 to support the cellular demand. Porous egg shell permits 

limited gas exchange at this stage to maintain gaseous status. With further growth, the 
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O2 demand of the embryo increases. This increasing demand is fulfilled by the gradual 

increase in gas exchange across the shell with gradual thinning of the egg shell with the 

mobilization of Ca2+ by CAM. 

The egg shell is not only a housing for the dividing cells inside, but also a cleverly 

designed reservoir of Ca2+. It is toxic to the embryo in inorganic form but CaCO3 gives 

mechanical stability of the shell. That is why the egg shell is completely isolated from the 

egg contents by a double layered shell membrane. As the embryo grows, it requires Ca2+ 

in bulk for osteogenesis. CAM gradually mobilizes Ca2+ from the shell. 

In this thesis was concerned regarding the preliminary study of the feasibility to 

construct a liquid│liquid interface culture system to culture cells at the interface of two 

immiscible liquids. This method is based on the same natural principle as the avian 

embryo grows inside the egg. From a technical and biotechnological perspective, the 

chicken can be seen as an interface of two immiscible liquids, where the blastoderm 

develops at the interface between a protein rich in water (egg white / albumen) and 

lipid (egg yolk). As in nature, cells can also be cultured at the liquid│liquid interface in 

the similar way. Two immiscible liquids placed together separate from each other 

creating an interface. One of these liquids can be tissue culture medium and other 

liquid, relatively immiscible with the first one, is hydrophobic, higher density than water 

and non-toxic to living calls. In this cultivation method, anchorage dependent animal 

cells can anchor, spread and grow at the interface 151-153. Different artificial and natural 

membranes, nano/microstructures, biometrics and self assembling nanofibres can be 

placed at the interface for culturing anchorage dependent cells. 

The cultivation of anchorage-dependent animal cells is performed at the interface 

between solid substrate and liquid culture medium, where the whole process is 

governed by the physiochemical properties of the solid substrate. Cellular phenotype 

often dominated and limited by the cellular microenvironment and technical boundary 

conditions of the substrate. Inappropriate alteration to cellular microenvironment and 

rigid substrates hinder cellular communication, cell division, differentiation and 

migration. This results into a flat layer of homogenous cell sheet, which is unlike tissue 

consisting of inhomogeneous cells performing a specific function in coordination. The 

current technology of in vitro culture in flasks or on dishes developed from Petri dishes 

and nutrient-gel-surface culture of microbiology. It is less automated, allows 

insufficiently defined microenvironment of cells and limited and dominated by technical 
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boundary conditions of the flask. In general, these methods are used to keep and 

culture cells outside the organism.  

In 1964 Rosenberg introduced the use of a fluid substrate for the growth of both 

transformed and anchorage-dependent cells 284, 285. In this method a cell suspension is 

introduced over an inert hydrophobic liquid having a density greater than that of the 

aqueous medium, and cells are observed to spread and divide at the liquid│liquid 

interface between the two immiscible phases. As is the case for solid substrates, the cells 

do not interact directly with the interface but rather with proteins that adsorb to the 

interfacial junction.  One of these liquids can be tissue culture medium and other liquid, 

relatively immiscible with the first one, is hydrophobic, higher density than water and 

non-toxic to living calls. In this cultivation method, anchorage dependent animal cells 

can anchor, spread and grow at the interface 151-153. As is the case of solid substrate, the 

cells do not directly interact with the interface, but rather the proteins adsorb to the 

interfacial junction. Different membranes can be place at the interfacial zone, which 

may include natural and synthetic membranes, micro and nano structures and 

biomatrices. 

This method of cell culture has the advantage of being exceptionally 

homogeneous and reproducible when compared with hydrophobic solid surfaces, 

which, in general, have polar molecular inhomogeneities. In addition, cells grown on 

such substrates can be transferred by simply pipetting the cell layer. Such procedure of 

cell harvesting is especially important where the effect of trypsin or other proteolytic 

enzymes or chelating agents to passage cultured cells can be avoided. It is here to be 

mentioned that the compositions of cell membrane proteins are changed by enzymatic 

treatment or by mechanical scraping 301. Such a procedure is of particular interest in that 

it obviates the use of trypsin or other proteolytic enzymes or chelating agents to passage 

