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Summary

The evaluation of auditory brainstem responses (ABRs) is accepted as a robust

method for the objective detection and quantification of hearing loss in non–

cooperative patients. In currently available ABR analysis technologies, a large

number of sweeps (individual responses) has to be averaged in order to obtain a

meaningful signal morphology due to a poor signal–to–noise ratio. The computa-

tion of such large–scale averages makes the evaluation of ABRs time consuming,

limiting the applicability of this method crucially.

This thesis proposes a completely new detection paradigm for ABRs by means of

a fast ABR single sweep processing. This paradigm is called the novelty detection

paradigm. Here the ABR evaluation system is adjusted to the spontaneous elec-

troencephalographic activity and correlates of a stimulus locked synchronization at

the brainstem level, as indicator of a physiological hearing, are detected as novel

instances. The features used in this paradigm are based on the inter–sweep in-

stantaneous phase synchronization as well as energy and entropy relations in the

time–frequency domain. Included in the evaluation of this new approach was the

test of different broadband stimuli (click and chirp) and different Ag/AgCl electrodes

(active and passive). It is concluded that the proposed novelty detection paradigm

allows for a much faster detection of ABRs than conventional averaging methods

and that the ABR detection can be improved by the chirp stimulation technique.

Apart from this novelty detection paradigm, an independent part of this thesis was

dedicated to the optimal frequency specific auditory stimulation as prerequisite for

subsequent feature extraction and ABR detection stage. In particular, a new family

of notched–noise embedded band limited chirps for the assessment of frequency

specific ABRs has been developed and calibrated. The evaluation of these chirps

in healthy young adults as well as the analysis of the corresponding ABRs using

phase synchronization methods are reported. It is concluded that the assessment

of frequency specific ABRs is possible using this new family of chirps which can be

employed in the novelty detection paradigm.
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Zusammenfassung

Die Evaluierung von auditorisch evozierten Hirnstammpotenzialen (AEHPs) ist

ein etabliertes Verfahren zur sicheren objektiven Detektion und Quantifizierung

einer Hörstörung bei nicht–kooperativen Patienten. Aufgrund eines sehr schlechten

Signal–Rausch–Verhältnisses muss in derzeit verfügbaren Technologien zur AEHP

Analyse eine hohe Anzahl von Einzelsweeps, d.h. elektroenzephalografische

Antworten auf einzelne Stimulationen, gemittelt werden um eine aussagekräftige

Signalmorphologie zu erhalten – insbesondere bei geringen Stimulationsintensitäten.

Diese Berechnung von großskaligen Mittelwerten macht die Analyse von AEHPs sehr

zeitintensiv und limitiert daher die Anwendbarkeit dieser Methodik deutlich.

In dieser Arbeit wird ein völlig neues Paradigma zur ultra–schnellen Detektion

von AEHPs auf der Basis von Einzwelsweeps vorgestellt, welches das Neuheiten–

Detektions–Paradigma genannt wird. Danach wird das AEHP Analysesystem er-

stmals an die elektroenzephalografische Spontanaktivität angepasst und Korrelate

einer – in Bezug auf den Stimulus – zeitfesten Synchronisation auf Hirnstamm-

niveau als Indikator eines physiologischen Hörens als ”Neuheiten” detektiert. Die in

diesem Paradigma verwendeten Merkmale basieren auf einer Inter–Sweep Synchro-

nisation der Momentanphase sowie Energie– und Entropierelationen in der Zeit–

Frequenzebene. Die Evaluierung dieses neuen Verfahrens umfasste auch einen Test

von verschiedenen breitband Stimulationen (Klick und Chirp) sowie verschiedene

Ag/AgCl (passive und aktive) Elektroden. Es wird gefolgert, dass der vorgeschla-

gene neue Zugang eine wesentlich schnellere Detektion von AEHPs als konventionelle

Mittelungsmethoden erlaubt und optimal durch die Chirp–Stimulation ergänzt wird.

Neben dem Neuheiten–Detektions–Paradigma, wurde sich in dieser Arbeit der op-

timalen frequenzspezifischen Stimulation als Voraussetzung für die folgende Merk-

malsextraktion und AEHP Detektion gewidmet. Insbesondere wurde eine neue Serie

von in einem Kerbrauschen eingebetteten, bandlimitierten Chirps für die frequen-

zspezifische AEHP Analyse entwickelt und kalibriert. Über die Evaluierung dieser

Chirps bei gesunden jungen Erwachsenen sowie über deren Phasenstabilitätsanalyse

wird in dieser Arbeit berichtet. Es wird gefolgert, dass die frequenzspezifische Be-

wertung von AEHPs durch diese neue Serie von Chirps, welche sich in das Neuheiten–

Detektions–Paradigma integrieren lässt, möglich ist.
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Notation

N the set of natural numbers, N0 = N ∪ {0}
Z the set of integers

R the set of real numbers

R>0, R≥0 R>0 =]0,∞[, R≥0 = [0,∞[

Ck(R) the space of k times continuously differentiable functions on R

L2(R) the Hilbert space of all square integrable functions

`2 the Hilbert space of all square summable sequences

〈·, ·〉H, || · ||H inner product and norm on a Hilbert space H
|| · ||2 Euclidean norm

K(·, ·) reproducing kernel

∗ convolution product

× the Cartesian product

⊕
direct sum

span finite linear combinations

HK reproducing kernel Hilbert space
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Chapter 1

Introduction

1.1 Hearing Loss in Newborns

Congenital hearing loss is a common and important health problem and one of the most

common neurosensory handicaps in newborns and children (Yoshinaga-Itano, 1999;

de Aledo Linos, 2001; Sivalal, 2005). Therapies for newborns with bilateral hearing

loss are important during their first 24 weeks of life as otherwise a serious delay in

speech and intellectual development has to be expected, see Yoshinaga-Itano (1999).

It is difficult, if not impossible to acquire fundamental language skills, social skills, and

particular cognitive skills for this patient group. Thus there is no foundation for later

schooling and success in the society. The consequences of being deaf–mute are special

schools and care, social isolation, and no exploitation of potential skills. Thus there are

serious medical and economical consequences for the entire society due to this problem,

see Yoshinaga-Itano (1999); de Aledo Linos (2001).

According to Sivalal (2005) the prevalence of congenital permanent childhood hearing

impairment (PCHI) differs from country to country. This irregularity is partly due to

differences in study population, criteria for impairment and the tests that were used

in the study. The prevalence of PCHI has been estimated to be, e.g., 1.1 to 1.5 for

every 1000 live births in Estonia, 2 to 4 in 1000 in the U.S.A, and 1 in 900 in the U.K..

The prevalence of sensorineural hearing loss also varies with race, birth weight, and

other risk factors. In 30% of the cases, these children had other neuro–developmental

conditions, most frequently mental retardation. The prevalence of hearing loss in high

risk newborns is 10 to 20 times higher than in normal newborns. PCHI has been said to

13



14 1. INTRODUCTION

be more prevalent than commonly screened medical conditions such as phenylketonuria,

hemoglobinopathies and congenital hypothyroidism, see Sivalal (2005).

1.2 Organization of NHS and Hearing Screening

Techniques

Different newborn hearing screening (NHS) programs to detect hearing loss as early as

possible have been established so far, see Helfand et al. (2001); Delb (2002, 2003). The

technical methods used in these programs include otoacoustic emissions (OAEs), and

auditory evoked responses (ABRs).

Other methods such as the middle latency responses (MLRs), and auditory late re-

sponses (ALRs) can not be used in the NHS programs because they are not reliable in

young infants, i.e., the MLRs can be or can not be present in healthy babies (Stapells,

2000; Stapells et al., 1988), on the other hand ALRs can be susceptible to changes un-

der sleeping conditions (Stapells, 2000) or be influenced by diverse endogenous factors,

such as attention (Low et al., 2007).

Next, short descriptions of the already mentioned methods used for hearing screening

purposes are given.

1.2.1 Otoacoustic Emissions

The OAEs are sound responses that are emitted from the ear. There are two types

of OAEs screening techniques, transient evoked otoacoustic emissions (TEOAEs) and

distortion product otoacoustic emissions (DPOAE) (Delb, 2003; Plinkert and Delb,

2001; Delb et al., 1999; Helfand et al., 2001; Delb et al., 2004). TEOAEs are generated

in response to clicks, see an example of a click in Fig. 1.3, while DPOAEs are responses

to tones. Both stimuli are presented to the patient via lightweight ear canal probes.

A microphone picks up the signal, and multiple responses are averaged to get a repro-

ducible waveform. This test can be carried out at the bedside and a ”pass response” or

”fail response” is recorded. TEOAE measurements are more commonly used for infant

screening.
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The absence of TEOAE indicates that the inner ear is not responding appropriately

to sound. Thus, TEOAEs can be used for a hearing check but they do not allow for

a quantification, degree or type of the hearing loss (Stapells, 2000). Moreover, a large

proportion of healthy children are classified as hearing impaired, i.e., the specificity of

this method is rather low, see Delb (2003).

1.2.2 Auditory Evoked Responses

The ABR is an electrophysiological response in the electroencephalogram (EEG) gen-

erated at the level of the brainstem in response to auditory signals such as clicks,

chirps, or bursts of tones, see an example of an ABR waveform in Fig. 1.1, and an

example of a click and a chirp in Fig. 1.3. ABRs are also named brainstem auditory

evoked responses (BAERs), and brainstem auditory evoked potentials (BAEPs) (Hall,

1992). ABRs are generated by the delivery of stimuli via earphones or an inserted ear

probe; scalp electrodes are used to obtain the signals. The characteristic features of

the ABRs are amplitude and latency of their wave components. Latency is a term

used to describe the time at which an evoked response wave component occurs after a

stimulus (Hall, 1992); in the case of ABRs the dominant wave is the so–called wave V

component (its latency when using click auditory stimuli is in the 5.0-10.0 msec post–

stimulus region). The amplitude and latency of an ABR are related to the intensity

and the characteristics of the auditory stimulus that is employed.

Detection of wave V in ABR measurements is a robust method for the objective di-

agnosis and quantification of hearing loss in children (Wicke et al., 1978; Woodworth

et al., 1983; Mason and Adams, 1984; Peters, 1986; Shangkai and Loew, 1986; Delb,

2003). This method has a higher specificity as the TEOAE measurement and provides

information about the integrity of the auditory pathways from the auditory nerve until

the level of the brainstem (Stapells, 2000), see Fig. 1.1. Click evoked–ABRs, which are

usually used in NHS programs, can be used for the detection of the hearing threshold

(HT), i.e., the quantification of the hearing loss, but one disadvantage is that they

can not estimate hearing losses in particular frequency regions (low, middle or high

frequencies) (Stapells, 1994).

Also, due to a poor signal–to–noise ratio, 2000 to 4000 sweeps (individual responses)

have to be averaged to obtain a meaningful, visually noticeable signal at a particular
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Figure 1.1: Example of an ABR waveform. The components of the ABR are numbered

with Roman numerals. Each wave corresponds to a specific structure along the auditory

pathway. Some of the generators of these waves are still under discussion. Wave (I):

VIII-auditory nerve, (II): cochlear nuclei, (III): superior olivary complex, (IV): nucleus

of the lateral lemniscus, (V): inferior colliculus, (VI and VII): medial geniculate body

of thalamus. For more detailed information we refer to Hall (1992). Picture taken and

modified from Hall (1992)

.

stimulation level (the exact number depends on the number of artifacts produced). As

such large–scale averaged signals are used in the conventional visual analysis, they are

also commonly used in computational scheme although — for a machine – other data

representations might be more appropriate (Strauss et al., 2004b).

Using the currently available devices this takes approx. 2 to 4 minutes to get the result

for one stimulation level, e.g., see Meier et al. (2004) where it was not possible to obtain

a reliable response in less than even 4 to 5 minutes. This measurement time requires

sometimes the state of spontaneous sleep, strong sedation, or narcosis of the newborns.

NHS programs are therefore commonly conducted as multiple stage procedures, see in

Fig. 1.2 the implementation of a NHS program in the state of Saarland, Germany.

Evidently, follow ups are often missed in such schemes, hence losing the effectiveness of

the program. This multiple stage implementation is necessary because of the technical

problems described before. The ABR measurement can just be applied at the last

screening stage due to the long duration measurements. In other words, the idea is

to filter as many as possible newborns by TEOAE measurements but due to a low

specificity, many newborns with a physiological hearing are transferred to subsequent

screening stages and this produces unnecessary cost due to the follow up.

So far, many methods have been proposed for an automatic recognition of ABRs with



1.2. ORGANIZATION OF NHS AND HEARING SCREENING TECHNIQUES 17

Figure 1.2: Organization of a 3–stage universal NHS program implemented in the state

of Saarland, Germany.

various success rates (Wicke et al., 1978; Woodworth et al., 1983; Mason and Adams,

1984; Peters, 1986; Shangkai and Loew, 1986; Madhavan et al., 1986; Delgado et al.,

1988; Dobie and Wilson, 1989; Özdamar and Alpsan, 1992; Alpsan et al., 1994; Chen

et al., 1996; Sanchez et al., 1995; Popescu et al., 1999; Vannier et al., 2002; Gentiletti-

Faenze et al., 2003; Strauss et al., 2004b). These methods are essentially based on

traditional statistical pattern recognition techniques for classification of the ABRs.

Generally, signal characteristics pertaining to different conditions are derived and then

used for the computational recognition. Syntactic methods have also been used for the

classification of ABRs (Madhavan et al., 1986).

Developing intelligent recognition systems using statistical or syntactic procedures faces

great difficulties, since signal characteristics or rules are not readily extractible. Al-

though medical experts can interpret these signals, they can not identify the rules

completely, see Alpsan et al. (1994); Acir et al. (2006). Artificial neural networks are

also used for classification of ABRs, e.g., Özdamar and Alpsan (1992). The estimation

of the HT using ABRs involves the determination of the lowest stimulus intensity at

which a sound evoked wave can be observed in the recording. Therefore an important

step in automated threshold determination is to make a decision as to whether a sound

evoked response is present in the waveform. Each ABR patterns recorded at a given

intensity must be labeled into a ”with response” and ”without response” class on the

basis of presence or absence of sound evoked peaks in the waveforms.
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The primarily difficulty in this classification task is the differentiation of actual re-

sponses from the peaks that are due to EMG activity and noise. In Chen et al. (1996)

was reported a clinical evaluation of the widely used detection method ”ALGO”, devel-

oped by Peters (1986), with a sensitivity of 93%, a specificity of 78% and an accuracy

of 83%. In Özdamar and Alpsan (1992) was reported an accuracy of about 76% for

ABRs classification by using backpropagation multilayer perceptron classifier for the

purpose of threshold determination. In Vannier et al. (2002) was reported a rather

good sensitivity (91%), specificity (92%) and accuracy (91%) using an automatic ABR

statistical recognition.

