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1. Summary 

 

Regulating the neurotransmitter concentration in the synaptic cleft following a single 

release event modifies the strength of synaptic transmission. Previous studies have 

shown that the amplitude of miniexcitatory postsynaptic currents (mEPSCs) called 

also as “minis” depend on the concentration of neurotransmitter in the synaptic cleft 

(Liu et al., 1995). However, the molecular mechanism that controls the speed of 

neurotransmitter discharge from small synaptic vesicles remained enigmatic. SNARE 

proteins that are localized in opposing membranes are believed to drive fusion by 

using the free energy that is released during the formation of a four-helix bundle 

SNARE complex (Jahn et al., 2006). Recent studies using mouse chrommaffin cells 

have demonstrated that the molecular distance between the complex-forming 

SNARE domain and transmembrane domain (TMD) is crucial for priming, initiation of 

exocytosis and fusion pore expansion (Kesavan et al., 2007). Yet, whether this 

scenario holds for the exocytosis of the smallest secretory vesicle type, the small 

synaptic vesicle, which releases its cargo about 10 fold faster than chromaffin 

granules (Bruns and Jahn, 1995), has remained unclear. One might speculate that 

these vesicles, due to their high membrane curvature, instantaneously collapse into 

the plasma membrane upon the first opening of the fusion pore and membrane 

mechanics alone suffices to drive rapid fusion pore expansion and fast transmitter 

release. This consideration raises the fundamental question, whether the 

postsynaptic quantal signal in the central nervous system  (CNS) is determined by 

the presynaptic release machinery. To gain insight into the mechanism and 

implications of the SNARE-engine in the strength of synaptic transmission at CNS 

synapses, we expressed SynaptobrevinII (SybII) mutant proteins carrying an 

extended juxtamembrane region in cultured Synaptobrevin-deficient neurons. In 

following this strategy, we have investigated how the increase in physical distance 

between the SNARE domain and the TMD impacts Ca2+-triggered exocytosis and 

quantal signalling.  

 

The results in this doctoral thesis show that SybII controls multiple stages in the 

exocytosis of synaptic vesicles. They indicate that v-SNARE action determines 

priming of SSVs, governs their stimulus-secretion coupling in response to single 

action potentials and controls the speed of neurotransmitter release from single 
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vesicles. Thus, this study provides mechanistic insight into the exquisite temporal 

regulation of synaptic transmission by showing that presynaptic SNARE force is of 

prime importance for strength and timing of elementary SSV signals at CNS 

synapses.  
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Zusammenfassung 

 

Vorausgegangene Studien konnten zeigen, dass die Transmitterfreisetzung aus 

einem einzelnen synaptischen Vesikel die postsynaptischen Rezeptoren nicht sättigt 

und somit die Variabilität quantaler Signale auch auf unterschiedliche 

Transmitterkonzentrationen im synaptischen Spalt zurückzuführen ist. Die zugrunde 

liegenden molekularen Mechanismen, die die Geschwindigkeit der 

Neurotransmitterfreisetzung aus synaptischen Vesikeln und somit die Stärke der 

synaptischen Übertragung regulieren, sind jedoch unbekannt. Biochemische Studien 

legen nahe, dass die membran-verbindenden Interaktionen der SNARE-Proteine die 

zur Membranfusion benötigte Energie liefern. Aktuelle Studien in Chromaffinzellen 

der Maus konnten zeigen, dass eine kurze intramolekulare Distanz zwischen dem 

Transmembrananker und der komplexbildenen SNARE-Domäne des vesikulären 

Synaptobrevin II die Exozytosekompetenz („Priming“), Stimulus-Sekretionskopplung 

und die Expansion der Fusionspore entscheidend beeinflusst (Kesavan et al., 2007). 

Unklar ist jedoch, ob sich dieses Szenario auch auf die Transmitterfreisetzung aus 

kleinen synaptischen Vesikeln anwenden lässt. In der Tat setzen kleine synaptische 

Vesikel ihren Inhalt im Vergleich zu chromaffinen Granulen mit einer zehnfach 

schnelleren Rate frei (Bruns und Jahn, 1995). Dabei ist es denkbar, dass dieser 

Vesikeltyp, bedingt durch seine hohe Membrankrümmung, im Augenblick der ersten 

Fusionsporenöffnung unmittelbar mit der Plasmamembran verschmilzt und somit die 

Membranspannung die entscheidende Kraft für eine schnelle 

Fusionsporenexpansion und Transmitterentladung ist. Diese Überlegungen werfen 

die grundsätzlich Frage auf, ob sich die Eigenschaften einzelner postsynaptischer 

Signale im Zentralnervensystem (ZNS) durch den präsynaptischen 

Freisetzungsapparat beeinflussen bzw. aktiv steuern lassen. Um einen Einblick in die 

zugrundeliegenden Mechanismen dieser Elementarprozesse  zu erlangen, haben wir 

untersucht, inwieweit die Aktion der SNARE-Proteine die Stärke quantaler Signale 

reguliert. Ausgangspunkt unserer Untersuchungen war die Überlegung, dass eine 

Kraftübertragung zwischen komplex-bildender SNARE-Domäne und Transmembran-

anker durch Verlängerung der intermittierenden Struktur beeinflussbar sein sollte. Zu 

diesem Zweck haben wir Insertionen unterschiedlicher Länge in die 

juxtamembranäre Region des Synaptobrevin II eingeführt. Ausgehend von einer 

SybII-defizienten Mauslinie, die nahezu keine SSV-Exozytose aufweist (Borisovska 
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et al., 2005), konnten wir im Rahmen einer ‘Gain-of-Function’ Analyse die 

Funktionsweise dieser mutierten Genprodukte in der Neurotransmitterfreisetzung 

untersuchen. Die Ergebnisse der hier vorgelegten Arbeit zeigen, dass eine kurze 

intramolekulare Distanz zwischen komplex-bildender SNARE-Domäne und 

Transmembrananker des SybII-Proteins die Exozytose synaptischer Vesikel auf 

mehreren Ebenen kontrolliert. So wird durch Verlängerung der juxtamembranären 

Domäne die Exozytosebereitschaft der synaptischen Vesikel verringert und ihre 

synaptische Latenz bei Stimulation einzelner Aktionspotentiale verlängert. Darüber 

hinaus verringern diese Mutationen die Amplitude und verlangsamen den Zeitverlauf 

quantaler postsynaptischer Signale. Diese Befunde weisen darauf hin, dass die 

Wirkung der SNARE-Proteine, durch Beeinflussung der Rate der 

Transmitterentladung aus einzelnen synaptischen Vesikeln, das Transmitter 

konzentrationsprofil im synaptischen Spalt steuert.  

 

Zusammengefasst legen die Befunde nahe, dass die molekulare Kraft der SNARE-

Proteine das synaptische Vesikel, von seiner ersten Bereitstellung für die Exozytose 

bis zur eigentlichen Membranfusion, durch die unterschiedlichen Phasen der 

Exozytose treibt.  
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2. Introduction 

 
Individual nerve cells are the building blocks of the central nervous system. Although 

the human brain contains an extraordinary number of these cells (on the order of 1011 

neurons), which can be classified into at least a thousand different types, all nerve 

cells share the same basic architecture. A typical neuron has three morphologically 

defined regions: the cell body (soma), the metabolic center of the cell, usually gives 

rise to two kind of processes, several short dendrites and one long, tubular axon. 

Dendrites are the main apparatus for receiving incoming signals from other nerve 

cells, whereas the axon is the main conducting unit for carrying signals to another 

neurons. Near its end, the tubular axon divides into fine branches, which represents 

communication sites with other neurons. These communication sites are known as 

synapses. The high fidelity and speed of this communication process through the 

synapses, from a presynaptic neuron to a postsynaptic cell, are mainly depended on 

neurotransmitter release to transform electrical signals to chemical signals. 

 

Other communication processes, such as the modulation of the neuronal state in 

entire brain regions by neuromodulators, provide an essential component of this 

information processing capacity. A large number of diverse neurotransmitters are 

used by neurons, ranging from classical fast transmitters such as glycine and 

glutamate over neuropeptides to lipophilic compounds and gases such as 

endocannabinoids and nitric oxide. Most of these transmitters are released by 

exocytosis.  

 
2.1 General structure of synapses 

 
The term synapse can be used either in a structural sense or to describe an entire 

connection. According with the structural definition, a synapse consists of a single 

presynaptic active zone and postsynaptic density, together with the specialized 

membranes and cleft in-between. (Lisman et al., 2007).  Here the electrical activity is 

converted into a chemical signal in the form of neurotransmitter release from the 

presynaptic side. After diffusing across the synaptic cleft, binding of the 

neurotransmitter activates ionotropic postsynaptic receptors and induces a 

membrane potential change in the postsynaptic neuron. (Rosenmund et al., 2003). 

The receptors thus determine the nature of the physiological signal. Classical 
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neurotransmitters such as γ-aminobutyric acid (GABA), glutamate, and acetylcholine 

(ACh) activate mostly ion channels hence mediate fast synaptic transmission, in 

contrast neuromodulators such as monoamines and peptides predominantly activate 

G-protein-coupled receptors, which activate second messengers and act on a much 

longer time scale (Fon, 2001).  

 
2.1.1 Structural organization of the active zone 

 
The presynaptic active zone is defined morphologically as the site at which synaptic 

vesicles cluster, dock, and fuse, and physiologically as the site of neurotransmitter 

release (Schoch et al., 2006).  The active zone is composed of an electron-dense, 

biochemically insoluble material located at the presynaptic plasma membrane 

precisely opposite the synaptic cleft. At these electron-dense region synaptic vesicles 

exocytosis takes place in a temporally and spatially highly coordinated manner.  

Typically, only small subpopulations of the 100-200 synaptic vesicles within a 

synapse are docked to the plasma membrane at the active zone (Figure 1). Docked 

vesicles have to mature into a fusion-competent primed state before their fusion with 

the plasma membrane can be triggered by the elevation of intracellular Ca2+ 

concentration (Rosenmund et al., 2003).  

 

When an action potential invades a nerve terminal, voltage-gated Ca2+ channels 

open and the resulting pulse of intracellular Ca2+ triggers exocytosis that initiates with 

fusion pore opening of release-ready vesicles.  In most synapses, release is 

stimulated by Ca2+ influx through P/Q- (CaV2.1) or N-type Ca2+ channels (CaV2.2), 

whereas the related R-(CaV2.3) or the more distant L-type Ca2+ channels (CaV1 

series) are only rarely involved (Dietrich et al., 2003). Even at rest, synapses have a 

finite but low probability of release, causing spontaneous events of exocytosis that 

are reflected in electrophysiological recordings as miniature postsynaptic currents 

(Katz, 1969). Action potential evoked release triggers at least two components of 

release that are probably mechanistically distinct: A fast, synchronous phasic 

component is induced rapidly, in as little as 50 µs after a Ca2+ transient develops 

(Sabatini and Regehr, 1996), and a slower asynchronous component continues for 

>1s after the action potential (Barrett and Stevens, 1972; Geppert et al., 1994; Goda 

and Stevens, 1994; Atluri and Regehr, 1998). Both components of release are strictly 
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Ca2+-dependent but change differentially upon repetitive stimulation (Hagler and 

Goda, 2001). 