cultured cells and avoids the uncertain effects of such treatments. If the adsorbed serum 

proteins at the interface are crosslinked by using glutaraldehyde or if a bimolecular layer 

of proteins is formed by using polylysine as a base coat 88, the patterns of cell growth 

can be altered significantly. This simply means that the cell growth can be regulated as 

desired. In addition this method is free from the influence of the technical boundary 

conditions of the substrate and allows freedom to the cellular migration similarly in the 

developing avian embryo at the interface of egg white and egg yolk. 
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It is a matter of regret that since the original work was published in 1964, there 

seems to have been relatively little interest in the growth of cells on fluid substrates in 

spite of many advantages not afforded by solid substrates in culture. There had been a 

patent regarding cell culture on a large number of small protein-coated droplets of a 

first liquid dispersed in a second liquid in the nature of an emulsion 102. One of these 

liquids is to be a sterile aqueous tissue culture medium and the other liquid, relatively 

immiscible with the tissue culture medium, is non-toxic to living cells. Hanging drop 

preparation is perhaps one such example where cells are cultured at the liquid│gas 

interface. Nevertheless, this process is different from the natural process of liquid│liquid 

interface culture proposed in this thesis. 

The goal of this thesis was to gradually adapt the avian egg for interface culture 

system to culture mammalian cells. Keeping the final goal in mind, first the process of 

avian embryogenesis was studied non-invasively using µMRI with highest possible 

resolution. In addition, the potential of tracking the SPION labelled cells injected into the 

fertilised egg was also considered. With its drawbacks, µMRI was not feasible for in ovo 

application for realtime imaging. Next, the avian embryo was cultured in the open 

system and was brought to hatch. Later the open system was modified for optical 

imaging to allow the study of the vital process of embryonic development at the 

liquid│liquid interface inside avian egg with optical imaging methods. This opened a 

new door for studying the cellular migration, cell differentiation, organogenesis and, 

eventually, the embryogenesis.  

Scientists are now starting to realize the disadvantages of in vitro cell culture 

methods but are still moving in the same non-physiological way; trying to mimic the 

three dimensional environment in vitro: to grow cells in 3-dimentional culture. However, 

there is no emphasis on liquid│liquid interface culture. Cellular microenvironment can 

be very well studied by exploiting the independency and the completeness of the avian 

egg. It was not possible to realise the new culture system in the short time span of this 

thesis, but further investigations in future will allow the construction a liquid│liquid 

interface culture system for in vitro culture of cells, which will help to remove the 

drawbacks of the traditional in vitro cell culture system. 
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Annexes 

Cling-film ‘glue’: Cling-film glue was made by adding 0.1 ml Amphotericin (500µg/ml) 

and 0.2 ml penicillin/streptomycin mix (10,000 IU/ml Pen and 10,000 IU/ml 

streptomycin) to 10 ml freshly collected thin albumen  

Protocol for egg sterilisation: The wash solution consisted of 5% aqueous solution of 

Hypo chloride (200-500 ppm) (Sodium hypochlorite solution from Sigma-Aldrich 

GmbH). Eggs are washed in a mixture of 10l H2O + 70 ml Sodium hypochlorite 

solution at 37 °C for 3 minutes. After washing, eggs are dried at room 

temperature and stored in a refrigerator at 14 °C. 

Prussian blue staining:  

Solutions:  

A. Potassium Ferro cyanide Solution (filter) 

Potassium Ferro cyanide - 1 g 

Distilled Water - 50 ml 

2% Hydrochloric Acid (1ml in 50ml) - 50 ml 

B. Neutral red 

Procedure: First, cells were fixed in 10% Para formaldehyde solution for 10 min, 

washed in PBS, and stained with a freshly prepared solution of 5% potassium 

ferrocyanide and 10% hydrochloric acid for 20 minutes. Than stained with 

neutral red for 1-5 minutes and rinsed with water and dehydrate in 96% alcohol 

two times then 100% alcohol. After that cleared in xylene (Xylol). Photographs 

were taken of representative fields. 

Pen Strep (Penicillin/Streptomycin) solution: contains 10,000 units/ml Penicillin and 

10,000 µg/ml Streptomycin used without dilution. 

Amphotericin B: Contains 250 µg/ml Amphotericin B used without dilution. 
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