A high accuracy of 97% was reported by Sanchez et al. (1995) using a vector of several

attributes estimated from the ABRs. Due to different measurement techniques, data

acquisition procedures, and processing techniques it is difficult to objectively compare

the results of the research cited above.

However, all of the above cited methods are based on large–scale averaging procedures

for the final analysis and require sometimes narcosis, sedation, or the state of sponta-

neous sleep of the newborn to obtain the data. It is the major objective of this work

to avoid time–domain averaging procedures, and instead use single sweep analysis in

order to implement a very fast detection of the hearing loss and HT, respectively.

1.2.3 Frequency Specific Threshold Detection

In general applications, i.e., NHS programs, the already mentioned hearing screening

methods give results related to a general HT, and when a more detailed frequency

specific determination of a HT is required, different approaches are used instead, e.g.,

pure tone–evoked ABRs, auditory steady state responses (ASSRs) (Luts and Wouters,

2004) (such as the amplitude modulation following responses (AMFRs) (Pethe et al.,

2002)), stacked ABR (Don et al., 1997, 2005), and notched–noise brainstem evoked

responses (Stürzebecher et al., 1994).

The pure tone–evoked ABRs are responses elicited by sinusoidal burst stimulations at

fixed frequencies, commonly the standard frequencies used in subjective audiograms.

The subsequent processing steps are based on averaging techniques as for normal ABRs.

The ASSRs are enhanced by modulated sinusoidal waves or by broadband stimuli, such

as clicks or chirps (Elberling et al., 2007; Burkard et al., 2006) at high repetition rates,
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and the analysis is performed in the frequency domain. Although ASSRs might be very

promising for the objective adjustment of hearing aids, it can be very time consuming

to obtain these signals, see Pethe et al. (2002).

The stacked ABR method has been used for the detection of small acoustic tumors, and

seems to be a promising approach for frequency specific HT determinations. This tech-

nique combines click–evoked ABRs together with a high–pass masking noise at different

cut–off frequencies. The waves V are then determined for different frequency bands

by subtraction of the average response obtained without masking condition from the

subsequent average responses using masking noise with decreasing cut–off frequencies,

see Don et al. (1997, 2005) for details.

In the notched–noise evoked responses the ABRs are generated by a combination of

clicks or bursts of pure tones together with notched–noise centered at different frequen-

cies.

In summary, the pure tone–evoked ABRs, stacked ABR, and notched–noise evoked

responses depend on the detection of a time domain waveform, like the regular ABR

detection method, which means that they use time consuming averaging techniques in

the range of thousands of sweeps in order to have an identifiable wave V. Therefore a

fast detection of frequency specific ABRs would also be of great relevance in all these

applications, and not only for click–evoked ABRs, where the interest is a general HT

determination.

1.3 Chirp Stimulus

In the past it was commonly believed that ABRs were elicited by the onset or offset of

a stimulus, and therefore clicks were preferred because of their abrupt onset and wide

spectral content, e.g., see Hall (1992); Kodera et al. (1977) – similar to the idea of a

Dirac distribution activating all the Eigenvalues of a continuous linear time invariant

system.

From cochlear mechanics is known that the cochlea is tonotopically organized (de Boer,

1980). This means that low frequency components of a traveling wave take a longer

time to reach their sensation locus (apex) than the high frequency components (base),

see Fig. 1.3 for a schematic diagram of the cochlea. Gorga et al. (1988); Neely et al.
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(1988) reported wave V latency curves and showed that the latency and amplitude of

the wave V were related to the intensity and the frequency of the stimulus. Later, Dau

et al. (2000a) created a chirp stimulus to evoke ABRs that was designed to compen-

sate the temporal dispersion of the basilar membrane (BM) (delaying high frequencies

components from the low frequencies) by using the linear cochlear model of de Boer

(de Boer, 1980) and the cochlear frequency–position functions based on experimental

data obtained by Greenwood Greenwood (1990), see Fig. 1.3 for an example of a chirp

stimulus.

In Fobel and Dau (2004) the authors designed a variety of chirps using different data

sources, such as OEAs data, and ABR wave V–latency plots. The chirps in general

evoked larger responses than click stimulations. The chirps which showed the best

responses, specially for low stimulation levels, were calculated using the wave V la-

tency curves, which are sensitive to intensity. This latency curves represent a better

approximation from the point of view of cochlear mechanics.

As previously stated, the use of chirps had not only been limited to ABRs, but also

to ASSRs, for details see Elberling et al. (2007). Thus, due to its promising features

and variety of possible applications, the chirps have become more popular over the last

years. Part of the present work is dedicated to the use of chirps for: (1) collection of

brainstem responses, and their respective comparison against click–evoked responses;

and (2) the development of a family of notched–noise embedded band–limited chirps

for the assessment of frequency specific ABRs.

1.4 The Novelty Detection Paradigm

Single Sweep Analysis: As mentioned before, time consuming averaging procedures

are used for the evaluation of ABRs, which make their measurement unsuitable in early

screening stages of universal NHS programs. The authors in Strauss et al. (2004b)

suggested a hybrid signal processing scheme for ABR single sweeps which allowed the

detection of wave V in just a fraction (10%) of the measurement time of conventional

approaches at 30 dB HL stimulus, i.e., 12 sec. and 24 sec. instead of 2 min and 4 min,

respectively. See Fig. 1.4 for an example of ABR single sweeps representation.

Moreover, as in–situ measurements by Stevens et al. (2004) showed, there is no available

device at the moment – although there are different manufacturers’ instructions – which
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Figure 1.3: (Top) Broadband Stimuli: click stimulus with a duration of 100 µs, rep-

resented with a dark gray line, and chirp stimulus, with rising frequency, represented

with a black line. Note that for the chirp, the low frequencies are delayed from the high

frequencies, and its amplitude envelope assures a flat amplitude spectrum. (Bottom)

Schematic of the cochlea. Note the tonotopic organization: the sensation loci for high

frequencies are in the area of the base and for low frequencies in the area of the apex.

allows the detection of a hearing loss below 45 dB HL. At 30 dB HL it is of course

more difficult than for larger stimulation levels as the responses are much weaker. Note

that the combination of kernel machines and wavelet methods has recently also been

adopted by other groups (Acir et al., 2006) but for large–scale averaged responses which

are too time consuming for the purpose of this work.

Consequently, with such a fast hybrid signal processing procedure the HT could be

detected at low stimulation levels at the first screening stage. This would thus also

allow the quantification of hearing loss when considering an increasing stimulation

level. In other words, there would be not just the information ”deaf” or ”not deaf”

but also a specification of the hearing loss. The procedure in Strauss et al. (2004b)

is based on the design of paraunitary filter banks for the implementation of wavelet

frame decomposition which are tailor–made for kernel learning machines merged with a
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Figure 1.4: Left: single sweeps (individual responses); Right (bottom): the averaged

signal (approx. 2000 sweeps) commonly used in the ABR analysis; Right (top): single

sweeps in matrix representation (The normalized amplitude is coded in gray colors

ranging from black to white, which represent small and large amplitudes, respectively),

here the trace of wave V is clearly noticeable. In this single sweep matrix representation,

amplitude fluctuations and latency jitters are also discernible, which is information that

is lost in the averaged response.

inner sweep dissimilarity analysis. In other words, shift–invariant frame transforms are

designed to optimize (in the sense of statistical learning theory) the feature extraction

in ABRs for a subsequent detection by kernel learning machines, see Fig. 1.5.

The Novelty Detection: In Strauss et al. (2004b) was showed that a single sweep

analysis of ABRs can be used for the detection of wave V and thus for a detection of

the hearing loss. However due to the limited data substrate used this can just be seen

as the proof of the feasibility of the approach (Strauss et al., 2004b). Also the time of

the learning phase of the kernel based scheme could be reduced or even avoided when

using the phase synchronization measures discussed in the next section.

However, the most important drawback is that there is still no way to include the

individual measurement setup in the computational analysis as discussed in Strauss

et al. (2004b). Therefore it is the objective of this work to realize the paradigm change

to a measurement setup adapting neural signal processing of ABRs. The basic idea

is to design a computational recognition scheme that is adjusted to the individual

measurement condition using the spontaneous EEG activity. In the next step, auditory
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Figure 1.5: The principle of a hybrid wavelet–kernel learning machine: adaptive feature

extraction and inclusion of prior knowledge (stage 1 and 2) and decision making by

kernel machines (stage 3).

stimulations at larger stimulation levels are applied, e.g., at 30, 40, and 50 dB SPL. If

there is a stimulus locked reaction of the brainstem to the stimulus – thus a physiological

hearing, a regular and consistent event must be present in the respective time interval.

The detection of such a regular, consisted, stimulus locked event is very challenging

due to the single sweep processing and represents the major scientific challenge of this

work.

This new paradigm may provide the basis for a radical innovation in the objective

hearing examination of newborns. Two different approaches seem to be promising at

the moment to implement such an adaptive procedure computationally.

Several statistical, kernel, and neural network based novelty detection approaches have

been introduced in recent years, see Markou and Singh (2003a,b) and references therein

for an excellent review. Under all these schemes, kernel based novelty detectors are
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Figure 1.6: Sketch of the novelty detection idea: the system is adjusted to segments of

the spontaneous activity (no stimulation condition) and a physiological neural brain-

stem processing of stimulations above the hearing level is detected as novel event.

particularly appealing since they adjust their capacity to the data automatically and

involve just the solution of convex, globally solvable optimization problem for their

learning (Tax and Duin, 1999).

Kernel based novelty detection machines construct a sphere around the data repre-

sented in the feature space. This is the learning task of these machines. After that,

new data which is outside of this constructed sphere is detected as novel instance, see

Fig. 1.6. Here a tradeoff has to be made between the generalization performance of

the machines and their ability to detected events that are abnormal and do not belong

to the learned class. In other words, not every slight difference in data which does not

belong to the training set has to be detected as novel instance but at the same time

abnormal events which do not belong to the learned class have to be detected.

In the new paradigm introduced before, the spontaneous activity of the EEG could

be the training data for the hybrid novelty detection machine. This would allow the
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inclusion of the individual measurement conditions, e.g., the electrodes configuration.

If now a stimulus at a particular stimulation level above the HT of the subject is

applied, there is a novel, regular, and stimulus locked event present in the EEG which

can be detected by these machines. Here the optimal feature extraction remains the

most challenging part.

1.5 Phase Space Transforms: Synchronization Sta-

bility Measures

Recently, time–scale coherence measures based on the complex wavelet transform have

been introduced, which take the non–stationary nature of evoked potentials into ac-

count in contrast to conventional coherence based on the frequency information alone,

see Lachaux et al. (1999); Bruns (2004) for an overview and comparison of the Hilbert

and windowed Fourier transform. This wavelet coherence increases with the correlation

of the envelopes between two signals as well as if their phases show smaller variations

in time (Lachaux et al., 1999).

In contrast to the analysis of averaged potentials, the amplitude information of single

sweep event–related potentials, i.e., the response to individual events, turned out to

be fragile in some cases (Kolev and Yordanova, 1997). Large amplitude fluctuations

can easily be introduced by slight accidental changes in measurement setup over time.

Since the signals exhibit a high degree of variance from one sweep to another, even

robust amplitude independent synchronization measures such as the time–scale entropy

(Strauss et al., 2004a) can hardly be applied to assess their synchronization stability.

To be independent from amplitude fluctuations one can focus on the wavelet phase

coherence exclusively (Lachaux et al., 1999). The wavelet phase coherence defined in

Lachaux et al. (1999) is mainly applied to measure the degree of phase locking of two

signals in time, e.g., obtained from two different sites.

Recently, Strauss et al. (2005, 2008) have shown that this measure can be used for the

assessment of the phase synchronization stability as large–scale reflections in auditory

late evoked response single sweep sequences. Such an idea could also be applied for

the detection of a stimulus locked activity in ABRs. For the spontaneous activity, we

have no regular synchronization and thus no time locked responses in the EEG when
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Figure 1.7: The synchronization stability in the complex plane for time intervals of

the spontaneous activity (0 dB SPL), shown in gray color, and for auditory evoked

response single sweep sequences at 30 dB SPL, shown in black color (the synchroniza-

tion stability is proportional to the absolut vectorial length of the individual traces).

The same number of sweeps was used in both cases. It is noticeable that there is no

synchronization for 0 dB SPL but synchronized activity for 30 dB SPL.

considering consistent time intervals. For a stimulation above the hearing level, there

is supposed to be a regular synchronization that is time locked with the stimulus. Con-

sequently, there should be a significant increase in the phase synchronization stability

as first experiments confirmed, see Fig. 1.7.

Such phase synchronization measures could help to complement supervised kernel learn-

ing procedures and thus speed up the scheme significantly. However, this novel tech-

nique has also to be modified, improved, and adjusted for ABR detection.

1.6 Contribution of this Work

The main purpose of this work was to introduce a new novelty detection paradigm for

the fast detection of ABR single sweeps using abstract phase synchronization measures

and machine learning techniques. Moreover, this work was focussed on the evaluation of

the best measurement setup, electrodes, and stimulus combination in order to improve

the detection and generation of ABRs.
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As previously stated, the improved detection of ABRs according to this paradigm

started with the data acquisition. For this purpose an acquisition setup was specifically

designed in order to collect ABR single sweeps.

Later, the work was focused on developing different types of auditory stimuli to evoke

the ABRs. As it has been lately reported in literature that ABRs evoked by optimized

chirp signals seem to be promising as the applied rising frequency chirp signal might

produce synchronous discharges of VIIIth nerve fibers along the human cochlear par-

tition. It was shown that this may lead to a significant increase of the amplitude of

the evoked signals, see Dau et al. (2000b); Wegner and Dau (2002). The previously

stated implies that chirps might speed up the application of the proposed detection

algorithms. Therefore such optimized chirp signals were also included in this work for

the generation of ABR data, and the collected responses were evaluated and compared

against a commonly accepted broadband stimuli, i.e., click stimulations.

