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Zusammenfassung 

Zusammenfassung 

Das Hepatitis B Virus wurde in acht Genotypen und vor Kurzem auch mehrere Subtypen 

unterteilt, basierend auf der Akkumulation von Mutationen in seinem DNS Genom. Die 

Mehrzahl  dieser Genotypen weist eine spezifische geographische Verbreitung auf. Die 

vorliegende Arbeit stellt zusätzliche Daten über Genotyp E vor, der nur in den Ländern 

südlich der Sahara vorkommt und in dieser Region auch als fast einzigster Genotyp. 

Vorherige Studien haben belegt, dass Genotyp E Stämme eine niedrigere Diversität 

aufweisen, als Stämme anderer Genotypen, was in Anbetracht ihrer Verbreitung über fast ein 

Drittel des Afrikanischen Kontinents überrascht. Zusätzlich beinhaltet diese Arbeit eine 

phylogenetische Studie über Genotyp D in Weißrussland, sowie die Definition und 

Beschreibung eines neuen Genotyps I, das von uns in Laos gefunden wurde. 

In einem ersten Ansatz stellen wir dar, dass kommerziell erhältliche Testkits für das 

Detektieren von HBsAg, dem primären Marker für Hepatitis B Infektionen, unterschiedliche 

Resultate aufzeigen können und spezifische Genotyp E Mutationen sich positiv auf die 

Detektion auswirken. Folglich besteht die Möglichkeit, dass diagnostische Tests weltweit 

unterschiedlich reagieren und besondere Vorsicht ihrer Auswahl und Entwicklung nötig ist. 

In einer Studie von Stämmen, die wir in der Zentralafrikanischen Republik und schon vorher 

untersuchten Ländern gefunden haben, zeigen wir, dass Genotyp E auch weiter im Osten 

Afrikas vorkommt und konnten die niedrige Genotyp E Diversität bestätigen. Während 

vorherige Studien auf Sequenzen des S Genes basierten, stützen sich unsere Resultate auf eine 

Vielzahl von C-Gen Sequenzen. Die einzig anderen von uns gefunden Genotypen waren 

Genotyp A und D. Die Genotyp A Stämme konnten in 3 verschiedene Subtypen eingeteilt 

werden, von denen zwei (A4 und A5) zum ersten Mal von uns beschrieben werden. Jeder 

dieser Genotyp A Subtypen wurde in einem anderen afrikanischen Land gefunden (A3 in 

Kamerun, A4 in Mali und A5 in Nigeria). Diese Resultate sind umso überraschender 

angesichts der niedrigen Diversität die in Genotyp E Stämmen aus den gleichen Ländern 

beobachtet wurde. Ausserdem zeigen wir, dass in Kamerun, dem einzigen Land in dieser 

Region in dem die beiden Genotypen A und E mit ähnlichen Prevalenzen zirkulieren, 37% 

der Patienten gleichzeitig mit Stämmen beider Genotypen infiziert sind. Vier Sequenzen von 
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Stämmen aus Kamerun, Nigeria und der Zentralafrikanischen Republik weisen Zeichen von 

Rekombinationen zwischen den Genotypen A und E, E und D und in einem Fall sogar E, A 

und G auf. Diese Resultate zeigen, dass Rekombinationen häufiger vorkommen als bisher 

angenommen. 

In einer phylogenetischen Studie von 69 Hepatitis B Stämmen aus Weißrussland weisen wir 

die dortige Präsenz der Genotypen A und D nach, wobei die Genotyp D Stämme in vier erst 

kürzlich definierte unterschiedliche Subtypen eingeteilt werden konnten. Diese Sequenzen 

zeigen, dass die Hepatitis B Verbreitung in Weißrussland der Russlands ähnlich ist, allerdings 

mit sichtbaren West-Europäischen Einflüssen. 

Letztendlich beschreiben wir zusätzlich zu den schon gefundenen Rekombinationen in Afrika, 

19 verwandte Stämme aus Laos, die das Resultat von wahrscheinlich mehreren 

Rekombinationen zwischen mindestens 3 Genotypen sind. Diese Stämme gruppierten mit 

keinem der bisher bekannten Genotypen und erfüllen die Kriterien für die Definition eines 

neuen Genotyps I. Weitere Analysen zeigten, dass dieser Genotyp ein Resultat von 

Rekombinationen zwischen den Genotypen G, C (C3), A (A3) und sogar E ist, die 

wahrschenlich vor etwa 500 Jahren stattgefunden haben. Ausserdem zeigen wir, dass Genotyp 

I höchstens vor 200 Jahren in Laos eingeführt wurde. Die Identifizierung und Analyse dieses 

neuen Genotyps ist ein zusätlicher Beweis dafür, dass Rekombinationen eine wichtige 

Antriebsfeder der Evolution des Hepatitis B Virus sind. 
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Abstract 

The hepatitis B virus has been divided into 8 genotypes and recently also multiple subtypes, 

based on the accumulation of mutations in its DNA genome. Most of these genotypes present 

distinct geographic distributions. Here we further characterize genotype E which only 

circulates and is dominant in Sub-Saharan Africa. It was previously shown that genotype E 

strains present a lower diversity than other HBV genotypes, which, considering its presence 

on over a third of the African continent is unexpected. In addition, we present a phylogenetic 

analysis of genotype D in Belarus and describe a new genotype I found by us in Lao People’s 

Democratic Republic. 

In a first approach, we demonstrate that currently available commercial assays for the 

detection of HBsAg, the primary hepatitis B marker, perform differently when compared to 

each other and present a positive detection bias caused by genotype E specific mutations. 

Thus, diagnostic assays may not perform the same worldwide and careful attention is 

warranted in their development and selection.   

We also demonstrate that the genotype E prevalence in sub-Saharan Africa extents as far as 

the Central African Republic and confirm the low genotype E diversity in this sub-Saharan 

Africa, by obtaining and analysing sequences covering a different region of the hepatitis B 

genome than the one used in previous studies. The only other genotypes we found were 

genotypes A and D. The genotype A strains could be divided into three distinct subtypes of 

which two had not been described before (A4, A5). Each subtype of genotype A was found in 

a specific country (A3 in Cameroon, A4 in Mali and A5 in Nigeria), in contrast to genotype E 

of which all sequences identified from these countries presented a conspicuously low 

diversity. We also show that in Cameroon, the only country in sub-Saharan Africa where 

genotypes A and E co-circulate with equal prevalences, 37% of patients were co-infected with 

both genotypes. Four sequences, obtained from strains in Nigeria, Cameroon and the Central 

African Republic, showed signs of recombination events between genotypes A and E, E and 

D and even E, A and G and indicate that recombination events may be more frequent than 

previously suspected. 



Abstract 

In a phylogenetic study of 69 hepatitis B strains in Belarus, we show that these strains belong 

to genotypes A and D, with strains of genotype D being dividable into 4 distinct recently 

described subtypes. The sequences obtained here, further add to the current definition of 

subtypes and indicate a genotype distribution in Belarus similar to Russia but with West-

European influences. 

Finally, adding to the recombination events identified during our studies, we also show that 

19 related strains identified in Lao PDR, are the result of recombination events between at 

least three genotypes. These strains, which did not cluster with any known HBV genotype, 

fulfil the formal criteria for the definition of a new genotype (I). Further analysis indicated 

that this new genotype is a result of multiple recombination events involving genotypes G, C 

(C3), A (A3) and even E which probably occurred around 500 years ago. We also show that 

genotype I was only recently introduced in Lao PDR, probably not more than 200 years ago. 

The identification and analysis of the new genotype I provided further evidence of the 

importance of recombination in the evolution of hepatitis B. 
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Chapter 1: Introduction 

1. State of the art and objectives 

The hepatitis B virus (HBV) is a DNA virus infecting humans, non-human primates (e.g. 

gibbon, chimpanzee and woolly monkey) and other animals (e.g. duck and woodchuck). 

Currently it is estimated that a third of the world population has come in contact with HBV 

during their lifetime and that as a consequence, 400 million people are suffering from chronic 

hepatitis B infection. A majority will eventually die of liver complications or hepatocellular 

carcinoma (HCC). Although most of the infected people live in areas such as sub-Saharan 

Africa, Asia and the Pacific, in which HBV is endemic, the virus is circulating globally with 

highly variable prevalences (Moyer and Mast 1994).  

Based on the accumulation of single nucleotide polymorphisms in the genome and 

phylogenetic reconstruction, the circulating strains have been classified into 8 genotypes (A – 

H) (Okamoto et al. 1988; Norder et al. 1992) with some having been classified into additional 

distinct subtypes. While most of these genotypes present specific geographical distributions 

(B, C, E, F and H) some can be found worldwide (A and D) while genotype G appears only 

sporadically. A particularly noticeable geographic distribution has been observed for genotype 

E, a genotype found only in sub-Saharan Africa and of which until recently only few genomic 

sequences had been reported (Norder et al. 1994; Odemuyiwa et al. 2001). For several sub-

Saharan countries HBV markers were found in as much as 50% of participants in unselected 

cohort studies and were even more frequent in human immunodeficiency virus (HIV) positive 

patients (Mulders et al. 2004). In 2004, a phylogenetic study covering hepatitis B strains from 

seven sub-Saharan countries (Mali, Burkina Faso, Togo, Benin, Nigeria, Cameroon and 

Democratic Republic of the Congo), representing a third of the African continent, revealed 

that a majority of circulating strains were of genotype E (Mulders et al. 2004) with one 

exception: in Cameroon the prevalence of genotype E strains was equal to the prevalence of 

strains of genotype A. In addition, sequence analysis of the circulating genotype E strains 

found during this study, revealed a surprisingly low variability, less than half of what would 

normally be expected. This is even more remarkable when considering that these strains were 

recovered from an area covering more than 6 million km2 and in which more than 40% of the 
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African population lives. This suggests that genotype E has a short evolutionary history in 

humans and that the virus was introduced relatively late in sub-Saharan Africa. This late 

introduction would also be supported by the conspicuous absence of this genotype in Afro-

Americans but it would be incompatible with an evolution from the closest known human 

HBV genotype, genotype D. The evolution from the latter would have taken about 700 years 

with an estimated evolutionary rate of 4.2 x 10-5 SNPs per site and year (Orito et al. 1989; 

Fares and Holmes 2002). Therefore, the relatively recent introduction from an animal 

reservoir must be seriously considered. If genotype E was introduced by a single introductory 

event it would have taken about 200 years to develop the 1.67% observed diversity. In 

contrast, introduction of HBV from other host-species into primates (including humans) is 

thought to have occurred 6000 years ago (Fares and Holmes 2002). Cross-species infections 

from humans to monkeys have been shown experimentally but there is no evidence of natural 

transmission of HBV from primates to humans. Genotype E has been found once in 

chimpanzee, but the direction of transmission could not be established (Takahashi et al. 

2000). The possibility of transmission by blood-feeding arthropods has been considered but 

never been proven. 

The present study aims to further characterize HBV genotype E and to advance our 

understanding of its widespread circulation but conspicuously low diversity. In addition, 

phylogenetic studies of HBV in Belarus and Lao PDR aim at gaining further insights in the 

mechanisms of distribution and evolution of HBV genotypes and subtypes. During these 

studies, special interest will be placed in detecting evidence of recombinations between 

genotypes, and to evaluate their importance in the history of HBV evolution. 

In a first approach, data will be provided on the sensitivity and specificity of currently 

available hepatitis B diagnostic kits in light of the exceptionally high prevalences of hepatitis 

B found in sub-Saharan Africa and to evaluate a possible bias in regard to genotype E 

(Chapter 4, Part I). Phylogenetic classification of sequences obtained from strains circulating 

in the Central African Republic will give us valuable insights into the extent of the genotype 

E dominant crescent towards East Africa and the influence of genotypes D and A found in 

North and South-East Africa respectively(Chapter 4, Part II). Furthermore, the low diversity 

of genotype E will be confirmed on additional strains from the region with particular interest 

on the surprising co-circulation of genotype E and A in Cameroon and its consequences for 
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the evolution of hepatitis B, such as recombination events and infection with multiple HBV 

genotypes and subtypes (Chapter 4, Part III).  

During this study additional information on the distribution of the subtypes of hepatitis B 

genotype D, were obtained from strains found in patients co-infected with HIV and/or HCV in 

Belarus (Chapter 4, Part IV). Finally, the analysis of a high number of hepatitis B strains 

found in Lao People’s Democratic Republic (PDR) revealed the circulation of several strains 

not attributable to any known HBV genotype. These strains are clearly the results of multiple 

recombination events involving also genotype E or one of its ancestors. The tentative creation 

of a new genotype I was proposed (Chapter 4, Part V) and new insights in the evolutionary 

history of HBV were gained. 

2. The hepatitis B virus 

2.1. General information 

The hepatitis B virus was the first human hepatitis virus from which the proteins as well as the 

genome were identified and characterized. Prior to this, hepatitis infections were mainly 

described by their routes of transmission: type A was mostly transmitted by the faecal-oral 

route while type B was transmitted from mother to child. In 1967 the type B infection was 

related to the appearance of a specific serum protein designated as the Australia antigen which 

was first observed in the serum of an Australian Aborigine (Blumberg et al. 1967). Using 

electron-microscopy this antigen was later linked to the presence of virus-like particles found 

in hepatitis type B patients which marked the discovery of the hepatitis B virus (Figure 1) 

(Dane et al. 1970). The name was retained, although other viruses causing hepatitis like 

symptoms that were also transmitted parenterally, were later described (hepatitis C, D and G 

viruses). In 1973 the viral nature of the particles was confirmed by the detection of an 

endogenous DNA polymerase activity leading to the characterization of the HBV genome as a 

small, circular DNA based molecule (Kaplan et al. 1973; Robinson et al. 1974; Robinson and 

Greenman 1974).  
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Figure 1 : Electron-microscopy image of HBV particles  

Hepatitis B particles found in the serum of an infected patient. The three forms: filaments, small spheres and 
complete particles are visible (Figure from www.cdc.gov). 
 

The hepatitis B virus and its relatives are classified into the family of the Hepadnaviridae, the 

name derived from their hepatotropism and the molecular nature of their DNA genome 

(Howard 1995). All other members of the family infect non human hosts but are not 

commonly of interest to veterinary medicine. On the other hand these viruses serve as models 

in the study of human HBV. The woodchuck hepatitis virus (WHV) for instance was 

discovered in woodchucks which had developed liver cancer (Summers et al. 1978). This 

ultimately led to the association of human HBV and an often occurrence of liver cancer in 

HBV infected patients. A similar virus was found in healthy ground squirrels (GSHV) 

(Marion et al. 1980) and arctic ground squirrels (Testut et al. 1996). Among non human 

primates, hepadnaviruses could be isolated from chimpanzees, orang-utans, gorillas, gibbons 

and woolly monkeys (Robertson and Margolis 2002). The virus strains found in the 

chimpanzees were very similar to the human HBV virus but the direction of transmission 

remains unclear (Takahashi et al. 2000; Makuwa et al. 2007). More distantly related 

hepadnaviruses were found in ducks (Yokosuka et al. 1985), grey herons (Sprengel et al. 

1988), Ross’ goose, snow goose (Chang et al. 1999), white storks (Pult et al. 2001) and 

cranes (Prassolov et al. 2003). Most important of the latter is the model of the duck hepatitis 

B virus (DHBV) in which a reverse transcription step from RNA to DNA was detected in core 

particles (Summers and Mason 1982), later also found in all other hepadnaviruses. Thus 
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hepadnaviruses belong to the group of retroviruses and more specifically, the pararetroviruses, 

to differentiate between other retroviruses such as the human immunodeficiency virus (HIV), 

which encode their genome as an RNA molecule and are designated as orthoretroviruses.  

2.2. Structure of hepadnaviridae 

Figures 1 and 2 show the three types of HBV virus associated structures found in the blood of 

infected persons. Similar particles can also be found in the blood of hepadnavirus infected 

wood chucks or ground squirrels (Summers et al. 1978; Mason et al. 1980). Only the larger 

structure, with a diameter of 42 to 45 nm is an actual viral particle, since the smaller spheres 

and filaments do not contain any genomic material. The outer protein shell or envelope is 

formed by the HBs protein or HBsAg (Dane et al. 1970) which forms an icosaedrical 

(spherical) structure. This HBs protein exists in three different forms depending on the start 

codon used during translation. The small HBs protein (SHBs) constitutes the majority of the 

viral particles, filaments and spheres, while the middle HBs protein (MHBs) and the small 

Figure 2 : Schematic representation of hepatitis B particles 

Apart from the infectious viral particle (left), the 
sera of highly viremic carriers contain non 
infectious particles formed of excessive HBs 
proteins and taking the shapes of filaments of 
variable lengths as well as small spheres with a 
diameter of 17 to 25 nm. Infected hepatocytes 
secrete 100 to 10000-fold more small spheres than 

infectious particles. Additional components of the 
viral particle are the HBc proteins, the DNA 
genome and the viral polymerase. Between the 
SHBs units of particles and filaments small traces 
of ER derived lipids can be found (Figure from 
Thomas et al. 2005). 
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HBs protein, which have additional domains referred to as the preS1 and preS2 domain, are 

lesser constituents. The proportion of these forms determines the morphology (Marquardt et 

al. 1987). The inner shell, only found in virus particles, is formed by 240 HBc protein 

subunits and constitutes the capsid of the virus. The capsid surrounds the 3.2 kb long DNA 

genome which is covalently linked to the viral polymerase by a primase domain. Finally, each 

viral particle contains a cellular protein kinase and the heat shock proteins 90 and 70 (hsp90 

and hsp70). 

2.3. Non structural proteins 

Three additional proteins encoded by the HBV genome are the HBe protein or HBeAg, the X 

protein and the polymerase. While the polymerase is fixed covalently to the genome inside the 

viral particle, the HBe protein and the X protein are not included in the viral particle. The 

HBe protein is encoded by the same open reading frame (ORF) than the HBc protein but uses 

an alternative upstream start codon which adds a small additional domain referred to as the 

preC domain. The preC sequence encodes a hydrophobic alpha helix, which is a secretion 

signal and allows for translocation of the HBe protein into the lumen of the ER (Bruss and 

Gerlich 1988; Standring et al. 1988). During that process, a signal peptidase cuts off 19 of the 

29 amino acids of the preC region. The remaining 10 amino acids are sufficient to prevent the 

HBe protein from assembling into a capsid structure (Wasenauer et al. 1992). Thus, although 

the HBe and the HBc protein share 90% of their sequence, they follow completely different 

pathways in the viral life cycle. Following the first cleavage, parts of the HBe protein undergo 

additional cleavages and can be found either in the plasma membrane, in the nucleus or as 

secreted protein (Standring et al. 1988; Schlicht and Schaller 1989; Yeh et al. 1990; Wang et 

al. 1991; Nassal and Rieger 1993). Uncleaved HBe precursor protein accumulates as a 

phosphoprotein (Yang et al. 1992). The HBe protein is not essential for the viral life cycle and 

variants not producing HBe protein are often found during acute and chronic HBV infection. 

Nevertheless, the genome of all hepadnaviruses encodes the HBe protein. It is thought that the 

expression of the HBe protein, also called the HBeAg, causes immune tolerance and 

represents a viral strategy to evade the immune system. In fact, high levels of secreted HBeAg 

are found in low symptomatic but high viremic carriers and elimination of HBeAg is often 

accompanied by a flare-up of pathogenesis caused by the activation of the adaptive immune 

system and mass death of infected hepatocytes. Further prove of immune evasion was found 
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in the woodchuck hepatitis model in which the risk of chronic infection was higher in 

newborn of hepatitis B infected HBeAg positive mothers, while the infection was transient 

when mothers were HBeAg negative (Chen et al. 1992). 

The HBV polymerase has four distinguishable domains and is essential for the viral lifecycle 

(Schlicht et al. 1991). The amino-terminal domain, also called the primase, is covalently 

linked to the 5’ end of the minus-strand of virion DNA (Bartenschlager and Schaller 1988). 

The next domain functions as a spacer and is followed by the RNA- or DNA dependant DNA 

polymerase, i.e. reverse transcriptase. It has similarities to the reverse transcriptase of 

retroviruses (Toh et al. 1983; Beck et al. 2002) and is a target of current antiviral drugs 

against HBV (Torresi et al. 2002). The final domain encodes an Rnase H activity which 

degrades the RNA component of RNA/DNA hybrid molecules. This activity, similar to the 

DNA dependant DNA polymerase activity, is only functional when incorporated into a fully 

assembled viral capsid (Nassal 1992; Gong et al. 2001). It is thought that only one polymerase 

protein is packaged in each viral particle (Gong et al. 2001). 

Mutational studies suggest that the HBV X protein is not essential for virus particle 

production in an in vitro cell culture transfection system (Blum et al. 1992). However, 

transfection of WHV DNA lacking the X ORF into liver cells of woodchucks did not yield an 

infection (Chen et al. 1993; Zoulim et al. 1994). There is no clear indication that the X protein 

is a structural component of the virus particle. Within an infected cell, the protein is mainly 

found in the cytoplasm and a minor fraction in the nucleus (Doria et al. 1995). Although not 

all functions of the X protein are currently clear, it has been well documented that it presents 

pro-apoptotic activities (Schuster et al. 2002). Other studies have demonstrated that the 

presence of the X protein activates the description of several genes in a more or less 

unspecific manner, but whether it functions as a direct transcription factor or interacts with 

cellular pathways remains unclear (Rossner 1992; Kekule et al. 1993; Natoli et al. 1995; 

Qadri et al. 1995; Chirillo et al. 1996; Haviv et al. 1996; Henkler and Koshy 1996; Su and 

Schneider 1996; Xu et al. 2002). The most significant side-effect of the HBV X protein is its 

tumorigenicity in mouse hepatocytes (Su and Schneider 1996) and transgenic mice (Kim et al. 

1991) which could however not be confirmed in all systems (Schaefer and Gerlich 1995). 
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2.4. The HBV genome 

The genome of HBV is a circular, partially double stranded DNA molecule of approximately 

3200 nucleotides, depending on the genotype (Robinson et al. 1974) (Figure 3). In general, 

the starting point is defined as the unique EcoR I restriction site or at a homologous site if the 

specific sequence is not present. While the 5’ end of the plus strand is fix, the 3’ end is 

“floating” with single stranded regions of 300 to 2000 nucleotides having been observed 

(Summers et al. 1975; Landers et al. 1977). Within this gap lodges the HBV DNA 

polymerase with the exception of the primase domain which is covalently linked to the 5’ end 

of the minus strand (Weber et al. 1994). The minus strand has a terminal redundancy of 8 to 9 

bases, resulting in a triple stranded region (Will et al. 1987). The 5’ end of the plus strand 

consist of an mRNA-like, capped oligoribonucleotide of 18 bases (Seeger et al. 1986). The 

genome contains two directly repeated sequences of 10 or 11 bases, DR1 and 
 

Figure 3 : The human HBV genome 

The human HBV genome is a partially double 
stranded DNA molecule of approximately 3200 
nucleotides which encodes 7 viral proteins. After 
entry into the cell the complete genome is reverse 
transcribed into a large RNA molecule referred to 

as the pregenomic RNA which is encapsidated 
during virus assembly, followed by reverse 
transcription into a DNA molecule by the viral 
polymerase. Nucleotide positions are based on 
strain AM180623. 
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DR2 (Dejean et al. 1984). The complex structure of an RNA/DNA mix with single-, double- 

and triple stranded regions is a uniqueness of hepadnaviridae and directly results from its 

rolling circle replication mechanism. 

Using the typical search criteria, the HBV genome contains four open reading frames (ORF) 

referred to as the ORF P, X, S and C. These ORFs do not follow each other linearly but are 

embedded within the genome in a complex arrangement. In fact, the genome is not 

substantially longer than the longest ORF P and not one base is non-coding. ORF S is 

completely located within ORF P but uses a different reading frame. ORFs C and X overlap 

partially with ORF P. Furthermore, the usage of internal start codons allows one ORF to 

encode for several proteins, resulting in proteins with identical carboxy-terminal ends but 

amino-terminal ends of various lengths. Thus, ORF S codes for three co-terminal HBs 

proteins (45). ORF C encodes the HBe and HBc protein and ORF X encodes the X protein 

with additional products suspected (47). The regulatory elements necessary for RNA 

transcription and protein translation are contained within coding regions. While numerous 

frame shifts and overlapping ORFs allow for a minimal size of the genome, they also increase 

the risk of mutations causing a non functional protein and interrupting the viral life cycle. 