 

 

 

Figure 1.  Ultrastructural organization of presynaptic nerve t erminals.  (A) Electron 
photomicrographs of the nerve terminal of an excitatory synapse in the hippocampus. (B) 
Other example of a vertebrate CNS synaptic terminal with two active zones and a prominent 
mitochondrial domain. Postsynaptic dense (PSD) projections opposite to the active zone in A 
and B are indicated by asterisks. (C) Schematic illustration of the structural organization of a 
presynaptic nerve terminal. PM, plasma membrane.  (Dresbacha et al., 2001). 

 

Mini excitatory postsynaptic currents mEPSCs. This electrical activity-independent 

release is called “spontaneous”. Spontaneous neurotransmitter release is observed 

in the presence of tetrodotoxin (TTX), a highly specific blocker of voltage- gated Na+ 

channels. mEPSC occur at a low frequency which indicates the low probability of 

release in the absence of presynaptic depolarization. Synaptic vesicles exocytosed 

spontaneously release neurotransmitter in packets called quantal. Each quantum is 

thought to represent a single synaptic vesicle (SV) and its neurotransmitter content 

gives rise to a postsynaptic current of small amplitude also named “minis” (Bouron, 

2001). The kinetics of neurotransmitter release, diffusion and uptake by the 
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transporters, as well as the synaptic geometry, are all expected to influence the 

spatiotemporal concentration profile in the synaptic cleft, which together with the 

receptor properties (kinetics, density, and spatial distribution) determine the 

amplitude and the time course of the basic element of synaptic transmission, the 

mEPSC.  Three hypotheses have been traditionally put forward to explain the rate of 

decay of the synaptic current (Jonas and Spruston, 1994). The first follows the line of 

argument used to explain the time course of postsynaptic current at the 

neuromuscular junction (Magleby and Stevens, 1972). The decay of glutamate 

concentration in the synaptic cleft is assumed to be very rapid, the decay time of the 

postsynaptic current being therefore determined by channel closure, similar to 

deactivation (Hestrin, 1990; Tang et. al., 1991). The second hypothesis argues that 

the decay of glutamate concentration is slow and that the postsynaptic current is 

terminated by desensitization of AMPA receptor channels (Trussell et. al., 1988; 

Trussell and Fischbach, 1989; Hestrin, 1992; Trussell et al., 1993; Livsey et. al., 

1993). This is plausible since AMPA receptor channels desensitize very rapidly (they 

are the fastest desensitizing ligand-gated ion channels). According to the third 

hypothesis, the postsynaptic current is determined in a complex manner by the time 

course of deactivation and desensitization, as well as glutamate concentration (its 

decay has been argued between the two extremes postulated in the first and second 

hypothesis (Clements et. al., 1992; Barbour et. al., 1994; Tong and Jahr, 1994). 

 
2.1.2 Postsynaptic compartment 

 
The postsynaptic compartment is represented by a patch of plasma membrane 

containing a highly sophisticated neurotransmitter reception apparatus and an 

underlying dense matrix, the postsynaptic density (PSD) (figure 1), which is located 

exactly opposite the transmitter release site. The neurotransmitter receptors are 

clustered here, anchored to the submembraneous cytoskeleton and physically linked 

to components of intracellular signaling pathways. At excitatory synapses, the PSD is 

thought to represent this complex reception apparatus, comprising various types of 

glutamate receptors (GluRs) that are co-clustered at these synapses. These include 

metabotropic GluRs (mGluRs), which mediate transmembrane signal transduction via 

trimeric G proteins, and ionotropic GluRs (iGluRs), which harbor an intrinsic 

neurotransmitter-gated cation channel. (Hollmann and Heinemann, 1994; Nakanishi 

and Masu, 1994).  
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2.1.3 Glutamate receptors 

 
Glutamate is a major neurotransmitter that mediates synaptic excitation at a vast 

majority of synapses in the central nervous system. Glutamate is involved in many 

important brain functions, such as differentiation, neuronal cell survival and death, 

proliferation and the development of neuronal and glial cells, and plastic changes in 

efficacy of synaptic transmission in adult and developing brains. Previous 

electrophysiological and pharmacological studies have classified glutamate receptors 

into two distinct groups termed ionotropic receptors and metabotropic receptors 

(mGluRs). Glutamatergic ionotropic receptors comprise ion channels that selectively 

permeate cations and are subdivided into three distinct subgroups according to their 

selective agonists: N-methyl-D-aspartate (NMDA), kainate, and amino-3-hydroxy-5-

methyl-4-isoxazolepropionate (AMPA). The last two are sometimes referred to as 

non-NMDA receptors; mGluRs are coupled to intracellular second messengers via G 

proteins and belong to a category completely different from the ionotropic receptors 

(Nakanishi and Masu, 1994). 

 

AMPA receptors mediate most of the fast excitatory synaptic transmission in the CNS 

of vertebrates. This subfamily of the ionotropic glutamate receptors (iGluRs) consists 

of four subunits, GluR1–GluR4 (Hollmann and Heinemann, 1994), forming functional 

homo- and heterotetrameric receptor complexes (Rosenmund et al., 1998). In 

contrast to N-methyl-D-aspartate (NMDA) receptors, AMPA receptors are not 

permanently anchored at the synapse. Instead, they cycle rapidly in and out of the 

postsynaptic membrane (Malinow and Malenka, 2002). These dynamic changes in 

the number of synaptic AMPA receptors determine synaptic strength (Malenka and 

Nicoll, 1999; Liu and Cull-Candy, 2000; Lüscher et al., 2000; Man et al., 2000; 

Malinow and Malenka, 2002). The interactions of the cytoplasmic tails of AMPA 

receptors with intracellular scaffolding proteins of the postsynaptic density (PSD) are 

important factors in the synaptic organization of these receptors (Malinow and 

Malenka, 2002). The transmembrane protein stargazin (Hashimoto et al., 1999; Chen 

et al., 2000), defines a family of proteins termed transmembrane AMPA receptor 

regulatory proteins (TARPs) and was shown to support receptor trafficking and 

stabilization of AMPA receptors in the PSD by its interaction with PDZ (postsynaptic 

density-95, discs large, zonula occludens) proteins (Hashimoto et al., 1999; Chen et 

al., 2000). Subunits of the GluR5 through GluR7 have been found to coassemble 
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with KA receptors subunit KA1 or KA2 to form the KA receptor. KA receptors have 

relatively low affinity to glutamate but only two pharmacological drugs, concanavalin 

A (ConA) and cyclothiazide, can distinguish KA receptors from AMPA receptors. 

These non-NMDA receptors gate cation ions with relatively low conductance (<<20 

pS), are permeable to both Na+ and K+ but usually not permeable to Ca2+. 

 

AMPA receptor agonist. A large number of AMPA receptor agonists have been 

described and many of them, like AMPA itself, have been derived from classic 

structure activity studies using ibotenic acid, quisqualic acid and willardiine. One of 

the interesting aspects of AMPA receptor agonist is that they can vary dramatically in 

the amount of receptor desensitization that they induce. Thus, glutamate and AMPA 

act as a full agonist and induce rapidly desensitizing response, whereas, kainate and 

propionic acid (ACPA) acts as partial agonists and induce little desensitization. 

 

AMPA receptor antagonist. The first somewhat selective and useful AMPA receptor 

antagonists were DNQX (6,7-dinitro-quinoxaline-2-3dione) and CNQX (6-cyano-7-

nitroquinoxaline-2-3dione), these compound are high-affinity antagonist, therefore, 

are characterize for display slow dissociation kinetic. However, this compound also 

had activity at the glycine binding side on NMDA receptors.  Nevertheless, they 

served as the starting point for various more selective competitive AMPA receptor 

antagonists, such as NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo (F) quinixaline), 

PNQX (1,4,7,8,9,10-hexahydro-9-methyl-6-nitropyrido [3,4-f]-quinoxaline-2,3-dione) 

(Kew et. al., 2005). γ-DGG (γ-glutamil-glycine) is a rapidly dissociating competitive 

antagonist, (low affinity) which competes with glutamate during the rising phase of 

AMPAR-EPSCs, generates a block that is inversely related to the transmitter 

concentration and have been successfully used to demonstrated changes in the 

spatiotemporal profile of clef glutamate experienced by the AMPAR (Diamond et. al., 

1997, Liu et. al., 1999; Yamashita et. al., 2003; Cathala et. al., 2005).   

 

NMDA receptors consist of five different subunits. NR1 forms a functional homomeric 

receptor channel in X. laevis oocytes and shows all the properties characteristic of 

the NMDA receptors. This single NR1 polypeptide exhibits a voltage dependent Mg2+ 

block, high Ca2+ permeability, potentiation by a low concentration of glycine, specific 

responses to various NMDA receptor agonists and antagonists, inhibition by Zn2+, 
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and activation by polyamines. In contrast to NR1, none of the four other subunits 

termed NR2A-NR2D showed any receptor-channel activity in a homomeric 

configuration or any heteromeric expression within the members of the NR2 subunits. 

However, the combined expression of individual NR2 subunits with NR1 markedly 

potentiates current responses to NMDA or glutamate (Nakanishi and Masu, 1994). 

Thus, the activation of NMDA channels requires glutamate, glycine and 

depolarization of the cells. The receptor control cation channels of high conductance 

(50 pS), is permeable to Ca2+ as well as Na+ and K+. D-2-amino-5-

phosphonopentanoic acid (D-AP5) is the competitive antagonist of the NMDA 

receptors, and MK-801 can selectively block activated NMDA receptors.  

 
 2.1.4 Release machinery 

 
Membrane fusion, in which two distinct lipid bilayer membranes are merged into one, 

is the common final step in the transport of proteins among intracellular 

compartments, the controlled release of hormones and neurotransmitters by 

exocytosis. Recent progress has revealed that several protein families involved in 

fusion are conserved from yeast to human, and are shared not only by constitutive 

and regulated exocytosis but also by various intracellular membrane fusion events 

(Rothman, 1994; Wickner and Haas, 2000). The conserved protein families include 

soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), 

ATPase N-ethylmaleimide-sensitive factor (NSF), Munc18/Sec1, Rab GTPases, and 

protein components of the exocyst complex. This conservation suggests that virtually 

all membrane fusion processes, including synaptic vesicle exocytosis, use the same 

common molecular machinery for fusion. 