For the first time, the evaluation of passive and active Ag/AgCl electrodes was done in

order to improve the acquisition of the electroencephalographic activity. Recently, ac-

tive electrodes have been suggested to be easier to attached than commonly used passive

electrodes (which sometimes require a laborious skin preparation procedure); to have

automatic impedance adjustment due to their pre-polarization and pre-amplification

stage, and therefore also lead to an improvement in the compensation for artifacts

related to movements.

Subsequently, the goal was to develop a new detection paradigm for ABRs by means

of a fast ABR single sweep processing. This novelty detection paradigm, as previously

stated, adjusted itself to the spontaneous EEG activity and correlates of a stimulus

locked synchronization at the brainstem level, as indicator of a physiological hearing,

were detected as novel instances. The features used in this paradigm were based on

the inter–sweep instantaneous phase synchronization as well as energy and entropy

relations in the time–frequency domain.

On the other hand, taking into account the state of the art related to methods such

as the notched–noise evoked responses, it was an interesting issue to analyze whether

we could exploit a combined approach using band limited chirp stimuli together with

notched–filtered noise. Therefore another part of this thesis was dedicated to the devel-

opment of a family of notched–noise embedded band limited chirps for the assessment

of frequency specific ABRs, which had not been used in this configuration before. The
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results of the evaluation of these chirps in healthy young adults, and their analysis by

using phase synchronization measures was also reported.

Organization of the Work: The information is organized as follows: In the Chapter

2 is explained the measurement setup, the data acquisition procedures, the generation

methods of the different auditory stimuli, as well as their calibration. Also here are

presented all the necessary formalisms for the novelty detection algorithm and feature

extraction calculation, Gabor frame operators and continuous wavelet transform as

well as learning machines. In Chapter 3 we show the results of the approach. This

includes the already mentioned comparison of different stimuli and electrodes, the

results of the novelty detection paradigm, phase synchronization measures extracted

with different time–frequency transformations, and the results of the notched–noise

embedded frequency specific chirps. In Chapter 4 we present a detailed discussion of

the reported results, as well as future work that can still be done. The conclusions are

finally given in Chapter 5.



Chapter 2

Material and Methods

In this chapter is given a description of the procedures used to generate different types

of auditory stimuli, their calibration method, the measurement setup and experimental

procedures used in order to collect auditory brainstem responses.

Also a more detailed explanation of the methods used in the post-processing stage and

novelty detection paradigm, such as time–frequency transformations, synchronization

measures, and novelty detection machines are given.

As mentioned in the Sec. 1.6, two different studies for data collection were performed.

In order to make a clear separation of the two studies used along the entire work,

the auditory stimulation protocols and processing sections are distinguished by num-

ber, Study 1 and Study 2. The Study 1 was focussed on the comparison between

chirp–evoked ABRs and click–evoked ABRs using two different types of electrodes

(passive and active), and the Study 2 was performed to evaluate a series of notched–

noise embedded frequency specific chirps to asses frequency specific auditory brainstem

responses.

2.1 Stimuli

2.1.1 Study 1: ABR–Chirps and Clicks

ABR–chirps: Based on the results reported in Fobel and Dau (2004), the chirps

which yielded in the largest evoked responses (in Fobel and Dau (2004) referred as

29
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A-chirps) were calculated. The procedure is following explained. From the equation

which represents the ABR wave V latency as reported by Neely et al. (1988):

τBM(f) = a + bc-if -d (2.1.1)

with a = 5.0 ms, b = 12.9 ms, c= 5.0, d= 0.413, and with i representing the stimulus

intensity (in dB SPL divided by 100) and f representing the stimulus frequency divided

by 1 kHz, the mechanical component of the latency of wave V was considered as the

second term of equation (2.1.1), while the first term was consider as neural component

and therefore, independent from frequency and intensity (Neely et al., 1988). The final

latency–frequency function resulted in: τBM(f) = bc-if -d.

The variable τBM was considered to represent the propagation time (Fobel and Dau,

2004), and therefore the inverse function of τBM was calculated, that is τBM
−1(f)=fa(t),

where t= 1
f
.

Next, the chirp was given by

S(i, t) = A(i, t) sin(φ(i, t)− φo), (2.1.2)

with the amplitude factor

A(i, t) =

√
dfa(t)

dt
=

√
(bc−i)1/d

d[to(i)− t]1/d+1
(2.1.3)

and the instantaneous phase

φ(i, t) = 2π

∫ t

0

fa(t)dt =
2π(bc−i)1/d

ν

[
1

(to(i)− t)ν
− 1

to(i)ν

]
(2.1.4)

with ν = d−1 − 1 and to=τBM (100 Hz). We refer to Fobel and Dau (2004) for further

details.

Three different chirps were computed, using Eq. (2.1.2), (2.1.3), and (2.1.4), for the

intensity levels of 40, 30 and 20 dB sound pressure level (SPL). The frequency range

for all the chirps was from 0.1 to 10 kHz. The resulting durations were 7.84, 9.21

and 10.81 ms for the chirps at 40, 30 and 20 dB SPL, respectively. For identification

purposes they are referred along the text as ABR–chirps.

Clicks: For the click stimulation, unit impulses with alternating polarity and a dura-

tion of 100 µsec were used.
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Figure 2.1: Waveforms of the ABR–chirps and click. The ABR–chirps were calculated

with a frequency range of 0.1-10kHz, and different intensity levels: 40, 30, and 20 dB

SPL. From right to left, chirp for 20 dB SPL(black continuous line), chirp for 30 dB

SPL (gray dot-dashed line), chirp for 40 dB SPL (gray dashed line) and click of 100

µsec (gray continuous line).

All stimulation waveforms are shown in Fig. 2.1. For all stimulation conditions the

repetition rate was 20 Hz. All the stimuli were calculated digitally and converted to a

sound file with a sampling frequency of 44.1 kHz.

2.1.2 Study 2: Notched–Noise Embedded Frequency Specific

Chirps

Chirps Series: Based on the chirp created and tested by Dau et al. (2000b); Fobel

and Dau (2004) (where the latency–frequency function was developed on the basis

of the linear cochlear model of de Boer and the cochlear frequency–position functions

obtained by Greenwood in Greenwood (1990)), a broadband chirp was generated for the

frequency range of 0.1–10 kHz (central frequency: 5250 Hz). The chirp was calculated

following the same procedure as for the ABR–chirps, using Eq. (2.1.2), (2.1.3), and

(2.1.4), but with the latency–frequency function:

τBM(f) = k(f+a)-d (2.1.5)

with k = 4.78, a = 165.4 Hz, d= 1.1, und to=τBM (100 Hz), as reported by Elberling
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et al. (2007).

Next, the series of chirps was developed using the same total operation range of 9.9

kHz (0.1–10 kHz). This range served to generate the 5 bands (2n, n ∈ {1, 2, . . . , 5}) for

the frequency specific chirps. The bands were then centered on standard frequencies

for audiograms, see theoretical (calculated) values in Tab. 2.1. In ascending order, the

smaller bands correspond to the low central frequencies and the larger bands correspond

to the higher central frequencies, respectively. The rational here is to combine an

amplitude envelope that results in a flat frequency spectrum stimulus, like in Dau et al.

(2000b), combined with notched–filtered masking noise. With the previously stated and

ensuring that each stimulus starts and ends with zero, it is presumed that the effect

of an abrupt onset or offset is then diminished. Therefore the chirps were adjusted to

the latency–frequency function in order to have zero values at their beginning and at

their end.

It was also desirable that the chirps would have as many cycles as possible. Thus, the

duration criteria, besides the condition of 0 at the beginning and at the end, was taken

according to have at least a minimum number of cycles. In Wegner and Dau (2002)

the authors used a ”3–half–waves” chirp, which was also took as criteria here for the

minimum number of half cycles to have in the chirps. The final bands were slightly

different from the first calculated ones (in general the frequencies changed less than

20%), and they remained under the tolerance limits according to the initial values, see

Tab. 2.1.

Table 2.1: Calculated and final (’) parameters of the frequency specific chirps. With a

Range of 9.9 kHz.

Chirp number Bandwidth (Hz) Fc (Hz) Interval (Hz) Fc’ (Hz) Interval’ (Hz) Bandwidth’ (Hz) duration (ms)

1 Range/25 ≡ 309 250 [95, 405] 302 [108, 490] 382 6.1946

2 Range/24 ≡ 619 750 [441, 1059] 813 [495, 1135] 640 2.0185

3 Range/23 ≡ 1238 2000 [1381, 2619] 1915 [1230, 2600] 1370 0.87806

4 Range/22 ≡ 2475 4000 [2763, 5238] 6725 [2950, 10500] 7550 0.5091

5 Range/21 ≡ 4950 8000 [5525, 10475] – – – –

Broadband Range/20 ≡ 9900 5050 [100, 10000] 5050 [100, 10000] 9900 10.12

A special consideration has been done for the two chirps that had the higher frequency

bands. The ranges (of both chirps) were added, and one chirp instead of two was

constructed. Therefore we had finally 4 frequency specific chirps. The reason to design

this one chirp out of two was because the model did not allowed the criteria of ”3–
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half–waves” for the two last high-frequency chirps. Therefore a fourth chirp covered the

ranges of both chirps. This limitation of the latency–frequency function and possible

improvements will be discussed in later sections as well as in the Chapter 4.

The final waveforms, as well as the latency–frequency function can be seen in the Fig.

2.2. In the same figure and in Tab. 2.1, the numerical values of the final central

frequencies, frequency bands, intervals and duration of the chirps are shown. For

identification purpose, the chirps are called Ch1, Ch2, Ch3, and Ch4, according to

their frequency range, where Ch1 is for the stimulus with the lowest frequency band

and Ch4 is for the chirp with the highest frequency band. For the broadband chirp the

abbreviation is B–bCh.

It is important to mention that the final chirps included the standard audiogram fre-

quencies inside their frequency range.

Notched Masking Noise: For the notched masking noise files, white noise as recom-

mended in Stapells (1994), was created using the software MATLAB (The MathWorks

Inc., USA). The noise was band–passed filtered for the frequency range of 0.1–10 kHz,

afterwards it was notched filtered using digital finite impulse response filters. A noise

file was calculated for every chirp. The cut–off frequencies of these notch filter files

fitted the limits of their respective chirp. The noise in all conditions was 20dB below

the corresponding pe SPL intensity of the chirps (Stapells, 1994). After calibration,

for details of the calibration procedure see Sec. 2.1.3, the noise and the stimuli were

converted to a single sound file and then presented to the subject. Note that the noise

was not added to the broadband chirp as in this case it was intended to stimulate the

entire cochlea.

All the chirps had alternating polarity (one time the stimuli started with positive values

the next time with negative values) and a repetition rate of 20 Hz. All the stimuli were

calculated digitally and converted to a sound file with a sampling frequency of 44.1

kHz.

2.1.3 Stimuli Calibration

The setup and stimuli were calibrated according to European Committe for Stan-

dardization (2007); International Organization for Standarization (2007); Richter and

Fedtke (2005). For this purpose, the peak equivalent (pe) SPL had to be calculated for
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Figure 2.2: Frequency specific chirps. Thick black line: latency–frequency function,

which served for the generation of the chirps. The resulting waveforms, frequency

bands, and duration of the chirps are also shown. Here, Ch1 corresponds to the chirp

with the smallest and lowest frequency band and Ch4 corresponds to the chirp with

the highest and largest frequency band. B–bCh is a broadband chirp, which covers the

entire frequency range.

each type of stimulus. The peak voltages were measured using a digital oscilloscope

(TPS 2014, Tektronix, USA), and the equivalent reference sinusoidal waves (to calcu-

late the pe SPL) were produced by a function signal generator (33220A, Agilent, USA).

A sound level meter (type 2250, Brüel & Kjær, Denmark) measured the different pe

SPL values via a prepolarized free field 1/2” microphone (type 4189, Brüel & Kjær,

Denmark) connected to an artificial ear (type 4153, Brüel & Kjær, Denmark). The

artificial ear was simultaneously coupled to the headphones (HDA–200, Sennheiser,

Germany) while reproducing the reference sinusoidal waves.
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2.2 Experimental Procedure, and Subjects

2.2.1 Measurement Setup and Preprocessing

The Fig. 2.3 shows the experimental setup used for the acquisition of the ABRs. A

personal computer controlled the acquisition of the electroencephalographic activity,

and the presentation and intensity level of the stimuli. The electroencephalographic

activity was acquired by a high–end 24 bit biosignal amplifier (g.USBamp, g.tec, Aus-

tria) using a sampling frequency of 19.2 kHz, and a band–pass filter with low and

high cut–off frequencies of 0.1 and 1.5 kHz, respectively. The biosignal amplifier was

connected via USB port to the computer. The intensity level was controlled by means

of a programmable attenuator buffer (g.PAH, g.tec, Austria) connected to the com-

puter via serial port. Each sound file was generated together with its respective trigger

signal. The audio channel that corresponded to the stimuli was connected to the atten-

uator and afterwards delivered to the subject via circumaural headphones (HDA–200,

Sennheiser, Germany). The trigger channel was connected to a trigger conditioner

box (g.Trigbox, g.tec, Austria) which adapted the voltage level of the trigger signal in

order to be acquired by the biosignal amplifier. The acquisition–processing program

and all further post–processing were achieved using software for technical computing

(MATLAB–Simulink, MathWorks Inc., USA).

The following electrode placement was performed for all the measurements: ipsilateral

to the stimulus at the right mastoid (A1), common reference at the vertex (Cz) and

ground at the upper forehead (Fpz). The electrode labels are according to the standard

10–20 system. Impedances were maintained below 5kΩ in all the measurements.

2.2.2 Study 1: Chirps vs Clicks and Active vs Passive Elec-

trodes

Electrodes: Two different types of sintered Ag/AgCl electrodes were used during the

experiments: passive (Schwarzer GmbH, Germany) and active, impedance–converting–

amplification electrodes (EASYCAP GmbH, Germany), e.g., see Hagemann et al.

(1985) for a more detailed discussion on active electrodes. Electrodes were placed

as described in Sec. 2.2.1.
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Figure 2.3: Setup for the acquisition of ABRs. The computer controls: (a) the acqui-

sition of the electroencephalographic activity via USB port using a biosignal amplifier;

(b) the intensity of the stimuli via serial port by using a programmable attenuator

buffer; (c) stimuli and trigger signals presentation. The trigger signal is processed

prior acquisition by a trigger conditioner box. The software developed for the specific

purpose acquires, filters and stores the data.

Experiment: The time for one complete experiment was approx. 1.5 h including the

time for the preparation of the subject and electrodes placement. Active electrodes were

attached first. Subjects were instructed to lay on a bed in an acoustically insulated

room trying to remain quiet, with the eyes closed, and sleep if possible. After the

headphones were placed, the impedances were verified, and the lights were turned off.