2.5. Life cycle of hepadnaviridae 

The life-cycle of hepadnaviridae can be divided into several steps: (1) attachment of the virus 

particle to the host cell, (2) penetration into the cell, (3) transport within the cell, (4) release of 

the viral genome, (5) transcription and translation of viral genes, (6) replication of the viral 

genome, (7) assembly of the viral particle, and (8) release of the virus. Unlike most other 

viruses, the life cycle of HBV contains an additional step consisting of the entry of newly 

synthesized viral DNA into the nucleus. These steps are further detailed in the following 

paragraphs and summarized in Figure 4. 

 

 

 

 

 

13 



Chapter 1: Introduction  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 : Schematic view of the life cycle of HBV 

In many details, this model is still speculative. It is 
assumed that the virus is endocytosed after 
attachment; the nucleocapsid is released to the 
cytosol and transported into the nucleus. In the 
nucleus the HBV genome is converted into a 
covalently closed circular DNA and transcribed into 
three essential classes of mRNA. For the sake of 
simplicity, the HBe and HBx mRNA classes are 

omitted. Translation of the core/pol transcript in the 
cytosol allows for assembly of core particles that 
contain the pregenome. The three HBs proteins are 
translated at the ER and inserted in that membrane. 
While budding, they envelop the core particles, and 
the HBV viral particles as well as the HBs 
structures are secreted by exocytosis (Figure from 
Thomas et al. 2005). 
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Attachment and entry into the host cell 

The attachment step is crucial in determining host specificity and organ tropism and 

represents a first attack point for protective immunity. The basis of many vaccines is the 

production of neutralizing antibodies against surface epitopes of viral particles. The study of 

attachment of HBV is still hampered by the lack of cell systems allowing infection. Several in 

vitro systems show replication and secretion of infectious particles but only after transfection 

of the HBV genome into the cell. An example of such a system is the human HepG2 

hepatoma cell line (Sureau et al. 1986; Sells et al. 1987). This lack of uptake of HBV by cell 

lines can be explained by the lack of differentiation of such cell lines when compared to 

hepatocytes in a natural environment. In fact, complete viral life cycles including attachment 

and entry of viral particles could be studied only using susceptible hepatocytes from newly 

hatched ducklings (Tuttleman et al. 1986) as well as primary woodchuck hepatocytes cultures 

(Aldrich et al. 1989) and primary hepatocytes of human origin (Galle et al. 1994). 

Unfortunately such hepatocyte cultures retain their susceptibility for infection only for a few 

days and quickly undergo changes in differentiation. In addition, human hepatocytes are not 

readily available. This problem was overcome only recently by a newly established human 

hepatocyte cell line (Gripon et al. 2002) although the number of viral particles secreted 

remains lower than the number of viral particles necessary for infection (Gripon et al. 1988; 

Gripon et al. 1993; Galle et al. 1994; Gripon et al. 2002). 

Several studies have linked the attachment itself to the preS1 sequence 21-47 (Neurath et al. 

1986; Pontisso et al. 1989). The binding could be blocked by antibodies against this epitope 

while competed for by the peptide sequence itself. Furthermore, antibodies to peptide 

preS1(21-47) were able to neutralize in vitro HBV inocula, which were no longer infectious 

(Neurath et al. 1986). In the DHBV model, the preS sequence binds to a membrane-bound 

member of the carboxypeptidase gene family (carboxypeptidase D, CPD) also referred to as 

gp180 (Kuroki et al. 1995; Tong et al. 1995). Interestingly, the receptor is down-regulated in 

infected hepatocytes (Breiner et al. 2001), which would explain why co-infections of a single 

cell are rare. However, it is thought that since this receptor family occurs not only in 

hepatocytes, the cell tropism is determined by additional factors.  
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The mechanism of HBV entry into hepatocytes is not completely understood. Although HBV 

particles are enveloped, they use endocytosis to enter the cell (Kock et al. 1996; Breiner and 

Schaller 2000). Independent of acidification of the endosome, the capsid is then released into 

the cytoplasm by fusion of the viral and endosomal envelopes. This fusion process is similar 

to the one used by influenza and swapping experiments have demonstrated that the fusion 

peptide of hepadnaviridae functions when inserted into influenza hemagglutinin (Berting et 

al. 2000). 

Transport and release of viral genome 

Following the release of the capsid into the cytoplasm, the capsids are transported towards the 

nucleus via the cellular microtubule network. The interaction is made possible after the core 

protein has undergone a change in conformation caused by phosphorylation (Kann et al. 

1999). The new conformation also exposes a nuclear localization signal (NLS) allowing an 

interaction with the cellular importin α/β pathway and an active transport of the complete viral 

capsid to the nuclear pores (Pante and Kann 2002). Here, a not completely understood 

mechanism allows for the entry of the uncoated viral genome and core proteins into the 

nucleus (Rabe et al. 2003). In the DHBV model, DNA appears in the nucleus only 24 h after 

infection (Tuttleman et al. 1986). 

Transcription and translation of viral genes and replication of the viral genome 

The template for transcription and synthesis of the pregenomic RNA is not the encapsidated 

partially double-stranded DNA genome but a circular covalently closed DNA molecule 

(cccDNA) obtained after repair of the viral genome. This involves removing the covalently 

bound viral polymerase, the conversion of the triple and single stranded regions to double 

stranded DNA, and the closing of the gaps at the 5’ and 3’ ends of both strands. After this 

conversion, the plasmid-like genome binds to histones to form a mini-chromosome (Bock et 

al. 1994). Based on in vitro studies the conversion is performed by both the viral and cellular 

polymerase as well as other cellular enzymes (Kock and Schlicht 1993; Pourquier et al. 1999; 

Kock et al. 2003). HBV DNA has been found to occasionally integrate into the host DNA but 

contrary to retroviridae, this is not an essential step. Integrated HBV DNA often contains 

fusions between HBV genes and host cell genes resulting in potential oncogenic proteins. 
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Although very compact, the genome of hepadnaviridae encodes multiple regulatory 

sequences crucial for correct transcription of viral proteins (Figure 5). These sequences bind 

both cellular and viral transcription factors and present themselves as two types: The HBV 

promoters, of which at least four have been identified in the HBV genome (Schaller and 

Fischer 1991), initiate the transcription of multiple mRNA molecules, thus presenting 

heterogeneous 5’ ends. For instance the HBc/e promoter allows for the transcription of 

mRNAs encoding either the HBe protein or the HBc protein. A similar phenomenon occurs at 

the M/SHBs promoter and the X promoter. Only the LHBs promoter presents a single entry 

site. The pregenomic RNA, which is later encapsidated, starts at the preC sequence and is the 

second longest RNA molecule (Figure 5). Enhancers, of which two have been identified in 

the hepadnaviral genome, up- or downregulate the activity of the promoters up to 50 times. 

The viral X protein, as well as numerous cellular proteins, can bind to these enhancers but 

most are liver-specific (Dikstein et al. 1990; Hu and Siddiqui 1991) and contribute to the 

hepatotropism of hepadnaviridae. In addition to promoters and enhancers, three other 

regulatory elements were identified in hepadnaviral genomes. A glucocorticoid response 

element (GRE) is able to enhance transcription 2 to 5 fold after binding of the glucocorticoid 

receptor (Tur-Kaspa et al. 1986). The negative regulating element (NRE) inhibits only the 

transcription from the core/precore promoters (Tur-Kaspa et al. 1988), while the so-called 

CCAAT element inhibits transcription of the preS1 promoter and enhances transcription of 

the S mRNA in the presence of a binding protein (Lopez-Cabrera et al. 1991). For most 

viruses, the first gene products to be expressed are transcription factors helping to regulate the 

expression of the other viral proteins in a specific order by binding to viral promoters and 

enhancers. These genes are called immediate early genes. In the case of HBV, this crucial role 

is played by the HBx protein, which is the first protein expressed (Wu et al. 1991) and acts as 

a potent transactivator on viral but also cellular proteins. Detailed analysis of this regulation is 

currently hampered by the availability of cell systems. 

Similar to eukaryotic messenger RNAs, the mRNAs of hepadnaviridae are 5’ capped and 3’ 

polyadenylated before being exported from the nucleus, but contrary to the former, they do 

not undergo splicing. Since the export from the nucleus is tightly coupled to the splicing 

mechanism, the HBV mRNAs have to use a different export route which is currently not fully 

understood although it is known that it involves a splicing inhibitory RNA sequence contained 

in the X gene (Huang and Liang 1993; Huang and Yen 1994; Huang and Yen 1995). The 
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common termination signal for all mRNAs is the TATAAA box at the beginning of the C 

gene. 

Translation occurs either in the cytosol or the ER and its efficiency is determined by the 

ability of ribosomes to start translation as well as the speed of translation. Apart from regular 

translation, the translation of several HBV proteins uses mechanisms normally not found in 

eukaryotic cells, such as internal ribosome entry sites (IRES), leaky scanning for start codons, 

usage of atypical start codons, frame shifting and reinitiation.  

 

 

Figure 5 : The mRNAs of the hepatitis B virus 

The initiation sites of mRNA synthesis for the 
various HBV proteins are shown as triangles. All 
HBV mRNAs are polyadenylated and comprise the 
post-transcriptional regulatory element that 
prevents splicing. Other elements such as ε I, ε II, 
phi and the DR1, are only functional on the 

pregenomic mRNA and are required for packaging 
and subsequent minus-strand DNA synthesis. Light 
grey boxes indicate promoter regions while dark 
grey boxes indicate enhancers and binding sites 
(Figure from Thomas et al. 2005). 
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The viral genome is amplified by the transcription of the pregenomic mRNA in multiple 

copies from the circular DNA genome. The new molecules are synthesized by the cellular 

RNA polymerase II which transcribes the DNA genome to more than genome-length mRNA 

with redundant ends. These pregenomic (pg) RNA molecules are then exported to the cytosol.  

Assembly and release of viral particles 

In the cytosol, the pgRNA binds to the viral polymerase and to the core protein with the help 

of cellular Hsp90 and other factors (Hu et al. 1997; Hu and Anselmo 2000; Park and Jung 

2001; Hu et al. 2002; Beck and Nassal 2003). The binding and packaging is ensured by the ε 

encapsidation signal and necessitates a high enough concentration of HBc protein (Beck and 

Nassal 1998). After packaging and formation of the capsid, the pgRNA is reverse transcribed 

during a complex series of events into the partially double stranded DNA genome. The 

reverse transcription involves several priming and translocation events as well as direct repeat 

sequences on the genome. It has been shown that capsids can at this point re-enter the nucleus 

but preferentially follow the excretion pathway (Tuttleman et al. 1986). The assembly of the 

core particle increases the affinity of the HBc protein towards membrane inserted LHBs 

proteins (Bruss and Ganem 1991). In the case of an excess of SHBs, the LHBs, MHBs and 

SHBs proteins aggregate and the virion as well as the HBs proteins move from the ER via the 

Golgi apparatus to the cell surface (Masuda et al. 1990). At this stage, the HBs proteins are 

glycosilated and disulfide bridges are formed between the HBc and HBs proteins. The 

assembled viral particles exit the cell by following the secretion pathway. 

3. Clinical features of hepatitis B infection 

It is estimated that more than 400 million people are chronically infected with HBV 

throughout the world. The carrier rate of the primary marker of HBV infection, the HBsAg, 

varies worldwide from 0.1% to 0.2% in Britain, the United States and Scandinavia to more 

than 3% in Greece and Southern Italy, and 10% to 15% and more in Africa and the Far East. 

Infections can either be acute or become chronic which depends mostly on the age of the 

infected individual. The chronicity rate for infections before the age of 1 year is 80% to 90%, 

for infections in early childhood it is 20% to 50%, whereas infection in adults my lead to 

chronic infection in only 1% to 2%.  
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igure 6 : Serological profiles of acute and chronic HBV infection 

he differentiation between acute (a) and chronic 
b) HBV infection is based on the serology of the 
ain viral markers: HBsAg and HBeAg as well as 

the main immunological markers: total antibodies 
against HBc, HBe and HBs and IgM antibodies 
against HBc (Figure adapted from www.cdc.com). 

20 



Chapter 1: Introduction  

The incubation period ranges from 1 to 5 months but may be shorter when exposed to a high 

viral load (Barker and Murray 1972). Typical symptoms are pains and inflammations of joints 

in shoulders, arms and hands (polyarthralgia and polyarthritis) as well as red skin patches 

(urticaria) that are caused by deposition of HBeAg complexes in blood vessels (Dienstag et al. 

1978). The majority of infections evolve without additional symptoms although some 

infections are accompanied by a yellowing of eyes and mucosal membranes (jaundice). It is 

known that patients that do not show signs of jaundice have a higher risk of developing a 

chronic infection. In patients who recover, the serum liver enzyme levels (amino transferase, 

ALT) return to normal levels after 1 to 4 months. Persistence of high ALT levels for more 

than 6 months usually suggests chronic infection (Tassopoulos et al. 1987).  

HBV infection is diagnosed, in addition to ALT levels and symptoms, by the appearance of 

viral proteins in the serum (Figure 6a). The HBsAg usually appears 1 to 10 weeks after HBV 

infection and 2 to 8 weeks before the onset of symptoms and can be present with up to 1013 

particles per ml (Frosner et al. 1982). The second viral protein that is secreted is the HBeAg 

and usually appears in parallel to HBsAg. First signs of immune reaction are the appearance 

of IgM and IgG antibodies against the viral core protein (IgM and IgG anti-HBc). Diagnostic 

assays usually measure the IgG antibodies together with the IgM antibodies and the results are 

referred to as total anti-HBc. During acute infection, the IgM anti-HBc appears shortly after 

HBsAg and is detectable for 6 months, while IgG antibodies appear later and persist for many 

years. Resolution of acute infection is marked by the decrease of circulating HBsAg and the 

appearance of anti-HBs and anti-HBe. 

Chronic infections are identified by the persistence of HBsAg and HBeAg as well as a lack of 

anti-HBs and anti-HBe appearance after 6 months of infection (Figure 6b). The presence of 

HBeAg signifies the active replicative phase of chronic HBV infection which tends to persist 

for months to years and thus is an important marker for chronic infection assessment. Most 

patients will ultimately undergo seroconversion with loss of HBeAg and appearance of anti-

HBe, coincident with a decline in viral replication, a return of ALT levels to normal and a 

decrease in serum HBV DNA below detection threshold of most assays (<103 copies per ml). 

These patients are referred to as inactive carriers. In some patients the absence of HBeAg is 

caused by mutations on the viral genome resulting in the translation of a non-functional 

HBeAg protein. In general these patients have a detectable serum HBV DNA titre, usually 

above 105 copies per ml, and fluctuating ALT levels (Lok et al. 2001). The most significant of 
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these mutations is the appearance of a stop codon in the precore sequence at position 1896 

(Okamoto et al. 1994) which is found in up to 27% of persons with chronic HBV infection in 

the USA, 50% in Asia and 92% in the Mediterranean (Funk et al. 2002; Chu et al. 2003). 

Chronically infected patients with replicating HBV, display various degrees of liver damage, 

from benign forms of chronic lobular hepatitis to more severe forms of active cirrhosis and 

HCC. The pathogenesis of hepadnaviruses is not due to a high cytotoxicity caused by 

replication and release of viral particles but due to the destruction of HBV infected liver cells 

by the host immune system, which also marks the entry into an inflammatory phase. In most 

cases, with the appearance of anti-HBe and thus the decline of viral replication, the 

destruction of liver cells subsides, and the patients become inactive carriers. However, HBV 

replication can reactivate and lead to a deterioration of the underlying disease from chronic 

active hepatitis to active cirrhosis. The 5-year survival rate of patients with cirrhosis is 66% to 

78%. Reactivation of a latent HBV infection is a frequent event in immunocompromised 

patients infected with HIV (Vento et al. 1989), homosexuals (Davis et al. 1984), and patients 

treated with immunosuppressive drugs (Lok et al. 1991). In immunocompetent patients, the 

probability of clearing HBeAg within 5 to 10 years of diagnosis is about 50% (Bortolotti et al. 

1990; Yuen et al. 2000; McMahon et al. 2001). 

Chronic hepatitis B accounts for more than 75% of all HCC cases and is the predominant 

cause of cancer mortality in Africa and China. It has been suggested that a nutrition 

containing high amounts of aflatoxin, secreted by a certain species of Aspergillus, is a risk 

factor for HBV-related HCC in these geographical areas (Sun et al. 1999). There is also 

evidence that HCV co-infection and high alcohol consumption contribute to the risk. On a 

molecular level, the increase of risk to develop HCC in chronic HBV infected patients is 

linked to the frequent liver damage and repair which can lead to the accumulation of 

oncogeneous mutations. However, the possible integration in the cellular genome of parts of 

the viral DNA is an even greater risk and can cause disregulation of important cell-cycle and 

cell-death related genes.  
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4. Epidemiology 

More than 2 billion (2x109) people have been infected worldwide with HBV. According to 

WHO estimates, there were over 5.2 million cases of acute HBV infection in 2000, while 400 

million people are currently estimated to suffer from chronic infection. Acute hepatitis B 

usually runs a self-limited course in adult subjects, with most patients recovering completely. 

Fulminant hepatitis occurs in 1% to 2% of acute infections, resulting in the death of most of 

these patients. About 15% to 40% of chronically infected subjects will develop complications, 

leading to an estimated 520 000 to 1 200 000 deaths each year due to acute and chronic 

hepatitis, cirrhosis and liver cancer. Chronic HBV infection is the major cause of 

hepatocellular carcinoma (HCC) worldwide (WHO 2000), although its prevalence is known 

to vary widely among the world population, and those areas with higher prevalence of viral 

infection (Figure 7) present the highest HCC rates (Brechot et al. 1998; Blakely et al. 1999; 

Yu et al. 2000). HCC is one of the major three causes of death in Africa, Asia and the Pacific 

Rim (Lemon et al. 2000). HCC itself constitutes the sixth most frequent cancer, representing 

around 5% of all cancers worldwide (Lee 1997; Parkin et al. 2001; Lok 2002). 

 

 

 

 

 

 

 

 

 

Figure 7 : Global prevalence of HBsAg in 2005 (Figure from www.cdc.com) 
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4.1. Global distribution of HBV infection 

The incidence of infection and patterns of transmission vary greatly in different population 

subgroups throughout the world. It is influenced primarily by the age at which infection 

occurs. Endemicity of infections is considered high in those parts of the world where at least 

8% of the population is HBsAg positive. In these areas, 70% to 90% of the population 

generally have evidence of previous HBV infection (Figure 7). 

In high endemic areas such as Asia, sub-Saharan Africa and the Pacific, carrier rates for 

HBsAg range from 8% to 25% and anti-HBs prevalences from 60% to 85%. Thus, exposure 

to HBV in high endemic areas, measured serologically, may approach 100% (Moyer and Mast 

1994). In areas of the world with an intermediate pattern of HBV infection (eastern and 

central Europe, the Middle East, the Indian subcontinent and the Amazonian basin), the 

prevalence of HBsAg positivity ranges from 1% to 8%, serological evidence of past infection 

is found in 10% to 60% of the population and the lifetime risk of becoming infected with 

HBV is estimated to be 20% to 60% (FitzSimons and Van Damme 1999; Lok et al. 2001). In 

most developed parts of the world, the prevalence of chronic HBV infection is less than 1% 

and the overall infection rate is 5% to 7% (Lok et al. 2001). Overall, approximately 45% of 

the global population live in areas of high chronic HBV prevalence (Mahoney 1999). 

4.2. HBV serotypes and genotypes 

HBV shows substantial genetic heterogeneity. Four serotypes of the HBsAg referred to as 

adw, ayw, adr and ayr have been defined based on two mutually exclusive determinant pairs, 

d/y and w/r and a common determinant a. Sequencing of viral genomes has now become the 

major tool used for descriptive virology, and sequence data are now used to reconstruct the 

phylogenetic history of viruses and to delimit genetic subtypes. Genetic analysis has allowed 

for the classification of HBV into 8 distinct genotypes (A to H) that have different 

geographical distributions (Figure 8) and associations with different risk groups for infection 

(Okamoto et al. 1988; Norder et al. 1992). Genotypes were first defined by an 8% nucleotide 

difference on the complete genome or a 4.1% nucleotide difference on the S gene (Okamoto 

et al. 1988). Recently the necessary nucleotide difference on the complete genome level was 

revised downwards to 7.5% (Kramvis and Kew 2007; Kramvis and Kew 2007). Subtypes are 

defined by a complete genome nucleotide difference of 4%. 
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Chapter 1: Introduction  

Worldwide, genotypes B, C and D are dominant, with an estimated 240 million individuals 

infected with genotypes B or C and 40 million infected with genotype D. Genotype A has 

infected approximately 3 million, and genotype E 20 million individuals. The clinical 

significance of genotypes has not yet been fully evaluated but some recent data suggests that 

associations between certain genotypes and HBeAg seroconversions, viral mutations, severity 

of liver disease and response to treatment may exist. 

Interestingly, most current genotypes of HBV seem to be the result of one or several 

recombination events (Bollyky et al. 1996; Simmonds and Midgley 2005; Szmaragd and 

Balloux 2007). In particular, this is evident for the B/C recombinant which has spread in 

mainland Asia (Sugauchi et al. 2004) and has been defined as genotype B1 but also for 

genotypes B and C themselves which show similarities to genotype A. Genotype E is thought 

to be a recombinant between genotype D and another unknown or extinct genotype (Bowyer 

and Sim 2000) and genotype G is highly divergent from all currently known genotypes in 

most regions of the genome but shows similarities to genotype E in the end of the S gene. The 

importance of recombination events in the evolution of HBV, as well as their molecular 

mechanisms remains controversial. 

4.3. Transmission of HBV 

Although HBsAg has been detected in a vide variety of body fluids, only serum, semen and 

saliva have been demonstrated to be infectious (Alter et al. 1977; Scott et al. 1980). Breast 

milk, tears, faces and urine remain controversial, although HBsAg or HBV particles have 

been detected in these fluids (Shimoda et al. 1981; Blum et al. 1983). Person to person spread 

include blood transfusions, contaminated equipment used for therapeutic or drug injections 

and needle sticks or injuries with other contaminated sharp instruments Sexual transmission 

remains an important route. The risk of perinatal transmission is greatest for infants born to 

HBeAg positive mothers and ranges from 70% to 90% at 6 months of age. About 90% of 

these children remain chronically infected (Stevens et al. 1979). The risk of perinatal infection 

among infants born to HBeAg negative mothers ranges from 10% to 40%, with 40% to 70% 

of these infected infants remaining chronically infected (Stevens et al. 1979; Xu et al. 1985). 

The transmission by blood-feeding arthropods has been investigated but never proven. 
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4.4. Prevention of HBV infection 

Hepatitis B is preventable by immunization. First-generation vaccines were prepared from 

HBsAg particles purified and inactivated from plasma donations from chronic asymptomatic 

HBV carriers. These preparations were safe and immunogenic but have been superseded by 

recombinant DNA vaccines produced by expression of HBsAg in yeast cells. These vaccines 

induce protection against all known genotypes and subtypes of HBV. Around 5% to 10% of 

vaccine recipients present no anti-HBs antibody production or their levels remain under the 

recommended 10 IU/L. These non-responders remain susceptible to infection with HBV. It is 

thought that the risk of non-responsiveness is linked to the ethnic group, but also to the site 

and route of injection as well as gender, age, body mass index, immunosupression and 

immunodeficiency. Currently promising third-generation vaccines are developed that aim to 

reduce the frequency of such cases. There is also evidence that amino acid substitutions 

within the a-determinant of the surface antigen can allow replication of HBV in vaccinated 

persons, as antibodies produced do not recognize the changes induced by such mutations. 

Reports indicated that the frequency of such mutations is increasing (Hsu et al. 1999; Nainan 

et al. 2002; Ni et al. 2007) 

Before the availability of HBV vaccines and still today, passive immunization with hepatitis 

B immunoglobulin (HBIg) is used for prophylaxis under certain conditions. HBIg is prepared 

from pools of plasma with high titres of anti-HBs and may confer temporary passive 

immunity. The major indication for the administration of HBIg is a single acute exposure to 

HBV. Results following the use of HBIg for prophylaxis in babies born to HBV infected 

mothers indicate encouraging prevention of infection in the newborn if the immunoglobulin is 

administered immediately. The risk of the baby developing chronic infection is reduced by up 

to 70%. Combined passive and active immunisation, have an efficiency approaching 90%.  