 

The central players in all membrane fusion events seem to be SNAREs, a 

superfamily of membrane-associated proteins characterized by a ~60 amino-acid a-

helical coiled-coil domain called the SNARE motif (Rothman, 1994; Jahn and Sudhof, 

1999; Weimbs, 1997; Rizo and Sudhof, 2002). These proteins were initially 

categorized as v-SNAREs and t-SNAREs based upon their localization on vesicle or 

target membrane (Rothman, 1994), and later reclassified as R-SNAREs and Q-

SNAREs according to the conserved arginine or glutamine residue in the center of 

their SNARE motifs (Fasshauer, 1998).  
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The presynaptic membrane of a neuronal axon is the site of rapid exocytic events 

upon cell stimulation by an action potential. In response to Ca2+ influx, synaptic 

vesicles containing neurotransmitter fuse with the presynaptic membrane and release 

their contents into the synaptic cleft, where they diffuse to the postsynaptic cell (Lin 

and Scheller, 2000). Three SNARE proteins are involved in this process: vesicle-

associated membrane protein (VAMP2), (also called synaptobrevin), syntaxin 1, and 

the 25-kDa synaptosomal-associated protein (SNAP-25).  

 

VAMP2. Vesicle associated membrane protein II (VAMPII), also known as 

SynaptobrevinII, was initially characterized in synaptic vesicles (Baumert et al., 1990; 

Trimble et al., 1988) and represents a conserved protein family from yeast to 

mammals (Protopopov et al., 1993; Südhof et al., 1989). Synaptobrevin is 

proteolyzed by clostridial neurotoxins (i.e. botulinum neurotoxin and tetanus toxin) at 

the presynaptic membrane and inhibit synaptic transmission (Montecucco et al., 

1993). Synaptobrevin/VAMP family members are small type II membrane proteins of 

about 120 amino acids. Structurally, they consist of a variable region of 25–35 amino 

acids located at the amino terminus, followed by either one extended or two short 

amphipathic α-helical segments predicted to form coiled-coil structures, and have a 

transmembrane domain located at their carboxyl terminus. The putative α-helical 

regions, originally designated as Helix 1 (or H1) and Helix 2 (or H2) (Grote et al., 

1995; Regazzi et al., 1996; Gerst, 1997), are required for these SNAREs to mediate 

their protein-protein interactions, as shown by studies employing in vitro binding 

experiments (Grote et al., 1995; Regazzi et al., 1996; Hayashi et al., 1994; Hao et al., 

1997) as well as in vivo exocytosis assays, using both yeast (Gerst, 1997) and 

mammalian cells (Grote et al., 1995; Regazzi et al., 1996). Both helices participate in 

binding to the Syntaxin and SNAP-25 (Chapman and Jahn, 1994). 

 

The use of neurotoxins and specific antibodies has shown that toxin-sensitive 

isoforms, like VAMP2, are involved in stimulus-coupled secretion in a variety of cell 

types, including neurotransmitter release from neurons (Trimble et al., 1988; Baumert 

et al., 1989) insulin release from pancreatic β-cells (Regazzi et al., 1995); zymogen 

granule release from pancreatic acinar cells (Gaisano et al., 1994); catecholamine 

release from adrenal chromaffin cells (Misonou et al., 1997); and insulin-stimulated 

GLUT4 translocation in adipocytes (Olson et al., 1997).  
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Syntaxin 1 is a neuronal plasma membrane Q-SNARE first described as an antigen 

for a monoclonal antibody called HPC-1 (Inoue et al., 1992), and subsequently 

identified as a binding partner for synaptotagmin and the N-type calcium channel 

(Bennett et al., 1992; Yoshida et al., 1992). SNAP-25 is another Q-SNARE initially 

identified as a brain-specific protein localized to neuronal plasma membrane via 

palmitoyl groups covalently attached to the cysteine residues (Oyler et al., 1989). 

VAMP2 and syntaxin 1 each contain a single SNARE motif adjacent to the carboxy-

terminal transmembrane domain, whereas SNAP-25 contains two SNARE motifs 

connected by a linker region bearing the palmitoylated cysteine residues (Weimbs et 

al., 1997). All SNARE proteins have a cytoplasmatic orientation. The four SNARE 

motifs from these three proteins assemble into a parallel four-stranded helical bundle 

to form an extremely stable ternary complex called the SNARE complex (Figure 2), 

(Sollner et al., 1993; Sutton et al., 1998).  

 

 

 

 

Figure 2. Model of the neuronal SNAREs assembled in to the core complex 
(Carr and Munson, 2007) 
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Interference with the integrity of such a superhelical structure by various mutations in 

neuronal SNAREs inhibits synaptic vesicle exocytosis (Littleton et al., 1998; Finley et 

al., 2002). Moreover, specific cleavage of neuronal SNAREs by clostridial 

neurotoxins prevents the assembly of a stable SNARE complex and blocks 

neurotransmitter release without affecting the docking of synaptic vesicles (Schiavo 

et al., 1992; O’Connor et al., 1997). Targeted gene disruption of neuronal SNAREs in 

Drosophila, Caenorhabditis elegans, and mice abolishes action potential-evoked 

neurotransmitter release, further demonstrating an essential role for these proteins in 

Ca2+-stimulated synaptic vesicle exocytosis (Broadie et al., 1995; Schoch et al. 

2001). Despite overwhelming evidence indicating the critical importance of neuronal 

SNAREs and the SNARE complex in synaptic vesicle exocytosis, their precise role in 

the fusion process remains controversial (Mayer, 2001; Bruns and Jahn, 2002).  
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2.2 Aim of the study 

 

The aim of this study was to provide new insight into the presynaptic molecular 

mechanism that controls the speed of neurotransmitter discharge from small synaptic 

vesicles (SSVs). For this, we investigated how the increase in physical distance 

between complex-forming SNARE domain and transmembrane domain (TMD) of 

SynaptobrevinII (SybII) impacts Ca2+-triggered exocytosis and quantal signalling. To 

address this issue, we expressed SybII mutant proteins carrying an extended 

juxtamembrane region in hippocampal neurons that are genetically deficient of SybII 

and nearly devoid of secretion (Schoch et al., 2001). In a gain-of-function approach 

individual SybII mutant proteins were examined for their ability to rescue the 

exocytotic responses in SybII deficient neurons. Autaptic and mass hippocampal 

cultures were used and fundamental synaptic parameters like, excitatory 

postsynaptic currents (EPSCs), mini excitatory postsynaptic currents (mEPSCs), 

readily releasable pool (RRP) and release probability (RP) were systematically 

analysed.    
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 3. Experimental Procedure 

 
3.1 Cell Culture  

 
3.1.1 Preparation and maintenance of single-cell mi croisland and mass culture 

 
The micro-island culture technique, developed in 1976, was used to investigate the 

influence of non-neuronal cells and target cell innervation have upon the plasticity of 

rat sympathetic principal neurons with respect to the expression of anadrenergic or 

cholinergic phenotype.  Subsequent to this, microisland cultures have widely been 

used as a model system to study various molecular and cellular mechanisms of 

synaptic transmission and synaptic plasticity including the influence of synaptic 

proteins and trophic factors on synapse formation and neurotransmitter release 

(Timothy, 2006). In fact, it has been well established that this autaptic neurons are 

functionally indistinguishable from those in vivo including kinetics and 

pharmacological properties (Bekkers and Stevens, 1991).  The basic idea of this 

technique is extremely simple, the aim is isolate an individual cell by restricting cell 

attachment and growth to small predetermined region formed by astrocytes. A 

particularly important characteristic is that such constraint greatly increase the 

probability of them forming self-innervation autaptic contacts and also increases the 

overall density of innervation of individual cells within the microisland. From an 

electrophysiological perspective, this offers several distinct advantages. First, the 

increased numbers of synaptic contacts greatly increase the size of evoked synaptic 

events, thereby facilitating their detection. Second, in single-cell cultures, all of 

synaptic contacts are autaptic. This greatly facilitates analysis of different release 

modes, since all responses induced by action potential or hypertonic solution arise 

from the same neuron and can be assumed to be monosynaptic, which simplifies 

quantal analysis of the transmitter release processes. Furthermore, only one 

electrode is required to both evoke and record the synaptic events (Timothy, 2006; 

Bekkers and Stevens, 1991). 

 

Microisland cultures of hippocampal neurons were prepared in several steps: First, 

the basic principle of making microisland culture is to prepare islands of a substrate 

adhesive for neurons (glia cells) on a background of a nonadhesive substrate 

(agarose). The sterilized glass coverslip (25 mm in diameter, 1001/25, 25 mm No1, 
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Glaswarenfabrik Karl Hecht KG.) was covered with a thin layer of 0.15% solution of 

agarose (Type II-A, A-9918 Sigma.), this solution was prepared by mixing the 

agarose powder with sterile water and heated until the solution is just boiling, and 

was swirled to homogeneity. Using a 1 ml pipette a drop of agarose was applied on 

each coverslip. The drop of agarose should be big enough to cover the central part of 

the coverslip, as the drops of agarose cooled, was removed as much excess liquid 

agarose as possible, proportional with achieving the thinnest possible coating without 

contraction of the drop and the coverslips were dried at 53°C for 90 min. Coating 

material; 0.6 mg/ml of collagen (BD 354236) and 0.4 mg/ml of poly-D-lysine (Sigma P 

6407) was sprayed using a sterile atomizer sprayer (before attempting to spray the 

agarose coated coverslips, few test sprays were made as to prime the atomizer and 

also to determine the optimum distance (usually 15 cm above and 25 cm lateral to 

the coverslips) and the amount of pressure to apply to the bulb in order to get a 

uniform coating of the desired size of the droplets/islands (20-200 µm diameter)). 

Once optimum conditions were determined, the agarose-coated coverslips were 

sprayed, left to dry for at least 1 h and sterilized under UV for 10 min before plating 

the astrocytes. 

 

Astrocytes were prepared using brain cortex and hippocampal tissue, dissected from 

newborn of 1-2 days old mice, placed into HBSS medium (Invitrogen 24020-091) and 

cut it in small pieces, the tissue was gently passaged through a cell strainer with 20 

ml of ice-cold DMEM (Invitrogen 31966-021). The homogenated cells were 

centrifuged at room temperature for 7 minutes at 1700 rpm. The cells were gently 

triturated using a blue tip so as to obtain a single cell suspension, seeded and grown 

on 75-cm2 flask with 10% FCS-DMEM (10% FSC, invitrogen 10270-106, DMEM, 100 

unit/ml of penicillin and 100 unit/ml of streptomycin (Invitrogen 15140-122, MITO BD 

Biosciences 355006) and maintained in a humidified incubator at 37°C with carbon 

dioxide content of 9%, Medium was replaced on next day and on each third day. 