Subsequently, ABRs were obtained using clicks for the intensity levels of 40, 30, 20

dB pe SPL, and the spontaneous activity for the same time segments (i.e., number of

samples) that were used in the stimulated condition. In other words, in this way we

obtained single sweeps of the spontaneous activity.

Later the ABR–chirps were presented for the same intensity levels and in the same

order. Soon after, the electrodes were removed, and after skin preparation the passive

electrodes were placed, and the same stimulation procedure was applied as for the

active electrodes. In total 16 files were recorded. In each recording and condition 2000

sweeps free from amplitude artifacts (artifacts were removed by an amplitude threshold

(15µV) detection; not more than 10% of artifacts were in the obtained single sweep

sequences for all the subjects, electrodes, and stimulation conditions) were recorded.

The measurement sequence was identical for each subject.
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Subjects: Twenty volunteers (mean age 24.45 years with a standard deviation of 3.80

years; 13 female, 7 male) with no history of hearing problems and normal hearing

thresholds (below 15 dB (HL)) as checked by an audiogram participated in the exper-

iments. After a detailed explanation of the procedure, all subjects signed a consent

form.

2.2.3 Study 2: Notched–Noise Embedded Frequency Specific

Chirps

Experiments: The time for one complete experiment was approx. 2.0 h including

the time for the preparation of the subject and electrodes placement. Passive Ag/AgCl

electrodes (Schwarzer GmbH, Germany) were attached as described in Sec. 2.2.1. The

subjects were instructed to lay on a bed in an acoustically insulated room trying to

remain quiet, with the eyes closed, and sleep if possible. The headphones were placed

and after verifying correct impedances, the lights were turned off. Subsequently, ABRs

were obtained using the broadband chirp and next, using the notched–noise embedded

frequency specific chirps for the intensity levels of 50, 40, and 30 dB pe SPL. In total 15

files were recorded. In each recording and condition 3000 sweeps free from amplitude

artifacts (artifacts were removed by an amplitude threshold (15µV) detection) were

recorded. The measurement sequence was identical for each subject.

Subjects: The data was collected from ten volunteers (mean age 25.1 years with a

standard deviation of 2.96 years; 4 female, 6 male), with no history of hearing problems

and normal hearing thresholds (below 15 dB (HL)) as checked by an audiogram carried

out before the experiments. After a detailed explanation of the procedure, all subjects

signed a consent form.

2.3 Inter-Sweep Phase Synchronization Measures

The application of mathematical transformations to signals is performed in order to

get information that is not accessible in the original domain mostly time domain, of

the signal. Many different approaches have been developed for the assessment of fre-

quency analysis of transient biomedical signals, i.e., complex wavelet transform (CWT),

window fourier transform (WFT), Gabor frames (GFs), among others.
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For the present work, the focus is on two time–frequency decomposition techniques:

CWT and GFs.

2.3.1 Wavelet Transform and Wavelet Phase Stability

Wavelet Transform: The wavelet transform has been introduced as a new math-

ematical tool for signal analysis (Goupillaud et al., 1984; Daubechies, 1992; Vetterli

and Kovačević, 1995) and has already had a large impact on biosignal processing, see

Akay (1997). As mentioned before, it provides a time–scale (the scale is linked to a

frequency range) representation of transient signals and the main motivation for its

application in biosignal processing is the fact that the most interesting features of

such signals are simultaneously localized in time and scale, for instance, waveforms in

electroencephalographic (EEG), e.g., evoked potentials.

Here a short introduction to the wavelet transform is provided, which is also necessary

for further discussion. More details can be found in Daubechies (1992) and Vetterli

and Kovačević (1995). Let us consider a function ψ ∈ L2(R) where L2(R) denotes

the Hilbert space of all square integrable functions, i.e., all functions x that satisfy∫
R |x(t)|2dt < ∞. The function ψ is called a wavelet if it satisfies the following admis-

sibility condition

0 <

∫

R
|Ψ(ω)|2|ω|−1dω < ∞, (2.3.6)

where Ψ is the Fourier transform of ψ. This condition implies that Ψ(0) =
∫
R ψ(t)dt =

0, i.e., the wavelet oscillates such that it has a zero mean. By the translations and

dilations of the ’prototype’ wavelet ψ, we obtain the doubly–indexed family functions

ψa,b(·) = |a|−1/2ψ((· − b)/a), (2.3.7)

where a, b ∈ R, a 6= 0. The wavelet transform Wψ which maps a function x ∈ L2(R)

into the time–scale domain is given by the inner L2–product

(Wψx)(a, b) = 〈x, ψa,b〉L2 =

∫

R
x(t)ψ∗a,b(t)dt, (2.3.8)

where the asterisk denotes complex conjugation. Unlike sine and cosine which comprise

the basis functions of the Fourier transform, wavelets are characterized by a fast decay

or compact support, i.e., they are essentially limited to a finite interval. Thus (2.3.8)
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provides information about features which are local in time. The scale parameter a

in (2.3.7) controls the dilation of the wavelet ψ and b its translation in time. For

large values of a, the wavelet ψa,b covers a large time interval and (Wψx)(a, b) yields

a global view of f with a high sensitivity for low–frequency components, see Fig. 2.4

for the representation of WT in the time–frequency plane. For small values of a, the

transform (Wψx)(a, b) provides information about short high–frequency components of

x. In contrast to other time–frequency analysis techniques, e.g., the windowed Fourier

transform (Daubechies, 1992), the wavelet transform analyzes with a variable window

in the time–frequency domain by the described dilations of the wavelet. In this way,

a better compromise between the time and frequency resolution can be achieved in

comparison to the fixed window of the windowed Fourier transform (Daubechies, 1992;

Vetterli and Kovačević, 1995).

Figure 2.4: Different time–frequency domain representations. Left: Windowed fourier

transform (WFT); Center: Wavelet transform (WT); and Right: Gabor frames (GFs).

Note that for WFT the time–frequency resolution is fixed, whereas for WT it is variable

and depends on the value of the scale a, a small value of a decreases time spread but

increases frequency resolution, and viceversa. In the case of the GF, the information

is sampled on a less dense grid.

Wavelet Phase Stability: For the determination of the phase synchronization sta-

bility, we need an adaptation of the derived phase locking measure between two signals

to our problem, see Lachaux et al. (1999).

In this study, the 6th–derivative of the complex Gaussian function was used as wavelet,

see Louis et al. (1997) for more details and an introduction to wavelets.

Note that the scale a can always be associated with a ’pseudo’ frequency fa in Hz by

fa = Tfψ/a, where T is the sampling period (the sampling frequency fs used was 19.2

kHz, as described in Sec. 2.2.1) and fψ is the center frequency of the wavelet ψ (Abry,

1997).
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The wavelet phase stability (WPS) Γa,b of an ABR sequence X = {xm ∈ L2(R) : m =

1, . . . , M} of M sweeps is defined by

Γa,b(X ) :=
1

M

∣∣∣∣∣
M∑

m=1

eı arg((Wψxm)(a,b))

∣∣∣∣∣ . (2.3.9)

Note that the synchronization stability in (2.3.9) is a value in (0, 1). It is a perfect

synchronization stability for a particular a′ and b′ for Γa′,b′ = 1 (perfectly coherent

phases) and a decreasing stability for smaller values due to phase jittering.

2.3.2 Gabor Frames and Gabor Frame Phase Stability

In this section are introduced the necessary mathematical formalisms and notation for

the Gabor phase stability analysis of ABRs. For a general introduction to discrete time

frames the reader is referred to Strohmer (1999).

Frames and Frame Operators: In the following, the interest is restricted to discrete

time systems and signals such that all signals are represented by sequences. For the

sake of a handy notation, the index of the individual sequence elements is denoted as

argument in square brackets. Let `2 denote the Hilbert space of all square summable

sequences, i.e., `2 = `2(Z) = {x : Z 7→ C :
∑

m∈Z |x[m]|2 < ∞}. The interest is further

restricted to time–invariant systems of the form

ϕm,n[·] = ϕm[· − αn], n ∈ Z, m = 0, 1, . . . , M − 1, α ∈ N>0. (2.3.10)

where ϕm ∈ `2. A set {ϕm,n : m,n ∈ Z, ϕm,n ∈ `2} is called a frame for `2 if

A||x||2`2 ≤
∑

m,n∈Z
|〈x,ϕm,n〉`2|2 ≤ B||x||2`2 , ∀x ∈ `2. (2.3.11)

For A = B the frame is called a tight frame for `2 and we have the expansion x =

A−1
∑

m,n∈Z〈x, ϕm,n〉`2ϕm,n. If ||ϕm||2`2 = 1 ∀m ∈ Z and A = 1 we obtain orthonormal

expansions and for A > 1 the expansion becomes overcomplete and A reflects its

redundancy. Two frames {ϕm,n : m,n ∈ Z} and {ϕ̃m,n : m,n ∈ Z} for the Hilbert

space `2 are called dual frames if x =
∑

m,n∈Z〈x,ϕm,n〉ϕ̃m,n, ∀x ∈ `2.

The frame operator F : `2 7→ `2 of the frame {ϕm,n : m,n ∈ Z} is defined by
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(Fx) =
∑

m,n∈Z
〈x, ϕm,n〉ϕm,n.

Condition (2.3.11) ensures that F is bounded and invertible on `2. The dual frame

{ϕ̃m,n : m,n ∈ Z} of the time–invariant system {ϕm,n : m,n ∈ Z} is given by

ϕ̃m,n[·] =
(F−1ϕm

)
[· − αn], (2.3.12)

where F−1 is the inverse frame operator.

Gabor Frames: A Gabor system (ϕ, α,M−1) for `2 is defined as

ϕm,n[·] = e2πım·M−1

ϕ[· − αn], (2.3.13)

i.e, the system represents a family of sequences which are generated by one particular

sequence due to modulation and translation. A Gabor system that is also a frame for

`2 is called a Gabor Frame for `2. For αM−1 > 1 the system is undersampled and

cannot be a basis or a frame for `2. For αM−1 = 1 it is the critically sampled case

and, if the Gabor system represents a frame, it is also a basis. For αM−1 < 1 it is the

oversampled case and the Gabor system cannot be a basis but a frame. In this work,

we deal with the latter case, see Fig. 2.4 for an example of its representation in the

time–frequency plane.

An important property of Gabor frames is that the dual frame is also generated by a

single sequence such that

ϕ̃m,n[·] = e2πım·M−1

ϕ̃[· − αn], (2.3.14)

with ϕ̃m,n = F−1ϕm,n.

Note that the Gabor frame operator F is a combination of the analysis and synthe-

sis operators that are introduced in the following, e.g., see Strohmer (1999). Let us

introduce the index set I = {0, 1, . . . , M − 1}. The Gabor frame analysis operator

Gϕ : `2 7→ `2(I × Z) is defined by

(Gϕx)[m,n] = C[m,n] = 〈x, ϕm,n〉`2 . (2.3.15)

The Gabor synthesis operator G∗ϕ̃ : `2(I × Z) 7→ `2 is defined by
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x[·] =
(G∗ϕ̃C[m,n]

)
[·] =

∑

m,n∈Z
C[m,n]ϕ̃m,n[·]. (2.3.16)

The described Gabor decompositions can also efficiently be implemented by oversam-

pled uniform band discrete Fourier transform filter banks as shown in Bölcskei et al.

(1998).

Table 2.2: Analyzed intervals for the different stimulations according to the intensity.

The analysis interval for each chirp starts after 3 ms of its respective duration, and

ends after 7 ms.

Intensity dB (pe SPL) Interval [bl, bu] (ms)

Clicks 40 [5,11]

Clicks 30 [5,11]

Clicks 20 [5,11]

ABR–Chirp 40 [10.84,17.84]

ABR–Chirp 30 [12.21,19.21]

ABR–Chirp 20 [13.81,20.81]

Gabor Frame Phase Stability: Let x denote the analytic signal of an ABR single

sweep, i.e., x = s+ıHs where s represents the original ABR single sweep waveform and

H the Hilbert transform operator. Given the sequence X I = {xI
k ∈ `2 : k = 1, . . . , K}

of analytic signals of K ABR single sweeps obtained at stimulation intensity I, the

synchronization stability, represented by Gabor frame phase stability (GFPS) is defined

by

ΓJ
m,n(X I) :=

1

J

∣∣∣∣∣
J∑

k=1

eı arg((GϕxI
k)[m,n])

∣∣∣∣∣ , J ≤ K, (2.3.17)

with m ∈ I and n ∈ S ⊂ Z. For a fixed modulation index m, the moving average

representation (over the sweeps) of the GFPS in Eq. (2.3.17), is defined by the sequence

ΛI
m,n[J ] =

(
Γ1

m,n(X I), Γ2
m,n(X I), . . . , ΓJ

m,n(X I)
)
. (2.3.18)

In the further analysis, the interest is restricted to the time intervals where most of

the energy of the ABRs was induced for the collected data segments, see Tab. 2.2. Let

U I ⊂ S denote the associated sampling space, i.e., the set of samples that corresponds

to these intervals. Then Eq. (2.3.18) averaged for this sampling space is given by

Λ
I

m[J ] = |U I |−1
∑

n∈UI

ΛI
m,n[J ]. (2.3.19)
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In other words, Eq. (2.3.19) represents the moving average (over the J sweeps) of the

mean (for a fixed modulation index m) ABR GFPS (MAGPS).

2.4 A Hybrid Detection Scheme

In this section, the implementation of a hybrid detection scheme using the phase syn-

chronization feature, which was introduced in the last sections, as well as a hybrid

adapted filter bank – kernel based novelty detection scheme is discussed. For this, the

very same data as in Sec. 2.1.1 (Study 1) was used, for the ABR–chirp stimulation at

30 dB pe SPL and active electrodes, which is a possible setup for screening applica-

tions. See Appendix A for a more detailed technical introduction to filter banks and

kernel machines.

2.4.1 Adapted Filter Bank Based Feature Extraction

A hybrid wavelet–support vector classification has been introduced in Strauss and

Steidl (2002) which employs lattice structure based wavelet and frame decompositions

for feature extraction tasks in waveforms which are tailored for support vector classifiers

with radial kernels. In particular, it provides a feature extraction which allows for an

inclusion of a priori knowledge and leads to a maximal margin of the scheme, and is

thus conform with the maximal margin theorem (Vapnik, 1995) of statistical learning

theory.