4.5. Treatment of chronic HBV infection 

Three agents are currently approved for the treatment of chronic HBV: interferon-alpha (IFN-

α), lamivudine and adefovir. Each agent has inherent limitations for use in the treatment of 

chronic HBV (Lok et al. 2001; Conjeevaram and Lok 2003; Fung and Lok 2004). IFN-α is 

effective in a minority of patients and has frequent side effects that limit its tolerability 

(Hoofnagle and di Bisceglie 1997). The efficacy of lamivudine is limited by the emergence of 
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drug-resistant HBV mutants (Yuen et al. 2007), restricting its usability as a long-term therapy 

while adefovir is well tolerated and is associated with low incidence of resistance, but its 

antiviral effect is sub-optimal. The first objective of a treatment is to decrease HBV 

replication in order to decrease inflammation in the liver and thus prevent the progression of 

fibrosis. Interrupting the fibrosis process prevents progression to cirrhosis and its 

complications, including HCC. If the antiviral effect is sufficient (less than 100 000 copies of 

HBV DNA per ml) and is maintained, the chances of an effective immune response are high 

and seroconversion to HBeAg may occur. 

IFN-α has a direct antiviral effect by inhibiting the synthesis of viral DNA and activating 

antiviral enzymes, in addition, it also increases the cellular immune response against infected 

hepatocytes. Lamivudine is a nucleoside analogue which directly inhibits the HBV DNA 

polymerase but long-term administration may lead to drug-resistance induced by mutations on 

the viral polymerase. Adefovir works similar to lamivudine and also blocks the DNA 

polymerase activity. 

The activity of these antivirals especially in combination with each other, although already in 

use, still needs further long-term studies. New drugs, such as entecavir, PEG-IFN and others, 

are under consideration. 

4.6. Co-infection with other viruses 

Evidence has been generated that HCV co-infection and / or co-infection with HIV are 

clinically and virologically important factors. HBV-positive patients co-infected with HIV 

tend to have milder liver disease, but the overall morbidity and mortality seem to be higher 

than in patients infected with HIV alone. Patients co-infected with HCV tend to have more 

severe liver disease and more commonly occurring HCC in comparison to patients having 

either infection alone (Colin et al. 1999; Di Martino et al. 2002; Puoti et al. 2002). The 

infection with hepatitis delta virus (HDV) requires prior HBV infection since HDV uses 

HBsAg to form its envelope and a HBV/HDV co-infection may result in a more severe acute 

disease and a higher risk (2%-20%) of developing acute liver failure. 
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Chapter 2: Material 

1. Chemicals 

Agarose        Invitrogen  

Bromophenol blue      Invitrogen   

Ethanol 100%       Merck  

Ethidium bromide      Invitrogen   

Ethylenediaminetetraacetic acid (EDTA)   Biorad     

Glycerol       Sigma  

LB agar       Invitrogen  

Luria broth base (LB)      Invitrogen   

MgCl2 50 mM       Invitrogen 

Nucleotides (dNTPs)      Invitrogen   

Oligonucleotides/primers     Eurogentec    

PCR buffer without MgCl2 10x    Invitrogen    

Picogreen® 10 000x      Molecular Probes   

Sodium acetate      Merck   

Sulphuric acid (concentrated)    Sigma     

SYBR® Green I nucleic acid stain 10 000x   Molecular Probes   

Tris        Sigma 
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2. Buffers and Solutions 

 

DNA loading buffer    Bromophenol blue  0.25% (w/v) 

     Glycerol   50% (v/v) 

EDTA    50 mM 

 

Sodium acetate 3M   Sodium acetate 26.409 g 

ddH2O   100 ml 

Adjust pH 5.2 

Autoclave 

 

TAE-buffer (50x)    Tris    2 M 

Sodium acetate  25 mM 

EDTA    0.5 M 

Adjust pH 7.8 

 

TE-buffer     Tris    10 mM 

EDTA    1 mM 

Adjust pH 7.6 
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3. Enzymes 

Phusion™ High Fidelity DNA polymerase    Finnzyme 

Proteinase K        Qiagen 

Platinum® Taq DNA polymerase     Invitrogen 

 

4. DNA markers 

1 kb plus DNA ladder™      Life Technologies 

To determine the length of DNA fragments during agarose gel electrophoresis the 1 kb plus 

DNA ladder™, containing DNA fragments of the following sizes was used: 

12000, 11000, 10000, 9000, 8000, 7000, 6000, 5000, 4000, 3000, 2000, 1650, 1000, 850, 650, 500, 400, 300, 200, 100 bp. 

 

5. Bacterial strain 

E. coli One Shot® TOP10:  This electrocompetent bacterial strain was provided with the 

TOPO TA Cloning® kit (Invitrogen) and was used for 

transfection with PCR product containing vectors by 

electroporation. 

 

6. Bacterial media 

Bacteria were grown in liquid LB medium containing 25 mg/l of Luria Broth base 

(Invitrogen) that was autoclaved at 121°C for 15 minutes. Growth plates for spreading 

bacteria were prepared with an autoclaved 32 mg/l LB agar (Invitrogen) medium. 

Transformed bacteria were selected by adding ampicillin (100 µg/ml) or kanamycin (30 

µg/ml) to the liquid or solid medium.  
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7. Kits 

• HBsAg detection 

Murex HBsAg Version 3® (ELISA test)  ABBOTT Diagnostics 

• DNA extraction 

QIAamp® DNA Blood Mini kit   Qiagen 

• RNA extraction 

QIAamp® Viral RNA Mini kit   Qiagen 

• Cloning 

TOPO TA Cloning® kit    Invitrogen 

Zero Blunt® TOPO® PCR cloning kit  Invitrogen 

• Sequencing 

Jet Quick PCR Purification Spin® kit  Genomed 

Big Dye Terminator v3.1 Cycle Sequencing® kit Applied Biosystems 
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8. Vectors 

8.1. pCR®4-TOPO® 

The pCR®4-TOPO® vector, included as a linear molecule in the TOPO TA Cloning® kit 

(Invitrogen), has 3’ thymidine overhangs at the insertion site as well as several restriction and 

primer binding sites up- and downstream of the insertion site. The M13 sequences can be used 

to amplify the insert while the T3 and T7 sequences can be used for transcription by a T7 or 

T3 RNA polymerase. In addition the vector encodes resistance genes for ampicillin and 

kanamycin as well as a Plac/LacZ mechanism for insertion verification (Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 : Map of the pCR®4-TOPO® cloning vector (Figure from Invitrogen) 
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8.2. pCR®-Blunt II-TOPO® 

The pCR®-Blunt II-TOPO® vector, included as a linear molecule in the Zero Blunt® TOPO® 

PCR cloning (Invitrogen), does not have 3’ thymidine overhangs at the insertion site. Several 

restriction and primer binding sites are located up- and downstream of the insertion site. The 

M13 sequences can be used to amplify the insert while the T3 and T7 sequences can be used 

for transcription by a T7 or T3 RNA polymerase. In addition the vector encodes resistance 

genes for zeocin and kanamycin as well as a Plac/LacZ mechanism for insertion verification 

(Figure 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 : Map of the pCR®-Blunt II-TOPO® vector (Figure from Invitrogen) 
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9. PCR primers 

9.1. Complete genome PCR 

Table 2 : Primers and conditions for the amplification and sequencing of the complete genome of HBV 

using 4 semi-nested PCR reactions 

 

Fragment  Primer* 5'-3' sequence Position† MgCl2 Annealing

 (sense)   mM °C 

preS fw2422c (fw) AGAACTCCCTCGCCTCGCAGAC 2375-2396 1.65 63 

 preS-R (rv) ACAGGCGGKGTTTTTCTTGTTGA 199-221   

 fw2451 (fw) TCAATCGCCGCGTCGCAGAA 2404-2423 1.5 65 

S P2f (fw) CCTGCTGGTGGCTCCAGTTC 56-75 1.65 63 

 979 (rv) ATTGGAAAGTATGTCAAAGAATTGTGGGTCTTTTG 977-1011   

 Mc2r (rv) TGGAAGTTGGGGATCATTGCC 891-911 1.5 60 

X 455(fw) CAAGGTATGTTGCCCGTTTG 455-473 1.5 62 

 1800 (rv) AGACCAATTTATGCCTACAGCCTCCTA 1774-1800   

 fw696 (fw) TCAGTGGTTCGTAGGGCTTTCC 694-715 1.5 63 

C fw1608X (fw) GCATGGAGACCACCGTGAACG 1606-1626 2 60 

  rv2661 (rv) TCATTTACAGTGAGAGGGCCCACAAATTG 2586-2614   

  fw1644Xmm (fw) TGCCCAAGGTCTTACATAATAGGACTCTTG 1639-1668 1.8 60 

* For each fragment the first two lines describe primers and conditions for the first round 

PCR; the third line describes the semi-nested primer and conditions for the second round 

(semi-nested) PCR. 

† According to the HBV/E reference strain accession number X75657. 

9.2. M13 cloning verification PCR 

Table 3 : Primers used in the M13 cloning verification PCR 

Fragment  Primer 5'-3' sequence 

M13 PCR Forward GTAAAACGACGGCCAG 

 Reverse CAGGAAACAGCTATGAC 
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10. Bioinformatics 

The specific usage of these applications, in particular for phylogenetic analysis, is explained 

in Chapter 3, Section 9.  

 

Sequence manipulation: Bioedit v7.0.5.3, http://www.mbio.ncsu.edu/BioEdit/ 

Distance calculations and neighbour-joining tree construction: MEGA3.1, (Kumar 

et al. 2004) 

Maximum likelihood tree calculation: PAUP* v4.0, (Swofford 2003) 

Electropherogram analysis: SeqScape® v2.5, Applied Biosystems 

Sequence acquisition: Data Collection Software v3.0, Applied Biosystems 

Similarity plot and bootscan analysis: SimPlot v3.5.1, (Lole et al. 1999) 

Sequence alignment: Clustal W v1.4 , (Higgins et al. 1996) 

Substitution model determination: Modeltest, (Posada and Crandall 1998) 

Real time PCR fluorescence acquisition and analysis: Opticon Monitor™ v3.1, 

Biorad 

ELISA software: Softmax PRO v5, Molecular Devices 

 

11. Machinery used 

ELISA reader    SpectraMax® Plus 384, Molecular Devices 

ELISA washer    96PW, SerColab 

Incubator     HERAcell® 150, Heraeus 
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Centrifuges  Pico 17, Heraeus; Megafuge® 1.0R, Heraeus, 

UNIVAP 150H, UniEquip 

Heating block    Thermomixer Comfort, Eppendorf 

Fluorescence reader   GENios Plus, Tecan 

Electroporation apparatus  Pulse Controller Plus, Capacity Extender Plus, 

Gene Pulser II Plus, Biorad 

Vortex     Vortex-Genie® 2, Scientific Industries 

Shaker     Multitron 2, INFORS-HT 

Sequencer  ABI PRISM® 3130xl Genetic Analyzer, Applied 

Biosystems 

Gel tank and casting form   Biozyme 

Electrophoresis power supply E835, Consort 

Gel documentation system  InGenius, Syngene 

PCR machine    Mastercycler® Gradient, Eppendorf 

Real time PCR machines Opticon® 2 DNA Engine, Biorad; Chromo4™/ 

PTC200, Biorad; LightCycler® 1 , Roche 

Diagnostics 

 

 

                                                 

 

1 Other company and product denominations mentioned in this document, such as: Invitrogen, Merck, Biorad, 
Sigma, Eurogentec, Molecular Probes, Finnzyme, Qiagen, Life Technologies, Abbott Diagnostics, Genomed, 
Applied Biosystems, Molecular Devices, SerColab, Heraeus, UniEquip, Eppendorf, Tecan, Scientific Industries, 
INFORS-HT, Biozyme, Consort, Syngene, Roche Diagnostics, Biomérieux, may be trademarks or registered 
trademarks of their respective trademark owners. 
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Chapter 3: Methods 

The following are the general methods applied during the creation and collection of data and 

results applicable to all parts in Chapter 4. Specific methods, such as the description of 

clinical material or certain PCR reactions or serological assays are described in the respective 

Part of Chapter 4. 

1. HBsAg detection 

The detection of HBsAg in the serum of voluntary blood donors or liver patients was 

performed using the Murex HBsAg kit version 3® (ABBOTT Diagnostics) and following the 

manufacturer’s protocol. The assay is based on the enzyme-linked immunosorbant assay 

principle (ELISA). Briefly, 25 µl of sample diluent were added to the wells of a 96 well 

microtitre plate followed by 75 µl of serum sample. On each plate, instead of serum sample, 

two wells were filled with a negative control and one well with a positive control (both 

included in the kit). The plate was then covered by a lid and incubated at 37°C for 1 h. After 

incubation, 50 µl of conjugate were mixed to each well and the plate was incubated again at 

37°C for 30 minutes. At the end of the incubation time, the plate was washed 5 times with 

wash fluid using an ELISA washer and 100 µl of substrate solution were added to each well. 

After incubation for 30 minutes at 37°C, 50 µl of stop solution (0.5 M sulphuric acid) were 

added, again to each well. Development of a purple colour, signifying a positive result, was 

detected by an ELISA reader at a wavelength of 450 nm and using 690 nm as a reference 

wavelength. 

2. DNA extraction 

DNA was extracted from the serum of voluntary blood donors or liver patients using the 

QIAamp® DNA Blood Mini kit (Qiagen) and following the manufacturer’s protocol. Briefly, 

200 µl of serum sample were added to 20 µl of proteinase K in a 1.5 ml microcentrifuge tube. 

To this, 200 µl of lysis buffer were added (buffer AL, included in the kit), and after vortexing, 

the resulting solution was incubated for 10 minutes at 56 °C. After a brief centrifugation to 

remove drops from the lid of the tube, 200 µl of 100% ethanol were added and the solution 
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was again vortexed and centrifuged. Then, the mixture was applied to a QIAamp® spin 

column (included) in a 2 ml centrifugation tube. The column was centrifuged at 6000 g for 1 

minute and the flowthrough was discarded. After two washing steps (500 µl of Buffers AW1 

and AW2, included), the DNA was eluted by applying 100 µl of distilled deionised water on 

the column membrane and by centrifugation at 6000 g for 1 minute and collecting the eluate 

in a 1.5 ml microcentrifuge tube. Eluted DNA was stored at -20 °C. 

3. RNA extraction 

RNA was extracted from the serum of voluntary blood donors or liver patients using the 

QIAamp® Viral RNA Mini kit (Qiagen) and following the manufacturer’s protocol. Briefly: 

560 µl of lysis buffer containing carrier RNA (Buffer AVL, included in the kit) were added to 

140 µl of serum, mixed by vortexing and incubated at room temperature for 10 minutes. To 

this, 560 µl of ethanol 100% were added and, after mixing, the solution was centrifuged 

briefly to remove drops from the inside of the lid. The mixture was applied to a QIAamp® 

Mini spin column in a 2 ml centrifugation tube which was then centrifuged for 1 minute at 

6000 g. The flowthrough was discarded and the column was washed twice with Buffer AW1 

and AW2 (included). RNA was then eluted from the column by adding 60 µl of distilled 

deionised water by centrifuging at 6000 g for 1 minute and collecting the eluate in a 1.5 ml 

microcentrifuge tube. Eluted RNA was stored at -20 °C. 

4. DNA quantification 

The amount of total DNA in a solution was determined by using a molecule called Picogreen® 

that is able to bind to DNA and emits fluorescence only in a bond state. First, the sample to be 

analysed was diluted 20 times by adding 5 µl of sample to 95 µl of TE buffer and this volume 

was added to 100 µl of a Picogreen® solution (200 times dilution of concentrated Picogreen® 

in TE buffer). A dilution series of a DNA solution of known quantity, mixed with Picogreen® 

was used as a quantification standard. After mixing and incubation for 5 minutes at room 

temperature in the dark, the fluorescence was measured at a wavelength of 480 nm using the 

GENios® fluorescence reader (Tecan) with a 520 nm wavelength filter. The fluorescence 

values of the standards were used to plot a standard curve and a trend line (y=ax+b) was 

inferred. Based on the equation of this trend line, the quantity of DNA in the sample was 

determined. 
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5. Polymerase chain reaction 

The polymerase chain reaction (PCR) is used to amplify double stranded PCR products, to 

quantify the presence of a specific DNA fragment, or to obtain sufficient DNA product for 

downstream applications. The specificity of amplification is determined by a set of 

oligonucleotides (referred to as primers), which specifically bind to a given sequence. A DNA 

dependant DNA polymerase will then amplify a sequence by starting at the forward primer 

and finishing at the reverse primer during multiple PCR cycles. Each cycle consist of three 

steps with each step requiring a specific temperature. The first step, the denaturation, is 

usually run at a temperature between 92 °C to 95 °C and separates the double stranded DNA 

into single stranded molecules. During the following step, the annealing, usually at a 

temperature of 50 °C to 65 °C, the primers will bind specifically to these single stranded 

molecules. During the final step, the elongation, the DNA polymerase will copy the single 

stranded sequence between the primers to a double stranded molecule, usually at a 

temperature of 72 °C. In certain applications, the annealing and the elongation steps are 

merged. The result of PCR reactions is verified using agarose gel electrophoresis (cf Section 

6). 

A semi-nested PCR reaction consists of using the PCR product of a first PCR as template in a 

second PCR but with one primer shifted (downstream for the forward primer or upstream for 

the reverse primer) with the second primer unchanged. This approach increases the sensitivity 

of the amplification and, by shifting one primer, reduces the risk of amplifying unspecific 

products that could have appeared in the first PCR. The two PCR reactions are referred to as 

first round and second round PCRs. Nested PCRs, which consist of changing both primers 

from first to second round PCR, have a higher specificity but need more primers to be 

designed. For virus detection applications this often poses a problem in primer design since 

different strains of the same virus can have high sequence variability. 

In addition to primers, template and the DNA polymerase, PCR mixtures also contain dNTPs, 

the building blocks of DNA, Magnesium Chloride (MgCl2), necessary for enzyme activity 

and primer binding, as well as a buffer, ensuring the correct ionic strength and pH for the PCR 

reaction to work. 
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In recent years, the usage of a double stranded DNA binding, fluorescent molecule 

(Sybergreen) has added the possibility to follow the DNA amplification during each cycle of a 

PCR reaction. These real time PCRs allow for an easier quantification of template DNA and 

have made consequent verification steps unnecessary. Another type of real time PCR, referred 

to as 5’ nuclease assay (or TaqMan® PCR) adds additional specificity by using a third 

oligonucleotide (the probe), which is coupled to a fluorescent molecule and binds between the 

forward and reverse primers. During the elongation step, the DNA polymerase separates the 

initially non-fluorescent molecule from the probe, which then becomes fluorescent. Thus, 

while Sybergreen fluoresces after binding to any double stranded DNA molecule, the 

fluorescence detected in a TaqMan® assay is linked to the amplification of a specific DNA 

sequence, thus effectively increasing the specificity of the PCR reaction. TaqMan® assays are 

generally used for diagnostic and quantification purposes. 

5.1. Amplification of the HBV complete genome 

In order to amplify the complete 3200 nucleotides circular genome of HBV, four semi-nested 

PCR reactions were developed yielding four overlapping fragments of approximately 1000 

bp. These fragments are herein referred to as preS, S, C and X fragments and are obtained by 

using a total of 12 different primers in 8 PCR reactions. First round and second round 

reactions were run for 40 or 30 cycles respectively. The initial denaturation and final 

elongation steps consisted of 5 minutes. Table 4 lists constant parameters of each of the 8 

PCR reactions while Table 2 (Chapter 2) lists variable parameters as well as primer names 

and sequences. Real time PCR reactions were performed on the Opticon® 2 DNA engine 

(Biorad) or the Chromo4®/PTC200 (Biorad), while non real time PCR reactions were 

performed on a Mastercycler® Gradient (Eppendorf). 
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Table 4 : Constant parameters for the complete genome PCR reactions 

Reagent End concentration   

PCR Buffer 1x  

MgCl2 Variable, cf Table 2  

dNTP 200 nM  

Forward primer 200 nM  

Reverse primer 200 nM  

(SYBR® Green 1x)  

DNA polymerase 1 unit  

Template 1st round: 5 µl,  

 2nd round: 2 µl of 1st round 

Volume 25 µl  

   

Step Temperature (°C) Time (s) 

Denaturation 95 20 

Annealing Variable, cf Table 2 20 

Elongation 72 60 

5.2. M13 PCR 

To verify the cloning of PCR products into plasmids, the inserted fragments were amplified 

by M13 PCR. The M13 primer binding sequences are located at the borders of the cloning site 

in the vectors and allow for the amplification of the inserted fragment, independent on its 

sequence. The template consists of a single bacterial colony picked from a growth plate and 

inserted directly into the PCR mixture using a sterile wooden tooth pick. During the first 

denaturation step of the PCR, the bacterial cell wall is denaturated and plasmids are freed. The 

time of the elongation step is dependant on the length of the inserted fragment and generally 

is 1 minute for each 1000 bp. M13 PCR reactions were run for 35 cycles in a Mastercycler® 

Gradient (Eppendorf). Primers are listed in Table 3 and PCR conditions in Table 5. 
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Table 5 : Conditions of the M13 PCR reaction 

Reagent End concentration   

PCR Buffer 1x  

MgCl2 2.5 mM  

dNTP 200 nM  

Forward primer 800 nM  

Reverse primer 800 nM  

DNA polymerase 1 unit  

Template Bacterial colony  

Volume 25 µl  

   

Step Temperature (°C) Time (s) 

Denaturation 95 20 

Annealing 55 20 

Elongation 72 variable 

 

5.3. Semi-quantitative detection of HBV DNA by real time PCR 

Real time TaqMan® HBV DNA amplification was performed on a LightCycler® (Roche 

Diagnostics) with two sets of PCR primers and probes, corresponding to the HBV core gene 

(Jardi et al. 2001). Both sets were universally conserved among 44 known sequences obtained 

from GenBank corresponding to genotypes A-H. As an external standard for quantification a 

serial dilution of a 10-6 pre-diluted Eurohep HBV standard reference 1 serum, (genotype A, 

subtype adw2), diluted in HCV RNA negative, HAV RNA negative, parvovirus B19 DNA 

negative and HIV RNA negative human cryosupernatant (National Institute for Biological 

Standards and Control code 98/780, South Mimms, England) was used. The detection limit 

was 5 IU/ml. 

6. Agarose gel electrophoresis 

Agarose gel electrophoresis allows for the visualisation and separation of DNA products. Due 

to their high content of phosphates, DNA molecules are negatively charged and when exposed 

to an electrical current, they migrate to the positively charged cathode, a process referred to as 
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electrophoresis. During gel electrophoresis the DNA is pipetted into pockets, or slots, in an 

agarose gel which is placed into an ion containing buffer (TAE buffer). When applying an 

electrical current to this buffer, ions, including the DNA, migrate through the agarose gel. 

Since agarose forms a tightly meshed structure, the DNA molecules, while migrating through 

the pores of this mesh, are more or less slowed down depending on their size. The migration 

is visually followed by mixing the DNA with an ionic marker (Bromophenol blue) which 

migrates as similar to a DNA molecule of 200 bp. The migration is stopped when this marker 

has passed through 2/3 of the gel. By adding a molecule to the gel which fluoresces only 

when bound to double stranded DNA (ethidium bromide or Sybergreen), the DNA products 

can be visualized under ultraviolet light (UV) after migration. By letting a DNA marker or 

ladder (1 kb plus DNA ladder™, Life Technologies) run in parallel with the PCR products, the 

size of the latter can be evaluated by comparison to the known sizes of DNA fragments in the 

marker. 

One percent agarose gels were prepared by adding 1 g of agarose to 100 ml of 1x TAE buffer. 

By heating the suspension, the agarose was dissolved in the buffer and formed a solid gel 

while cooling down. While still liquid, 1.5 µl of ethidium bromide were added to the agarose 

solution which was then poured into a rectangular casting form of 14x12 cm. An added comb 

with a thickness of 1 mm formed the slots into which the DNA was pipetted. After 30 minutes 

of solidification, the gel was completely submerged into 1x TAE buffer inside a tank, 

perpendicular to the electrical current. 5 µl of PCR product were mixed to 2 µl of 6x loading 

buffer and pipetted into a slot. The glycerol contained in the loading buffer prevents the PCR 

product from dissolving in the TAE buffer. The gel was exposed to an electrical current of 

140 V until the end of migration and pictures were taken under UV light in an InGenius Gel 

documentation system (Syngene). PCR products that presented single bands of the correct 

size where selected for downstream applications. 