Once confluent, the astrocytes were collected with Trypsin-EDTA (Invitrogen 15400-

054, it was diluted 10 times with DPBS Invitrogen 14190-094), suspended and then 

centrifuged at 1300 rpm for 3 min. Approximately 100.000 astrocytes/ml were plated 

in each well of 6-well tissue culture plates on the previously coated coverslips with 

10% FCS-DMEM. After astrocytes were confluent on the micro-island, neurons were 

plated (1000-2000 neurons/ml). In the microisland formed by astroycyte as well as 
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neurons, processes grow within the coated island but cannot reach outside because 

of the agarose (Figure 3).             

 

10 µm10 µm

 

 

Figure 3 . Example of the single-cell microisland of mouse hip pocampal neurons.  
Phase contrast micrograph of a single neuron grown for 14 days to form all of the synapses 
with its own dendrites. 
 

For mass culture sterilized glass coverslips were coated with 0.2 mg/ml poly-D-lysine 

(PDL was dissolved in 0,1 M borate buffer; 0.05 M H3BO3 Sigma B-0252 and 0.024 

M Na2B4O7 x 10H2O Merck A688908, pH 8.5 with HCl), approximately 200 µl of 

solution were added to each coverslips. When properly cleaned (HCL 1 h, HNO3 1 h, 

Acetone 1 h, H2O 1 h and Ethanol 1 h), the coverslips are very hydrophilic and this 

small volume will spread evenly over the entire surface. After 12-24 h at room 

temperature (20-25 °C), PDL solution was removed an d the coverslips were rinsed 

several times with sterile water for 2 h each.  

 

 3.1.2 Hippocampal neuron preparation 

 

Pyramidal neurons, the principal cell type in hippocampus, account for the vast 

majority of the total neuronal population. The hippocampus also contains a variety of 

interneurons, but they are comparatively few in number and most are morphologically 

distinguishable in culture. They form well-developed dendrites dotted with spines and 

make extensive, synaptically connected networks, the stage of hippocampal neuron 
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development in culture has been well-characterized and reasonably consistent from 

laboratory to laboratory (Kaech, 2006.). 

 

Hippocampal neurons are isolated from embryonic day (E18) mice embryos. The 

pregnant mice were euthanized with carbon dioxide, the abdomen was cut through 

the abdominal wall, the foetuses were removed, decapitated and the head was 

transferred to a petri dish. The head was grasped firmly with a pair of forceps by 

inserting the tips of the forceps deeply into the orbits. Making a midline incision 

through the skin and skull, beginning at the level of the decapitation and continuing 

forward to the orbits. This tissue was reflected away to each side so that the entire 

cortex was revealed, the brain was removed by inserting a flat forceps of the forceps 

beneath the olfactory bulbs and worked them caudally, separating the nerve 

connections that link the brain to the skull and picking the brain up by the brainstem 

and transfer it to the dissecting dish. 

 

Once the brain has been removed from the skull, it was immersed in ice-cold HBSS 

(Gibco-24020) at all times to prevent the tissue from drying. Under a dissecting 

microscope the hemispheres were removed, separating the cerebral hemispheres 

from the diencephalon and brainstem. With the basal aspect of the brain facing up, 

cut along the boundary between the diencephalons and the cerebral hemisphere. 

Place one blade of the scissors into the space between the hemisphere and 

diencephalons at the posterior pole, then cutting forward and medially around the 

diencephalons. Using a pair of forceps the hemispheres were spread away from the 

diencephalons. This procedure was repeated to remove the other hemisphere. 

 

The outer convex border of the hippocampus, which is continuous with adjoining 

regions of the cortex, often is delineated by blood vessel that run along the 

hippocampal fissure. The inner border, which is formed by the fiber tract called the 

fimbria, is free. The meninges and choroids plexus were removed by stabilising the 

hemisphere with one pair of forceps and grasped a bit of the meninges with the 

other, and tug gently. Once the meninges were removed, the hippocampus was cut 

out, because the inner edge of the hippocampus is free and the lateral ventricle lies 

on its lateral aspect, only the outer edge and the anterior and posterior ends of the 

hippocampus were cut away from the adjoining tissue. 
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The hippocampi were transferred and incubated in a papain solution (1.6mM L-

cysteine sigma C-7352, 250 ml DMEM Invitrogen 31966, 1 mM CaCl2 Fluka 21115, 

0.5 mM EDTA sigma E1644, 10 units of papain Worthington 3126 PAP) for 20 min at 

37°C with gently shaking followed by incubation wit h inactivating solution (Albumin 

2.5% (mw 238.31 mg/mol) Sigma A-4503, trypsin-inhibitor 2.5% sigma T-9253, 10 ml 

10% FCS-DMEM) for 3 min. After the incubation, the tissue was dissociated by 

pipetting vigorously up and down, first with a 1 ml pipette (Blue tip) and second with a 

200 µl pipette (yellow tip) to obtain a homogeneous solution with no obvious particles 

of tissue remaining. Dissociated single-cells in supernatant were transferred to fresh 

tubes, and cells number was determined. Approximately 1000-2000 single neurons 

were plated on the prepared confluent microisland astrocytes culture, and 300 single 

neurons/mm2 were plated in the poly-D-lysine-treated coverslips, (mass culture). 

Cultures were incubated in NBA medium at 37°C, with  5% of carbon dioxide and 

95% humidity for 14 days or longer before being used for electrophysiological 

recordings. To control the astrocytes overgrowth a mixture of 0.04 mM FUDR (5-

Fluro-2’-deoxyuridin, sigma 0F0503, FW 246.19) and 1 mM Uridine (sigma U3003, 

FW 244.2) was applied for 24 hours.   

 
3.2 SynaptobrevinII/VAMP2 knockout mice 

 
SynaptobrevinII/VAMP2 homozygous knockout mice were obtained by crossbreeding 

of heterozygous mice. To preserve a homogeneous genetic background we 

continuously crossed heterozygous mice with C57BL/6. Heterozygous mutant mice 

suffered no apparent morbidity or premature mortality, but homozygous mutant mice 

died immediately after birth. Newborn knockout mice exhibited a striking body shape, 

with a rounded appearance and a shoulder hump that is probably caused by excess 

brown fat in the upper back, but not developmental changes (Schoch et al., 2001). All 

experiments were performed on hippocampal neurons prepared from mice at the 

developmental stage E-18.        

 
3.3 Genotyping 

 
3.3.1 Genomic DNA purification 

 
The template DNA was obtained from the tail biopsy from embryonic mouse (3-5 mm 

long), the tissue were incubated at 56°C, with the 400 µl of SNET buffer (20 mM Tris-
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HCl, 5 mM EDTA, 100 mM NaCl and 1% sodium dodecyl sulfate for lysis), 

supplemented with 8 µl proteinase K (Qiagen 19133) and shaken for several hours. 

The sample was centrifuged for 5 minutes at 13000 rpm and the supernatant was 

transferred into a fresh 2 ml tube. In order to precipitate the DNA, 400 µl isopropanol 

(100% Merck) was added and the sample was centrifuged at 13000 rpm for 10 

minutes. After this step, a glassy pellet became visible. Supernatant was carefully 

removed (isopropanol pellets are more loosely attached to the side of the tube) and 

400 µl of ethanol (100% Merck) was added to wash the DNA. After centrifugation at 

13000 rpm for 5 minutes and removing of the ethanol, DNA pellet was dried on the 

shaker (37°C) for 10-20 minutes. The DNA was resusp ended in 200 µl of water 

(Sigma) at 30°C for 1 h on the shaker, and was used  for PCR was analysis. 

 
3.3.2 Polymerase chain reaction 

 
Polymerase chain reaction (PCRs) was performed to detect the gene of interest as 

follow:  

 
5x Soriano buffer: 

(NH4)2SO4      83 mM 

TrisHCl     335 mM 

MgCl2       33.5 mM 

β-mercaptoethanol    25 mM 

   
Primers for Synaptobrevin II wild-type reaction. 

Forward: Syn WT_1  5`-GCC CAC GCC GCA GTA CCC GGA TG -3` 

Reverse: Syn WT_2  5`-GCG AGA AGG GCA CCC GAT GGG AG -3` 

  
DNA amplification. 

 
1x PCR reaction: 

5x Soriano buffer    5 µl 

DMSO     2.5 µl 

dNTP 25 mM               0.5 µl 

Primer Syn WT_1    0.5 µl (final concentration of 100 pM/µl) 

Primer Syn WT_2    0.5 µl (final concentration of 100 pM/µl) 

H2O (Sigma)     15.5 µl 
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Amersham Taq    0.5 µl 

Genomic DNA     4 µl 

 
PCR program: 

5 min      95°C 

50 s      95°C 

45 s      55°C 

1 min 30 s     65°C 

10 min      65°C 

35 cycles. 

  
Primers for Synaptobrevin II mutant reaction. 

Forward:  1910  5`-CAC CCT CAT GAT GTC CAC CAC-3` 

Reverse:  1911  5`-CAG CAG ACC CAG GCC CAG GG-3` 

 
DNA amplification 

 
1x PCR reaction: 

10x buffer     3 µl 

Mg2CL 25 mM    0.5 µl 

dNTP 25 mM     0.5 µl 

Primer 1910     0.5 µl (final concentration of 25 pM/µl) 

Primer 1911     0.5 µl (final concentration of 25 pM/µl) 

H2O (Sigma)     22 µl 

Sigma red Taq    1 µl 

Genomic DNA     2 µl 

 
PCR program: 

5 min      94°C 

30 s      94°C 

1 min      60°C 

2 min      72°C 

10 min      72°C 

40 cycles. 
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All primers were supplied by MWG. dNTPs were supplied from Amersham 

Bioscience, Sigma Red-Tag and Amersham polymerases were supplied with 

appropriate buffer from Sigma and Amersham Bioscience repectively. 

 

The amplified fragments were isolated by means of electrophoresis at 120 V for 25 

min in a 1.8% agarose (Healthcare Bio-science 17-0554-02) gel (0.5 µM/ml Ethidium 

bromide) in TAE-buffer (Tris Base 96.8g, acetic acid 22.8 ml, EDTA 0.5 mM 40 ml, 

double distillate water (sigma) 400ml pH 8.0), before electrophoresis the amplified 

fragment were supplemented with a loading dye solution (Tris-HCl 10 mM, 

bromophenol blue 0.03%, xylene cyanol FF 0.03%, glycerol 60%, EDTA 60 mM, pH 

7.6) for easy visualization of the DNA migration during the electroforesis. The PCR 

products were visualized under UV light.  