The objective here is novelty detection (Tax and Duin, 1999) instead of binary classi-

fication. Nevertheless, the feature extraction stage is closely related to classification.

The original wavelet–support vector classifier as proposed in Strauss and Steidl (2002)

relies on multilevel concentrations ξ(·) = || · ||p`p (1 ≤ p < ∞) of coefficient vectors of

adapted wavelet or frame decompositions as feature vectors, i.e, scale features. These

feature vectors incorporate the information about local instabilities in time as a priori

information. For the classification of ABRs, we also include the morphological infor-

mation of the waveforms as features as the discriminant information which separates

the physiological and pathological sweeps is also reflected in the transient evolution of

ABRs.
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Since we are interested in a shift–invariant classification scheme, we may only evaluate

the morphology of ABRs as a whole and not the exact latency of transient features.

A possible way to realize this is by the use of entropy which is already employed to

evaluate the subbands of wavelet and wavelet packet decompositions for the purpose

of signal compression, see Coifman and Wickerhauser (1992) and Wickerhauser (1994).

When using an appropriate entropy in connection with the tight frame decompositions,

it is invariant to shifts of the sweeps. We define the entropy of a sequence x ∈ `2 by

E(x) = −
∑

n∈Z

|x[n]|2
||x||2`2

ln
|x[n]|2
||x||2`2

. (2.4.20)

Note that E(·) is also the well known Shannon entropy (Cover and Thomas, 1991) but

one where the probabilistic events are replaced by normalized energies of the samples,

i.e., we do not deal with the probabilistic concept of the entropy here.

For a fixed ABR single sweep x, we define the function

ζx(ϑ) = (ζx
1 (ϑ), . . . , ζx

2J(ϑ))

=
(||dϑ

1 ||`1 , . . . , ||dϑ
J ||`1 , E(dϑ

1 ), . . . , E(dϑ
J )

)
,

and set ζi(ϑ) := ζxi(ϑ) (i = 1, . . . , M). Here dϑ
j denotes the coefficients of a shift–

invariant lattice structure based octave–band tight frame decomposition, parameterized

by the angle vector ϑ, see Appendix A. The number J is the decomposition depth. The

first J elements of this feature vector carry multilevel concentration of the subbands in

`1, i.e., a scale information. The second J elements carry the morphological information

reflected in the entropy as defined in (2.4.20). Note that ζi(ϑ) is totally invariant

against shifts of the individual sweeps. We used decomposition level 3 to 5 in this

study as these levels carried the substantial signal information.

2.4.2 Kernel Based Novelty Detection

Suppose we are given a set of M samples and a description is required. We try to find

a sphere with a minimum volume, containing all data in the hard case (no outliers

in learning set) and most of the data in the soft case (the learning set may contain

outliers). Instead of constructing this sphere in the original space, we construct it in

a high dimensional feature space which is induced by a kernel of a reproducing kernel
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Hilbert space (Wahba, 1999). All patters which lay outside the sphere are detected as

novel instances which do not correspond to the learned class (Tax and Duin, 1999; Ben-

Hur et al., 2001). The minimal sphere can be obtained by the following optimization

problem:

min
a∈FK ,R∈R,u∈RM

R2 + λ

M∑
i=1

uj (2.4.21)

subject to

||Φ(ζi(ϑ))− a||2 ≤ R2 + ui (i = 1, . . . ,M), (2.4.22)

ui ≥ 0 (i = 1, . . . ,M).

where the Φ : X ⊂ RJ −→ F ⊂ `2 denotes the feature map from the pattern space to

kernel feature space, a is the center of sphere (Tax and Duin, 1999), see Appendix A

for an introduction to feature spaces induced by reproducing kernels.

For the embedding of the feature extraction in the minimal sphere approach above, the

objective is now to find optimal lattice angles ϑ̂ such that a learning set of M sweeps

A(ϑ) =
{
ζi(ϑ)) ∈ X : i = 1, . . . , M

}
is as compact as possible in the feature space,

i.e.,

ϑ̂ = arg min
ϑ∈P2

{
M∑
i=1

||Φ(ζi(ϑ))− Ξ||2Fk

}
,

where P2 denotes the lattice parameter space for filters of order 5 (see Appendix A)

and Ξ the feature center. For radial kernels of the SVM, problems of this type can be

transformed from the feature to the original space and solved by genetic algorithms or

a hypercube evaluation, see Strauss and Steidl (2002).

2.4.3 The Assembled Scheme

In order to combine the extraction of the phase synchronization stability of ABR

sequences with the described kernel based novelty detection, we implemented the

scheme in Fig. 2.5. Here the final decision is based on the result of the kernel ma-

chine for the filter banks as well as for the GFPS. For the GFPS, we used Λ
0

2[J ]

(J ∈ {21, 22, . . . , 199, 200} as a leaning set of 180 feature vectors. Note that we dis-

carded here the first 20 sweeps due to large oscillations as described in Sec. 3.3. We
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Figure 2.5: The assembled hybrid detection scheme.

selected the time interval for averaging the GFPS tighter (as compared to Tab. 2.2)

such that this interval is represented by 20 samples, centered in the middle of the in-

tervals in Tab. 2.2. We also subtracted a smooth fit of Λ
0

2[J ] using an independent test

set from all the feature vectors in the learning and testing sets for I = 0 and I > 0 in

order to set these vectors close to a zero baseline.

Now a ”real” novelty is detected if both kernel based novelty detection machines detect

a novel instance. Note that this ”AND” combination optimizes the system with respect

to the sensitivity in view of its intended application in hearing screening. To end

this, an abstract synchronization on brainstem level as large–scale neural correlate of

a physiological hearing at intensity I is detected if both machines detect a novelty.

Otherwise, no hearing correlate is detected.

For the all the experiments in Sec. 3.3, we used J = 200 sweeps as learning set and 200

sweeps for testing the spontaneous activity and stimulations at 30 dB SPL, respectively.

It goes without saying that we used a different set of sweeps for the learning and testing

phase in the case of the spontaneous activity.



Chapter 3

Results

In this Chapter the results obtained for the different tested paradigms are shown,

ranging from the time domain waveforms to the post-processing results using different

time–frequency analysis, as well as results of the novelty detection. The sections are or-

ganized according to the stimulation paradigm used to evoked the ABRs, as mentioned

in Sec. 1.6.

For the first study, the following is reported: the time domain signals of the collected

ABRs data evoked by clicks and ABR–chirps, their time–frequency analysis and their

phase adjustment by using Gabor frames and GFPS.

For the second study, results of the development, testing, and evaluation of a series

of notched–noise embedded frequency specific chirps to evoke ABRs in healthy sub-

jects are reported. The ABRs collected here were analyzed using time–scale phase

synchronization stability measures by means of wavelet transform and WPS.

Finally, the results of the novelty detection algorithm for the fast detection of single

sweeps of ABRs are also shown.

47
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3.1 Study 1: Chirps vs Clicks, and Active vs Pas-

sive Electrodes

3.1.1 Stimuli

The waveforms of the resultant ABR–chirps are shown in Fig. 2.1. Note the different

durations of the ABR–chirps which are related to the intensity factors (the larger the

intensity the shorter the duration and viceversa). In the same figure it can also be seen

the amplitude envelope, which accomplish a flat spectrum by weighting the frequencies

by their duration (the low frequencies last longer, and therefore their amplitudes were

smaller as compared to high frequencies amplitudes, which had a shorter duration in

time, and therefore their larger amplitudes compensated their contribution).

3.1.2 Auditory Brainstem Responses and Electrodes

Measurement examples of the ABRs collected from one subject (number 2) are shown

in Fig. 3.1 as single sweep matrix representation, i.e., the amplitude of the sweeps

is encoded in a gray–scale map, and as thick white lines the averaged time domain

waveforms for different stimuli, intensities and different set of electrodes (active and

passive). In the case of the chirps, their increased latencies due to their long durations

are clearly noticeable as well as the stronger traces of wave V in the single sweep matrix

representations. At first sight no influence from the different type of electrodes can be

extracted from the potentials shown in the same figure. In all the subjects, identifiable

waves V were found. For space reasons, only the ABR waveforms from one subject are

reported, and the complete database with all the collected information is available if

required.

Nevertheless, to summarize the relevant information related to the ABRs collected

during the entire study, the wave V latencies for all the subjects and all the conditions

are shown in Fig. 3.2. The left column shows the latencies considering the onset of

the ABR–chirp stimulations, whereas the right column shows the latencies considering

only the offset of the stimuli. Note that for the click stimulations the onset and the

offset are considered as the same value (0 ms). The average overall the subjects, and

standard deviations for every condition are also shown at the most left side of each
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Figure 3.1: (Study 1) ABRs obtained from one subject (No. 2) for the different stimuli

(clicks and ABR–chirps), intensity levels, and electrodes (passive and active). Each

thick white line represents the average of a dataset of 2000 responses and it is plotted

over the sweeps in matrix representation. Each line in the sweeps matrix representation

is the average of 75 sweeps and the amplitude is coded in gray colors ranging from black

(small amplitudes) to white (large amplitudes)). The end of the stimuli as well as the

waves V are also identified. The trace of wave V in the matrix representation is easier

to identify for the chirp stimulations.

plot (which would correspond to patient number 0). In the left column it can be seen

that the latencies for the responses evoked by ABR–chirps at different intensities have

a larger separation between themselves as for the latencies at different intensities using

clicks. This is related to the duration of the applied stimulus.

It is worth to emphasize that in the following the interest is in the abstract time–

frequency phase locking features of the ABR sweeps and not in their time domain

morphology using waveform detection techniques.

3.1.3 Gabor Frame Phase Stability

For the experiments in this section, the Gaussian function was used to generate the

family of functions in Eq. (2.3.13) and Eq. (2.3.14) with M = 60 modulations and

α = 1. Note that these values result in an overcomplete Gabor frame decomposition

with m = 0, 1, . . . , M −1 (m is the modulation index) frequency channels spanning the
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Figure 3.2: (Study 1) ABR wave V–latencies obtained from all the subjects, for the

different electrodes conditions, stimulations (clicks and ABR–chirps) and intensity lev-

els. Upper row: using for active electrodes. Bottom row: using passive electrodes. The

left column shows the latencies considering the onset of the ABR–chirp stimulations,

whereas the right column has the latencies considering only the offset of the stimuli.

Note: for the click stimulations the onset and the offset are considered as the same

value (0 ms). The means and standard deviations for every condition are shown at the

left side of each plot (would correspond to patient number 0).

frequency interval [mfc, (m + 1)fc] with fc = fs/(2M) (fs is the sampling frequency =

19.2 kHz, as described in Sec. 2.2.1).

Results for Different Modulations: In the following the interest is restricted to

the quantity Λ
I

m[J ] in Eq. (2.3.19) for the spontaneous activity and 20 dB pe SPL

stimulations by clicks and ABR–chirps for m = 1, 2, 3, 4, i.e., the modulations or bands

in which most of the energy of the ABRs was induced in all the subjects. In Fig. 3.3 are

shown the p–values for an (one–way) ANOVA (Shoukri and Pause, 1999) for comparing

the means of Λ
I

m[J ] for the spontaneous activity vs. 20 dB pe SPL stimulation over all

the subjects, for each sample in time, and for an increasing sweep number (J = 1000).

Figure 3.3 (top) shows the result for the click stimulation and Fig. 3.3 (bottom) for

the ABR–chirp stimulation. With the exception of the high frequency channel m = 4,

the chirp stimulation reaches significant p–values (p < 0.05) much earlier in time, i.e.,
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for a much smaller number of sweeps, than the click stimulation, especially for m = 1.

Figure 3.3: (Study 1) Comparison of the means of Λ
I

m[1000] (m = 1, 2, 3, 4) for the

spontaneous activity and for I = 20 dB SPL stimulations. Top: click stimulation;

Bottom: ABR–chirp stimulation.

Performance Comparison Clicks vs. Chirps: In Fig. 3.4 it is shown the

performance comparison between click and ABR–chirp stimulations for m = 1, different

stimulation intensities, and passive electrodes. In particular, it is shown the mean of

Λ
I

1[1000] over all the subjects in Fig. 3.4 (a) for clicks and in Fig. 3.4 (b) for the ABR–

chirps. In Fig. 3.4 (bottom) the p–values for the (one–way) ANOVA significance test

are shown for the spontaneous activity vs. stimulation, in Fig. 3.4 (c) for clicks and

in Fig. 3.4 (d) for ABR–chirps. It is noticeable that the chirp stimulation converges

for a much smaller number of sweeps (j) to significant (p < 0.05) values than the click

stimulations. The very same analysis is presented in Fig. 3.5 for active electrodes with

rather similar results.

Phase Stability in the Complex Plane: In Fig. 3.6 (a) it is shown the quantity

(Gϕx
I
k)[m,n] for m = 1 and a fixed sample n taken from the interval of wave V in line.

More precisely, in this figure a complex number (with absolute value one) associated

with a sweep k+1 is ”attached” (linearly translated with conserved absolute value and

phase) to the complex number associated with sweep k (each straight line represents
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Figure 3.4: (Study 1) Results for passive electrodes and m = 1: (a): mean of Λ
I

1[1000]

for the spontaneous activity and increasing click intensities; (b) mean of Λ
I

1[1000] for

the spontaneous activity and increasing ABR–chirp intensities; (c) ANOVA for (a) and

(d) ANOVA for (b).

one sweep in Fig. 3.6 (a)). The origin of the complex plane is marked by the circle.

The very same number of 2000 sweeps is shown for the spontaneous activity and for

the 30 dB pe SPL ABR–chirp stimulation. It is noticeable that the phase for the

spontaneous activity is moving randomly around in the complex plane whereas the

phase for the ABR–chirp stimulation is locked and exhibits stable angles, resulting in

a large vector or smoother line, respectively, in the complex plane. It is easy to see

that the application of the GFPS would yield a larger value in the latter case.