7. Cloning 

Cloning can be used to identify the presence of multiple DNA populations in a single PCR 

product. The PCR product is mixed with vectors and an enzyme which ligates each DNA 

molecule into a different vector. While transfecting these vectors into bacteria, an antibiotics 

resistance is introduced and allows for the selection of successfully transfected bacteria. Since 

each bacterium can only maintain one vector, it is possible to separate the vectors, and thus 
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the DNA inserts, by spreading the bacterial mix on a growth plate and, after an incubation 

period, analysing appeared colonies that each was initially based on a single bacterial cell. 

7.1. TOPO TA Cloning® kit 

The TOPO TA Cloning® kit (Invitrogen) uses linear pCR®4-TOPO® vector with 3’ thymidine 

(T) overhangs and a covalently bound topoisomerase. The Platinum® Taq DNA polymerase 

used in PCR reactions, non-template specifically adds 5’ adenosine overhangs to every PCR 

product, a property used by the topoisomerase to introduce the PCR product into the vector 

and form a circular closed plasmid. Specific sequences upstream and downstream of the 

inserted fragment are used in downstream applications such as sequencing, additional PCR 

reactions and restriction assays. In addition, vectors encode resistance genes to ampicillin and 

kanamycin as well as an origin of replication site (pUC-ori) necessary for maintenance in the 

bacterial cell (Figure 9). 

The following protocol was followed: 4 µl of fresh PCR product were mixed to 1 µl of diluted 

salt solution and 1 µl of TOPO® vector (included in the kit). The reaction mix was then 

incubated for 5 minutes at room temperature and put on ice. Electrocompetent One Shot® 

TOP10 bacteria (Invitrogen) were diluted 1:1 with distilled water and 100 µl were mixed with 

4 µl of the TOPO® cloning reaction in a 0.1 cm electroporation cuvette. The bacteria/vector 

mix was then electroporated using the following conditions: tension: 2.25 kV, resistance: 200 

Ohm, capacity: 25 µF, and immediately mixed to 250 µl of room temperature S.O.C. medium 

(Invitrogen). In order to allow for the expression of the resistance genes, the bacterial 

suspension was incubated for 1 h at 37 °C before 60 µl were spread on a LB solid agar growth 

plate containing kanamycin. After 24 h incubation at 37°C bacterial colonies were picked 

using sterile wooden toothpicks and analysed by M13 PCR. 

7.2. Zero Blunt® TOPO® PCR Cloning kit 

Complete HBV genomes amplified using a single PCR reaction giving a DNA fragment of 

3200 bp (used only in Chapter 4, Part.5) were cloned into the pCR®-Blunt II-TOPO® vector 

(Figure 10) using the Zero Blunt® TOPO® PCR Cloning kit (Invitrogen). The main difference 

to the pCR®4 vector is the lack of 3’ thymidine overhangs and that it can incorporate longer 

fragments of DNA. This is necessary since the polymerase used in this PCR reaction 
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(Phusion™ High Fidelity DNA polymerase, Finnzyme) does not add 3’ adenosine overhangs 

to PCR products. The bacterial strain used and the experimental conditions are identical to the 

TOPO TA Cloning® kit protocol. 

8. Sequencing 

The sequencing method used is based on the dye terminator method (Sanger sequencing). In 

dye terminator sequencing, extension is initiated at a specific site on the template DNA by 

using a short oligonucleotide (or primer) complementary to the template at that region. The 

primer is extended using a DNA polymerase, very similar to a typical PCR reaction. Included 

with the primer and DNA polymerase are the four dNTPs, along with a low concentration of 

fluorescently labelled, chain terminating di-deoxynucleotides. Random incorporation of the 

chain terminating nucleotide by the DNA polymerase results in a series of related DNA 

fragments that are terminated only at positions where the terminating nucleotide is used. Each 

fragment terminates either with a ddATP, ddTTP, ddGTP or ddCTP, each labelled with a 

different fluorophore. The fragments are then size-separated by capillary electrophoresis in a 

polyacrylamide gel with a laser reading the fluorescence at the end of the capillary. Sequences 

are assembled by comparing the size dependant order of appearance of fragments and the 

nucleotide specific fluorescence peaks, referred to as sequence electropherograms. 

The following protocol was used: Before running a sequencing PCR, the sample has to be 

separated from primers and none incorporated nucleotides, which would otherwise interfere 

with the sequencing PCR reaction. This is performed using a DNA binding spin column. 

Small fragments, such as primer and non-incorporated nucleotides pass through the column 

while larger PCR fragments (80 bp - 20 kbp) are bound. The PCR purification was performed 

using the Jet Quick PCR Purification Spin® kit (Genomed) as follows: 20 µl of PCR product 

were mixed with 400 µl of buffer H1 (included in the kit) in a 1.5 ml microcentrifuge tube. 

The mixture was then loaded in a Jet Quick® Spin column sitting in a 2 ml centrifugation tube 

and centrifuged for 1 minute at 12 000 g. The flowthrough was discarded and 500 µl of buffer 

H2 (included) were added to the column, followed by centrifugation as before. The spin 

column was transferred into a clean 1.5 ml microcentrifugation tube and 30 µl of preheated 

70°C TE buffer were added. After 2 minutes of incubation at room temperature and 

centrifugation as before, the eluted DNA was quantified as described in Section 4. The 

quantity of DNA required for sequencing is listed in Table 6. 
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Table 6 : Quantity of DNA used for sequencing 

Template Quantity 

100-200 bp 1 - 3 ng 

200-500 bp 3 -10 ng 

500-1000 bp 5 - 20 ng 

1000-2000bp 10 - 40 ng 

>2000 bp 20 - 50 ng 

 

To 1 µl of BigDye Terminator® mix (included) were added: 1.5 µl of 5x TE buffer, 1 µl of 5 

µM primer and the necessary quantity of DNA, diluted in deionised water (max 5 µl). The 

mixture was brought to a volume of 10 µl with deionised water. Depending on the number of 

samples to be sequenced this was done in a 96 well plate. The PCR conditions were as 

follows: 25 cycles of 96 °C for 10 seconds, 50 °C for 5 seconds, 60 °C for 2 min with an 

initial denaturation step of 96°C for 1 minute.  

Non-incorporated dye needs to be removed before sequencing and was done as follows: To 

each sample, 5 µl of 125 mM EDTA and 10 mM of deionised water were added. After 

mixing, 60 µl of 100% ethanol were added to each well, the plate was vortexed and incubated 

for 15 minutes at room temperature in the dark and centrifuged at 4 °C, 3000 RPM for 30 

minutes in a Megafuge® 1.0R (Heraeus). Immediately afterwards, the ethanol was removed by 

inverting the plate on tissue paper with subsequent centrifugation at 1000 RPM for 60 

seconds. The previous steps were repeated with a 70% ethanol solution and a centrifugation at 

4°C for 15 minutes. The plate was then dried for 15 minutes in a UNIVAP 150 H (UniEquip) 

and stored at 4 °C until use. 

Preparation for sequencing consisted of heating the samples for 5 minutes to 95°C, adding 10 

µl of HI-DI (Applied Biosystems) and heating again at 95°C for 5 minutes. The plate was then 

loaded on the capillary sequencer (ABI PRISM®, 3130xl Genetic Analyzer, Applied 

Biosystems). All applications used capillaries with a length of 80 cm.  
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9. Phylogenetic analysis 

9.1. Electropherogram analysis 

Sequences were extracted from electropherograms by using the SeqScape® software (Applied 

Biosystems) and visually inspected for inconsistencies. The application also allows assembly 

of individual sequences to complete genomes by alignment to a known reference sequence. 

Sequences were then imported into the Bioedit sequence manipulation software and aligned to 

a set of reference sequences using its internal Clustal W algorithm. Figure 11 shows an 

example of an electropherogram. 

 

Figure 11 : Example of a sequence electropherogram 

During capillary sequencing, fragments are 
separated by size (horizontal) and the type and 
intensity (vertical) of fluorescence is read. 
Depending on their colour, peaks indicate 
thymidine, cytidine, adenine and guanidine. Usually 

low background fluorescence is visible although 
when reaching at least 50% of the intensity of 
single peaks, could indicate quasi-species or a 
mixed DNA population. 

 

9.2. Sequence alignment 

Sequence alignments consist of arranging sequences, known to be linked by function or 

genome location, in such a way as to minimize differences between them. Gaps are 

introduced when they maximize the overall similarity. Sequences are said to be similar when 

at least 50% of nucleotide positions are identical after alignment. Identical nucleotides are 

usually indicated by a dot. In the case of HBV, a minimal similarity of 85% is generally 

observed, while the similarity between hepatitis C strains can descend to as low as 60%. An 

example alignment is shown in Figure 12. 
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Sequence 1  CAAAGACTGTGTATTTAAAGACTGGGAGGAGTTGGGGGAGGAGATTAGGTTAATGATCTTTGTACTGGGAGGCT 
Sequence 2  ............G..................C.................C...A.G.........CA....... 
Sequence 3  ............G..................C.................C...A.G..........A....... 
Sequence 4  ............G..................C................--------------------...... 
Sequence 5  ............G.....T..G.......T.............C.........A.G..........A....... 
Sequence 6  .......................................................................... 
Figure 12 : Example of a sequence alignment 

Identical positions compared to a reference are indicated as dots. Gaps are shown as dashes.  

9.3. Nucleotide distance calculation 

Nucleotide distance calculations, as well as phylogenetic links between sequences, were 

deduced using the MEGA3.1 software and the Kimura 2 parameter and neighbour-joining 

models. While calculation of the number of single nucleotide polymorphisms between two or 

more sequences is sufficient for basic analysis and phylogenetic reconstruction, they do not 

take into account evolutionary mechanisms such as reversion or back mutations. Reversions 

are a series of mutations that restore the original nucleotide at a position. A simple example 

would be a T to A mutation which is followed by an A to T mutation at the same nucleotide 

position. It is important to take into account such events, especially if the time of evolution 

between sequences is long. In the last three decades, several substitution models have been 

developed which in general take into account the probability of mutation from one nucleotide 

to another, as well as the frequency of a given nucleotide. A simple model would be to assign 

the same probability to each possible mutation and ignore nucleotide frequencies. This model 

is referred to as the one parameter Jukes-Cantor model (Table 7a). A very complicated model 

would be to consider a different probability for each possible mutation (12 possibilities, i.e. A 

to T, A to C, A to G, T to A, etc.) and to take into account the frequency of all 4 nucleotides. 

This model is referred to as the 16 parameter model (Table 7c). The most widely used model 

however, for basic time-independent phylogeny is the Kimura 2 parameter model, which 

ignores nucleotide frequencies but differentiates between the probability of transitions and 

transversions (Table 7b). 

Table 7 : Nucleotide substitu n models 

 
A T C G
- a a a

)  A T C G
A - b b a

A T C G
A - dxT gxC jxG
a

 
a - a a
a a - a
a a a -

 bstitution matrices of the Juke
tation probabilities are indicate
tio

b

T b - a b
C b a - b
G a b b -

s-Cantor one parameter (a), Kimura 2 pa
d by the letters a to l while nucleotide freq
c)
T axA - hxC kxG

C bxA exT - lxG

G cxA fxT ixC -

rameter (b) and 16 parameter (c) models. 
uencies are indicated by the letter x. 
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9.4. Phylogenetic reconstruction 

Distance based phylogenetic reconstruction uses the distances calculated between sequences 

to assemble a phylogenetic tree. On this tree, sequences are linked by nodes which represent 

hypothetical ancestors or points of deviation between two sequences and connected by 

horizontal lines (branches) of lengths proportional to the actual genetic distance (Figure 13). 

Sequences are said to be of the same phylogenetic group when they cluster on the same node. 

Depending on the organism analysed, phylogenetic groups are referred to as lineages and sub-

lineages (e.g. avian influenza) genotypes and subtypes (e.g. hepatitis B, measles, etc.) or 

families and species (e.g. mammals, insects, etc.). The most commonly used tree construction 

method is the neighbour-joining model which assumes variable substation rates across 

lineages and uses few computational resources.  

In the case of more complex phylogenies, maximum likelihood or Bayesian methods, which 

are very computationally intensive, are applied. The latter are not distance based methods but 

use the actual sequences to construct trees. Briefly, every possible tree that can be constructed 

from each nucleotide position of a set of sequences is evaluated by calculating its probability 

of being the correct tree, estimated by applying a nucleotide substitution model. The final 

“correct” tree would be the one with the highest probability or likelihood. Maximum 

likelihood trees were calculated using the PAUP* 4 software package and the Modeltest 

application to determine the substitution model which best describes the sequence data. 

Figure 13 : Example of 

a phylogenetic tree 

Sequences (indicated by 
triangles) are linked to 
each other by horizontal 
lines (branches) with 
lengths proportional to 
the genetic distance. 
Nodes indicate 
hypothetical ancestors. 
Numbers indicate 
bootstrap values of 
nodes significance.  
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In order to evaluate the significance of nodes, bootstrap calculation is applied: Sequence 

positions of a given alignment are reshuffled to construct alignments of the same length than 

the original. Not all sites are considered and sites can be considered more than once. Thus an 

alignment of 7 positions: 1 2 3 4 5 6 7 could be reshuffled into 1 1 3 4 4 5 6 or 

2 2 4 5 6 6 7. For each alignment a phylogenetic tree is constructed and for each node 

of the phylogenetic tree of the original alignment, the number of times it appears in the 

phylogenetic trees of the reshuffled alignments is counted. These values are referred to as 

bootstrap values and are usually expressed as percentages. High bootstrap values indicate 

significant nodes. Bootstrap values below a certain cut-off mean that a node can be ignored. 

9.5. Recombination analysis 

Recombination between strains can be detected by comparing phylogenetic reconstructions 

based on different sequence regions. When a given sequence can be found in different 

phylogenetic clusters a recombination event has occurred. The software Simplot calculates 

phylogenetic trees based on sequence fragment windows. The size of these fragments is 

referred to as windows size. Windows can overlap. The bootstrap value of the node 

connecting the analysed sequence with the most similar sequence is plotted on a graph, 

referred to as bootscan analysis. Recombination events have occurred when different most 

Figure 14 : Example of boot

similar sequences appear during the analysis (Figure 14). 
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Chapter 4: Results and Discussions 

Part I 

Results of part I were published as: 

Olinger CM, Weber B, Otegbayo JA, Ammerlaan W, van der Taelem-Brulé N, Muller CP. 

(2007) Hepatitis B virus genotype E surface antigen detection with different immunoassays 

and diagnostic impact of mutations in the preS/S gene. Medical Microbiology and 

Immunology. 196:247-252. 

 

Hepatitis B virus genotype E HBsAg detection with different immunoassays and 

diagnostic impact of mutations in the preS/S gene 

The influence of genetic variability on the sensitivity of serological and molecular assays has 

so far received little attention. However, it seems that the analytical sensitivity of HBsAg 

assays is dependent on HBV genotypes and subtypes (Weber et al. 2003). By testing dilution 

series of different HBV subtypes, up to 10-fold differences in the sensitivity of three 

commercial assays were observed (Weber 2005). HBsAg detection with monoclonal antibody 

(mab)-based diagnostic assays may be unreliable in populations where circulating 

subtypes/genotypes or variants are distinct from the virus strain used for the production of 

mabs. The major neutralising epitope, (or a-determinant, residues 110-164), on the 

hydrophilic portion of the surface antigen of the prevalent genotype E strains is the most 

diverging from that of genotype A, with a difference of eight distinct amino acids (Norder et 

al. 2004). Thus, an important question is whether diagnostic reagents initially developed for 

genotype A strains are suitable also for the detection of genotype E infections. In the present 

study the performance of three commercial assays for the detection of surface antigen was 

evaluated in sera of chronic carriers of genotype E virus. 
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1. Clinical samples  

Sera were collected at the University College Hospital (Ibadan, Nigeria) from 93 patients with 

liver disease (2003) and 107 HIV patients (1995 and 1998) and stored at -80°C. All sera were 

 in HBV pooled negative serum and were tested with three different HBsAg 

assays (A, B and C). Real time quantification PCR and nested PCR of the preS1, preS2 and S 

gene were performed on DNA extracted from undiluted sera and sequenced as described in 

ssay (Assay A, Abbott Diagnostics) is a microparticle enzyme 

munoassay that uses a monoclonal capture antibody directed against a conformational 

epitope of the first loop of the a-determinant (aa 121 to 124) and a polyclonal tracer antibody. 

 loop of the a-determinant 

ty as the tracer antibody. The 

 the same manufacturer. 

diluted 1/10

Chapter 3. 

2. Serological assays 

Diluted serum samples were tested using three different commercial HBsAg diagnostic tests. 

The AxSYM® HBsAg v2 a

im

The Elecsys® HBsAg (Assay B, Roche Diagnostics) is an electrochemoluminescent assay 

based on a monoclonal capture antibody directed against the second

(aa 143-145) and a monoclonal antibody with the same specifici

VIDAS® HBsAg Ultra (Assay C, Biomérieux) is an enzyme linked fluorescent assay and uses 

two monoclonal antibodies for capture that recognize two non-overlapping conformational 

epitopes outside the a-determinant (aa 101-105 and aa 199-208) and a polyclonal tracer 

antibody. 

A test result was interpreted as true negative or true positive if it was negative or positive in 

all the three HBsAg assays. Discrepant samples were retested with the assays that were 

initially reactive. If the sample was again positive it was submitted to confirmatory testing in 

a neutralisation assay of the same manufacturer. Anti-HBc and anti-HBs (Elecsys® HBsAg 

and anti-HBc) testing was performed in all sera with discordant results in the first test as long 

as enough sample was available. A test result of a discrepant sample was interpreted as true 

positive if it was confirmed positive in the neutralisation assay of the same manufacturer(s) 

independently of the anti-HBc or HBV DNA PCR result. A discrepant sample was interpreted 

as initially false positive if it was negative after repeated testing and as repetitively false 

positive if it was not confirmed in the neutralisation assay of
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3. Results 

3.1. HBV DNA detection 

HBV DNA was detected in 84 of the 200 patients (Table 8) both by real time PCR and nested 

PCR and these were considered as true DNA positive. Six sera with low viral loads (< 50 

IU/mL) and two sera with 229 and 1320 IU/ml of HBV DNA were only positive by real time 

PCR.  

 

Table 8 : Comparison of DNA status with the HBsAg status obtained with 3 different assays 

t HBsAg detection. One hundred and three samples were tested negative with the 3 
3

A and C 

and in assays A and B, respectively. Of the discrepant samples, 13 were tested HBV DNA 

 

3.2. HBsAg detection 

Concordan

  DNA neg  DNA pos  Total 

3 assays HBsAg pos  6  55  61 

3 assays HBsAg neg  87  16  103 

HBsAg discordant  23  13  36 

Total  116  84  200 

HBsAg assays (Table 8), 16 of these had low viral loads ranging from 1.0 to 7 x 10  IU/ml. 

Sixty-one of the 200 samples gave congruent positive results (Table 8) in the 3 HBsAg 

assays, 90.2% (55 of 61) were HBV DNA positive with viral loads ranging from 1.2 to 7 x 

109 IU/ml by real time PCR. Two HBsAg positive samples gave very low index values, close 

to the cut-off with all three assays but were confirmed as true HBsAg positives by 

neutralisation assay. Viral loads of these two samples were 1320 and 5224 IU/ml, both were 

anti-HBc and anti-HBs negative.  

Discordant HBsAg detection. The remaining 36 serum samples gave discordant results 

between HBsAg assays (Table 9), 30, 1 and 2 sera were only initially reactive in one of the 

assays A, B or C respectively. Two and one sample were initially reactive in assays 
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positive with viral loads ranging from 10 to 432 IU/ml. The HBsAg index values of the 

discrepant sera were relatively low and ranged from 1.6 to 14.1 (assay A), 1.0 to 3.1 (assay B) 

.3 the 36 discrepant sera, 20 were anti-HBc positive. For 20 sera 

there was enough material left for additional anti-HBs testing and 3 samples were anti-HBs 

: Comparison of DNA status and HBsAg status of patients with discordant results in the 3 HBsAg 

assays 

Positive resu retation 

and 1  to 1.4 (assay B). Of 

positive (10.5 to 15.5 IU/l).  

 

Table 9 

lt 
with:  DNA 

neg  DNA 
pos  Total positive after 

neutralisation Interp

Assay C only  0  2  2 (0)* 0 False positive 

A + C  1  1  2 (0) Fal ive 

A  9  30 (29) 1 (DNA +) False positive (n =29) 
True positive (n =1) 

1  0  1 (1) False itive 

Assay B only  0  1  1 (1) Fals tive 

Total  23  13  36(31) 1  

0 se posit

ssay A only  21 

A + B  0  pos

0 e posi

 

 *Numbers in brackets indicate samples repeatedly positive in a given assay 

 initially reactive in either assay B or C or double positive 

in assays A and B or A and C (DNA positive or negative; cf Table 9) were not confirmed by 

 

Sixty-eight of the 84 samples positive in both DNA detection assays were positive in at least 

one HBsAg assay (55 where triple HBsAg positive, 16 were triple negative and 13 presented 

discordant results). The resolution of the discrepancies by repeated testing and by 

neutralisation assays showed a relatively high number of false positive results (Table 9). Of 

the 30 assay A-only positive samples, 29 were repeatedly reactive, but only one serum with a 

viral load of 101 IU/ml was confirmed positive by neutralisation assay; this serum was anti-

HBc and anti-HBs negative. Thus 29 were false positive among the 30 assay A-only positive 

samples. All the samples that were

neutralisation assay and thus considered false positive. Only one of the 36 discrepant samples 

was considered true positive (confirmed by neutralisation assay) and HBV DNA positive. 
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Sequencing of 48 HBV DNA positive samples revealed the presence of genotype E in 45 and 

genotype A1 in 3 individuals. Amino acid substitutions within the pre S and S gene from 

genotype E strains are summarised in Table 10. Mutations in the preS1, preS2 and S gene 

were classified in four groups depending on their effect of HBsAg detection: (1) no effect on 

HBsAg detection, (2) reduced signal in one or more HBsAg assays, (3) no HBsAg detection 

and (4) mutations that were present in both groups 2 and 3. A reduced HBsAg signal was 

defined as a decrease of at least 25% in comparison to the mean value obtained within the 

ed that were associated with a reduced HBsAg signal (L127P) or a negative HBsAg 

result (S143T). The highest number of mutations that were associated with impaired HBsAg 

 l a  th  S  (n 15 f w side of ant 

 m tati s of ach e pr S1 reS2 region were associated with a reduced 

or a negative HBsAg signal.  The A184V m  of the S ne was the mo ino 

A184V was the only mutation present. However there was one sample that was HBsAg 

pos  assay  on (an con ed) and that harboured e A184V muta ple 

sig al i nsit s in the three HBsAg assays (serum 173, data not shown) and 5 

 Table 10) did not show any amino acid 

 the HBsAg detection. 

same assay for the 61 HBsAg positive sera. Only 2 mutations within the a-determinant were 

observ

detection were oc ted in e  gene = ), 13 o hich were out the a-determin

region. Only 6 u on  e  th e  and p

utation ge st frequent am

acid substitution with reduced (n = 3) or negative HBsAg signal (n=3). In 5 of these 6 sera 

itive in  A ly d firm  th tion. One sam

with reduced n nte ie

HBsAg negative sera (sera 58, 72, 83, 114 and 162;

substitution which may be associated with an expected effect on

3.3. Quantitative impact of preS/S gene mutations on HBsAg detection 

The detection of HBsAg was most frequently impaired in assay B, since 13 samples showed 

reduced signal intensities ranging between 0.1% and 68.5% of the mean value for HBsAg 

positive sera in this assay. Assays A and C showed decreased HBsAg signals in 9 (2% - 71%) 

and 5 (2% - 74.8%) serum samples, respectively. 
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Table 10 :  Classification of DNA positive serum samples into 3 groups according to the HBsAg detection 

signals  

Sample   Test*            Mutations             

Mutations in the preS/S gene that occur: only in 
samples with reduced HBsAg detection signals in at 
least one assay are shown in bold and italic; in 
samples that are HBsAg negative in the three assays 
on black background; in samples with reduced or 

negative HBsAg signal on grey background; in 
samples with no effect on HBsAg signal, no 
formatting. *Reduced HBsAg signals are marked in 
bold; †only AxSYM HBsAg positive   

assignment A B C preS1      preS2       S       
10 130.8 173 127.1 H86A P94L                    
13 226.1 183 123.1 R35K            
16 189.4 169 128.6 E54D K86Q           
18 99.7 112 122.5 T19S        P203Q    
20 117.6 100 126.5 H16Q R35K K86T          
23 199 138 127.2 H16Q T19S           
27 179.2 85 131.9 F67S    P52L    R122K    
32 200.7 96 120.6 T19S T53K   A39V P52L       
34 159.5 122 120.3 S96F            
49 91.2 102 121.1 K86T    P52L        
60 100.1 116 121.6 P94L            
78 