 
3.4 Lentivirus cloning 
 

cDNAs encoding for SybII and its mutants were subcloned into 

pRRL.sin.cPPT.CMV.WPRE lentiviral transfer vector (Follenzi et al., 2002), which 

contains a cPPT sequence of the pol gene and the posttranscriptional regulatory 

element of woodchuck hepatitis virus (Follenzi et al., 2000). To identify positive 

transfectants, SybII proteins were expressed as fusion constructs with the monomeric 

red fluorescent protein (mRFP) protein linked to the C-terminal, intravesicular domain 

of SybII. According to the protocol from Kesavan et al., the following amino acids 

(underlined) were inserted into the juxtamembrane region of SybII: 4aa, KNKLGGKL; 

5aa: KNKLGGSKL, 6aa: KNKLGGSGKL, 7aa: KNKLGGSGGKL, 8aa: 

KNKLGGSGGSKL, 11aa: KNKLGGSGGSGGSKL. The KL sites, flanking the GGS 

motif, encode for HindIII restriction sites and were generated to allow a primer-based 

elongation of the inserted amino acid-stretch in order to facilitate the cloning process. 

Constructs were verified by DNA sequence analysis. All mutants were produced and 

kindly provided by my doctoral college Yvonne N. Schwarz. 

 
3.4.1 Lentiviral production and transfection 

 
The transfer vector plasmid and the helper plasmids were transfected into human 

embryonic kidney HEK293T cell line using Lipofectamine 2000 according to a 

modified Invitrogen protocol. Briefly, after 14 hours, the transfection medium was 

replaced with OptiMEM, 10% FCS and 100mM sodium pyruvate and 48 hours later 



 29

the virus was harvested, filtered (0.4 µm PVDF membrane, Millipore) and 

concentrated using a centrifugal filter device (100kDa molecular weight cutoff; 

Amicon Ultra-15; Millipore, Bedford MA). The viral particles were immediately frozen 

and stored at -80°C. For each virus, a titer test o n neuronal cultures was performed 

to adjust the number of infectious units to a transfection efficacy of higher than 80 %. 

Neurons were transfected at day 1 in vitro by adding 100-300 µl viral suspension to 

the culture medium. 

 
3.5 Electrophysiology 

 
Synaptic responses were recorded from hippocampal autaptic neuron, after 14-17 

days in culture. All electrophysiological experiments were carried out at room 

temperature 22-24°C in standard extracellular mediu m contained 130 mM NaCl, 2.4 

mM KCl, 10 mM HEPES, 10 mM glucose, 4 mM CaCl2, 4 mM MgCl2, 10 mM 

NaHCO3, the osmolarity was 300-310 mOsm, (pH 7.3). 1 µM of tetrodotoxin (Sigma 

T-5651) was added to the extracellular medium for mass culture to avoid 

spontaneous action potential. For each experiment, approximately equal numbers of 

cells were measured in parallel on the same day in vitro. The intracellular solution 

contained the following; 137 mM K-gluconate, 11 mM NaCl, 2 mM MgATP, 0.3 

Na2GTP, 1.1 mM EGTA, 11 mM HEPES, 11 mM D-glucose, pH 7.3, osmolarity 300 

mOsm. For glutamate antagonis experiments, 200 µM of γ-D-glutamylglycine (γ-

DGG) (Tocris Cookson, Ellisville, MO 0112) was bath applied using a fast perfusion 

system. To minimize the potential contribution of GABAergic currents the reversal 

potential of chloride-mediated currents was adjusted to the holding potential. 

 

The patch pipettes were prepared using a horizontal puller (Sutter of instrument, 

model p-87, Novato, USA) from glass capillaries (Type GC159 F-10, Harvard 

apparatus) with an open tip resistance about 3.5-4.5 MΩ in chloride based internal 

solution. 

 

Cells were whole-cell voltage clamped at –70 mV with an EPC 10 patch clamp 

amplifier (Heka electronik) under control of Pulse 8.5 program (HEKA Electronik), 

Current were bassel filtered at 2.9 kHz (four pole Bessel filter EPC10) and digitised at 

a rate of 50 kHz. The series resistance was compensated to 80-85%, only cells with 

resistances below 10 MΩ were analysed. 
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To determine the mEPSC properties with reasonable fidelity, spontaneous events 

with a peak amplitude >15 pA (~5 times the S.D. of the background noise, e.g. SybII: 

3.2±0.08 pA, 11aa: 3.05±0.09 pA) and a charge criterion >30 fC were analysed using 

a commercial software (Mini analysis, Synaptosoft, Version 6.0.3). The mEPSC 

decay was fitted with double exponential. 

 
3.6 Stimulations Protocols 

 
3.6.1 Action potential evoked signals 

 
EPSC were evoked by depolarizing the cell (micro-islands containing one transfected 

neuron) from –70 to +10 mV for 0.7 ms at low frequency stimulation (0.2 Hz). The 

magnitude of the responses was quantified by measuring amplitude as well as the 

integral of the resulting EPSC.  

 
3.6.2 Osmotic stimulation and release probability  

 
A pool of readily releasable pool has been defined for hippocampal synapses 

(Stevens and Tsujimoto, 1995). This pool consists of about 12 quanta per synapse, 

and replenishing takes about 10 s when it has been completely depleted. One 

method used for defining the readily releasable pool is applying hypertonic solution. 

(Rosenmund and Stevens, 1996).   

 

The RRP at hippocampal synapses was defined by a 5 sec application of 500 mM 

Sucrose (standard extracellular medium containing 500 mM of Sucrose) to the entire 

microisland. During the application of the hypertonic solution, the quantal release rate 

jumps rapidly to relative high level and then declines approximately exponentially to a 

low steady level, the integral of the transient component after subtraction of steady 

state component give the total charge of RRP (Figure 4). 

 

To calculate the release probability (RP), 0.5 Osm hypertonic solutions was applied 

for 5 s, after 5 s evoked action potential (Figure 4). The RP was calculated as the 

charge released by action potential divided by the total charge released by 

application of the hypertonic solution. 
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Figure 4. Osmotic stimulation and release probabili ty calculation. Left, excitatory 
postsynaptic current (EPSC) induced by a brief depolarisation from a holding potential of –70 
mV to +10 mV for 0.7 ms duration time. Right, Hypertonic solution-evoked response using 
(500 mM sucrose) a fast perfusion system for 5 s duration time. The total charge of the 
transient inward current generated during this stimulation protocol if typically defined as 
readily releasable pool (RRP)  (Rosenmund and Stevens, 1996). The charge of the area 
under the curve of EPSC divided by the charge of RRP gives the release probability. 
 

3.7 Statistical analyses 

 
Values are given as mean ± s.e.m.. To determine statistically significant differences, 

one-way analysis of variance and a Tukey-Kramer post-test for comparing groups 

were used, if not indicated otherwise.  
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4. Results 

 
4.1 SynaptobrevinII-mRFP fully rescues synaptic tra nsmission in 

Synaptobrevin deficient neurons 

 
Using autaptic hippocampal neurons (Bekkers and Stevens 1991) from SybII 

deficient mouse embryos, we expressed exogenous SybII protein using a lentiviral 

expression system (Invitrogen). Expression of SybII-mRFP (SybII) successfully 

rescues the action potential evoked response in knockout neurons (Figure 5). Thus, 

these results make SybII ko neurons a useful cell model, in which different mutant v-

SNARE proteins can be expressed and studied on a zero v-SNARE background. 

 

 

Figure 5.  Rescue of the action potential evoked response in S ybII ko neurons and 
schematic view of SybII domains.  A) Autaptic culture of SybII ko neuron cultured on a glial 
microisland. B) SybII ko neuron (14DIV) transfected with SybII-mRFP virus one day after 
plating. C) Action potential (AP) evoked response is abolished in Sybko neurons, but can be 
rescued by expression of SybII-mRFP. D) Schematic view of SybII domain, SNARE motif 
and transmembrane domain (TMD) are boxed. Underlined amino acid sequences show the 
insertions between SNARE domain and TMD.  
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4.2 SynaptobrevinII-mRFP knockin neurons exhibit si milar exocytotic 

responses when compared with wild type neurons 

 

The former result that SybII, C-terminally tagged with the mRFP, efficiently restores 

neurotransmitter release was a prerequisite for the generation of a new knockin 

mouse strain that expresses SybII-mRFP. In collaboration with the lab of Prof. Dr. 

Jens Rettig we comparatively analyzed the secretory responses mediated by SybII 

and its fluorescent variant.  Action potential evoked responses and release in 

response to hypertonic sucrose application recorded from autaptic neurons 

expressing SybII-mRFP (SybII-mRFPin) were indistingisible from those measured 

from wild type neurons (SybII-wt, Figure 6A). Furthermore, synaptic parameters like 

time to peak and release probability were not significantly altered (Figure 6B), 

confirming that mRFP fused to the C-terminus of the protein does not interfere with 

SynaptobrevinII function during exocytosis.  

 

 
Figure 6. SynaptobrevinII-mRFP knockin neurons show  similar exocytotic responses 
than neurons expressing SynaptobrevinII. A) Action potential evoked response and 
readily releasable pool measured from SybII-wt neurons were not different from those 
recorded from SybII-mRFPin neurons B) Average synaptic parameters do not show 
significant differences between SybII-wt and   SybII-mRFPin neurons. SybII-wt, n=20; SybII-
mRFPin, n=20, (paired student’s t-test p>0.05).  
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4.3 Increasing the distance between the SNARE motif  and the TMD of SybII 

gradually reduces evoked transmitter release 

 

First, we characterized how extending the juxtamembrane region of SybII affects 

neurotransmitter release in response to a single action potential. SybII ko neurons 

were infected with lentiviral expression constructs encoding for SybII or its variants 

that carry amino acid insertions of different lengths in the juxtamembrane region of 

the protein (Figure 6). 

 

 
Figure 7. Extending SybII’s juxtamembrane region de creases evoked neurotransmitter 
release in a linker-length dependent fashion.  A) Averaged responses of action potential 
evoked release from SybII ko neurons expressing SybII or its variants. B) Amplitude and C) 
charge of the AP evoked signals decrease with increasing linker length. (SybII; n = 16, 4aa; 
n= 20, 7aa; n = 19, 8aa; n = 14, 11aa; n = 10. ***p<0.001, one-way analysis of variance). 
 

Compared with SybII wild-type protein, the insertion of a 4 amino acid linker strongly 

reduces the amplitude of the action potential evoked response by 54 %.  Increasing 

the length of the linker to 7, 8 and 11 amino acids further decrease the amplitude of 

the evoked signal (Figure 7A and 7B). With the 11aa insertion the evoked signals are 

nearly abolished and indistinguishable from those measured in knockout neurons 

(Figure 7, red trace). For the evoked EPSC charge, a similar linker length dependent 

depression in release is observed (Figure 7C). Thus, amino acid insertions 
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immediately preceding the TMD gradually decrease the action potential evoked 

EPSC.   