Phase Stability in the Time Domain: In order to show the influence of the phase

stability in ABRs, the Gabor analysis and Gabor synthesis operator in Eq. (2.3.15)

and Eq. (2.3.16) were used, respectively. At first, the analytic signals of a sequence

of 2000 sweeps were decomposed by Gϕ. Then it was introduced an artificial phase

stabilization by adjusting all the instantaneous phases (i.e., of each sweep) to the

averaged instantaneous phase of 2000 sweeps. Let us describe this phase adjustment

now more formally: it is denote the averaged instantaneous phase for sample n of the

2000 analytic signals by ξn. The phase for sample n of the analytic signal of each sweep

is now adjusted by mapping it to the range [ξn, ξn +δ] where δ represents random noise
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Figure 3.5: (Study 1) Results for active electrodes and m = 1: (a): mean of Λ
I

1[1000]

for the spontaneous activity and increasing click intensities; (b) mean of Λ
I

1[1000] for

the spontaneous activity and increasing ABR–chirp intensities; (c) ANOVA for (a) and

(d) ANOVA for (b).

drawn from an uniform distribution on the interval [0, 0.4] for m = 2, 3 and a fixed

range in time (see the marked interval in Fig. 3.6(b, top)). The sequences modified

in this sense are then mapped back to the original signal space by G∗ϕ̃. The original

averaged ABR waveform s, i.e., the real part of x, evoked by ABR–chirps at 30 dB pe

SPL as well as its phase adjusted version are shown in Fig. 3.6 (b, top). The time

range of the phase adjustment is also marked in this figure. It is clearly noticeable that

the phase adjustment results in a much larger and more clear waveform morphology.

The effect of the phase adjustment is also clearly noticeable in the time domain single

sweep matrix representation in Fig. 3.6 (b, bottom).
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Figure 3.6: (Study 1) In the complex plane and time domain. (a): The quantity

(Gϕx
I
k)[m,n] for m = 1 and a fixed sample n taken from the interval of wave V. Each

complex number (with absolute value one) is associated with a sweep k + 1, and is

”attached” to the complex number associated with sweep k. The origin of the complex

plane is marked by the circle. (b: top): The phase of the averaged original ABR

waveform (dashed line) for 2000 sweeps is stabilized in the Gabor frame transform

domain for the marked range. The synthesized (reconstructed) waveform is shown as

black continuous line. (b: bottom–left): the single sweep matrix in the time domain for

the original sweeps; (b: bottom–right): the single sweep matrix for the reconstructed

phase adjusted sweeps.

3.2 Study 2: Notched–Noise Embedded Frequency

Specific Chirps

3.2.1 Stimuli

The resultant series of chirps to evoked frequency specific ABRs are shown in Fig.

2.2. The different parameters, bands, durations are also shown in the Tab. 2.1. The

final waveforms had at least ”3–half–waves”, and cover in a large proportion the total

operation range. The latency–frequency function used to calculate the chirps is also



3.2. STUDY 2: NOTCHED–NOISE EMBEDDED FREQUENCY SPECIFIC CHIRPS 55

shown in the same figure. Note the longer duration for the low frequency–band chirps

as compared to the higher frequency–band chirps.

3.2.2 Auditory Brainstem Responses

Examples of the measurements in one subject for the different conditions are shown in

Fig. 3.7 as single sweep matrix representation, (as mentioned before the amplitude of

the sweeps is encoded in a gray–scale, where white bright colors represent large values

and dark colors represent small values), and as thick white lines, the averages for the

time domain waveforms. Two lines are plotted for each condition. Each line represents

the average of 1500 responses to show reproducibility as waveform. In the same figure

the offset of the stimulus is subtracted, so the responses are aligned to the offset of their

respective stimulus. The columns correspond to the responses for a specific intensity

level (from left to right, 30, 40 and 50 dB pe SPL), and the rows 1, 2, 3, 4 and 5

correspond to the responses of Ch4, Ch3, Ch2, Ch1, and, B–bCh respectively. The

6th row is the addition of the responses from Ch1 to Ch4. And the last 7th row is the

same addition but with prior alignment of the waves V.

Fig. 3.8 shows the latency–frequency function (black solid line) as well as the resulting

values of the latency of the wave V, obtained from the grand average (overall the

subjects), for the different chirps at the different intensity levels. Note that these

averaged latency values are plotted in the center frequency of the corresponding chirp

that was applied. Lines to connect the different averages are also plotted to make the

recognition easier for the different intensities. The error bars represent the standard

deviation. From top to bottom, light gray continuous line, dark gray continuous line

and the gray dot–dashed linerepresent the intensities of 30, 40 and 50 dB pe SPL,

respectively.

3.2.3 Wavelet Phase Stability

The Fig. 3.9 shows the grand average (overall the subjects) of the WPS for the different

stimulation conditions, with M=3000 (sweeps), in (2.3.9). The columns correspond to

the phase synchronization for a specific intensity level (from left to right, 30, 40 and

50 dB pe SPL), and the rows 1, 2, 3, 4 and 5 correspond to the chirps Ch4, Ch3,

Ch2, Ch1, and, B–bCh, respectively. Dark gray to black and light gray to white colors
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Figure 3.7: (Study 2) ABRs measurements collected from one subject for the differ-

ent stimulation conditions –using the noise embedded frequency specific chirps. The

columns correspond to the responses for a specific intensity level (from left to right, 30,

40 and 50 dB pe SPL), and the rows 1, 2, 3, 4 and 5 correspond to the responses evoked

by the Ch4, Ch3, Ch2, Ch1, and B–bCh respectively. The row number 6 corresponds

to the summation of the averaged responses of the ch1, ch2, ch3 and ch4, and the

7th row corresponds also to the same summation but after alignment of the waves V.

Each average is represented by two white lines to show reproducibility, and they are

placed above its respective single sweep matrix representation, i.e., the amplitude of

the sweeps is encoded in a gray–scale map.

represent small and large values of WPS, respectively. For the calculations the value

of the scale a ranged from 20 to 60 with increments of 5. In the same figure, Fig. 3.9,

the latency shift of the wave V due to frequency specificity is easily noticeable in the

synchronization stability, especially for middle to larger scales.
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Figure 3.8: (Study 2) Wave–V Latency curves. Average latency values obtained from

all the subjects and for all stimulation conditions –using the noise embedded frequency

specific chirps. Light gray continuous line: for the intensity level of 30 dB pe SPL,

dark gray continuous line: for the intensity level of 40 dB pe SPL, gray dot–dashed

line: for the intensity level of 50 dB pe SPL, thick black line model of de Boer. For

these curves, 5 ms were subtracted from the preliminary average value. Those 5 ms

represents the neural component, which is not considered on the latency–frequency

function, represented as a black thick line in the figure. The error bars indicate standard

deviation.

3.3 Hybrid Detection Scheme

3.3.1 Filter Extraction Experiments

In Fig. 3.10 it is shown the discrete–time wavelets associated with level j = 3, 4, 5 of

our parameterized decomposition scheme. In particular, these wavelets minimize the

representation of the training data in feature space induced by a reproducing Gaussian

kernel, see Eq. (2.4.22).

3.3.2 Kernel Based Novelty Detection

Two concentration features of our feature vector ζx(ϑ) are shown in Fig. 3.11 for the

training sweep sequence of the spontaneous activity, an additional set of spontaneous

activity sweeps (which was not included in the training date set), and for a stimu-

lation above the hearing threshold (10 feature vectors are averaged to produce one
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Figure 3.9: (Study 2) The grand average overall the subjects of Γa,b(X ) (the scale a

ranges from 20 to 60 with increments of 5), for the different stimulation conditions,

using the noise embedded frequency specific chirps. The left, center and right columns

correspond to the intensity levels of 30, 40 and 50 pe SPL, respectively. The rows from

top to bottom, correspond to the chirps Ch4, Ch3, Ch2, Ch1 and B–bCh, respectively.

Dark gray to black colors and light gray to white colors represent small and large values

of WPS, respectively.

representative feature vector for the kernel machine). It can be seen how the training

data defines a nonlinear decision line in the pattern space which contains most of the

spontaneous activity data (also those feature vector which were not included in the

training set) and clearly separates the spontaneous activity from stimulations above

the hearing threshold.

Using the scheme described in Sec. 2.4 and just J = 200 sweeps, ABRs can correctly

be detected (i.e., a discrimination of sweeps with spontaneous activity which were not

included in the training set and chirp–evoked ABRs) in 19 out of 20 patients at the

challenging stimulation level of 30 dB pe SPL for the chirp stimulation.
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Figure 3.10: Discrete–time wavelets from the lattice angle space P which provide a

minimal sphere in the kernel feature space for two different subjects. The wavelets are

shown for decomposition level j = 3, 4, 5. The right column corresponds to the angles

ϑ = (1.89, 0.63) and the left column to ϑ = (2.09, 2.09).

Figure 3.11: Two concentration features (||dϑ
4 ||`1 and ||dϑ

5 ||`1) and the decision line

as example for one subject. The circles denote training set of the novelty detection

machine, the squares denote a set of spontaneous activity feature vectors which is

different from the training set. The feature vectors corresponding to a stimulation

above the hearing threshold are denoted by the gray + signs.
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Chapter 4

Discussion

This chapter presents a detailed discussion of the results reported in the previous

Chapter, using different stimulation conditions, post-processing methods, i.e., time–

frequency analysis, and the novelty detection scheme.

The Chapter is organized as follows: first there is a section regarding the setup and its

calibration; next, separated parts for study 1 and study 2 are discussed; followed by

the section of the application and results of the novelty detection scheme; and finally

there is a section of the possible future work that can be done, not only to improve the

performance of the algorithms, but also related to the stimulation paradigms developed

here.

4.1 Measurement Setup

The setup developed in order to acquire ABRs showed a good performance in general.

The potentials were collected with a small number of artifacts in all the cases, and no

interferences or problems were reported. The software that acquired and preprocessed

the EEG data was also able to save the raw data. Therefore the chance to apply

different digital filters, segmentation, and post-processing algorithms as part of future

work is still possible.

In the cases where the impedance of the electrodes were not smaller than 5kΩ, the

skin preparation was repeated. This happened for the passive electrodes in a small

percentage of the subjects (approximately 20% of the subjects). In the case of the

61
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active electrodes, the impedance values were always smaller, but a time gap (around

2–3 minutes) was always required at the beginning of each first measurement (first from

the entire set) in order to collect sweeps without artifacts. The rest of the acquisition

session went without problems. No explanation of this issue was reported in literature

or by the manufacturers (Easycap GmbH, Germany).

The calibration of the setup was performed according to European Committe for Stan-

dardization (2007); International Organization for Standarization (2007); Richter and

Fedtke (2005), and it was achieved by measuring the maximum pe SPL of the sound

card used in the laptop that delivered the stimuli and performed the data acquisi-

tion. The procedure was the same as the one described for the stimuli in Sec. 2.1.3.

The final intensity for the different stimuli during the measurements was controlled by

the programmable attenuator buffer, as explained in Sec.2.2.1, where the possibility

of attenuations in steps of 1 dB was possible. Taking this calibration procedure into

account, we can make sure the reproducibility in further measurements.

pe SPL vs SL: In other studies reported in literature, the chirp stimuli were presented

in dB sensation level (SL), which required the hearing threshold detection for each sub-

ject and for each type of stimulus. In order to avoid a subjective threshold adjustment

every time when we had a different subject-stimulus combination, we obtain the pe

SPL of every stimulus as specified in European Committe for Standardization (2007);

International Organization for Standarization (2007); Richter and Fedtke (2005), for

signals of short duration such as clicks and chirps.

4.2 Study 1: Chirps vs Clicks, and Active vs Pas-

sive Electrodes

4.2.1 Auditory Brainstem Responses, Stimuli, and Elec-

trodes

Auditory Brainstem Responses, and Stimuli: The Fig. 3.1 shows ABR mea-

surements collected from one subject. It can be seen that the potentials exhibit an

identifiable wave V in all cases, and in specific for ABR–chirp stimulations, the waves

V were even larger as compared with their respective waveforms at the same intensity
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but evoked by clicks. These larger waves can be related to the duration, the spectral

content, and temporal organization of the stimulus used to evoked the potentials.

On one hand, regarding the duration of the stimuli, the chirps last longer than the

clicks and therefore more energy is implied in the generation of the response. On the

other hand, by their design, both stimuli have a broad range of frequencies and a wide

spectral content, as explained in Sec. 1.3. In contrast, the rising frequency of the chirp

stimulation, see Fig. 1.3, takes the tonotopic organization of the cochlear into account.

Thus, theoretically low frequencies would reach their sensation locus at the same time

as high frequencies such that we have a synchronous discharge of the VIII—nerve fibers

along the length of the human cochlear partition, see Dau et al. (2000b) for details,

and therefore, by temporal organization the response evoked by chirps should be larger

than the one evoked by clicks.

In the left column in Fig. 3.2 it is noticeable that the latencies of the waves V cor-

responding to chirp stimulations have a larger separation among intensities than the

latencies of the respective ABRs evoked by clicks. This last fact was related to the

duration of the stimulus, as it can be seen in the right column where, after removing

the offset of the chirps, the separation becomes smaller and is now only inherent to the

response and not to the stimulus.

This study reinforced the results in Dau et al. (2000b); Fobel and Dau (2004) in the

sense that chirps seem to be more appropriate at low stimulation levels for the detection

of ABRs. In summary, the fibers of the VIII–nerve fire in a more synchronous way

where evoked by a chirp than by a click, and the responses from these different areas

of the BM contribute to have a higher final potential.

The results in Fig. 3.4 and 3.5 showed that the number of chirp stimulations to

reach a significant discrimination of stimulation levels above the hearing threshold

from the spontaneous activity is smaller than for click evoked ABRs with respect to

the calibration described in Sec. 2.1.3 and the use of the GFPS as defined in Sec. 2.3.2.

As consequence, the GFPS of chirp–evoked ABRs seems to be promising for the fast

assessment of the integrity of the entire cochlea.

Use of Active Electrodes: At first sight, from the time domain average waveforms

showed in Fig. 3.1, no difference can be seen regarding the type of electrodes. In

addition, in Sec. 3.1.3, it was presented a comparison between passive and active

electrodes, see Fig. 3.4 and 3.5 respectively, by showing the mean of Λ
I

1[1000] for the
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spontaneous activity and increasing click and chirp intensities. The results showed that

there is no clear tendency regarding the performance of the electrodes. However, active

electrodes allow for an easier montage and are more robust to movements (Hagemann

et al., 1985).

4.2.2 Gabor Frame Phase Stability

In this section of the work Gabor frame operators were introduced for the first time as

analysis tool for ABRs. In earlier studies on chirp–evoked ABRs, a couple of thousands

sweeps have been averaged and analyzed visually in the time domain (Dau et al., 2000b;

Fobel and Dau, 2004). The presented approach here, is the first study that is directed

to the fast single sweep processing of chirp–evoked ABRs.

In particular, this decomposition technique was used to derive the GFPS of sweep

sequences of click and chirp–evoked ABRs. Analysis in the time domain, frequency

domain and phase adjustment of ABRs were done and reported.