C
oncordantly H

B
sA

g reactive 

209.7 133 117.3 S77W                      
14 16.6 67 128.6 N48T E54Q                    
21 43.7 112 127.2 H16Q    D51G P52L       
25 55.3 69 131 H16Q V14A L49R  F46S        
37 13.3 51 130.6 W77T P94L S96A      P203Q Y206H   
47 23.6 77 127.2 R35K P94L   A39V A53V   V224A    
53 0.4 4 29.4 N48T Q82P P94L      A184V    
92 48.6 95 122.2 R35K P94L   A39V A53V   F83C V224A   

131 47 113 83.9 F67L    P54L        
141 68.5 52 8.4         A184V    
146 0 2 2         A184V    
164 55.7 104 74.8 L49R        L127P T189I S204N  
171 0 2 2 E54D           

H
B

sA
g signal reduced 

 
187 29.8 71 87.8 T19S T53K K86T  A39V F46S I49T           

33              A39V A53V     C76F F83C S143T V224A
54        T31A        
58    W77S            
64            P70T I82T   
72        P52L        
83    P94L            
86        T31A        

114    P94L            
126    D91N            

135
†

           A184V    
138            A184V    
140            A184V    
162    H16Q            
165            F85L    
169    K86Q T97N           
189 

ted 

      K86T P94L 

H
B

sA
g not detec

P93Q          I213T       
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4. Discussion 

HBsAg detection assays rely on t  cap re o t e a tigen by monoclonal antibodies. 

es, m inly in the a-

determinant of genotype A surface antigen  The su ace a tigen of genotype E differ by 5. % 

fro 5% on the amino acid level. Within the a-

determinant (110 – 164) 90% of genotype E strains differ by at least 8 amino acids (14.8%) 

fro a e s ere he c ra e s o  three diff B g as ys w re 

tested with respec ct ge ee assays were similar in 

sensitivity (Assay A: 100% assays B and C: 98.4%). Assay A however showed a poor 

specificity (

ex ience  r ti r  th in  of sam s g e tes low p itive gnals in 

ass A th   c m y r ti n y. he a pa nt lse p itivit in as y 

A om a n a y i usly observed by one of us in non-E genotypes 

(W er a 00 . O e a s g eement w th th  r u tain d by izuo hi 

et  oul  n  any failure of 10 commercial 

diagnostic kits to detect recombinant HBsAg of genotypes E even at very low levels of 

HBsAg (0.2 IU/m

Despite the overall low genetic variab  et al. 2001; 

Mulders et al. 2004; Huy et al. 2006), several new mutations throughout the preS/S gene 

see to be soci ted ith ire  HB g detection. The omparison of DNA positivity 

with the intensity of HBsAg detection signals revealed a set of mu atio s that were only found 

in HBsAg impaired sa pl duction of > 25% of average valu  or H sAg negative) 

suggesting that these m ere with HBsAg detection. Two of these new mutations, 

L127P and S143T, are within the otherwise conserved a-determinant. One strain with the 

mutation S143T was not detected, by assay A only how ve ons outsi  the a-

determinant (preS2: A53V and S: C76F, F83C nd V 24A  ma esp nsibl for is 

“failure”, although also explainable by low HBsAg titres (Alhababi et al. 2003; Jeantet et al. 

2004). 

ution 

84V mutation impaired the HBsAg detection also 

he tu f he surfac n

Most of these antibodies are directed towards immunogenic epitop a

. rf n  s 7

m genotype A on a nucleotide level and 8.

m prototyp  A equence. H  t ha ct ristic f erent H sA sa e

t to their ability to dete notype E. All thr

84%) in comparison with assay B (99%) and C (98%). It is our unpublished 

per  that epe tive f eezing and aw g ple en ra os si

ay at are not onfir ed b  neut alisa o  assa T p re fa os y sa

in c p

et 

riso to B and C was lread  prev o

eb l. 2 6) ur r sults re al o in a r i e es lts ob e M c

al. (Mizuochi et al. 2006) who c d ot demonstrate 

l). 

ility of genotype E strains (Odemuyiwa

m as a w  impa d sA  c

t n

m es (re e B

utations interf

  e r mutati  de  

a 2 ) y be r o e th

In addition, our study revealed several mutations outside of the a-determinant that reduced 

HBsAg detection such as an A184V substit present exclusively in 5 of 6 samples with 

impaired HBsAg detection. Although the A1
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in assay A, only this assay detected a strain (sample 135, confirmed by neutralization, Table 9 

and 10) harbouring this mutation. Several of the above mutations with a negative influence on 

ai et al. 1995). In a recent study, the isolated HBsAg positive result was 

described in 24 patients (Echevarria and Leon 2004) and seems more frequent during 

HBsAg detection are found in positions discordant between genotype E and A, such as L127, 

S143 and A184 in genotype E which in genotype A correspond to P127, T143 and V184. 

Interestingly these mutations that seem to reduce HBsAg detection are normally found in 

genotype A and only exceptionally in genotype E. Thus the presence of the genotype E wild-

type amino acids could cause a positive detection bias for genotype E in comparison to 

genotype A. The association of these mutations with the failure to detect HBsAg needs to be 

further confirmed by epitope mapping with monoclonal antibodies and recombinant HBsAg. 

HBsAg was the only serological marker in two HBV DNA positive samples. Anti-HBc 

antibodies may have been below the detection limit of the competitive assay since the sera 

were diluted 1:10. However systematic dilution experiments tend to exclude this possibility 

(Melchior and Kirch; unpublished data). Alternatively, samples may have been drawn before 

anti-HBc seroconversion at the end of the incubation period. Decreased sensitivity for anti-

HBc detection in genotype E infected patients, in-frame deletions or other mutations in the 

precore/core gene may also (partially) account for the isolated HBsAg reactivity (Echevarria 

et al. 1991; Valliamm

pregnancy and in spring (Echevarria JM, personal communication). In studies from France 

and China (Ni et al. 1993; Laperche et al. 2001) immune tolerance of HBV during perinatal 

transmission was thought to be the most likely explanation for the absence of anti-HBc 

conversion. In sub-Saharan Africa, early childhood transmission is frequent but isolated 

HBsAg seems to be less than 3%. 

The results of our study show that the three assays have a similar sensitivity for the detection 

of genotype E HBsAg. Failure to detect HBsAg and differences in levels of HBsAg detection 

signals are probably due to mutations in the preS/S gene most of which were found outside of 

the a-determinant and suggest a positive detection bias for HBV genotype E compared to 

genotype A. 
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Part II 

 

Results of part II were published as: 

Bekondi C, Olinger CM, Boua N, Talarmin A, Muller CP, Le Faou A, Venard V. (2007) 

Central African Republic is part of the West-African hepatitis B virus genotype E crescent. 

Journal of Clinical Virology. 40:31-37. 

 

The Central African Republic is part of the West-African hepatitis B virus 

genotype E crescent 

In sub-Saharan Africa, the seroprevalence of anti-HBV antibodies and the prevalence of 

chronic carriers are excessively high (Pawlotsky et al. 1995; Olubuyide et al. 1997; Mulders 

et al. 2004; Kurbanov et al. 2005; Makuwa et al. 2007). HBV has been classified into eight 

genotypes A to H (Okamoto et al. 1987; Norder et al. 1993; Stuyver et al. 2000), most of 

which have a more or less distinct geographic distribution (Kimbi et al. 2004; Hannoun et al. 

2005; Kurbanov et al. 2005; Huy et al. 2006; Olinger et al. 2006; Makuwa et al. 2007). In 

South Africa, in south-eastern (Tanzania, Malawi) and eastern Africa (Somalia) genotype A 

dominates (Kramvis et al. 2002; Sugauchi et al. 2003; Kimbi et al. 2004; Hannoun et al. 

2005). This genotype was also frequently found in Cameroon, in particular among HIV 

i et al. 2003) Ghana (Huy et al. 2006),  Nigeria, Togo, Benin, Mali, and at least 

the western part of The Democratic Republic of Congo (Mulders et al. 2004). However it is 

not clear how far the genotype E crescent extends to the east. This genotype was not found in 

any other part of the world except for some sporadic cases in African Black in Europe 

(Ganne-Carrie et al. 2006) and South America (Ganne-Carrie et al. 2006; Mathet et al. 2006). 

carriers, whereas in healthy Bantu and Pygmies population of this country genotype E and A 

were both prevalent (Kurbanov et al. 2005). Only sporadic strains of genotype A were found 

in Mali, Burkina-Faso (Mulders et al. 2004) and Nigeria (Olinger et al. 2006). In West-Africa 

genotype E predominates in a vast crescent spanning from Senegal to Angola, including Ivory 

Coast (Suzuk
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Here we repo

show that ge

rt the first complete genome of HBV from the Central African Republic and 

notype E also dominates in this country, further extending the genotype E 

crescent to the east.  

1. Clinical samples 

Samples were randomly collected in 2004 from 112 male and 84 female patients admitted 

on originating from most part of the country. Some 

 provinces in the Eastern and Western part of the 

country. The patients or next of kin gave their written informed consent. HBsAg and total 

 measured by a TaqMan  real time PCR kit (Abbott 

reshold = 29 (±3) copies/ml; range from 29 to 2.9×1010 copies/ml). 

with symptoms of acute or chronic hepatitis to the Central Hospital in Bangui, the most 

populated part of the country. Most patients came from within 50 km from Bangui an area 

populated by a highly mobile populati

other patients were directly referred from

anti-HBc and anti-HBs antibodies were determined by commercial tests (Architect®; Abbott 

Laboratories). The viral load was ®

Laboratories) (detection th

Weak signals below the calibration range were interpreted as positive, but not quantifiable. 
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2. Results 

2.1. Serology 

Among the 196 patients admitted for liver disease 183 were positive for at least one HBV 

NA: not applicable (two males). 

 HBsAg(+)/ 
Anti-HBc(+) 

HBsAg(+)/ 
Anti-HBc(-) 

HBsAg(-)/ 
Anti-HBc(+) 

HBsAg(-)/ 
Anti-HBc(-) 

marker (Table 11). One was positive for anti-HBs only and was excluded from the following 

analysis. Among the 120 that were HBsAg and anti-HBc positive, 79 (66%) were also HBV 

DNA positive by real time PCR (range 29 to 5.6x107 copies/ml) and few were anti-HBs 

positive. Only 2 were HBsAg positive but anti-HBc negative; these two patients were also 

HBV DNA positive and anti-HBs negative. Conversely one third (60 of 182; 33%) were anti-

HBc positive and HBsAg negative. However, 3 of these 60 patients contained detectable HBV 

DNA but not enough to be quantified (<29 copies/ml).  

 

Table 11: Characteristics of the patients cohort and their HBV serology status 

Number 120 2 60 14

Mean age (range) 29.8 (10 - 70) 21.5 (18 - 25) 33.4 (17 - 72) 24.3 (15 - 50) 

Sex ratio (male/female) 1.7 NA 0.9 0.8 

Anti-HBs-positive 9 0 26 1 

HBV-DNA-positive 79 2 3 0 

Range (copies/ml) 29 – 5.6 107 37 - 105 < 29 – 

ALT (UI/L) 

Range 

1158 

22 - 8130 

365 

179 - 551 

153.5 

11 - 616 

176.4 

19 - 769 
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Figure 15 : Phylogenetic tree based on the 

complete genome of HBV strains isolated from 

patients from Central African Republic  

Comparison was done with 65 reference strains A–
H (accession numbers are indicated on the tree) (  
CAR). 
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Figure 16 : Phylogenetic tree based on 

the S gene of HBV strains from the 

Central African Republic  

Comparison was done to reference strains 
of genotype A, D (a) and E (b), accession 
numbers are indicated in the tree (  
CAR, ◊ CAR175 clones, ■ CAR177 
clones). 
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Figure 16 : Phylogenetic tree based on 

the S gene of HBV strains from the 

Central African Republic  

Comparison was done to reference strains 
of genotype A, D (a) and E (b), accession 
numbers are indicated in the tree (  
CAR, ◊ CAR175 clones, ■ CAR177 
clones). 
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2.2. Sequence analysis and genotyping 

equences of the complete genome were obtaine d analysed for 30 selected HBV strains 

from patients that had HBV DNA levels above 1000 copies/ml. Mostly because of low viral 

l), only partial sequences were obtained for another 36 HBV strains (15 

reS, 14X, 27S and 6 preC/C fragments). Phylogenetic comparison of all sequences with 

reference strains assigned 62 of the 66 strains to genotype E (94%), 3 (3.5%; CAR175, 

CAR177, CAR202) sequences to genotype D and one sequence (CAR204) to an A1 

ubgenotype, most closely related to A1 strains from Tanzania (accession number AY934773) 

nd Malawi (AB076678) and some other East African strains (Figures 15, 16a and 16b).  

 regions of two of the genotype D strains (CAR175, CAR202) were more closely related to 

genotype D4 from Somalia (Norder et al. 2004), (mean distance of 0.6% for CAR175; and 

 South Africa (3% mean genetic distance). 

AR177 for which only a partial sequence was available, was an outlier to genotype D3 

PreC/C region (mean distance of 4.2%) (Figure 17a) and was further analysed 

by cloning (see below). 

The intra-group variability of the genotype E strains showed a diversity of 1.37% for the full-

e, 1.08% for the preS/S, 1.59% for the preC/C and 1.77% for the X gene. When 

ompared to genotype E isolates from Benin, Togo, Mali, Burkina Faso, Nigeria and 

Cameroon, the average distance at the nucleotide level was of  0.7% (range 0% to 1.8%) 

2.3. PreS/S gene analysis 

ences, 10 strains of genotype E presented deletions of 3 

ino acids, in the preS2 gene. All of these 

deletions were in frame. Some mutations were also found in the a-determinant of the S gene. 

The most important mutations were G588C and C546A leading to amino acids substitutions 

G145A and T131N already described (Odemuyiwa et al. 2001). Other non-synonymous 

nucleotide substitutions were found in amino acids positions M103I, S143L/T  

S d an

load (<100 copies/m

p

s

a

S

1.3% for CAR202) than to genotype D3 from

C

based on the 

length genom

c

excluding the CAR001 (see below) (Figure 17b).  

Among the 45 available preS/S sequ

to 33 nucleotides corresponding to 1 to 11 am
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Figure 17 : Phylogenetic tree based on the 

preC/C gene of HBV strains from the Central 

African Republic 

Comparison was done with reference strains of 
genotype A, D (a) and E (b); accession numbers 
are indicated in the tree (▲CAR, ● CAR clones, ◊ 

75 nes). 

*indicates clones with insertions.  
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and D144Q as described before (Weinberger et al. 2000; Weber 2005). These mutations could 

nterfere with the detection by commercial HBsAg kits. An additional 27 redundant S 

fragments did not contribute any further information. 

2.4. PreC/C gene analysis 

Nine of 36 strains (25%), all of genotype E, displayed a mutation in the start codon of the 

PreC ORF (G1896A). This mutation induces a stop codon generating a non-functional 

HBeAg. Thirty-six X genes (overlapping with the core promoter) were obtained and the 

A1762T and G1764A substitutions leading to the amino acid changes K130M and V131I 

previously described as hot spot mutation sites were found in 8 of 36 strains, all of genotype 

E.  

Some clones of the CAR001 strain contained a rare replacement mutation in the core 

promoter involving the hepatocyte nuclear factor binding site described by (Kurbanov et al. 

2005). This mutation may be specific to HBV genotype E and results in a lower HBeAg titre, 

a high HBV DNA level and progression towards liver fibrosis.  

5. Mixed infections and recombination 

ucleotides in the sequencing electropherogram 

r mixed infections by cloning either the product of the preS, S, or the C PCR 

entioned above.  

Phylogenetic analyses and distance plots of clones of the CAR177 assigned all S and X PCR 

ithin the preC/C ORF genotype E was partially replaced by a 

genotype D fragment (358bp). Simplot analysis mapped the E/D and D/E recombination sites 

to position 1723 and 2081 respectively (nt positions 200 and 558 in the C fragment) 

corresponding essentially to first third of the 1067 bp long C fragment (Figure 18).  

 

 

i

2.

Twelve serum samples presenting mixed n

were screened fo

fragment into a vector (see Figures 16a, 16b and 17a, 17b). The cloning showed no evidence 

of mixed infections except for the CAR001 m

fragments to genotype E. W
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3. Discussion 

The present study shows that the genotype E crescent previously described to span from 

Senegal in the Northwest to Angola in the South, extends far enough to the East to include at 

s of CAR. Based on 30 full-length sequences and 36 partial 

sequences a prevalence of 94% of genotype E was found. More than 98% of sequences were 

003; Mulders et al. 2004; Makuwa et al. 2006; Olinger et al. 2006) also found very high 

prevalence of genotype E 43% (Cameroon) to 87.4%; (liver patients in Ivory Coast), although 

Careful analysis of the branching pattern shows that most CAR strains are similar to strains 

 W  the low genetic diversity and its exclusive 

endemicity  in sub-Saharan Africa we have speculated that genotype E strains emerged from a 

ces seem to share a common 

al. 2000). 

least the most populated area

obtained from HBsAg and anti-HBc positive patients with chronic liver disease. Thus this 

high prevalence may be biased if genotype E strains are more likely to cause chronic 

infections or if they have a higher perinatal infectivity. However, similar studies in unselected 

populations in other sub-Saharan countries such as Benin, Togo, Mali, Gabon and Cameroon, 

in chronic liver disease patients in Nigeria and Ivory Coast (Odemuyiwa et al. 2001; Suzuki et 

al. 2

less high than in CAR. The diversity of the genotype E CAR strains is only 1.37% for the full-

length genome and these do not increase the overall diversity of all genotype E sequences in 

the database (1.67%).  

from est African countries. Because of

virus introduced less than 200 years ago (Mulders et al. 2004). However, the low diversity 

and the low bootstrap values do not allow delineating geographic regions from where the 

virus may have emerged. In addition to genotype E, three genotype D strains were found 

which according to their branching pattern and genetic distan

ancestor with Somalian strains, classified as D4 (Norder et al. 2004).  

Recombinations between HBV viruses may be a more frequent than initially anticipated 

(Bowyer and Sim 2000; Hannoun et al. 2000; Morozov et al. 2000,Sugauchi, 2001 #51; 

Sugauchi et al. 2002). Several hybrid genotypes have been described such as C/D in Tibet 

(Cui et al. 2002) recombination between genotype A and C in Vietnam (Hannoun et 
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detected the recombination of genotype E and D are very similar suggesting a common 

precursor. Similar event might have occurred earlier in the history of genotype E now the 

dominant genotype in West Africa. Interestingly only a single A1 strain was detected that 

resembled by Kimura distance and branching to those that were most frequently found in 

X PCR fragment

 

Figure 18 : Similarity plots comparing the S, X 

and preC/C genes of CAR177 

Comparison was done to the sequence of genotype 
E (line) and genotype D (interrupted line). Only 
relevant genotypes are shown. Breakpoints are 
indicated.  

 

In Nigeria, genotype A (Mulders et al. 2004; Olinger et al. 2006) recombined with an E/D 

sequence to a triple recombination. Here a new HBV hybrid of genoty

and preC/C gene has been identified. The recombination site was located in the C gene, but it 

is unclear whether the parent strain belongs to D3 or D4 because of an incomplete sequence 

of the Somalia D4 strains. This would at present seem like the most probably donor strain of 

the D/E recombination. As discussed by Bowyer et al. (2000) the X/core genes in which we 
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Eastern and South-eastern Africa (Kramvis et al. 2002; Sugauchi et al. 2002; Hannoun et al. 

2005). Although only few sequences are available from the latter regions, these seem to be 

dominated by A1 and D3/D4 strains, while the genotype E extends from West Africa to 

Central Africa with little overlap of genotypes in CAR.  
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Part III 

 

Results of part III were published as: 

Olinger CM, Venard V, Njayou M, Oyefolu AO, Maïga I, Kemp AJ, Omilabu SA, le Faou A, 

Muller CP. (2006) Phylogenetic analysis of the precore/core gene of hepatitis B virus 

genotypes E and A in West Africa: new subtypes, mixed infections and recombinations. 

Journal of General Virology. 87:1163-1173. 

 

Phylogenetic analysis of the preC/C gene of hepatitis B genotypes E and A in 

West-Africa: New subtypes, mixed infections and recombinations 

In different cohorts of otherwise healthy children or adults from 7 West-African countries, the 

Institute of Immunology observed in an earlier study, between 9% and 65% of chronic 

carriers and up to 100% in HIV patients from Cameroon (Olubuyide et al. 1997; Mulders et 

al. 2004). Most of these studies were based on the genetic analysis of the preS/S gene. An 

intriguing finding, confirmed since also by others, was the conspicuously low sequence 

diversity of HBV/E of 1.67% in the preS/S gene (Odemuyiwa et al. 2001; Mulders et al. 

2004); (Kramvis et al. 2005). Only relatively few preC/C gene sequences of genotype E have 

been analyzed and genotype E did not seem to separate from genotype D in the X and C 

ORFs (Bowyer and Sim 2000), raising some initial questions about its existence (Kidd-

Ljunggren et al. 1995; Kramvis et al. 2005). Therefore further studies and sequencing of 

larger numbers of in particular the C gene have been recommended (Kramvis et al. 2005). 

Here, we report 122 new preC/C sequences from 3 West African countries in order to 

determine whether the low sequence diversity found in the preS/S gene can also be confirmed 

for this gene and how these sequences compare phylogenetically with the other genotypes. 

Cameroon was included in this study to investigate whether the high genotype A prevalence 

within the genotype E endemic crescent may have led to mixed infections and 

recombinations. To distinguish between genotype A and nonA, a 6 nt insertion in the former 
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was exploited (

of HBV/E thro

Hannoun et al. 2002). Considering the very high prevalence of chronic carriers 

ughout West-Africa (Ahmed et al. 1998; Allain et al. 2003), genetic analysis of 

the preC and C gene may also provide clues to explain this excessive rate of chronicity 

ssociated with this genotype. 

isease. The donors from Mali were otherwise 

tudents. About two thirds of patients were known to be HIV positive or became 

known during hospitalisation. Blood was drawn after informed consent of donors or their 

Sera were tested for HBs and HBe antigen using the Murex® kits (Abbott Laboratories). HIV 

a

1. Clinical samples 

Serum samples were collected from 110 HBsAg positive donors between 1998 and 2004 in 

three West African countries: Nigeria (Lagos, Ibadan), Mali (Bamako) and Cameroon (North, 

East, West, South and Central Province). The adults from Nigeria were patients admitted to 

local hospitals, many of them with liver d

healthy s

parents or guardians in the case of children. The larger part of the described cohorts had 

already been included in an earlier study (Mulders et al. 2004). 

infections were confirmed using the Murex® HIV-1.2.0 kit (Abbott Laboratories). Serum 

samples were stored at -80 °C until use. 

2. Amplification of the preC/C region 

A first PCR served as detection PCR for mixed infections (Figure 19b). Whenever both 

genotype specific reverse primers amplified a PCR product, a mixed infection was assumed. 

To confirm this and to obtain a larger PCR fragment for sequencing, the second round of the 

detection PCR was repeated with C1 as the forward primer (Figure 19c). The PCR products 

obtained (C1/rvA and C1/rvnonA) were purified in a 1% agarose gel and sequenced using the 

same primers. When after the detection PCR only one of both genotype specific reactions was 

positive, the sequencing was done with the corresponding reverse primer and the C1 forward 

primer. In parallel, a genotype-insensitive PCR (Figure 19a) was run on all samples. 