 
4.4 v-SNARE linker mutants alter exocytosis timing   

 
To test whether linker mutants affect exocytosis beyond priming of SSVs, we 

determined the stimulus-secretion coupling in response to single action potentials for 

wild type and mutant proteins. As shown in Figure 8A, the synaptic delay is 

progressively prolonged with increasing the linker’s length. On average, exocytosis 

initiation of SSVs carrying a mutant protein occurs with a significant time lag (SybII: 

2.33 ± 0.17 ms; 4aa: 3.12 ± 0.22 ms; 7aa: 3.91± 0.22 ms; 8aa: 4.77 ± 0.37 ms, 

Figure 8B). Furthermore, within the single groups, we were not able to detect any 

correlation between EPSC amplitude and the synaptic delay. However, beyond the 

groups synaptic delay exhibited a close correlation with EPSC amplitude (Figure 9), 

indicating that the amplitude of the EPSC is not a determinant for synaptic delay.  

Each increase in linker size also caused a progressive increase in the time to peak 

measured from the end of the stimulus to the maximum of the synaptic response 

(Figure 8C).   

 

 
 
Figure 8.  v-SNARE linker mutants alter exocytosis timing.  A) Amino acid insertions 
delay the onset of release. B) Average synaptic delay, SSVs carrying a mutant protein 
exocytose with a significant time lag. C) Time to peak was calculated from the end of the 
stimulus to the maximum of the synaptic response.  (Syb II; n = 16, 4aa; n= 20, 7aa; n = 19, 
8aa; n = 14, 11aa; n = 10. *p<0.05, **p<0.01, ***p<0.001, one-way analysis of variance).  
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Figure 9. Synaptic delay. Note that the synaptic delay does not exhibit any correlation with 
EPSC amplitude within the single groups. Such correlation is evident beyond the groups 
(Syb II; n = 16, 4aa; n= 20, 7aa; n = 19, 8aa; n = 14, 11aa; n = 10). 
 

To further analyse the kinetics of neurotransmitter release, we integrated the EPSC 

over time. The cumulative charge plot is well approximated with a sum of two 

exponential functions (Figure 10A).  In neurons expressing the linker mutants, the 

time constant of the first synchronous component was significantly slower than that 

observed with the wild type protein (Figure 10B). Similar differences between wild 

type and mutant protein are observed for the time constant of the slow asynchronous 

component of release (Figure 10C). Furthermore, both components of the synaptic 

response decrease in magnitude with increasing linker length, albeit the synchronous 

phase shows a higher sensitivity than the asynchronous phase (Figure 10D and 

10E). Taken together, these data indicate that a tight molecular link between the 

complex-forming SNARE motif and the TMD of SybII controls the time course of the 

synaptic response suggesting a postpriming function of v-SNARE proteins during 

SSV exocytosis.  
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Figure 10. Kinetic analysis of action potential evo ked response. A) Cumulative charge 
plot is well approximated with a sum of two exponential functions. (B and C) Time constants 
of the synchronous and asynchronous release. (D and E) Fast synchronous and slow 
asynchronous components respectively. Note that both components of release response 
decrease in magnitude with increasing linker length, albeit the first phase shows a higher 
sensitivity than the second phase. (SybII; n = 12, 4aa; n= 17, 7aa; n = 15, 8aa; n = 5. 
**p<0.01, ***p<0.001, one-way analysis of variance).   
 

4.5 Expression of v-SNARE proteins and synaptogenes is do not change with 

linker mutations 

 
We next analysed the expression levels of the v-SNARE variants and whether they 

support synapse formation to the same degree as the wild type protein. 

Immunostaining with an antibody directed against SybII’s N-terminus shows that 

mutant proteins do not differ from the wild type protein regarding level or pattern of 

protein expression in SybII knockout neurons (Figure 11A and 11B). The similar 

dotted appearance of the immunosignals indicates correct sorting of the mutant 

protein to synapses (Figure 11A and 11B insets). Immunolabeling of the vesicular 

marker protein Synaptophysin shows that SybII-ko neurons exhibit the same synapse 

density as wild type cells. Furthermore, expression of SybII or its mutant variants in 

SybII-ko neurons leaves the synapse number unchanged (Figure 11C), indicating 

that linker mutations do not interfere with synaptogenesis. Thus, neither variations in 

protein expression (or sorting) nor deficiencies in synapse formation can be held 

responsible for the phenotype of the mutant protein. 
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Figure 11. Expression of v-SNARE proteins and synap togenesis do not change with 
linker mutations (A) Exemplary images of SybII ko neurons expressing SybII wild type or 
SybII 11aa. Immunosignals (FITC channel) were detected with an affinity-purified monoclonal 
antibody (69.1) directed against the N-terminus of SybII. B) Mean intensity of punctas was 
measured from 50µm stretches of an axon. In SybII ko neurons signals were not detectable. 
C) Exemplary images of SybII and SybII 11aa expressing neurons stained for the vesicular 
marker protein Synaptophysin. D) Quantitative assessment of synapses per 30µm axon 
length shows that the synapse density was not altered in SybII koneurons expressing  SybII 
wild type and  mutant proteins. (SybII; n= 25, 4aa; n= 26, 5aa; n= 24, 7aa; n= 20, 8aa; n= 22, 
11aa; n= 24) 
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4.6 Readily releasable pool size and release probabilit y decrease with 

increasing linker length 

 
Important physiological factors that might contribute to the defect in the size of the 

action potential evoked response mediated by the mutant proteins are the size of the 

readily releasable pool (RRP) of synaptic vesicles and the release probability (RP). 

Only a fraction of synaptic vesicles in close proximity to the active zone are primed 

and constitute the readily releasable pool (RRP) (Rizzoli and Betz, 2005). This pool 

consists of about 12 quantal per synapse, and when the pool has been completely 

depleted, replenishing takes about 10 s in hippocampal synapses. One method used 

for defining the RRP is by application of hypertonic solution for several seconds. 

When a hypertonic solution is applied, the quantal release rate jumps rapidly to a 

relatively high level and then declines exponentially to a low, steady level. The 

integral of the transient inward current produced by the concomitant release of 

glutamate provides a direct estimate on the number of vesicles within the RRP 

(Rosenmund and Stevens, 1996). As shown in Figure 12A and 12B, the size of the 

RRP significantly and systematically decreases with lengthening of SybII’s 

juxtamembrane region, indicating that linker mutations interfere with the 

establishment or maintenance of the release-ready state.   

 

To further elucidate reasons for the reduced EPSC with the SybII mutant proteins, we 

analysed the vesicular release probability in response to single action potential 

stimulation. The ratio of charges evoked by an action potential and that during 

subsequent sucrose stimulation provides an estimate on the release probability 

(Figure 4). Indeed, the release probability decreases with longer amino acid 

insertions (Figure 12C). Given that SSVs experience only a transient Ca2+ rise during 

an action potential, it is conceivable that the reduced RP observed for the mutant 

proteins might be a consequence of the synaptic delay. In fact, a negative correlation 

is evident when we plot RP vs synaptic delay for all mutants, supporting the idea that 

SSVs carrying mutant proteins slowly react at the moment of Ca2+ rise (Figure 12D). 

Thus, this observation reinforces the view that a short intramolecular distance 

between the SNARE motif and the TMD of the v-SNARE protein regulates Ca2+-

triggered exocytosis at a postpriming level. 
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Figure 12.  Readily releasable pool size and release probabilit y decrease with 
increasing linker length.  A) Exemplary traces of stimulated sucrose release of SybII ko 
neurons expressing SybII or its mutated variants (B and C) The readily releasable pool 
(RRP) size and the release probability (RP) are sensitive to extension of the juxtamembrane 
region of SybII D) Reduction in the release probability might be caused by the delay in 
exocytosis initiation. (SybII; n = 12, 4aa; n= 20, 7aa; n = 17, 8aa; n = 14, 11aa; n = 10. 
*p<0.05, **p<0.01, ***p<0.001, (one-way analysis of variance).  
 

4.7 SybII action underlies the speeding in mEPSC ti me course 

 
To test whether the distance between the complex-forming SNARE domain and the 

TMD of Synaptobrevin is critical for quantal signaling, we measured spontaneous 

excitatory postsynaptic currents (mEPSC) in the presence of 1µM TTX using mass 

cultures of hippocampal neurons.  As shown in Figure 13, expression of the 11aa 

mutant in SybII ko neurons changes not only the frequency of spontaneous events 
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(SybII: 7.3 ± 1.3 Hz, n=34, 11aa: 2.9 ± 0.6 Hz, n=22, P = 0.014) but also reduces 

their amplitude. On average, the mean amplitude of 11aa mediated mEPSCs is ∼1.4 

fold smaller than that of SybII-signals (SybII: 50.4 ± 2.4 pA, n=34, 11aa: 37.0 ± 1.6 

pA, n=22). A comparison of averaged miniature events, aligned to the midpoint of the 

rise time, illustrates the reduced amplitude and the slower time course of 11aa-

mediated events compared with SybII-mediated signals (Figure 13B,C).  

 

The decay phase of averaged SybII mEPSCs (Figure 13B,C) is best approximated by 

a sum of two exponentials revealing an initial fast (τfast) and a subsequent slower 

component (τslow) of decay (Afast –24.7 ± 2.1 pA, τfast 0.45 ± 0.02 ms, Aslow –17.4 ± 1.1 

pA, τslow 2.42 ± 0.7 ms, n=19). The slow component is not mediated by NMDA 

receptors since extracellular solutions contained Mg2+ and were nominally glycine 

free to block NMDA receptor mediated responses. In comparison to SybII, the initial 

phase of 11aa mEPSC is characterized by both a significant lower amplitude (Af –

17.2 ± 1.1 pA, n=16, Figure 13D) and slower time course (τfast 0.79 ± 0.05 ms). The 

second component instead retains a nearly unchanged amplitude (Aslow –14.8 ± 1.3 

pA) with a slower decay (τslow 3.13 ± 0.12 ms, n=16, Figure 13D). To obtain similar 

speed clamp, the resistance series compensation was adjusted to the same value in 

both groups (Figure 13E). Furthermore, we calculated the ‘‘false’’ event rate (lf), 

based on random noise, which is given by λf = fce
-θ²/2rms² (Colquhoun and Sigworth, 

1995). For nearly identical baseline noise (rms) of about 3.0 pA/ms in SybII and 

mutant recordings (Figure 13F), a threshold (θ) of 15 pA/ms and an effective 

bandwidth (fc) of 2.9 kHz, the false event rate is 0.01 Hz representing less than one 

hundredth of the observed frequency. These results show that properties of the 

release process rather than experimental inconsistencies like overcompensation of 

the clamp or detection of false signals are responsible for the observed differences in 

mEPSC time course. Taken together, the linker mutant protein diminishes the peak 

amplitude and slows the decay of the mEPSC 
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Figure 13. Quantal signaling is alter by linker mut ations  A) Representative traces of 
spontaneous miniature excitatory postsynaptic current mEPSC of SybII knockout neurons 
(mass culture) expressing SybII or SybII carrying 11aa insertion in presence of 1 mM of TTX. 
B) Averaged mEPSCs with similar charge taken from SybII ko neurons expressing SybII wild 
type protein (black) or 11aa insertion (red). C) Superimposed normalized averages. SybII 
events exhibit a faster release time course than 11aa as is shown by the decay time 
constant, which was calculated by fitting the average mEPSCs using a double exponential 
function. D) Bar graph showing that the linker mutant protein affects preferentially the 
magnitude of the fast component of the mEPSC. E and F) Resistance series compensation 
and rms noise where comparable between SybII and mutant protein. (SybII: n=23, 11aa: 
n=16 cells, **p<0.01, one-way analysis of variance).  
 