Specially, it is showed that ABRs as neural correlates of hearing allow for a reliable

discrimination from the no–stimulation condition, i.e., spontaneous activity, with just

a few hundreds of sweeps when using the GFPS as compared to conventional schemes

in which thousands of sweeps had been averaged, see Sec. 1.2.

In fact, the GFPS showed to be an efficient feature extraction technique for ABR single

sweep sequences that is in line, and can easily be included in the novelty detection

paradigm using kernel machines as described in Sec.1.4 and in Corona-Strauss et al.

(2007b) for a computational and truly automated hearing threshold detection.

Feature Extraction by Gabor Frame Operators: The amplitude of ABRs as nat-

ural large–scale measure of group synchronization at the brainstem level (see Rudell

(1987) for an ABR generator model using volume conductor theory) can only be eval-

uated for large averages of sweeps due to a poor signal–to–noise ratio. As mentioned

in Sec. 1.5, when comparing averaged evoked potentials to single sweeps, the ampli-

tude information of the single sweeps results very fragile (Kolev and Yordanova, 1997),

because the sweeps have a high degree of variance from one sweep to another, and

therefore, even robust amplitude independent synchronization measures can not easily

be applied to assess their synchronization stability. Note that the estimation of the
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phase relation from experimental data represents an inverse problem in a mathemat-

ical sense. It has thoroughly been investigated in nonlinear dynamics, in particular

for weakly coupled self–sustained chaotic oscillators, see Rosenblum et al. (2001) for

a review. The reader is referred to Rosenblum et al. (2004) to see the role of phase

locking in modern biosignal processing in a more general sense as presented here.

When the amplitude information is not considered and we focus purely on the phase,

different approaches can be used instead, i.e., the wavelet phase coherence (Lachaux

et al., 1999), which is mainly applied to measure the degree of phase locking of two

signals in time, e.g., obtained from two different sites. This time–scale coherence

measures take the non–stationary nature of evoked potentials into account.

Also, in contrast to the integral wavelet phase coherence, employed in Lachaux et al.

(1999), Gabor frame operators can be sampled on less dense and thus less redundant

time–frequency grids, see Fig. 2.4, and allow for an efficient analysis as well as synthesis.

Consequently, they can be applied for the phase analysis of evoked response sequences

as well as for the reconstruction of amplitude or phase modified/stabilized time domain

waveforms, see Fig. 3.6. This is certainly an interesting concept not just for ABRs but

for analyzing the phase reset in late evoked (cortical) potentials.

Note that the best results were obtained for lower frequency channels, i.e., m = 1, 2

(160–320 Hz and 320–480 Hz) which is line with the time–scale ABR entropy analysis

in Strauss et al. (2004a), and also with the wavelet phase stability analysis performed

in the study 2 as further discussed in Sec. 4.3.3. In particular we showed, as in

Strauss et al. (2004a), that core information of ABRs is represented by low frequency

components.

4.3 Study 2: Notched–Noise Embedded Frequency

Specific Chirps

4.3.1 Stimuli

The notched–noise embedded frequency specific chirps, shown in Fig. 2.2, were devel-

oped to stimulate specific areas along the cochlear partition, and the advantage of a

flat spectrum was to stimulate with the same intensity all the fibers of the auditory
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nerve which are of interest. The fact that notched–noise was added to the stimulus,

and that the chirps were calculated to start and end exactly with zero, was done to

avoid stimulation of undesired areas of the cochlea due to an abrupt onset and offset of

the stimulus. The study reported in Wegner and Dau (2002) obtained ABRs responses

with a similar method like the one used in this work but only one low frequency chirp

was tested and not a series that cover mostly the entire auditory range in humans.

It could be argued that an alternative approach using a broadband chirp combined with

noise could limit the response to the bands of interest. Nevertheless, there are no results

or comparisons for the approach presented here in which the following is accomplished:

first, the stimuli are band limited and cover large proportion of the auditory range, and

second, a notched–noise masking condition is added. The masking level used in this

approach, was 20 dB below the pe SPL of the stimulations, as recommended in Stapells

(1994) for low frequency specific brief tone–evoked ABRs. It can be further investigated

which level of masking gives better results for low, medium, and high frequency specific

chirp stimulations. And it could also be compared the effect of threshold estimations

by using protocols with different masking noise, e.g., pink instead of white.

Also important to mention is that the latency–frequency function used to calculate the

series of frequency specific chirps is based on the cochlear model of de Boer, which is

considered as first order approximation of the behavior of the BM. Part of the further

improvement could be to test the chirps constructed using a different approach on

which the intensity factor is also included, such as the wave V latency curves reported

by Gorga et al. (1988); Neely et al. (1988). These new family of chirps was developed

and calibrated during this project, but the chirps based on the model of de Boer were

preferred to be tested in the study 2, for details of this family of chirps see the Appendix

B.

4.3.2 Auditory Brainstem Responses

In Fig. 3.7 the trace of the wave V for the different chirps can be extracted from

the gray–scale map. Also in the same figure, the waves V (white lines) are easily

identifiable for the different stimulation conditions, it can be seen how they are shifted

in time when chirps with lower frequency content are applied.

From the last rows 5, 6 and 7, in Fig. 3.7, it can be seen that a realignment of waves
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V still necessary (row 7) and therefore, the broadband chirp can still be improved.

Theoretically if we would have responses evoked by ”ideal” chirps, broadband, and

band–limited, the sum of the waves V for the frequency specific chirps would not differ

from the broadband response and realignment would not longer be necessary. The

previously stated would mean that we manage to stimulate in a better and completely

synchronized way the entire cochlea and the traveling wave delay for every frequency

component is compensated.

In Fig. 3.8, the frequency–intensity relation of the latency of wave V, using the different

stimuli, can be seen. For the highest intensity used in these experiments (50 dB pe

SPL), the latencies are in general smaller as compared to the ones for lower intensities,

such as 40 and 30 dB pe SPL. Likewise, the latency values for 40 dB pe SPL were smaller

than the ones for 30 dB pe SPL. In the same figure and in Fig. 3.7 is noticeable the

larger latencies corresponding to chirps stimulations with low frequency content (Ch1,

Ch2) compared as to the smaller latencies of the responses for the chirps with higher

frequency components (Ch3–Ch4). These results have a similar behavior as the latency

curves reported in Neely et al. (1988), with the difference that instead of including a

pure single frequency, they include a group of frequencies which covers in a large

percentage the human auditory range.

The latency of the wave V is assumed to be a sum of a neural and a mechanical

component. The mechanical component is sensitive to frequency and intensity of a

stimulus, while the neural component can be assumed as constant (5 ms) (Neely et al.,

1988; Dau et al., 2000b; Elberling et al., 2007). Note that the latencies plotted in Fig.

3.8 have a subtraction of 5 ms which corresponds to the neural component. This was

done because the latency–frequency function, represented with a thick black line in

the same figure, Fig. 3.8, is based on the model of de Boer which includes only the

mechanical properties of the BM.

These results presented for the first time by frequency specific chirps demonstrated the

fact that the tonotopic organization of the cochlea is related to the time that takes for

a traveling wave to reach their sensation locus along the cochlear partition. We can

conclude that we were able to extract frequency specific responses with the proposed

method.
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4.3.3 Wavelet Phase Stability

The motivation to analyze the WPS was to find out if the frequency channels, related

to the scale a, used to analyze frequency specific chirp–evoked ABRs, would be different

from the ones used in the analysis for broadband chirps by using GFPS, see Sec. 3.1.3

and also Corona-Strauss et al. (2008).

In Fig. 3.9 it can be seen that for all the conditions, the WPS is higher in the range

of wave V and it becomes larger for the values of a ≥ 40, where a = 40 corresponds

to the frequency of 288 Hz. This is consistent to our previous findings reported in

Sec. 3.1.3 and discussed in Sec. 4.2.2 (also published in Corona-Strauss et al. (2009)),

where for GFPS analysis of chirp–evoked ABRs the channels with the highest energy

of the ABRs corresponded to the frequency ranges of [160–230] and [320–480] Hz. In

Fig. 3.9, for the B–bCh the WPS of the wave V is higher, even for the small values of

a, which is supported by the fact that more fibers of the VIII–th nerve are stimulated.

The areas of higher WPS represented with light gray and white, becomes broader

for large values of a. This also implies a loss in temporal resolution. Note that the

temporal resolution decreases as a increases as consequence of Eq. 2.3.8. This is why is

relevant to find an optimal value which results in a good compromise between temporal

and frequency resolution, and a=40 seems to be a well supported choice. It can be

concluded that the scale for the analysis of frequency specific chirp–evoked ABRs does

not necessarily need to be different from the scale for broadband chirp–evoked ABRs,

although this last ones can be analyzed using smaller values of a. Consequently the

presented series of chirps can be used in the WPS scheme for the early HT detection

in Corona-Strauss et al. (2007a).

4.4 Hybrid Detection Scheme

4.4.1 Adapted Filter Banks for Feature Extraction

The theory of signal–adapted filter banks has been developed in signal compression in

recent years, e.g., see Moulin and Mihacak (1998) and references therein. Up to now,

the underlying ideas mainly stick on this restricted area although they may have merit

in other application fields such as pattern recognition. In recent papers, it has been
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shown that an adaptation technique from signal compression is an effective tool for real

world pattern recognition tasks when using appropriate class separability criteria, i.e.,

discrimination criteria instead of compression conditions, e.g., see Strauss et al. (2003)

and references therein.

Here we used adapted filter banks to augment the phase synchronization approach by

morphological features located in time and frequency. In particular, we have introduced

adapted filter banks for the construction of sphere in kernel feature spaces induced by

reproducing kernels of kernel learning machines. These feature vectors are extracted

in a way that they include a priori information about the pattern recognition at hand

task, i.e., latency jitters, as well as the kernel based novelty detection machine used.

These morphological time–frequency information makes the analysis more robust as

the final decision making is not exclusively based on one type of feature, i.e., the

instantaneous phase.

Note that the used lattice structure implementation of filter banks allows for a very

efficient implementation, e.g., see Vaidyanathan and Hoang (1988), even in the used

nonsubsampled version. We used this nonsubsampled implementation as it is truly

shift–invariant such that the feature vector is invariant to latency jitters.

This nonsubsampled implementation which results in a tight frame decomposition pro-

cedure is also known as ”algorithm a trous” (Shensa, 1992) and is equivalent to the

so–called ”cyclic spinning” (Coifman and Donoho, 1995). There exist nearly shift–

invariant approaches with lower arithmetic complexity, e.g., see Kingsbury (2001).

However, we stuck to the completely shift–invariant approach which can efficiently be

implemented for the used filters of order 5. Nevertheless, comparing our scheme to

these approximate shift–invariant approaches regarding the performance as well as us-

ing more flexible parameterizations of filter banks, e.g., see Daubechies and Sweldens

(1998) might be an interesting point of further research.

4.4.2 Kernel Based Novelty Detection of ABRs

We have presented a hybrid ABR detection scheme using the Gabor frame phase stabil-

ity combined with kernel based novelty detection machines. This was the first time that

these machines have been applied to detect synchronized activity as novel instance.
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In Strauss et al. (2004b) a kernel based novelty detection approach has been introduced

for the ABR detection. However, in Strauss et al. (2004b) the sphere in the feature

space was constructed by using physiological data for stimulations above the hearing

threshold in order to discriminate it from the spontaneous activity and not to detected

synchronized activity as novel instance. The latter has the following advantages: the

sweeps of the spontaneous activity are considered as standard or learned class in a ma-

chine learning context and the synchronized activity at the brainstem level is detected

as novel instance. Since such a system is trained with the spontaneous activity, it is

adjusted to the measurement conditions on site and thus robust to non–stimulus locked

artifacts, e.g., related the technical infrastructure and electrode placement.

Based on our previous results regarding the stimulus/stimulation intensity and the

electrodes, we used a fixed chirp stimulation intensity of 30 dB pe SPL and active

electrodes to implement this scheme. With just 200 sweeps, we achieved a detection of

the stimulation almost in all the subjects. However, this study represents just a first

trail of combining phase synchronization features with morphological time–frequency

information. The results are promising, however, further work should be related to a

direct integration of phase related features in kernel machines such as using the GFPS

for several samples and deliver them as higher dimensional feature vector to the kernel

machine. Of course, these approaches might require a lot of engineering heuristics, e.g.,

finding the optimal number of features.

4.5 Future Work and Limitations

More clinically oriented studies are necessary to evaluate the real value of the presented

analysis for fast hearing threshold detection systems. The presented method is related

to the feature extraction stage of conjoint detections systems and thus just provides

a signal analytic basis for such studies. We have also implemented the combination

of phase synchronization feature extraction with a hybrid adapted filter bank – kernel

machine scheme which provided an excellent performance. However future research

should analyze this combination more carefully, especially regarding the direct integra-

tion of phase related features in the novelty detection system. Also important will be

to test the presented scheme using ABR data collected from newborns.

Future analysis can be done to make a faster recognition of frequency specific chirp–
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evoked ABRs. Also interesting will be to evaluate the notched–noise embedded chirps

with patients with different types of hearing loss, and make a comparison against the

commonly accepted methods. A comparison between different levels of masking noise,

as mentioned in Sec. 4.3.1 and their effects can also be further investigated, such as

finding the best masking intensity for specific frequency bands, using different type of

noise, and comparing the results against general accepted threshold estimation methods

reported in literature.

As already mentioned in Sec. 4.3.1, the model used to calculate the series of chirps

is considered as a first approximation of the behavior of the BM. We consider that

in addition, improvements related to the stimuli can be done by making the chirps

intensity specific, using e.g, the latency plots reported in Neely et al. (1988). See in

the Appendix B an example of such implementation. Further evaluation in subjects

can be done with these new stimuli, and also a comparison against the already tested

chirps based on the de Boer model.
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Chapter 5

Conclusions

We have presented a new approach for the fast detection of wave V in ABRs using

smart single analysis systems which are based on a novelty detection paradigm.

In this work, different time–frequency analysis transformations, CWT and GFs, were

used to evaluate phase synchronization features of ABRs. GFs were introduced as novel

feature extraction method to derive the GFPS of ABR single sweep sequences. This

method provided a discrimination of the spontaneous activity from stimulations above

the HT with a minimum number of sweeps. It is concluded that the GFPS analysis

represents a robust feature for ABR single sweep sequences.

We conclude that our studies reinforced the use of optimized chirp stimulations for the

fast hearing threshold detection, especially at low stimulus intensities.