Technical details of the different PCR reactions are described below. 

HBV DNA was isolated from 200 µl of serum using the QIAamp® DNA Blood Mini Kit 

(Qiagen) and eluted in 200 µl volume. Genomic amplification of the preC/C region was 
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performed by polymerase chain reaction in a semi-nested format using primers PC1 (5’-

GGAGACCACCGTGAACGC-3’, pos 1610-1627) and C2 for the first round and C1 (5’-

CTGGGAGGAGTTGGGGGA-3’, pos 1730-1747) and C2 (5’-GTAGAAGAATAAAGCCC-

3’, pos 2487-2503) (Kao et al. 2002) for the second round (Figure 19a). Nucleotides are 

numbered according to the HBV/E reference strain GenBank X75657 (Norder et al. 1994). 

formed for 40 cycles (95 °C for 1 min; 50 °C, 1 min; 72 °C, 2 min and 

a final extension step at 72 °C for 10 min) in a 50 µl reaction volume containing 5 µl of 

the forward primer PC1 in 

combination with either rvA (5’-TTCTTCTTCTAGGGGACCTGCCTCAGTCC-3’, pos 

TGGCCTT-3’, pos 1865-1895) giving a fragment of 

 were as described above except for 30 

 in the first round and 62 °C in the second round. 

ere submitted to the 

The first round was per

extracted DNA, 1X PCR buffer, 0.2 mM dNTPs, 1.8 mM MgCl2, 0.3 µM of each primer and 

2 U of Platinum® Taq DNA polymerase (Invitrogen). After the first amplification, 1 µl of the 

PCR products was reamplified with primers C1 and C2 for another 40 cycles and using the 

same PCR conditions (Figure 19a). 

Genotype mixtures were analysed by amplification of the C gene with A-specific and non-A 

specific primers as previously described (Hannoun et al. 2002). In order to increase PCR 

sensitivity, each sample was tested first in parallel using 

2356-2384) or rvnonA (5’- TTCTTCTTCTAGGGGACCTGCCTCATCGT-3’, pos 2350-

2378). In the second round, PC1 was replaced by fw1865 (5’-

CAAGCCTCCAAGCTGTGCCTTGGG

a maximum of 560 bp (Figure 19b). PCR conditions

cycles and an annealing temperature of 58 °C

The amplified products were separated in a 1% agarose gel, stained with ethidium bromide. In 

the case of a positive reaction, the second round was repeated under the same PCR conditions, 

using C1 as forward primer (Figure 19c). 

Complete genome sequencing using four semi-nested PCR reactions, cloning and 

phylogenetic analysis were done as described in Chapter 3. 180 sequences were obtained 

either with primers C1C2 (Figure 19a), or C1rvA or C1rvnonA (Figure 19c) and included the 

entire preC/C gene with a total length of 517-584 bp, depending on the genotype (genome 

position 1814-2331, numbering according to X75657). In addition, 3 complete genomes and 4 

preS fragments (pos 2455-159) were sequenced. Sequences w

EMBL/GenBank/DDBJ database under accession no.: AM110794-AM110915 for the preC/C 

gene and AM180623-AM180628 for the complete genome and preS fragment sequences. 
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3. Results 

3.1. Screening for mixed infection 

All serum samples were screened for mixed infections by genotype A and nonA strains, using 

two genotype-specific reverse primers (rvA; rvnonA), exploiting the 6-nucleotides insertion in 

genotype A (Figure 19b) (Hannoun et al. 2002). All samples were sequenced with the C1 

forward primer and either the reverse primer rvA or rvnonA depending on which reverse 

primer gave a positive fragment in the genotype-specific PCR (Figure 19c). A total of 49 

samples were only positive in either the rvA (20 of 49) or the rvnonA detection PCR reaction 

(29 of 49). Phylogenetic analysis showed that 12 rvA products obtained were of genotype A 

and 28 rvnonA products of genotype E. Surprisingly 8 rvA products were of genotype E and 1 

rvnonA product was of genotype A. The C1C2 sequences showed that in the latter 9 samples 

binding of the rvA and rvnonA primers was non-specific (Table 12).  

Genotype A insertion

PC1
C1

rvA 
or nonA

C2

fw1865

(a) Genotype independent PCR

(b) Genotype specific detection PCR

(c) Genotype specific sequencing PCR

1814 1901 2357 2452

1730
2503

1865 2378

preC C ORF

1610

PC11610

rvA 
or nonA 2378

PC11610

C11730

two 

rounds (Figure 19b) giving 66 fragments. Sequencing assigned 13 of 33 rvA products to 

Figure 19 : PCR reactions used to detect mixed 

infections and for genotype specific PCR 

PCR reactions used to detect mixed infections (b) 
and to generate genotype-specific (c) and genotype 
unspecific (a) products for sequencing. All PCRs 

are semi-nested with different forward primers. 
Positions are given according to the HBV/E 
reference strain accession no. X75657. 

 

Another 33 samples were positive in both genotype-specific detection PCR reactions after 
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genotype A and 31 of 33 rvnonA to genotype E. 22 of the 66 sequences did not correspond to 

the expected genotype: 2 of the 33 rvnonA products were of genotype A and 20 of the 33 rvA 

. Thus only 84 of 115 sequences that were obtained by 

genotype-specific detection PCR were confirmed by sequencing (Table 12). In 11 patients 

nA) specific PCR, with the 

genotype of the sequence of the PCR fragments as well as the genotype-independent PCR 

  Genotype-specific PCR   

products were identified as genotype E

among the above 110, both rvA and rvnonA sequences were of the predicted genotype and for 

one, the C1C2 sequence was of genotype A, while the rvnonA sequence of genotype E, thus 

giving a total of 12 mixed infected samples with two distinct sequences available. 

One sample (NIE24072) was further analysed by cloning the product of the S fragment PCR 

into a vector. 5 colonies were randomly selected and the plasmid was sequenced using M13 

primers. One clone did not contain an insert, 3 clones contained sequences identified as 

genotype A3 with a divergence of 2.5% among the 3 sequences and one clone contained a 

genotype E sequence. 

Table 12 : Comparison of the results of the genotype A (rvA) and nonA (rvno

 rvA sequence rvnonA sequence  

Genotype A E A E Total 

rvA+  rvnonA- 12 7+1*, † NA NA 19+1 

rvA-  rvnonA+ NA NA 1† 26 (1)‡+2 27+2 

rvA+  rvnonA+ 13 (11) 20 2 27 (11)+4 62+4 

Total 25 27+1 3 53+6 108+7 

 Genotype-independent PCR  

Genotype A E Total 

Genotype-specific PCR correct 4 23 27 

Genotype-specific PCR negative 3 25 28 

1 (1) 1 

Genotype-specific PCR false 1† 8† 9 

 C1C2 of NIE24072 
 

identified as mixed infected based on both >5 ambiguous 
e sequencing electropherograms and an unreadable reverse 

† For these patients, the C1C2 sequence confirmed binding of the irrelevant reverse primer in the genotype-

* Numbers after ‘+’ indicate the number of samples 
nucleotides found in genotype specific positions in th
fragment. 

specific PCR. 

‡ Numbers in brackets indicate sequences of this category identified from patients with mixed infections from 
whom both a distinct genotype A and E sequence were obtained.  
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Table 13 :  Prevalence of single and mixed genotype infections 

Country Cohort Age (yrs)  A E A/E* Total  

Cameroon Adults 18-48 HIV+ 10 9 4 23  

   HIV- 0 0 0 0  

 Children 0.6-5 HIV+ 1 6 6+4 17  

   HIV- 0 0 1 1  

Mali Adults 22-28 HIV+ 1 1 0 2  

   HIV- 2 16 0 18  

Nigeria Adults 12-57 HIV+ 4 26 1+3 34  

   HIV- 0 3 0 3  

 Children 6-14 HIV+ 0 5 0 5  

   HIV- 0 7 0 7  

Subtotals HIV+ 16 47 11+7 81  

 
 

HIV- 2 26 1 29   

Total    HIV+/- 18 73 12+7 110  
 

* bers after ‘+’ indicate the number of samples iden based on h >5 ambi ous 
eotides found in genotype specific posi ons in th ms and a dable verse 

gment. 

ndependent PCR re 19 as positive r 65 s or e 

ed the sequence ained by the notype- R 8 

s, sequences were obtaine y the type-indep ent PCR , w e 

notype-specific PCR was negative for ecause of the wer 

 the latter. For 9 sample  

ecific PCR However, in these cas e genotype specific 

sequence was obtained by binding of the false reverse primer (Table 12). 

he genotype-sensitiv  was tested using 2 plasmids containing the C 

3 9  

s present in a sufficient excess (>100 times) over the specific genotype, binding 

 Num
nucl

tified as mixed infected 
e sequencing electropherogra

bot
n unrea

gu
reti

fra

 

The genotype-i (Figu a) w  fo amples. F 27, th

sequence of this PCR confirm obt ge specific PC . For 2

patient d b  geno end  only hile th

ge both fragments probably b lo

sensitivity of s, the genotype-independent PCR gave the same

sequence as the genotype-sp .  es th

The robustness of t e PCR

fragment (pos 1644-2661) of either genotype A or E. The plasmid concentration of one 

genotype was kept constant (103 copies/µl) and increasing concentrations of the other 

genotype (10  to 10 copies/µl, ratios of 1:1 to 1000:1) were added. When the irrelevant

genotype wa

and amplification of the false template occurred, explaining most of the false PCR products. 
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77 

Figure 20 : Phylogenetic tree of sequences clustering with genotype A (a) or E (b) reference strains 
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The electropherograms of seven of the forward sequences obtained in the C1/rvA/rvnonA 

(Figure 19c) and the C1/C2 (Figure 19a) PCR reactions showed distinct peaks in at least 5 

genotype specific positions, supposedly because of the presence of both genotypes. The 

reverse reaction of these seven sequences showed a high background or was not readable, an 

expected result of a frame shift between the two reverse fragments of A and nonA (i.e. E) 

starting at the genotype A insertion. These 7 patients were therefore also considered as mixed 

infected. Thus, the sole detection of both sequences may lead to an underestimation of the 

occurrence of mixed infections (Table 12).  

3.2. Genotype prevalence and mixed infections 

122 sequences from 110 patients from HIV-negative and HIV-positive children and adults 

were further analysed (Table 13). Ninety-two of 110 patients were (co)-infected with 

genotype E and this genotype was also the most prevalent in each of the three countries. 

Genotype A was the only other genotype detected in the three countries (Nigeria 8/49, Mali 

3/20 and Cameroon 26/41 patients). This genotype was most dominant in HIV-positive 

donors from Cameroon. Mixed infections of genotype E with genotype A were essentially 

limited to Cameroon and Nigerian HIV-positive donors (18 of 19).

 

 A 

(a) or E (b) reference strains 

Sequences clustering with subtype A3 are marked as , the Mali subtype A4 as , the Nigerian 
subtype A5 as  and the Nigerian recombinant as . The genotype E sequences are labelled with . 

abbreviations have been used: MAL: Mali adults; CAE: Cameroon adults; CAEch: Cameroon children; 
NIE24xxx and NIElagxxx: Nigerian adults and NIE12xxx: Nigerian children. The insert (c) shows a 
tree calculated using complete genome sequences of references.  

Legend to Figure 20 (previous page) : Phylogenetic tree of sequences clustering with genotype

Bootstrap values of important nodes are indicated as well as the diversities of subgroups. The following 

78 



Chapter 4. Results and Discussions Part III 

(b)
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(a

, the Mali subtype A4 as  and the Nigerian subtype A5 
as . Bootstrap values of important nodes are indicated. The following abbreviations have been used: MAL: 
Mali adults; CAE: Cameroon adults and NIE24xxx Nigerian adults. 

3.3. Genetic variability of genotypes and subtypes 

) although this was not the 

case for the complete genome sequences (Figure 21a). The 3 genotype A sequences from Mali 

id not cluster with the subtypes A1 to A3 but formed a cluster of their own tentatively 

designated as subtype A4, with an average distance of 5.41% (4.93% to A2 and 5.86% to A3) 

to the other A subtypes, although the bootstrap value was relatively low (42% of calculated 

trees). The diversity among these Mali sequences was large (2.32%) in comparison to the 

Mali E sequences (1.47%). For two A4 strains from Mali  

(AM110795 and AM180623) and one A3 strain from Cameroon (AM180624) complete 

genome sequences were obtained (Figure 21a). The node separating the A3 complete genome 

)

 

Figure 21 : Phylogenetic tree of genotype A complete genome sequences (a) and preS fragment sequences 

(pos. 2455-159)  

Sequences clustering with subtype A3 are marked as 

With a maximal diversity of 9.43%, genotype A sequences found in the three countries were 

highly diverse. Phylogenetic analysis differentiated 3 distinct subtypes. The A sequences from 

Cameroon clustered with the recently defined subgroup A”/Ac/A3 (Figure 20a). The 

bootstrap value separating this A3 lineage from the A1 and A2 subtypes was 82%. The 

genetic distance between our A3 strains and the European/American A2 subtype (5.88%) is 

smaller than the distance to the African/Asian A1 subtype (5.97%

d

79 



Chapter 4. Results and Discussions Part III 

to the A3 genome was 6% (divergence of 0.7%). Four Nigerian genotype A sequences formed 

another group of their own, (tentatively designated as A5), with an average diversity of 2.37% 

and an average distance to the other A subtypes of 5.11% (4.47% to A3 and 5.32% to A2). A4 

and A5 were separated by an average genetic distance of 5.05%. For two A5 (AM180625 and 

AM180626) and two A3 strains (AM180627 and AM180628), only the preS fragment (in 

addition to the preC/C fragment) was obtained. The bootstrap value separating the A5 from 

the A3 group was 96% (Figure 21a). For the A5 preS sequences a distance to the A3 

sequences of 4.3% was calculated. The diversity between A4 and A5 was 5.2%. The 

divergence within A4 and A5 was 0.7% and 2.4%. 

The diversity of the genotype E sequences was 1.41%, which was significantly lower 

(P<0.001) than the average diversity of 2.85% found within the genotype A subtypes A3 to

es are closest to HBV/D1 and D2 with an average distance between E and D1-

om distant provinces in Nigeria and 

ro 8; Imo NIE24146; Kogi NIE24142; 

Northern Province, CAE12 and Central Province, CAE151). Identical sequences were also 

 

A5. The topology of the tree as well as the diversity calculations showed that the HBV/E 

preC/C sequenc

D4 of 4.8-5.9% versus 9.2% to the A3 subtype (Figure 20b). 

Identical genotype E sequences were found in patients fr

Came on (e.g. Abia, NIE24072; Ogun, NIE2400

found in the different countries such as East-Cameroon (CAE388) and the province of Oyo in 

Western Nigeria (NIE24233). In addition, 7 genotype A strains obtained from the Cameroon 

children cohort showed 100% identical sequences. When the patients were divided into three 

age groups (<14, 14-30 and >30 years), the ratio of E to A sequences in the three groups 

decreased: 3.3; 3 and 2.4, at least partially explaining the significant (P<0.001) increase in 

genetic diversity, when all sequences were combined (0.67%, 2.1% and 3.2%). Also, within 

both genotypes the diversity tended to increase with age, but significance was lost. 
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A2       GGGACATG------------------------------------GACATT
G        GGGGCATGGATAGAACAACTTTGCCATATGGCCTTTTTGGCTTAGACATT
E        GGGGCATG------------------------------------GACATT
NIE24072 GGGGCATGAATAGAACAACTTTGCCATATGGCCTCTTGGGCTTAGACATT

Genotype G insertion

1814 2014 2331

First 200 bp

preC/C

Last 317 bp

preC C ORF

HBV/D1-D3
HBV/E

HBV/D4
HBV/A1

HBV/A2
NIE24072

HBV/A3
HBV/D1-D3

HBV/E

Scale

HBV/G
HBV/B

HBV/C
HBV/F

HBV/H
HBV/CHIMP

HBV/A/D/E

NIE24072
HBV/D/E

HBV/G
HBV/CHIMP

HBV/F/H
HBV/B/C 0.01

HBV/D4
HBV/A1

HBV/A2
AB194951 HBV/Ac

AB194950 HBV/Ac

AB194949 HBV/Ac

NIE24072

HBV/A3

HBV/B
HBV/C

HBV/G
HBV/H

HBV/F
HBV/CHIMP  

1814C or 

A1814T) of the preC ORF. Mutations in positions G1896A or G1897A were identified in 34 

patients, primarily in genotype E sequences (32 of 34). In 18 cases both the wild-type and the 

mutation were found to coexist in position 1896 (10 quasi-species and 8 mixed infected 

patients). The latter mutation was frequently found (7 of 14) together with G1899A. These 

mutations introduce a new stop codon (TGG to TAG or TGA), which causes a premature non-

functional HBeAg. Whenever G1896A is associated with the double mutation A1850T and 

C1858T, it causes an increase in stability of the pregenomic RNA encapsidation signal. This 

was the case in 31 of 88 sequences, all of genotype E. In two genotype A sequences a C1857T 

Figure 22 : Phylogenetic analysis of the NIE24072 outlier based on the first 200 bp (left), the complete 

preC/C gene (centre) and the last 317 bp (right)  

The scale is the same as for the trees of Figure 20. Genotypes A, D and E group on the same node when the 
phylogenetic tree is constructed using only the first 200 bp. 

 

3.4. Mutations in the preC/C gene 

A summary of specific mutations is shown in Table 14. Four patients, all from Cameroon 

were infected with genotype A strains displaying a mutation in the start codon (A
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mutation was found and the same 2 sequences had G1897A. The A1850T mutation, normally 

restricted to nonA genotypes, was also found in a genotype A strain from Mali. Interestingly, 

the G1896A mutation was 3 times more frequent in HIV infected patients (34.2% versus 

11%). While in Nigeria, this mutation was restricted to adults; in Cameroon it was 4 times 

more frequent in children than adults (48% to 11%). In two patients, additional rare stop 

codons were identified: C1817T in the preC and G2262T in the core region. Finally, all 

identified A genotypes except two (NIE24063, MAL42) presented a C1862, found to be very 

rare in any of the genotypes A-H. No significant difference in the mutation pattern was found 

between sequences obtained from mixed or single infected patients. 

3.5. Insertions and deletions in the preC/C gene 

The rvA sequence of a mixed infected patient from Nigeria (AM110794), had an insertion of 

36 bp at the beginning of the C ORF (position 1903) which differed only by 3 non-

synonymous nucleotides from a 36 bp long C gene fragment of genotype G located in the 

same nucleotide positions in both the genotype G reference sequence and NIE24072 (Figure

ther match has only 19 of 36 bp identity. The first 

 all other genotypes were grouped correctly 

igure 22). However, the first 200 bp upstream of the insert contain two mutations specific to 

rther downstream of the insertion, many 

ve patients presented deletions in the C ORF 

 

22). A BLAST search of this insert showed that a similar sequence was not found in any other 

sequence in GenBank and that the closest o

200 bp of this strain clustered with genotype E as well as genotypes A and D whereas the last 

356 bp clustered with the HBV/A3 sequences and

(F

nonA genotypes (positions: 1850 and 1858), while fu

typical genotype A mutations were identified. Fi

(Table 14): one from Mali (2008-2054), two from Nigeria (2121 and 2172-2307), the latter 

being mixed infected and two with single nucleotide deletions from Cameroon (nt 2170; nt 

2250). All these deletions cause a disruption of the reading frame of both the HBeAg and the 

core protein. 
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Table 14 : Specific mutations in the preC/C gene of 29 genotype A and 89 genotype E sequences 

Mutation A E 

HBeAg start codon mutation 

A1814C/A1814T 4 / 

HBeAg stop codon apparition pgRNA 
encapsidation signal  

C1817T / 1 

A1850T 1 88 

C1857T 2 / 

C1858T / 89 

/ 14 (18) 

G1897A 2 / 

G1896A (A+G) 

C1858T and G1896A(A+G) / 13 (18) 

A1850T and C1858T / 88 

Characteristic mutation 

G1862C 26 / 

G1862T 1 / 

Frequent mutation 

G1899A(A+G) 3 (1) 6 (4) 

G1896A and G1899A (A+G) / 3 (4) 

Deletions in core protein 

46 bp (2008-2054) / 1 

1 bp (2121) / 1 

1 bp (2170) 1 / 

135 bp (2172-2307) 1 / 

1 bp (2250) 1 / 

Core/HBeAg stop codon apparition 

G2262T / 1 
 

T
excluded from

he preC sequences of one genotype A and 3 genotype E strains were not entirely readable and were therefore 
 this table. 
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3.6. HBeAg status and mutations 

Forty-nine patients, for which there was enough serum, were tested for HBeAg, including 3 

mixed infected with 2 sequences and 2 with only one sequence available. One of two 

sequences from a mixed infected HBeAg negative patient had the 1814 start codon mutation 

whereas the other sequence had no mutation a ession. 5 sequences 

from single infected patients had mutations at 1817, 1896 or 897 (qua

positions was considered as wildtype). Two of the 5 patients with mutations at 1896/1897 and 

the patient with the C1817T mutation were HBeAg negative.  the patie ts with wild-type 

nucleotides in these 3 positions, 46 were HBeAg positive (inc ding 4 m d infections), 6 

HBeAg negative (including 1 mixed infection). In all the mixed infected cases, the second 

sequence, wh le, was also of wildtype. Three patients had deletions: The one with 

the single nucleotide deletion at nt 2170 was HBeAg negative, the patients with the deletion at 

2121 and 2172-2307 were associated with an HBeAg positive status. 

4. Discussio

The present survey presents 122 new preC/C sequences from ajor countries in West-

Africa as wel quences and 4 preS regions of HBV. As expected 

from previous nd others (Norder et al. 1994; Odemuyiwa et al. 2001; 

Suzuki et al.  2001; van Steenbergen et al. 002); (B ista et al. 1999; 

Owiredu et al ki et al. 2003), the majority of the se ences fro  this region were 

of genotype E. Genotype A was the only other genotype found  the region. Although in our 

cohorts HIV-positive donors dominated the high prevalence of genotype A in Cameroon does 

not seem to b  HIV patients (Mulders et al. 2004; Kurbanov et al. 2005). Despite 

the large dista n sites (up to 3000 km) the 92 genotype E 

reC/C sequences showed very little genetic diversity irrespective of origin and other 

l. 2004) or 1.54 % all preS/S sequences included) the diversity of our 92 

sequences was 1.41% or 1.59% when all preC/C sequences from GenBank were included. 

When the preS/S and preC/C genes of the same 45 strains were compared, the C gene 

sequences were 1.5 and 2.4 times more diverse than the S genes for genotypes A and E 

respectively. Similarity plots showed that similar to the preS/S gene, the preC/C gene was 

ffecting the HBeAg expr

 1 si-species in these 

Of n

lu ixe

en availab

n 

 three m

l as 3 complete genome se

 studies from ourselves a

2003); (Liu et al.  2 apt

. 2001; Suzu qu m

 in

e limited to

nces between the different collectio

p

patients’ characteristics. Similar to the genetic diversity reported earlier for the preS/S gene 

(1.67%, (Mulders et a
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most closely related to genotype D in particular the subgenotype D1 and D2 (about 5% 

compared to >9% for the other genotypes). Two single-infected samples seemed to be the 

 A2 may 

A3 and may be a more recent progeny of A3. 

The Mali genotype A strains are phylogenetically distinct from the other A subtypes (average 

result of an A/E recombination as the preS/S sequences was of genotype A (Mulders et al. 

2004) and the preC/C of genotype E (e.g. AJ605037 and AM11089). 

All genotype A sequences from Cameroon were identified as A3, and none grouped with the 

African/Asian A1 or European/American A2 subtype (Bowyer et al. 1997; Hasegawa et al. 

2004). In our earlier study, the preS/S sequences of several of these strains had been assigned 

to a group A” (Mulders et al. 2004), which has now been renamed as A3 (Hannoun et al. 

2005; Kurbanov et al. 2005). Our results confirm that subtype A3 is somewhat closer to the 

European A2 subtype (average genetic distance: 5.88%) than to the African/Asian A1 

(average genetic distance: 5.97%(Hannoun et al. 2005). Instead of the G1862T mutation in 

the precore gene, thought to be characteristic for A3 strains (Hannoun et al. 2005) G1862C 

was predominant in our sequences. All strains were of the A2-type in position 1888. The 

genetic diversity of subtype A3 is 3.85% compared to the 2.19% of subtype A2. Thus

have a shorter evolutionary history than 

distance of 5.4%). With a genetic distance of 4.93%, they are closest to the A2/Ae subtype but 

warrant a new subgenotype tentatively designated A4 according to the recommendation of 

>4% genetic distance between subgenotypes. Two complete genome sequences of this 

subtype corroborated the phylogenetic difference with the other subtypes with a bootstrap 

value of 97%. 