A comparison of the histogram frequency distributions as well as cumulative 

frequency of the quantal parameters shows that the amplitude distribution of 11 

amino acids mediated mEPSCs is shifted to lower values without changing the 

quantal charge (Figure 14). τ values from single exponential fits to the individual 
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responses (τsingle) confirm the significant difference between the decays of SybII and 

11aa signals (SybII 1.20 ± 0.06 ms, 11aa 1.87 ± 0.09, P<0.001) (Figure 15). 

 

The 10-90% rise time of quantal signals differs for rise times longer than 300 µs, but 

is unchanged for more rapidly rising signals, most likely due to the limiting response 

time of the cell-electrode system. To minimize the contribution of quantal events from 

release sites distant to the soma, we restricted our analysis to signals with rise times 

faster than 400 µs, comprising about 50% of the recorded events. Notably, the 

relative changes in τsingle between the mutant and the SybII signals are preserved, 

indicating that experimental inconsistencies like variable dendritic filtering cannot 

account for the observed differences (events > 15 pA,  τsinglesybII / τsinglemut: 0.64; 

events rt < 400 µs, τsinglesybII / τsinglemut: 0.65, Figure 15A). The same result is 

obtained for the peak amplitude (events > 15 pA, AsybII / Amut: 1.36, events rt < 400 

µs, AsybII / Amut: 1.40, Figure 15B). 

  

Since quantal signals vary greatly with respect to their magnitude, we analysed the 

effect of the mutant protein on differentially sized events. As shown in Figure 16A, the 

event’s amplitude scales proportionally to the event’s charge (slope 0.52 pA/fC, 

r2=0.99, Figure 16B) and is significantly reduced over the entire range of charges for 

11aa signals (slope 0.34 pA/fC, r2=0.99, Figure 16B). In the same line, the kinetic 

parameters like 10-90% rise time and τdecay are shifted to longer times for the mutant 

protein when compared with SybII signals (Figure. 16C and 16D). Thus, alterations in 

magnitude and time course of the mutant signals are independent of quantal charge 

and affect small and large events to the same degree.  
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Figure 14.  Comparison of the frequency distributions of quanta l signals by the SybII or 
the 11aa insertion.  Properties of mEPSC mediated by SybII (black, n=15293), 11aa (red, 
n=3829) displayed as histogram frequency and cumulative frequency distribution for the 
indicated parameters. Visualization of the cumulative frequency distribution of quantal events 
from this reciprocal pairs reveals a rightward shift in the amplitude and leftward shift in the 
rise time as well as the time constant of decay in the quantal events mediated by 11aa 
insertion relative to the control (SybII). Background noise distribution (peak centred at 0 pA) 
was obtained from 10-20 ms of recordings in which no mEPSC were evident. 
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The combined set of data for different insertion mutants reveals a linker-length-

dependent attenuation of the mEPSC amplitude that is accompanied with a strong 

and significant prolongation of the event’s τslow and τfast (Figure 17). These results 

show that v-SNARE action underlies the speeding in mEPSC time course. An 

attractive scenario could be that a tight coupling between SNARE domain and TMD 

of SybII is required for rapid transmitter discharge from small synaptic vesicles 

shaping the entire mEPSC signal. 

 

 

 

Figure 15. Variable electrotonic filtering cannot a ccount for the differences in the 
mEPSC time course.  SybII (n=19 cells) and 11aa insertion (n=16 cells). Note that the 
relative changes in τdecay, (A) as well as in the amplitude, (B) of SybII- and mutant signals are 
preserved when the analysis is restricted to events with rise times faster than 400 µs to 
minimize the signal’s electrotonic distortion. (**p=0.005, ***p<0.001, one-way analysis of 
variance) 
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Figure 16. Alterations in the time course of mutant  signals are independent of quantal 
charge . A) Averaged mEPSCs with similar charge taken from SybII ko neurons expressing 
SybII wild type protein (black) or 11aa insertion (red). B) Slops of the correlation amplitude vs 
charge (pA vs fC) for SybII (Black) and 11aa insertion (red). The event’s amplitude scales 
proportionally to the event’s charge and is significantly reduced over the entire range of 
charges for 11aa signals. C and D) kinetic parameters like 10-90% rise time and τdecay are 
shifted to longer times for the mutant protein when compared with SybII-signals. (SybII: 
n=23, 11aa: n=16 cells, ***p<0.001, one-way analysis of variance). 
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Figure 17. Neurotransmitter release from small syna ptic vesicles changes in a linker-
length dependent fashion.  Extension of the juxtamembrane region (5aa, 6aa, 7aa, 8aa, 
and 11aa) significantly reduces mEPSC amplitude in longer linkers insertion and 
progressively prolongs neurotransmitter discharge without affecting the quantal size. Values 
are given as mean; SybII (34), 5aa (13), 6aa (13), 7aa (22), 8aa (31), 11aa (21). **p<0.01, 
***p<0.001, one-way analysis of variance versus SybII. 
 

4.8  SybII action governs the time course of cleft glutamate 
 

Motivated by the observations above, we studied whether the altered mEPSC time 

course could arise from a change in the temporal profile of glutamate experienced by 

the AMPA receptors as a result of a change in the kinetic of glutamate released from 

synaptic vesicles. To assess the extent of glutamate release during synaptic 

transmission, we made use of a previously established pharmacological approach 

(Liu et al., 1999).  The rapidly dissociating competitive antagonist γ-D-glutamylglycine 

(γ-DGG), which competes with glutamate on the time-scale of AMPA-mEPSCs, 

partially attenuates glutamatergic release events in hippocampal synapses (Liu et al., 
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1999). Because of the competitive nature of its interaction with glutamate, the degree 

of its attenuation is inversely related to the amount of glutamate being released, such 

that it can be used as a direct indicator of the speed of glutamate release.   We used 

γ-DGG (200 µM) to probe v-SNARE-dependent alterations in the peak glutamate 

concentration. If the cleft concentration of glutamate were significantly higher for 

SybII- than for 11aa-mediated events, one would expect that SybII and 11aa 

mEPSCs are less affected when challenged with a rapidly equilibrating blocker. To 

minimize the loss of events below the amplitude threshold (15 pA), we restricted our 

analysis to recordings with an average minimum event charge of 100 fC. Application 

of γ-DGG results in a reversible reduction of the mEPSC peak amplitude (Figure 

18A,B).  

 

 

 

Figure 18. γγγγ-DGG effect causes a reversible attenuation of the mEPSC amplitude.  A) 
Exemplary traces of spontaneous mEPSC mediated by SybII in the absence (black trace; 
control) and in the presence of 200 µM γ-DGG (red trace). B) Application of γ-DGG (red bar) 
is bracketed by control runs with superfusion of ringer’s solution.   
 
A comparison of averaged mEPSCs from before and after antagonist application at 

neurons expressing either SybII (left traces) or 11aa mutant proteins (right traces) 

depicts sample peak amplitude attenuation of SybII and 11aa (Figure 19A). As 

shown, application of γ-DGG results in a relative reduction of the mEPSC peak 

amplitude that is significantly stronger for 11aa events than for SybII events. 

Visualizing the amplitude distribution of the events confirms that γ-DGG causes 

pronounced leftward shift of the 11aa distribution relative to SybII (Figure 19B). On 

the whole, γ-DGG reduced the amplitude of the SybII mediated events by 15.0 ± 2.2 

% in contrast to 25.3 ± 5.2 % by the 11aa insertion, (Figure 20A). On average, the 

efficacy of γ-DGG in attenuating the mEPSC peak amplitude is ∼1.7 fold stronger for 

the mutant than for the wt protein (Figure 20A). This line of experiments provided 
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evidence that the reduced mEPSC amplitude that we observed in signals mediated 

by mutant proteins is indeed a result of an altered kinetic of presynaptic glutamate 

release from SSV. The strong reduction in the frequency of the mutant signals 

caused by the antagonist (due to the loss of events below the detection threshold) is 

consistent with their lower amplitude (Figure 20B). 

 

 

 

Figure 19. Linker mutant produces a lower effective  glutamate concentration than 
SybII. A) Ensemble average of mEPSCs of cells expressing SybII (left, n=17) or the 11aa 
mutant (right, n=16) recorded in the absence (black trace) and in the presence of γ-DGG (red 
trace). Note the different scaling for the left and right panel. The relative inhibition is stronger 
for 11aa mutant (control: 109 fC, 33 pA, γ-DGG: 75 fC, 25 pA) than for SybII (control: 102 fC, 
42 pA, γ-DGG: 82 fC, 35 pA). B) Peak amplitude distributions of the mEPSCs in the absence 
(black) and during exposure of γ-DGG (red) for SybII (left) and the 11aa insertion (right). 
Background noise distributions (peak centred at 0 pA) were obtained from 10-20 ms of 
recordings in which no mEPSCs were evident.   
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Figure 20.   Effect of γγγγ-DGG on mEPSC amplitude and frequency.   A) mEPSC amplitude 
reduction by γ-DGG and B) frequency reduction by γ-DGG.  11aa events are more sensitive 
to γ-DGG than that of SybII events (SybII, n = 17; 11aa, n = 16, *p<0.05, one-way analysis of 
variance).  
 