There was no clear tendency regarding the electrodes. However, considering the fact

that active electrodes allow for an easier montage and are more robust to movements,

they seemed to be preferable for our purpose.

We also presented the development and testing of a series of notched–noise embedded

frequency specific chirps, which allowed the assessment of frequency specific ABRs

with an identifiable wave V for different intensity levels. The resultant wave V latency

measures showed a similar behavior as for the latency–frequency functions reported in

literature. The WPS of frequency specific chirp–evoked ABRs reflected the presence of

the wave V for all stimulation intensities. The scales that resulted in higher WPS are

in line with previous findings, where ABRs evoked by broadband chirps were analyzed,

which stated that low frequency channels are better for the recognition and analysis of

chirp–evoked ABRs.
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It is finally concluded that the proposed novelty detection paradigm, including the

new signal processing procedures and stimulation techniques, improves the detection of

ABRs in terms of the degree of objectivity, i.e., automation of procedure, and measure-

ment time. It represents therefore a promising approach to improve the effectiveness of

NHS programs. However, the proposed schemes have to be evaluated in further, more

clinically oriented studies.
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Appendix A

Lattice Parametrization of Paraunitary Filter Banks

Let G0(z) and G1(z) be the synthesis filters of a normalized paraunitary two–channel

FIR filter bank with real filter coefficients and a zero mean high–pass. When cascading

such a two–channel building block in an octave–band tree, the filters of an equivalent

parallel structure are given by

Qj,0(z) =

j−1∏
m=0

G0(z
2m

) (App. 1)

and

Qj,1(z) = G1(z
2j−1

)

j−2∏
m=0

G0(z
2m

). (App. 2)

Let us denote the translations of the impulse responses qj,k[·] of these filters by qm
j,i =

(qj,i[k − 2jm])k∈Z (i = 0, 1) and let J be the maximal decomposition depth. Then the

set
{
qm

J,0,q
m
j,1 : j = 1, . . . , J ; m ∈ Z}

(App. 3)

constitutes an orthonormal basis for `2 and an arbitrary sequence x ∈ `2 can be de-

composed as

x =
∑

m∈Z
dJ,0[m]qm

J,0 +
J∑

j=1

∑

m∈Z
dj,1[m]qm

j,1.

We denote the wavelet coefficients by dj = (dj,1[m])m∈Z .

All paraunitary filter banks can be parameterized by the lattice structure Vaidyanathan

(1993), where the polyphase matrix of the analysis bank Hpol(z) as a decomposition
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of the form

Hpol(z) = (
L−1∏

l=0

(
cos ϑl sin ϑl

− sin ϑl cos ϑl

) (
1 0

0 z−1

)
)

(
cos ϑL sin ϑL

− sin ϑL cos ϑL

)
, (App. 4)

where ϑL ∈ [0, 2π) and ϑl ∈ [0, π) (l = 0, . . . , L − 1). Let ϑL be the residue of
π
4
−∑L−1

l=0 ϑl modulo 2π in [0, 2π). Then the space

PL := {ϑ = (ϑ0, . . . , ϑL−1) : ϑl ∈ [0, π)}

can serve to parameterize all two–channel paraunitary filter banks with at least one

vanishing moment of the high–pass filter, see Strauss and Steidl (2002) for more detailed

discussions. To emphasize this parametrization we will use the superscript ϑ later.

The orthogonal decomposition described above is very efficient in its implementation

as it based on maximally decimated filter banks. However, such orthogonal decomposi-

tions are strongly shift–variant Simoncelli et al. (1992); Vetterli and Kovačević (1995)

and a minimal shift of the signal to be analyzed results in a significant redistribution

of the energy induced in the individual octave bands Simoncelli et al. (1992).

Due to the biological origin of ABRs, we expect inter–sweep latency differences. In

other words, the discriminant information in ABRs separating sweeps of the sponta-

neous activity from stimulations above the hearing threshold is unlikely to occur with

the very same latency for all the sweeps.

To overcome this problem, we replace the shift–variant orthonormal wavelet basis (App.

3) by the tight wavelet frame

{
2−J/2q̃m

J,0, 2
−j/2q̃m

j,1 : j = 1, . . . , J ; m ∈ Z}
,

where q̃m
j,i := (qj,i[k −m])k∈Z (i = 0, 1). Then x ∈ `2 can be decomposed as

x =
∑

m∈Z
d̃J,0[m] q̃m

J,0 +
J∑

j=1

∑

m∈Z
d̃j,1[m]q̃m

j,1 (App. 5)

with the coefficients

d̃j,i[m] =
1

2j
〈x, q̃m

j,i〉`2 (i = 0, 1).

We set

d̃j :=
(
d̃j,1[m]

)
m∈Z

(j = 1, . . . , J).
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Overcomplete expansions can be implemented by oversampled paraunitary filter banks

Cvetković and Vetterli (1998); Bölcskei et al. (1998). The highly redundant expan-

sion (App. 5) corresponds to a nonsubsampled filter bank, i.e., we have no multirate

operations at all. In this special case, the subbands are obtained by pure linear time–

invariant (LTI) filters related to Eq. (App. 1) and (App. 2), respectively.

Although nearly shift–invariant approaches with lower arithmetic complexity, might

also be an option, e.g., see Kingsbury (2001), see stick to the completely shift–invariant

implementation as they can easily be implemented in real–time for the application

considered here and the used filters of order 5.

Feature Spaces Induced by Reproducing Kernels

Let K : X × X −→ R (X is a compact subset of Rd) be a positive definite symmetric

function in L2(X × X ). For a given K, there exists a reproducing kernel Hilbert space

HK = span {K(x̃, ·) : x̃ ∈ X}

of real valued functions on X with inner product determined by

〈K(x̃,x), K(x̄,x)〉HK
= K(x̃, x̄)

which has the reproducing kernel K, i.e., 〈f(·), K(x̃, ·)〉HK
= f(x̃) (f ∈ HK). By

Mercer’s Theorem, the reproducing kernel K can be expanded in a uniformly convergent

series on X × X
K(x,y) =

∞∑
j=1

ηjϕj(x)ϕj(y), (App. 6)

where ηj ≥ 0 are the eigenvalues of the integral operator TK : L2(X ) → L2(X ) with

TKf(y) =

∫

X
K(x,y)f(x) dx

and where {ϕj}j∈N are the corresponding L2(X )–orthonormalized eigenfunctions. We

restrict our interest to functions K that arise from a radial basis function (RBF). In

other words, we assume that there exists a real valued function k on R so that

K(x,y) = k(||x− y||2), (App. 7)

where || · ||2 denotes the Euclidean norm on Rd.

77



We introduce a so–called feature map Φ : X → `2 by

Φ(·) =
(√

ηjϕj(·)
)

j∈N .

Let `2 denote the Hilbert space of real valued quadratic summable sequences a = (ai)i∈N

with inner product 〈a, b〉`2 =
∑

i∈N aibi. By (App. 6), we have that Φ(x) (x ∈ X ) is

an element in `2 with

||Φ(x)||2`2 =
∞∑

j=1

ηjϕ
2
j(x) = K(x,x) = k(0).

We define the feature space FK ⊂ `2 by the `2–closure of all finite linear combinations

of elements Φ(x) (x ∈ X )

FK = span {Φ(x) : x ∈ X}.

Then FK is a Hilbert space with || · ||FK
= || · ||`2 . The feature space FK and the

reproducing kernel Hilbert space HK are isometrically isomorph with isometry ι :

FK → HK defined by ι(w) = fw(x) = 〈w,Φ(x)〉`2 =
∑∞

j=1 wj
√

ηjϕj(x).
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Appendix B

Family of series of Notched–noise embedded fre-

quency specific Chirps using ABR-latency frequency

functions

In the main work was presented a series of chirps developed for the detection of fre-

quency specific ABR responses, see Sec. 2.1.2. That series of chirps was calculated

using as latency–frequency function the mechanical model of de Boer.

In this section is described the generation of a family of series of frequency specific

chirps, which was also developed and calibrated during this project. This new family

or set of series was based on the latency–frequency functions reported by Neely and

colleagues in Neely et al. (1988), see Fig. App. 1. These functions were approximated

from experimental tone evoked–ABR data. This set of chirps have the advantage of

not only compensate for the dispersion of the basilar membrane but also to be intensity

level specific. Thus, a series of chirps was created for the intensity levels of 20, 30 and

40 dB SPL, respectively. The calculation procedure was similar as the one described

in Sec. 2.1.1, and Sec. 2.1.2.

A brief summary of the methodology is given here. First, the latency–frequency func-

tion was based on the equation which represents the ABR wave V latency as reported

in Neely et al. (1988):

τBM(f) = a + bc-if -d (App. 8)

with a = 5.0 ms, b = 12.9 ms, c= 5.0, d= 0.413, with i representing the stimulus

intensity (in dB SPL divided by 100) and f representing the stimulus frequency divided

by 1 kHz, the different bands were calculated using a range of 10400 Hz and the central
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Figure App. 1: Latency–frequency functions developed by Nelly and colleagues, based

on experimental tone evoked–ABR data. The functions are shown for different intensity

levels. The light gray line corresponds to the intensity level of 20 dB SPL, the black

line to 30 dB SPL and the dark gray line to 40 dB SPL. Note that these latency

values include the neural and mechanical component, as they are reported directly

from experimental data, and not just the mechanical component as for the case of the

series of chirps developed using the mechanical model of de Boer.

frequencies and ranges as described in Tab. App.1 (original values). The frequency

bands were identical for all intensity levels.

As explained in Sec. 2.1.1, τBM was considered a representation of the propagation

time, and therefore the inverse function of τBM was calculated, that is τBM
−1(f)=fa(t),

where t= 1
f
. The next step was to calculate the chirps using the corresponding frequency

bands and the same equations as in Sec. 2.1.1, Eq.(2.1.2), (2.1.3), and (2.1.4).

The initial resultant chirps not always had zero values at their beginning and at their

end, and therefore, the original calculated ranges had to be modified in order to accom-

plish this condition; as well as fulfill the requirement of having at least ”3–half–waves”.

The final intervals, central frequencies and durations of all the chirps are also shown

in Tab. App.1. The resultant waveforms for the three sets of chirps are shown in the

Fig. App. 2. For identification purpose, the chirps are called Ch1, Ch2, Ch3, Ch4, and
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Table App. 1: Original (calculated) and final parameters of the family of series of

frequency specific chirps using latency–frequency functions, for the intensity levels of

40, 30 and 20 dB SPL. Where range is 10400 Hz, BW is bandwidth, and fc is central

frequency.

Parameter Ch1 Ch2 Ch3 Ch4 Ch5 B-bCh

Original Range range/25 ≡ 312.5 range/24 ≡ 625 range/23 ≡ 1250 range/22 ≡ 2500 range/21 ≡ 5000 range/20 ≡ 9900

40 dB BW (Hz) 290 625 1200 2505 5046.5 9899.5

30 dB BW (Hz) 324 660 1220 2420 5140 4900

20 dB BW (Hz) 284 680 1210 2530 4560 9900

Original fc (Hz) 250 750 2000 4000 8000 5050

40 dB fc (Hz) 250 750 2000 4007.5 8002.5 5049.75

30 dB fc (Hz) 250 750 2000 4000 8000 5050

20 dB fc (Hz) 250 750 2000 4000 8000 5050

Original Interval (Hz) [93.75, 406.25] [437.5, 1062.5] [1375, 2625] [2750, 5250] [5500, 10500] [100, 10000]

40 dB Interval (Hz) [105, 395] [437.5, 1062.5] [1400, 2600] [2755, 5260] [5477, 10523.5] [100, 9999.5]

30 dB Interval (Hz) [88, 412] [420, 1080] [1390, 2610] [2790, 5210] [5430, 10570] [100, 9999.5]

20 dB Interval (Hz) [108, 392] [410, 1090] [1395, 2605] [2735, 5265] [5720, 10280] [100, 10000]

40 dB duration (ms) 7.244 2.925 1.330 1.045 0.794 14.921

30 dB duration (ms) 10.238 3.679 1.592 1.185 0.952 17.526

20 dB duration (ms) 9.677 4.489 1.853 1.462 0.978 20.587

Ch5 according to their frequency range, where Ch1 is for the stimulus with the lowest

frequency band and Ch5 is for the chirp with the highest frequency band.

In the Fig. App. 3 is shown the generation procedure of the chirps for the different

bands for the intensity level of 20 dB SPL. The chirps are also directly related to the

latency–frequency function. In Fig. App. 4 and Fig. App. 5 are shown the same

information for the chirps at the intensity levels of 30 and 40 dB SPL, respectively.

In these figures is easy to extract the different frequency bands and the respective

durations of the chirps, which are directly related to the intensity level at which they

were calculated.

The effect of the zero correction can be seen more in some of the chirps, i.e., Ch1 at

30 dB SPL, which lowest frequency moved from 93.75 to 88 Hz. This family of chirps

could be evaluated in a future research, and could be compared against the chirps

constructed based on the mechanical model of de Boer.

A noise file was also created, as described for the chirps in Sec. 2.1.2, which fitted the

frequency bands of each chirp developed.

The calibration of this set of stimuli was achieved following the same procedure as the

one reported in Sec. 2.1.3, by obtaining the pe SPL of each chirp.



Figure App. 2: Resultant waveforms of the series of frequency specific chirps for the

different intensity levels. The chirps are called Ch1, Ch2, Ch3, Ch4, and Ch5 according

to their frequency range, where Ch1s are the stimuli with the lowest frequency band

and Ch5s are for the chirp with the highest frequency band. From top to bottom,

series of chirps for the intensity level of 20, 30 and 40 dB SPL, respectively. Note the

longer durations of the chirps for the intensity levels of 20 dB SPL with regard to the

chirps at 30 and 40 dB SPL, and at the same time the longer durations of the chirps

at 30 dB SPL with regard to the chirps at 40 dB SPL, respectively.
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Figure App. 3: Generation sketch of the series of band limited chirps using the latency–

frequency function based on fitted ABR latency curves, as reported in Neely et al.

(1988), for the intensity level of 20 dB SPL.

Figure App. 4: Generation sketch of the series of band limited chirps using the latency–

frequency function based on fitted ABR latency curves, as reported in Neely et al.

(1988), for the intensity level of 30 dB SPL.
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Figure App. 5: Generation sketch of the series of band limited chirps using the latency–

frequency function based on fitted ABR latency curves, as reported in Neely et al.

(1988), for the intensity level of 40 dB SPL.
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