The A sequences from Nigeria formed a cluster of their own with an average genetic distance 

of 4.47% and a maximum distance of 6.5% from the Cameroon A3 strains, complying with 

the proposed criteria (genetic distance >4%) for a new genotype subtype, tentatively 

designated A5. Phylogenetic analysis of two preS sequences further corroborated the 

definition of this new subtype. Assuming an estimated mutation rate of 4.2x10-5 per nt and per 

year (Okamoto et al. 1987; Orito et al. 1989; Hannoun et al. 2000) the two strains would have 

taken 500 years to evolve from a common ancestor. The Nigerian strain NIE24072 shows 

evidence of a triple recombination of a nonA (E/D) sequence and an A3 sequence separated 

by a G specific insert (Figure 22). Although genotype G has so far not been reported from 
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Africa, the insertion in some of the quasi-species sequences suggests that the patient must 

have been in contact with a genotype G strain. 

Considering the co-existence of genotype A and E in West Africa, the frequency of co-

infections is of interest. Mixed infections were identified by genotype-specific PCR in a 

of HIV 

status and that mixed infections are not restricted to HIV positive patients. 

 thought to be the most frequent cause of chronic infection in African children 

(Edmunds et al. 1996). The risk of becoming a chronic carrier is especially high for children 

number of patients, but sequences of both genotypes were confirmed only in 12 cases. 7 

additional cases were identified by >5 ambiguous nucleotides in genotype-specific positions, 

paired with an unreadable reverse sequence (caused by the genotype A specific insertion). 

Despite these additional criteria, false positive mixed infections are unlikely and the 17.3% 

mixed infections may still be a slight underestimation. 37% of patients from Cameroon were 

co-infected with both genotypes and 79% of these were children. As expected a lower rate of 

co-infection was detected in Nigeria. All but one mixed-infected patient were HIV-positive, 

but this may be biased by the large number of HIV-positive donors from Cameroon. Thus 

mixed infections seemed to be frequent when (these) two genotypes co-circulate. Together 

with earlier studies by us and others in Cameroon (Mulders et al. 2004; Kurbanov et al. 

2005), this suggests that both genotypes are present in the population independent 

Considering the low genetic diversity of the most prevalent genotype E and its virtual absence 

in the Americas, we suggested a short evolutionary history and a recent introduction into 

humans (Mulders et al. 2004). This, however, is in contrast with the excessively high 

endemicity of acute and chronic hepatitis B infection throughout West-Africa. Perinatal 

transmission is

born to HBeAg positive mothers (Beasley et al. 1981; Beasley et al. 1981; Thomas 1982; Chu 

et al. 1985).  80% of the donors tested were HBeAg positive with a clear genotype bias: 35 of 

39 (89.8%) genotype E carriers but only 2 of 6 (33.3%) genotype A carriers were HBeAg 

positive. If this can be confirmed in a larger study, it could partially explain the high(er) 

prevalence of genotype E. The HBeAg negativity associated with A and E sequences 

correspond to a number of mutations in preC/C sequences believed to affect HBeAg 

expression (1814, start codon mutation; 1896 and 1897, encoding a new stop codon), but in 

more than half of cases both wild-type and mutated nucleotides co-existed as quasi-species or 

mixed infections, explaining the expression of HBeAg. The 3 HBeAg positive cases, where 
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only mutant strains are detectable, wild-type strains may have been missed. HBeAg negative 

cases without the above mutations warrant the analysis of the core promoter region.  

In all cases but one, the G1896A mutation was associated with the A1850T/C1858T double 

mutation. Only two sequences presented G1897A encoding a stop codon and for both a 

C1857T mutation was detected instead of the double mutation. This might be related to the 

stem loop formation in this region and the pregenomic RNA encapsidation signal, but the 

clinical significance of this is not clear. 

This study confirms that genotype E is dominant throughout West-Africa and presents a low 

but 2 – 3 times higher diversity on the preC/C gene than on the preS/S gene supporting our 

earlier speculation of a short evolutionary history of this genotype and a recent introduction 

into humans of this genotype. The high prevalence of genotype E may be partially explained 

by the 2 – 3 fold higher rate of HBeAg positivity in comparison to genotype A. In contrast to 

genotype E, the diversity of genotype A suggests several new subtypes. In Cameroon, where 

genotypes A an E co-circulate, the frequency of mixed infections is high and A/E 

recombinations seem to have occurred. Recombinations with other genotypes or subtypes 

could partially explain the current genetic diversity.  
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Part IV 

 

Results of part IV were published as: 

Olinger CM, Lazouskaya NV, Eremin VF and Muller CP. (2008) Multiple genotypes and 

subtypes of hepatitis B and C viruses in Belarus: similarities with Russia and West European 

 et al. 2002; Norder et al. 2004), these 

infections represent major public health problems. There is increasing evidence that the risk 

of developing severe liver injury and the response to antiviral treatment is influenced by the 

genotypes and subtypes involved (Nolte 2001; Fung and Lok 2004; Yoo et al. 2005).  

The hepatitis B virus has been phylogenetically classified into eight genotypes (A-H) with 

different geographic distributions (Okamoto et al. 1988; Norder et al. 1992). At least six 

major genotypes of HCV (1-6), with more than 60 subtypes, have been identified worldwide 

(Bukh et al. 1995; Schreier et al. 1996; Zein and Persing 1996). HCV subtypes 1a, 1b, 2a, 2b, 

2c, and 3a are responsible for more than 90% of infections in North and South America, 

Europe and Japan. In the United States, genotypes 1a and 1b account for approximately 35% 

each of the infections (Zein et al. 1996) while in Japan, 73% are caused by the latter subtype 

(Takada et al. 1993). Subtype 3a is dominant in intravenous drug users in Europe and the 

United States (Pawlotsky et al. 1995). Genotype 4 is prevalent in North Africa and the Middle 

East (Chamberlain et al. 1997; Abdulkarim et al. 1998), and genotypes 5 and 6 are found in 

South Africa and Hong Kong, respectively (Cha et al. 1992; Simmonds et al. 1993).  

influences. Clinical Microbiology and Immunology. In press. 

 

Multiple genotypes and subtypes of HBV and HCV in Belarus: Similarities with 

Russia and West-European influences 

With an estimated 400 million people chronically infected with hepatitis B virus (HBV) and 

170 million with hepatitis C virus (HCV) (Madhava
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Until now, littl

some parts of t

e information on the genotype distribution of HBV and HCV is available for 

he world, especially for developing countries as well as for some of the former 

Soviet Republics. The Republic of Belarus, reports a seroprevalence of 4.8% for the hepatitis 

 and 1.26% for the hepatitis C virus but little is known about the molecular characteristics of 

the circulating viruses. Here, we report the molecular characterization of HBV and HCV 

m patients with known HBsAg 

s from the Infectious Disease Hospital in Minsk. The residents of Minsk 

correspond to about 25% of the country’s population and are representative of the whole 

ts from both the capital and the rest of the 
® HBsAg kit version 3 (Abbott 

2. Amplification and cloning of HBV and HCV 

 MgCl2 

concentration of 2 µΜ and an annealing temperature of 62°C. The product of the first round S 

B

strains from Belarus.  

1. Clinical samples 

A total of 157 serum samples were obtained in 2004-2005 fro

and anti-HCV statu

population. In addition, the infectious disease hospital is the largest hospital in Belarus which 

as a central referral hospital attends to patien

country. HBV and HCV were confirmed with the Murex

Diagnostics) and the Ortho® HCV 3.0 ELISA test system (Ortho-Diagnostics). HBV DNA 

and HCV RNA were detected by RT-PCR and/or PCR (Table 15). HIV co-infection was 

diagnosed in 51% of all donors or 8.7% of HBsAg carriers and 69.9% of anti-HCV positive 

donors. 64.6% of the latter were HCV RNA positive.  

Nucleic acid extraction and complete HBV genome amplification were done as described in 

Chapter 3. For amplification of the core/E1 region of HCV a semi-nested PCR was carried out 

in a 25 µl reaction volume consisting of 0.5 µl cDNA, 2.5 mM of MgCl2, 200 nM of dNTPs, 

50 nM οf each primer (fw290utr(+), TGCCTGATAGGGTGCTTGCGAG, pos: 290-311; 

1321e1(-), ACCAGTTCATCATCATATCCCATGCCAT, pos: 1293-1320), and 1U of 

Platinum® Taq DNA polymerase with 1x PCR buffer. After an initial denaturation step at 95 

°C for 5 min, 40 cycles of PCR at 95 °C for 1 min, 63 °C for 1 min and 72 °C for 1 min were 

carried out. Nested PCR was performed with 5 µl of the first-round product diluted 1:100 

using the same conditions but with a different forward primer (fw480c(+), 

CGCGCGACTAGGAAGACTTC, pos: 480-499; rv1321e1, 0.10 µΜ of each) a
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fragment PCR was cloned using the pCR®4-TOPO® Cloning kit (Invitrogen) as described in 

Chapter 3. 

3. Sequencing and phylogenetic analysis of HCV 

The nested and M13 PCR products were purified and sequenced as described in Chapter 3. 

Phylogenetic analysis of HCV sequences included the core to E1 region with a total length of 

-1323, according to HCV H77). For each HBV strain phylogenetic 

analysis was done for the combined preS and S fragment sequences (pos: 56-2423, according 

thur et al. 2002). 37/44 HBsAg positive 

samples (84.1%), 1/88 anti-HCV positive samples (1.2%) and 5/25 double-positive samples 

 covering the preS, S, X and C genes 

of HBV and were sufficient for genotyping (Table 15). One patient was HBsAg negative but 

about 844bp (pos: 480

to X75664) as well as the full length genome if available. All sequences were submitted to 

EMBL/GenBank/DDBJ under accession numbers: EU414031-EU414184. 

4. Results and discussion 

4.1. Hepatitis B virus 

Forty-four patients (28%) were positive for HBsAg only, 88 (56%) for anti-HCV antibodies 

only and 25 (15.9%) for both serological markers. For HBV, less than 10% are HIV positive. 

Similar values have been found in other countries (Ma

(20%) were positive in at least one of the 4 nested PCRs

HBV DNA positive. For a total of 12 strains complete genomic sequences were obtained. 

Phylogenetic analysis based on the preS or on the complete genome sequences (Figure 23) 

showed that 38 patients were infected by genotype D (88.4%) and 5 by genotype A2 (11.6%) 

(Figure 23). Despite the co-circulation of multiple subtypes in Belarus, cloning experiments 

revealed no evidence of mixed infections or recombinations. Only recently subtypes of 

genotype D were recognized in phylogenetic studies (Norder et al. 2004). Our strains from 

Belarus segregated into 4 subtypes (Table 16): D1 (n=5), D2 (n=25), D3 (n=7) and D4 (n=1) 

(Figure 23). There was no significant difference in genotype or subtype distribution between 

HIV positive and negative patients. Three complete genome sequences were obtained of each 

of the identified subtypes except for D4, for which the fragments from nt 198 to 2418 were 

missing.  
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Table 15 : Comparison of PCR results with HBsAg and anti-HCV ELISA results 

  pos neg Total  

  HBV DNA 

pos 42 (26.7)

 

69 (43.9)  * 27 (17.2) 

neg 1 (0.6) 87 (52.2) 88 (56.1)  HBsAg 

Total 43 (27.4) 114 (72.6) 157  

  HCV RNA  

pos 78 (49.7) 35 (22.3) 113 (72)  

neg 0 44 (28) 44 (28)  anti-HCV 

Total 78 (49.7) 79 (50.3) 157  
 

*Numbers in brackets indicate percentages. 

ys ailable from GenBank/DDBJ/EMBL revealed that countries North 

(Estonia, Latvia; (Tallo et al. 2004)) and South (Hungary, Serbia; (Lazarevic et al. 2007; 

 

 

Anal is of sequences av

Szomor et al. 2007)) of Belarus display a similar genotypic distribution of genotypes A and D 

with prevalences of genotype D ranging from 71% to 82% and genotype A ranging from 18% 

to 28%. In Estonia, Latvia and Hungary D2 was the most prevalent subtype (50.8% to 66.6%) 

followed by D3 and D1. Further South in Serbia, subtype D3 was dominant (43.2%) followed 

by D2 (32.9%). To the West of Belarus, such as in Poland (86.5% versus 13.5%; 

(Dzierzanowska-Fangrat et al. 2006)) and the Czech Republic (73% versus 27%; (Krekulova 

et al. 2003)) genotype A becomes dominant over genotype D. No sequence data was available 

from the latter countries. In contrast, in Russia genotype D is dominant (Flodgren et al. 2000) 

with more than 90% prevalence consisting mainly of subtype D2 (80.6%) followed by D3 

(12.9%) and D1 (3.2%). Thus, similar to the Baltic States, the genotype distribution found in 

Belarus resembles the one in Russia although not without clear influences from Western 

Europe. From Lithuania, Romania, Ukraine and Bulgaria no HBV genotype data was 

available. 

 

 

91 



Chapter 5. Results and Discussions Part IV 

Table 16 : Genotype distribution of HBV and HCV in Belarus 

HBV genotype Patients  D2 D3 A2 Total D1 D4 

HBsAg+ (11.1)* 6 (16.7) 1 (2.8) 4 (11.1) 36 43 4 21 (58.3) 

HBsAg/anti-HCV+  0 0 0 1 

HBsAg/HIV+ 0 0 0 1 

HBsAg/ anti-HCV/HIV+ 0 0 1 (25) 4 

anti-HCV+/HIV+ and - 8 0 1 (100) 0 0 1 

Total 7  2 7 (16. 2 ) 5 (11.6) 43 

     

HCV genotype 3a 4d Total 

20 0 1 (100)  

1 0 1 (100)  

5 1 (25) 2 (50)  

8 0 

15 5 (11.6) 5 (58.1) 28) 1 ( .3

   

 1a 1b 4a 

anti-HCV+ 14 0 9 (81.8) 2 (18.2) 0 0 11 

anti-HCV/HBsAg+ 20 0 10 (62.5) 6 (37.5) 0 0 16 

anti-HCV/HIV+ 74 4 (8.1) 21 (42.9) 22 (44.9) 1 (2.0) 1 (2.0) 49 

anti-HCV/HBsAg/HIV+ 5 0 2 (100) 0 0 0 2 

0 

78 

HBsAg+/HIV+ and - 44 0 0 0 0 0 

Total 157 4 (5.1) 42 (53.8) 30 (38.5) 1 (1.3) 1 (1.3) 
 

* Numbers in brackets indicate percentages. 

 

Since D subtypes have so far been described only rarely (Norder et al. 2004; Bozdayi et al. 

2005; Sunbul and Leblebicioglu 2005) we tested whether the Belorussian strains would 

comply with the proposed criteria for the definition of new subtypes. Sequence analysis of 

complete genomes revealed an average intrasubtypic genetic distance of 1.5% within the 

genotype D subtypes (D4 excluded), while the maximal intersubtypic genetic distance (D4 

excluded) was 2.9% with D3 being the most divergent from the other two subtypes (2.7% 

from D1 and 2.9% from D2). The average distance between D1 and D2 was 2.2% (Table 17). 

The intersubtypic distances of all available strains are actually lower than the minimal 4% 

distance proposed to define subtypes (Norder et al. 2004) but phylogenetic reconstructions 

allow nevertheless an unambiguous separation with bootstrap values of 100% at the nodes 

eparating the different subtypes on the phylogenetic tree calculated tree using complete 

genome sequences (Figure 23). Subtypes D1 and D2 are phylogenetically close to each other 

nd are thought to have evolved in Europe and Western Russia (Norder et al. 2004). Subtype 

 et al. 2004; Michitaka et al. 

s

a

D3 originated probably in Russia and spread to Japan (Norder
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2006). Subtype D4 is predominantly found in Australia and Papua New Guinea and is also the 

genetically most distant from the other D subtypes. Blast searches of complete genomes, 

identified the following closest known rela

Uzbekistan; D2: Z35716 from land; D3: DQ111987 from Mongolia and A2: AB116079 

f blast search bas  on the gene turned B033559 rom Papa New 

G

Table ) within and between and subtypes

Bela

reS A2 D4 

tives with known origins: D1: AB222711 from 

 Po

rom Japan. A ed S of D4 re  A  f

uinea.  

17 : Distances (in 

rus  

%  (bold) the different genotypes  present in 

p D1 D2 D3 

A2 0.9 (1.  04)     

D1 10.5 (1 ) 1.3 41) 

2 10.6 (1 ) 2   

0.5 (17 ) 2.7 18) ) 1.5 (1.48) 

na (17 na (5.09) na (5.77) na (5.14) na (na) 

7.52 (1.    

D 7.52 .2 (2.78) 1.7 (1.98)   

D3 1 .73 (3. 2.9 (3.75  

D4 .68) 
 

Calculations are based on complete genome or preS fragment (number in brackets) sequences. 

 

 

4.2. Hepatitis C virus 

Almost 70% of HCV patients were coinfected with HIV, a number which is similar to the one 

found in other countries (Ramos et al. 2007). In 60 of the 88 anti-HCV positive only and 18 

of the 25 HBsAg/anti-HCV double positive patients (Table 16), HCV RNA was detected and 

sequenced in the core/E1 region (Tables 15 and 16). Phylogenetically the 78 strains belonged 

to hepatitis C subtypes 1b (53.8%), 3a (38.5%), 1a (5.1%), 4a (1.3%) and 4d (1.3%) (Figure 

24 and Table 16). A study from 1997 (Viazov et al. 1997) reported subtype 1b to be the most 

prevalent subtype (76%) followed by subtype 3a (19%) and single cases of 1a and 2a which 

suggests that the prevalence of subtype 3a is increasing and less subtype 1b strains are 

circulating. Genotypes 1b and 3a are also dominant over other genotypes in Russia, Estonia 

and Western Europe (Hraber et al. 2007). While in Russia both genotypes have a similar  
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prevalence (45%), the relative prevalence of genotype 1b over 3a is 3 times higher in Estonia 

(71% versus 24%; (Tallo et al. 2004)) and 6.5 times higher in Western Europe (58% versus 

9%). In Russia and Estonia the prevalence of all other genotypes is below 2% and below 1%, 

while in Europe genotype 1a represents 20%. Thus with a 1.5 fold dominance of genotype 1b 

over 3a and a prevalence of 5.1% the genotype pattern of HCV in Belarus is similar to the one 

in Russia although not without a clear Western European influence. Subtypes 1a, 4a and 4d 

were only found in HIV positive patients while the prevalence of subtypes 1b and 3a was 70.4 

and 29.6% in HIV negative patients and 45.1% and 43.1% in HIV positive patients (Table 

16). Similar studies for example in Spain (Ramos et al. 2007) also showed that among HIV 

positive donors subtype 1a and 3a are more prevalent indicating separate transmission 

networks of the HCV subtypes such as intravenous drug users (Mathei et al. 2005). 

In the HCV strains found in Belarus, the average distances on the nucleotide level ranged 

from 5.7% to 7.1% within subtypes and from 22.4% to 33.8% between subtypes with an 

ins o

ty of 

es lower. Despite the higher prevalence of 1b, this 

may indicate that 3a has been circulating longer in Belarus or that it has been introduced 

multiple times from various sources and/or countries. BLAST searches of the different HCV 

strains did not reveal a closer relationship of Belorussian subtypes with other strains from the 

same geographic region but indicated for both subtypes 1b and 3a similarities with strains 

found worldwide. For subtype 1b, this could possi

contaminated blood products such as in anti-D im

For subtype 3a however, circumstances similar to gypt may have caused its spread 

(Frank et al. 2000). Also on a protein level, the HCV strains did not reveal amino acid 

substitutions specific to strains or subtypes fo

introductions from abroad.  

In conclusion, HBV genotype D strains in Belarus form phylogenetic clusters (D1 to D4) that 

are compatible with the 4 subtypes recently proposed, although the intersubtypic distances 

may be lower than required. The relative prevalence of genotypes of both HBV and HCV in 

Belarus reflect Russian levels although with clear European influences, possibly explained by 

the socio-political context of the country. Surprisingly however, the virus variants do not 

seem to be clearly related to those from these neighbouring countries. 

average distance between all Belorussian stra

Belarus was 1.7 times lower than the diversi

subtype while for subtype 1b it was 1.2 tim

f 21.8%. The diversity within subtype 3a in 

all worldwide strains belonging to the same 

bly be explained by the world-wide use of 

munoglobulin in 1977 (Power et al. 1995). 

 those in E

und in Belarus confirming the multiple 
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Part V 

 

 

Results of part V were submitted as: 

Olinger CM, Jutavijittum P, Hübschen J, Yousukh A, Samountry B, Thammavong T, 

Toriyama K and Muller CP. Identification and molecular characteristics of a new Hepatitis B 

genotype I in Lao People’s Democratic Republic. 

 

Identification and molecular characteristics of a new hepatitis B genotype I in 

Lao PDR 

Mutations and recombinations between strains seem to drive a genetic evolution of HBV, 

which has resulted so far into 8 known genotypes (Bartholomeusz and Schaefer 2004; Norder 

et al. 2004). Since recombination events are not taken into account by current substitution 

model based molecular phylogeny, a careful approach in the classification of strains is 

warranted. Some of the current genotypes are already the result of multiple recombinations 

between existing and/or extinct genotypes (Bollyky et al. 1996; Bowyer and Sim 2000; 

Simmonds and Midgley 2005; Szmaragd and Balloux 2007). Some genotypes have been 

associated with distinct clinical patterns (Tai et al. 1997; Torre and Naoumov 1998; Tsubota 

et al. 1998; Akuta and Kumada 2005; Kramvis and Kew 2005; Schaefer 2005; Kramvis and 

Kew 2007) and their detection and identification is important for virus and disease 

surveillance as well as for the understanding of HBV evolution. 

Here we present the phylogenetic analysis of 19 related strains found in rejected blood donors 

from Lao PDR which do not cluster with any known HBV genotype.  
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1. Clinical samples 

In 2004 and 2005, serum was collected from 498 HBsAg-positive first-time blood donors in 

several blood donation centres in Vientiane City and Central provinces, including from 5 

All donors were tested HIV, HCV and syphilis 

egative. 

 amplification 

o overlapping primers as described before 

unther et al. 1995) and cloned using the pCR®-Blunt II-TOPO® Cloning kit (Invitrogen) as 

described in Chapter 3. 

netic analysis 

donors from Northern provinces of Lao PDR. 

n

2. Alternative complete genome

Extraction of DNA, amplification and sequencing of preS, S, X and C fragments were done as 

described in Chapter 3. Complete genome fragments were obtained using a single PCR 

reaction adapted from a PCR reaction based on tw

(G

3. Phyloge

Sequences were analysed as described in Chapter 3. All sequences were submitted to 

EMBL/GenBank/DDBJ. Similarity plots and bootscan analysis were done using windows of 

800 or 400 nt, respectively. The time required for genetic diversity to develop within 

genotype I from the closest hypothetical common ancestor was calculated using a substitution 

rate of 4.2x10-5 substitutions per site and per year (Fares and Holmes 2002). Similarly the 

time of evolution of sequences or sequence fragments from a common ancestor was 

calculated by considering the genetic distance to the hypothetical common ancestor to be half 

of the genetic distance between the sequence of interest and its closest known relative. 
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4. Results 

sAg positive rejected blood donors, 453 (90.8%) were PCR positive in at least one 

of the four HBV PCR reactions. Fifty-three strains were sequenced completely, whereas from 

From the remaining samples, 369 S, 1 

preS, 1 C and 2 X fragment sequences were obtained. 

.4%) of genotype C. Subtypes included B2 (18), B3 (1), B4 (128) and 

B5 (16) as well as C2 (190), C3 (1) and C5 (13) (Figures 25 and 26) (nomenclature according 

ins showed signs of mixed infections or recombinations between 

genotypes B and C and were not further characterized in this study. A genotype could not be 

4.1. Detection and sequencing of HBV DNA 

Of 498 HB

27 strains only 2 or 3 fragments could be sequenced.  