Interestingly, the first component of the SybII mEPSC is less attenuate by the 

antagonist than its second component (Figure 21A), suggesting that these kinetically 

distinct phases are governed by different transmitter concentrations. In contrast, a 

nearly uniform degree of γ-DGG inhibition is observed for the first and the second 

phase of the mutant signal. The latter result confirms the view that the mutant protein 

slows transmitter discharge from SSVs, producing lower peak transmitter 

concentrations during the initial phase of the mEPSC signal. The time course of 

decay of the first and the second phase is only moderately but not significantly 

accelerated by γ-DGG (Figure 21B). This is possible, because the expected 

acceleration of the mEPSC time course might in part be compensated by reduced 

desensitization of the postsynaptic receptors in the presence of the competitive 

antagonist (Wong et al., 2003). Taken together, the experiments indicate that mutant-

mediated exocytosis produces lower effective glutamate concentrations than the wild 

type protein. They suggest that v-SNARE force governs the time course of 

transmitter release from SSVs and thereby controls the temporal profile of cleft 

glutamate and the quantal signal. 
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Figure 21. γγγγ-DGG effect on the two distinct components of relea se. A) Differential effect 
of γ-DGG on the magnitude of the fast (Af) and slow (As) component of the mEPSC decays 
measured for SybII and 11aa signals. C) Mean mEPSC τdecay in the presence and in the 
absence of γ-DGG for both SybII and 11aa. The decay time constants, τfast (τf) and τslow (τs), 
are significantly slower for the mutants signals compared with SybII and are slightly faster in 
the presence of γ-DGG.   (SybII, n= 17; 11aa, n= 16, *p<0.05, **p<0.01,  ***p<0.001 one-way 
analysis of variance).  
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5 Discussion 

 

A fundamental question in synaptic physiology is to what extent the exocytotic 

release machinery influences synaptic efficacy. The goal of this study was to address 

the functional relevance of the SNARE machinery in particular the v-SNARE protein 

Synaptobrevin II in controlling the release readiness of SSV as well as the strength of 

quantal synaptic transmission. The results in this thesis show how key properties of 

the exocytosis mechanism gradually change by increasing the molecular distance 

between SNARE domain and TMD of Synaptobrevin II. They provide direct evidence 

for action of SNAREs in shaping the concentration profile of cleft glutamate and the 

quantal signal at fast glutamatergic synapses. Thus, SNARE proteins do not simply 

initiate SSV exocytosis, but also drive neurotransmitter release from SSVs and are 

crucial for the exquisite temporal regulation of neuronal signalling. 

 

5.1 Linkers impair priming and stimulus secretion c oupling of small synaptic 

vesicles 

 

The size of the readily releasable pool is a primary determinant of synaptic efficacy 

(Rosenmund and Stevens, 1996) and depends on SNARE proteins, as judged from 

the analysis of various SNARE null mutants (Schoch et al., 2001; Borisovska et al., 

2005; Sørensen et al., 2003). The experiments demonstrate that extending the 

juxtamembrane region of SybII gradually reduces the action potential evoked 

response and delays the stimulus secretion coupling. Neither differences in the 

expression levels of the protein variants nor changes in the number of synapses were 

detected, rendering the possibility unlikely that the linker phenotype is caused by 

inefficient protein targeting or synapse formation. Instead, the results suggest that 

distance and/or flexibility between SNARE motif and the TMD controls the magnitude 

of the action potential evoked response. In close correlation, we observe a linker-

length dependent reduction in the pool of primed vesicles, as judged by hypertonic 

sucrose application. The latter phenotype contrasts with observations for null mutants 

of Complexin or Synaptotagmin at hippocampal synapses, indicating that linker 

mutations do not interfere with binding of Complexin or Synaptotagmin to the SNARE 

complex (Geppert et al., 1994; Xue et al., 2008). Taken together, these results show 

that efficient priming of SSVs demands a tight molecular link between the SNARE 
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domain and the TMD of SybII. Priming of secretory vesicles is a complex process 

that involves a large variety of synaptic proteins (Südhof, 2004). In contrast, only a 

few molecular steps should be required to initiate fusion of SSVs at the millisecond 

time scale in response to the rapid release-site Ca2+-transient. The experiments show 

that extending the juxtamembrane region of SybII systematically increases the time 

lag between the stimulus and the onset of exocytosis. Since linker mutations do not 

change the Ca2+-sensitivity of secretion (Kesavan et al., 2007), it seems safe to 

conclude that a tight intramolecular coupling between the SNARE domain and the 

transmembrane anchor of SybII determines the millisecond time lag of SSV 

exocytosis. Thus, SNARE complex formation exerts mechanical force that is 

transmitted to membranes and initiates fusion of SSVs at the moment of the Ca2+-

rise. Given that SSVs experience only a transient Ca2+-increase during an action 

potential, the altered release probability observed for the mutant proteins may be the 

consequence of delayed stimulus-secretion coupling. Taken together, both 

reductions in RRP and release probability contribute to the decreased synaptic 

response recorded for mutant proteins.  

 

5.2 v-SNARE action drives rapid transmitter release  from SSV 

 

Quantal release of neurotransmitter is the elementary signal of neuronal 

communication. In excitatory glutamatergic synapses, remarkable progress has been 

made in detailing the postsynaptic factors that regulate synaptic efficacy (Malenka 

and Nicoll, 1999), but comparatively less has been done to identify corresponding 

presynaptic mechanisms that influence the activation of postsynaptic receptors. In 

fact, to what extent the exocytotic machinery governs transmitter discharge from 

SSVs at CNS synapses and how it controls properties of quantal signalling is 

unknown. 

 

Our experiments show that flexible insertions into the juxtamembrane region of SybII 

attenuate the amplitude and slow the decay of the mEPSC in a linker-length 

dependent fashion. These results suggest that SNARE protein-generated membrane 

stress provides an essential force not only to initiate fusion but also to hasten 

membrane merger. Given that SNAREs like SNAP-25 have been implicated in the 

trafficking of glutamate receptors (Lan et al., 2001; Washbourne et al., 2004), one 
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might speculate that the observed effects are due to changes in the number, spatial 

organisation or subunit composition of postsynaptic receptors at the release site. 

Several lines of evidences render these possibilities unlikely. First, detailed analyses 

reveal that linker mutations selectively change the amplitude and the time course of 

the quantal signal without altering its charge, which counters the possibility that 

mutant-mediated events engage a lower number of postsynaptic receptors than SybII 

events. Secondly, misalignment of postsynaptic receptors relative to the site of 

release should cause a reduction in amplitude together with an increase in the 

event’s rise time, but cannot account for the strong changes in the decay time course 

Figure 16. Furthermore, ‘off-center’ release should be again accompanied with a 

profound decrease in charge transfer per SSV signal (Franks et al., 2003; Wu et al., 

2007), which is not evident from the data. Third, potential alterations in the properties 

of the postsynaptic receptors are unlikely to be responsible for the mutant phenotype, 

because the subunit composition of glutamate receptors does not change in 

hippocampal synapses that were chronically treated with tetanus toxin to specifically 

inactivate SybII (Harms et al., 2005). Fourth, the mutant-mediated effects on SSV 

signals are in excellent agreement with our previous findings, showing that extending 

SybII’s juxtamembrane region slows transmitter discharge from chromaffin granules 

(Kesavan et al., 2007). Taken together, the results indicate a presynaptic origin of the 

mutant phenotype. Given that SSVs release their content on a time scale of ~ 200 

microseconds as judged from amperometric measurements (Bruns and Jahn, 1995; 

Bruns, 2004), the difference in time constant of decay (τfast, Figure 13B) between wild 

type and mutant mEPSCs suggests a 2 to 3fold slowing of transmitter release by 

extending the juxtamembrane region of SybII. Taken together, v-SNARE action 

provides an essential force for rapid transmitter release from SSVs determining 

amplitude and kinetic properties of fast quantal glutamatergic transmission.    

 

Consistent with these findings, we observe that the low affinity receptor antagonist γ-

DGG attenuates mutant events more strongly than SybII events. These experiments 

reinforce the hypothesis that mutant exocytosis produces lower effective glutamate 

concentrations in the synaptic cleft than SybII exocytosis. Most likely, SNARE force 

governs fusion pore characteristics and thereby changes the transmitter 

concentration profile in the synaptic cleft and the resulting unitary postsynaptic 

current. Interestingly, the fast and the slow component of the SybII mEPSC decay 
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are diminished by γ-DGG to a different degree. Theoretical simulations of the mEPSC 

time-course suggested that receptor deactivation in response to the initial decline of 

the transmitter concentration governs the decay of the fast component, whereas 

persistence of a low concentration of glutamate in the synaptic cleft contributes to the 

subsequent slow component of the mEPSC (Silver et al., 1996; Diamond and Jahr, 

1997; Wahl et al., 1996). The differential sensitivity of the fast and slow phase to γ-

DGG is compatible with such a scenario, indicating that receptors mediating the slow 

tail of the mEPSC are activated by lower glutamate concentrations than during the 

mEPSC peak phase. In the same line, the stronger inhibition of the initial component 

of the mutant mEPSC suggests a lower rate of glutamate efflux from small synaptic 

vesicles than for SybII. Taken together, these observations predict a biphasic 

concentration waveform of cleft glutamate, which underlies the SSV event, where the 

first phase is determined in magnitude and kinetics by the rate of v-SNARE mediated 

transmitter release and the second phase is dominated by slow clearance of 

transmitter from the synaptic cleft. We would like to emphasize that these results do 

not exclude the possibility that desensitization of AMPA receptors contributes to the 

mEPSC decay (Trussell et al., 1989; Jones and Westbrook, 1996). 

 

Previous studies have suggested, that modulation of quantal size is associated with 

alterations in the mode of exocytosis changing between either full collapse of the 

vesicle into the plasma membrane or its rapid retrieval (kiss and run mode, Harata et 

al., 2006). The observation that v-SNARE-generated membrane stress alters the 

unitary postsynaptic current, most likely by regulating fusion pore expansion, 

identifies this mechanism as an attractive target for switching fusion modes of SSVs. 

Considering this result in the context of trans-SNARE complexes, one might expect 

that weakening the mechanical coupling between the SNARE domain and the TMD 

for both v- and t-SNARE proteins should cause an even further reduction of the 

mEPSC amplitude. 

 

Heterogeneity in the speed of glutamate release from single vesicles has been 

implicated for a number of important mechanisms that are central to development 

and plasticity of the central nervous system (Choi et al., 2003; Zakharenko et al., 

2002; Chen et al., 2004). Likewise, perturbing synaptic vesicle fusion with tetanus 

toxin, reverts functional to silent transmission and slows NMDA activation (Renger et 



 56

al., 2001), which is consistent with our observation that SNARE-mediated membrane 

stress is a determinant factor for the rate of transmitter release from single vesicles. 

In vitro studies indicated that the energy of several SNARE complexes is required to 

make a vesicle fuse (Li et al., 2009; Domanska et al., 2009). Thus, SNARE mediated 

membrane fusion should be determined by the efficacy of force transfer between the 

SNARE domain and the transmembrane anchor and the number of productive 

SNARE complexes engaged per fusion event. Intriguingly, the time course of quantal 

signals changes during development of brain synapses in a remarkably similar 

fashion as observed for events mediated by SybII and the mutant proteins 

(Yamashita et al., 2003; Cathala et al., 2005), pointing to the possibility that 

alterations in SNARE force contribute to the speeding of mEPSC at mature brain 

synapses. Taken together, my experiments elucidate a new avenue to control 

neuronal communication, wherein changing SNARE force determines synaptic 

strength not only by controlling the release readiness of SSVs at CNS synapses but 

also by regulating the speed of glutamate release from the single synaptic vesicle. 
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