4.2. Distribution of genotypes 

Phylogenetic analysis of all available sequences revealed that 163 strains (42.2%) were of 

genotype B and 204 (55

to Norder et al. 2004). 67 stra

attributed to 19 strains that clustered on the same node and separated with a 100% bootstrap 

value into two subgroups (Figure 26). From 15 of the latter strains, complete genome 

sequences were obtained. 
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Figure 25 : Relative distribution of genotypes and subtypes identified in 386 DNA positive rejected blood 

donors from Lao PDR 
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4.3. Definition of a new genotype I 

When the complete genome sequences of the unclassifiable strains were compared to a 

f the known genotypes, genotype C (subtype 

C3) was the closest relative with an average Kimura distance of 7.89% (7.0% to C3). The 

hese two 

ithin the two groups an average diversity of 1.19% and 

0.94% was calculated, which increased to 2.33% when all unclassifiable strains were 

logenetic reconstruction of genotype I strains (Figures 27 and 28) 

revealed some distant similarities with several different genotypes depending on the sequence 

region compared, indicating multiple recombination events. While most of the sequence of 

genotype I strains (nt 1400 – 3000) were most closely related to genotype C (6.29%), the rest 

of the circular genome was most closely related to genotype A (6.23%) (nt 3000-400) and 

genotype G (6.29%) (nt 400-1400). The next most similar genotypes for these fragments were 

genotypes B, C and A respectively, with genetic distances of 9.14%, 8.61% and 6.84%. For 

all segments, BLAST searches retrieved sequences AF241407 to AF241409 or sequences 

AB231908 and AB231909 as being the most similar. Phylogenetic analysis attributed all of 

these to the new subtype I1, with the exception of AB231909 which was identified as a I1/B4 

recombinant. The next most similar strains for these distinct regions, were of subtypes C3 

from Polynesia (only 3 C3 sequences available), subtype A3 from Gabon and genotype G

1 from Uzbekistan and A4 from Gambia) were only 0.2% further away. 

representative set of full length HBV sequences o

bootstrap value of the separating node was 88% similar to the G/DE and B1/B2 nodes. On the 

S gene level the distance was 4.23% with a bootstrap value of 96% at the node separating 

genotypes I and C. Within the unclassifiable strains two phylogenetic subgroups were 

identified with a bootstrap value of 100%. The Kimura distances to genotype C of t

groups were 7.85% and 7.93%. W

considered as a single group. The maximal genetic distance between two genotype I strains 

was 4.3%. All clusterings were verified by Maximum Likelihood tree construction (data not 

shown). According to published criteria (Okamoto et al. 1988; Kramvis and Kew 2007), these 

values warrant the definition of a 9th HBV genotype, designated tentatively as genotype I. 

Accordingly, the two subgroups will be designated here as subtypes I1 and I2. 

4.4. Nucleotide sequence analysis  

Bootscan analysis and phy

 

from France respectively (Figure 27 and Table 18). On the C- and A-like sequences, strains of 

different subtypes (C
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Figure 26 : Phylogenetic comparison of genotype I complete genomes to a set of reference sequences 

Phylogenetic comparison of all complete genotype I 
genomes (n=15) obtained and compared to 
sequences of all known genotypes and subtypes. 
Non-genotype I genotypes identified in Lao PDR in 

the present study are shown as full triangles. 
Numbers indicate bootstrap values of important 
nodes. Sequences AF241407 – AF241409 were 
published by Hannoun et al. 
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Figure 27 : Bootscan analysis of genotype I 

Bootscan analysis of genotypes I, A, B, C and 
G compared to genotypes A-H. Data points 
correspond to the centre of sequence windows 
of 800 bp. For the analysis of the first 400 nt, 
the beginning of the genome was duplicated at 
the end of the sequence: nt 3200 to 4000 
represent positions 0 to 800. Genotype A: 
black line and open squares; genotype B: grey 
line and crosses; genotype C: grey line and 
diamonds; genotype E: black line and 
triangles; genotype G: black lines and 
diamonds; genotype I: fat black line and 
circles. Genotypes D, F and H were included 
in the analysis but coincide with the baseline. 
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Table 18 : Genotype, accession number and genetic distances and estimated years of evolution of the three 

sequence domains identified in genotype I. 

 

*Distances (in %) to genotypes or subtypes are average distances
ilar to subtype A4 but the minimal distance observed was to an

 

Surprisingly, when the stringency of bootscan analysis was reduced from a window size of 

800 to 400 nt, similarities to genotype E appeared in nt positions 1200 to 1500 (data not 

shown). Also, the beginning of the region related to genotype C was shifted downstream by 

100 nt. Non-human hepatitis B viruses showed much lower similarities to genotype I 

(minimum of 8.5% for the CHIMP genotype on positions 3000 to 400 versus 5.9% to for 

notype A) and are not included in Figures 26 to 28. 

With a substitution rate of 4.2x10-5 substitutions per site and per year (Fares and Holmes 

2002), the 4.3% maximal diversity between all genotype I strains would have taken about 500 

years to evolve from a common ancestor. The time of evolution of the G-like fragment of the 

current genotype I sequence from an ancestor sequence common with the closest genotype G 

strain (genetic distance of 5.51% between genotype G strain AF160501 and genotype I1 strain 

F241408) would be about 650 years. Similarly, it would have taken about 500 years for the 

genotype C-like region to evolve (genetic distance of 4.10% between genotype C3 strain 

X7565 and genotype I2 strain M04-3223) and 530 years for the genotype A-like region 

(genetic distance of 4.50% between genotype A3 strain AM184126 and genotype I1 strain 

M04-0469) to develop (Figure 29a). 

In order to exclude PCR artefacts in the recombination analysis of genotype I, the complete 

nome of one genotype I strain (M04-3665) was amplified using a single PCR reaction. The 

resulting fragment was cloned and its sequence was identical to the complete genome 

sequence assembled from the four semi-nested PCR fragments. 

nt 400-1400    1400  

, i.e. the A-like sequence was in average most 
 A3 strain. NA: not applicable. 

-3000    3000-400   

most similar genotype G 6.29*  C  6.16  A 6.23 

2nd most similar genotype A 6.84  B  

most similar subtype NA   C3  

most similar strain G, AF160501 5.51 (650 yrs) C3, X756 0 yrs) 

2nd most similar strain G, AB056513 5.62   C1, AB22   

9.14  C 8.61 

5.42  A4 5.23 

56 4.1 (500 yrs) A3, AM184126 4.5 (53

2715 4.3   A4, AY934764 4.7 

sim

ge

A

ge
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igure 28 : Phylogenetic comparison of genotype I with other genotypes on the distinct sequence 

hylogenetic comparison of positions 3000 to 400 
eft), 0 to 1400 (middle) and 1400 to 3000 (right) 

of all genotype I strains (n=15) with all known 

genotypes and subtypes. Percentages indicate 
average genetic distances between genotype I and 
G, C or A respectively. 

nd not in others. In the X protein 48V 

ixed infections, 15 of the genotype I strains were cloned 

hile the second (M04-2769) 

 

F

fragments 

P
(l

4.5. Amino acid sequence analysis 

The comparison of all genotype I strains with a set of reference sequences of the known 

genotypes revealed several genotype I specific positions on the amino acid level. In the LHBs 

protein, 90V and 136I were found exclusively in all genotype I1 strains while in the core 

protein, 59V was often found in genotype I2 strains a

was found exclusively in all genotype I strains while 40S was observed in all genotype I1 

strains and rarely in others. On the polymerase gene, three subtype I1 specific (138Q, 318N 

and 823F), one subtype I2 specific (823C) and two genotype I specific (207S and 269K) 

positions were found. These substitutions did not allow establishing an evolutionary link 

between genotype I and the other genotypes. None of these specific mutations were located in 

positions known to affect viral protein expression or functions. All I1 strains were of serotype 

adw, while all I2 subtypes were of serotype ayw. 

4.6. Mixed infections and recombinations 

In order to exclude artefacts due to m

on various fragments. The 6 preS, 16 S, 11 X and 59 C clones analysed clustered with the 

same group than the uncloned sequence. Only in two cases (S fragment, M04-2769 and M05-

0659) was a mixed infection by several genotypes found. The first (M05-0659) contained an 

I1 and I1/B4 recombinant sequence (B4 on the last 300 nt) w
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contained 5 different species: one B5/C2 recombinant (C2 on the last 400 nt), one C5/C2 

recombinant (C2 on the last 400 nt), one genotype C2 sequence, four genotype C5 sequences 

and one C/I2 recombinant (C subtype unclear). 

 

Table 19 : Genotype, accession number and genetic distances (d, in %) and estimated years of evolution of 

three strains showing signs of recombination involving genotype I. 

 

  nt most similar strain d years nt most similar strain d years  
C04-079  

 

 

 

 

 

 

 

 

 

 

Figure 29 : Evolutionary history of genotype I and three recombinant strains 

History of evolution of genotype I (a) as well as 
three (C04-0790, AB231309, M04-3739) 
recombinant strains (b, c and d). Numbers indicate 
genetic distances between the sequence fragments 
of interest (indicated with ) and the hypothetical 

ancestor (indicated with ●) they share with their 
nearest known strain (underlined). The distance in 
brackets corresponds to the maximal distance 
observed between genotype I strains. 
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Four other sequences with no signs of mixed infections clustered inconclusively in the 

phylogenetic analysis. These were identified by cloning and bootscan analysis as 

recombinants between several genotypes and/or subtypes (Figure 30 and Table 19). In three 

recombinants, only subtypes I1 and I2 were involved (M04-3739, M04-2531 and M04-0309). 

The two latter had identical bootscan patterns while in the first the I2 sequence was shifted 

is of a previously reported strain 

(Tran and A e, unpublished m

n p d 1 . D ce s (in T s rches)

ost for   d ons o an  b

ao res Ta 9)

Genetic distances ranged from 0% to 1.6% and would correspond to a maximum of 200 years 

f evolution. 

he recombinant strains C04-0790, AB231909 and M04-3739 were compared to sequences 

obtained in this study as well as by BLAST searches, to identify the closest relative for each 

terest and the closest relative was considered to be twice the distance between each 

sequence and a common hypothetical ancestor which allowed to estimate how long ago the 

o sequences separated. The strains most similar to the I2/C2 recombinant were the 

genotype I2 strain M04-3724 (genetic distance: 1.60%) and the genotype C2 strain C04-1257 

an evolutionary time of 200 years for the I2 sequence to evolve 

om the common ancestor, while the two C2 sequences must have separated only recently 

(Figure 29b). Similarly, Figure 29c shows that the B4 and I1 fragments of the B4/I1 

combinant would take 115 and 120 years respectively and the two fragments of the I2/I1 

combinant would take 120 and 50 years (Figure 29d). 

downstream by 200 nt. Strain C04-0790 showed a similar pattern than M04-3739 but with the 

I1 sequence replaced by a C2 sequence. Bootscan analys

b , AB231909) revealed a B4/I1 reco binant with the I1 sequence 

identified betwee ositions 600 an 864 istan calculation cluding BLAS ea  

identified the m similar strains,  each of the istinct regi f the recombin ts, to e 

almost exclusively circulating in L  PDR (this study) (Figu 29b, c, d and ble 1 . 
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T
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Figure 30 : Diagrams of recombinants and genotype I 

Schematic bootscan diagrams of sequences 
showing evidence of recombination involving 
subtypes of genotype I and other subtypes (window 

size 800). Hatched rectangles indicate missing 
sequence fragments. Sequence AB231909 was 
reported by Tran and Abe on GenBank. 

106 



Chapter 4. Results and Discussions Part V 

5. Discussion 

Here we describe a distinct set of 19 HBV strains found in the central provinces of Lao PDR, 

including the capital Vientiane. All strains clustered into two phylogenetically distinct groups 

and were more closely related to each other than to any strain of the known genotypes A to H. 

The 4.23% distance on the S gene and the 7.89% on the complete genome to the next closest 

genotype (genotype C), are well above the 4% proposed minimal distance on the S gene 

between genotypes (Okamoto et al. 1988) and the recently proposed 7.5% minimal distance 

between genotypes on a complete genome level (Kramvis and Kew 2007; Kramvis and Kew 

2007). Formally, the definition of a 9th HBV genotype, tentatively designated genotype I, is 

therefore warranted. In addition, we propose the definition of two subtypes designated as I1 

and I2. I1 strains were detected in donors living in Vientiane City and the surrounding 

provinces, while I2 strains were only found in donors living in Vientiane City. Strains 

ported as aberrant strains from Hanoi, Vietnam eight years ago (Hannoun et al. 2000) group 

with subtype I1, indicating that genotype I may be more widespread in Southeast Asia than 

e donor, infected with a subtype I1 strain, 

eno

Genetic distance, phylogenetic and bootscan analysis indicated that this new genotype is a 

result of probably multiple recombination events involving mainly genotypes C and A, but 

surprisingly also genotype G and even genotype E. Most current genotypes of HBV seem to 

be the result of one or several recombination events (Bollyky et al. 1996; Simmonds and 

Midgley 2005; Szmaragd and Balloux 2007): In particular this is evident for the B/C 

recombinant which has spread in mainland Asia (Sugauchi et al. 2004) and has been defined 

as genotype B1 but also for genotypes B and C themselves which show similarities to 

genotype A (Figure 27). Genotype E is thought to be a recombinant between genotype D and 

another unknown or extinct genotype (Bowyer and Sim 2000). Genotype G is highly 

divergent from all currently known genotypes in most regions of the genome but shows 

similarities to genotype E in the end of the S gene (Figure 27). It is clear that the new 

genotype I described here has followed a similar series of recombination events. One of these 

events involved a genotype C-like fragment related to subtype C3, so far found only in the 

Pacific, except for a single incomplete strain in Lao PDR, and C1 found in Japan, Korea, 

re

suggested by the present study. Interestingly, on

originated from Vietnam and a majority of g type I infected donors originated from the 

Houaphan province which shares the border with Vietnam.  
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China and Uzbekistan (Kato et al. 2002; Norder et al. 2004; Kim et al. 2007). The genotype 

A-like fragment was most similar to subtypes A3 and A4, only recently found by us and 

atible with the 500 years it would 

have taken genotype I to develop the maximal diversity of 4.3% from a single ancestor virus. 

confirmed by others in Sub Saharan Africa (Mulders et al. 2004; Kurbanov et al. 2005; 

Makuwa et al. 2006; Olinger et al. 2006). The apparent relatedness with the defective 

genotype G is even more surprising given the sporadic nature of this genotype found so far 

only in the United States, Japan, Germany and France (Stuyver et al. 2000; Kato et al. 2002; 

Vieth et al. 2002; Shibayama et al. 2005; Chudy et al. 2006). Although only a few sequences 

of the latter genotype have been reported it has clearly contributed to at least three other 

recombinations: one in San Francisco with genotype A (Kato et al. 2002), one in Thailand 

with genotype C (Suwannakarn et al. 2005) and one in Nigeria involving genotypes D and A 

(Olinger et al. 2006), all with distinct different breakpoints. Thus, none of the contributing 

genotypes or subtypes (C3, A3 and G) has ever been identified in South East Asia, 

questioning the Asian origin of genotype I.  

When applying a mutation rate of 4.2x10-5 substitutions per site and per year (Fares and 

Holmes 2002), the time the different recombinant sequence fragments (nt 400 to 1400, 1400 

to 3000 and 3000 to 400) would need to evolve from a hypothetical ancestor shared with the 

most similar strains would be 500 to 650 years. This is comp

Genotype I further recombined with regional strains in mixed infected patients. The time of 

evolution of the recombinant sequences from an ancestor shared with their most similar 

strains range from 0 to 200 years. Interestingly, all of the most likely ancestors were found in 

Lao PDR (this study). In fact, the sequence of one recombinant strain found in Vientiane was 

identical to a potential donor strain found in a different district of the capital. Thus the 

simplest possible evolutionary scenario would be the recombination of ancestral viruses to 

form genotype I some 500 years ago, the introduction into South East Asia and the 

recombination with local genotype during the past 200 years. 

The identification and analysis of genotype I provide further evidence of the importance of 

recombination in the evolution of HBV, a complexity which may not be fully acknowledged 

by the current classification. According to this classification, viruses of genotype I fulfil the 

formal criteria of a new genotype and show a distinct geographic distribution with a 

consistent evolutionary history, although its origin remains unclear. 
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Chapter 5: Conclusions and Perspectives 

Currently it is estimated that a third of the world population has come in contact with HBV 

during their lifetime and that as a consequence, 400 million people are suffering from chronic 

hepatitis B infection. A majority will eventually die of liver complications or hepatocellular 

carcinoma. Although most of the infected people live in areas such as sub-Saharan Africa, 

Asia and the Pacific, in which HBV is endemic, the virus is circulating globally with highly 

variable prevalences.  

Based on the accumulation of single nucleotide polymorphisms in the genome and 

phylogenetic reconstruction, the circulating strains have been classified into 8 genotypes (A – 

H) and multiple distinct subtypes. Although a majority of these genotypes and subtypes 

present distinct geographic distributions, the distribution of genotype E, one of the most 

 

d evolution of HBV genotypes 

and subtypes. During these studies, special interest was placed in detecting evidence of 

Nigerian suspected HBV 

prevalent genotypes and found only in West-Africa, is particularly noticeable. In 2004, a 

phylogenetic study covering hepatitis B strains from seven sub-Saharan countries, 

representing a third of the African continent, revealed that a majority of circulating strains 

were of genotype E, with one exception: in Cameroon the prevalence of genotype E strains 

was equal to the prevalence of strains of genotype A. This raised the question whether

genotypes could co-infect the same host and whether such events could lead to 

recombinations between different genotypes. In addition, sequence analysis of the circulating 

genotype E strains found during this study, revealed a surprisingly low variability, less than 

half of what would normally be expected suggesting that genotype E was introduced 

relatively late in sub-Saharan Africa. The present study aimed to further characterize HBV 

genotype E and to advance our understanding of its widespread circulation but conspicuously 

low diversity. In addition, phylogenetic studies of HBV in Belarus and Lao PDR aimed at 

gaining further insights in the mechanisms of distribution an

recombinations between genotypes and to evaluate their importance in the history of HBV 

evolution. 

In a first approach, data was collected on the sensitivity and specificity of three currently 

available hepatitis B diagnostic kits by testing on sera from 200 
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positive donors. The objective was to evaluate the exceptionally high preva

B found in sub-Saharan Africa and to evaluate a possible bias in regard to ge

lences of hepatitis 

notype E. HBsAg 

detection assays rely on the capture of the surface antigen by monoclonal antibodies and most 

e caused by a single assay which showed a particularly high false 

positivity rate. Nucleotide sequence analysis of DNA positive samples with no detectable 

genomes from three major countries in West Africa. The majority of these were of genotype 

of these antibodies are directed towards immunogenic epitopes, mainly in the a-determinant 

of genotype A surface antigen. Of all genotypes, the surface antigen of genotype E differs 

most from the one of genotype A. Results between the three HBsAg assays were mostly 

concordant positive or negative for the majority of samples, except for 36 for which results 

were discordant. All but one of the latter were confirmed negative by neutralization. 80% of 

discordant results wer

HBsAg or reduced HBsAg detection signals revealed specific mutations mostly outside the a-

determinant. Several of these mutations are found as wild type nucleotides normally in 

genotype A and only exceptionally in genotype E and failure to detect HBsAg antigen and 

differences in signal intensity was mainly associated with these mutations. These results 

indicate that the context, in which diagnostic kits are used, in this case Africa and genotype E, 

should be an important criterion for their selection and evaluation but also in their 

development. In fact, assays of different vendors show considerable discrepancies and some 

maybe suitable only for applications in restricted geographical areas. The existence of specific 

mutations that are able to affect an assay outcome, even with a positive bias, warrants further 

analysis of currently available commercial assays. 

In light of the previous results, it is important to evaluate the extent of the genotype E 

prevalence in sub-Saharan Africa by characterizing HBV strains from additional countries. Of 

196 serum samples, randomly collected from chronically HBV infected patients in the Central 

African Republic, we identified almost all as genotype E, thus showing that genotype E is 

circulating, as the most prevalent genotype, further to the east of Africa than previously 

known. The identification of only one genotype A1 strain and three genotype D strains 

revealed that North Africa, where mostly genotype D circulates, and South and East Africa, 

where mostly genotype A circulates, do not contribute to HBV in the Central African 

Republic. 

Since previous results on genotype E diversity were mainly based on the preS/S region of the 

HBV genome, we obtained and analyzed 122 new HBV preC/C sequences and 3 complete 
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E, thus significantly increasing the number of genotype E sequences available. The only other 

genotype found was genotype A. Although for genotype E sequences the genetic diversity of 

the preC/C gene was about 2 – 3 times higher than the diversity of the preS/S gene, it was still 

considerably lower than for genotype A sequences. In fact, the genotype A strains from 

Cameroon, Mali and Nigeria could be phylogenetically divided into 3 subtypes, A3 and 2 new 

subtypes, tentatively designated A4 and A5, further showing the significant differences in the 

evolution and distribution between genotypes A and E. While genotype A presents multiple 

subtypes, each circulating in distinct locations in Africa, Europe and America, genotype E, 

while found in many different countries and only in Africa, shows a very low diversity and 

has not evolved into different subtypes. While a recent introduction would explain the low 

diversity, it would need to have been followed by a very fast spread throughout half of the 

African continent. Currently no route for such a spread is known and the possibility of 

unknown animal vectors, or even involuntary spread by humans, need to be considered. In 

fact, the latter is known to have played an important role in the spread of HCV.  

During the study above, we also found that almost 20% of all patients analysed showed a co-

infection of genotypes A and E and most originated from Cameroon, where both genotypes 

co-exist with equal prevalences. Evidence of recombination events between different 

genotypes, which prerequisites mixed infections, were found in two strains and one sample 

from Nigeria even showed evidence of a triple recombination of genotype E/D and A, 

separated by a genotype G specific insert. While recombination events are suspected to play a 

 of 179 serum donors from Belarus. 69 were HBV DNA positive and 

infected with strains of genotypes A and D. Surprisingly, these genotype D strains could be 

role in HBV evolution, evidences of their existence remain sparse, and their molecular 

mechanisms have not yet been elucidated. Thus, the recombinations reported here may help in 

further understanding the evolution of HBV and may give use indications in the past history 

of its spread. In fact, the presence of a genotype G specific sequence in an African patient, 

raises further questions about the origin of this genotype which, until now, had only been 

found sporadically in the USA, France and Germany. 

Aiming to further understand the spread of HBV genotypes worldwide, we performed a 

phylogenetic study

identified to belong to four recently described subtypes, thus adding additional information to 

HBV nomenclature. This also indicated a genotype distribution in Belarus similar to Russia 

but with West-European influences. Since genotype D, the closest relative of genotype E, 
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shows multiple subtypes and a high diversity, the evolution and distribution of genotype E, 

which shows no subtypes and a low diversity must have taken a different course.  

Adding to the recombination events identified during our studies, we also showed that 19 

related strains identified in Lao PDR, are the result of recombination events between at least 

three genotypes. These strains, which did not cluster with any known HBV genotype, fulfilled 

the formal criteria for the definition of a new genotype (I) with two subgroups (I1 and I2). 

Further analysis indicated that this new genotype is a result of multiple recombination events 

involving genotypes G, C (C3), A (A3) and even E which probably occurred around 500 years 

ago. Interestingly none of the involved genotypes or subtypes except for C3 has ever been 

identified in Southeast Asia, blurring the geographic origin of genotype I. Compatible with a 

more recent introduction into Lao PDR are 6 strains showing recombination events involving 

I1/I2 and the most prevalent subtypes B4 and C2 in Lao PDR which seem to have occurred 

within the last 200 years only. The identification and analysis of the new genotype I provided 

further evidence of the importance of recombination in the evolution of HBV. 

The results presented here indicate that genotype E must have followed a different course of 

evolution when compared to other HBV genotypes and warrant the investigation of 

alternative transmission routes such as animal vectors and human involvement. Also, the 

analysis of HBV in descendants of African origin living outside of Africa, could give insight 

in its evolutionary history. In addition our results show that recombination events are more 

important in the evolution of HBV than previously thought, further proven by our 

identification of a new genotype of HBV which clearly was the result of multiple 

recombination events. Finally, we also showed that the genotype can influence the diagnostics 

of HBV, which, combined with the fact that genotypes are known to influence the treatment 

and clinical outcome of HBV infections, warrants further studies especially in light of the new 

genotype identified.  
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