Optische Rasternahfeldmikroskopie:
eine Methode für die Darstellung und Manipulation chromosomaler DNA

Dissertation zur Erlangung des Grades eines Doktors der Medizin
der Medizinischen Fakultät
der UNIVERSITÄT DES SAARLANDES
2006

vorgelegt von: Markus Niedereichholz
geb. am: 16.02.1973 in Illingen
1. ZUSAMMENFASSUNG ... 4

SUMMARY .. 6

2. EINLEITUNG .. 8

2.1 Fluoreszenz in situ-Hybridisierung (FISH) ... 8

2.2 Optische Rasternahfeldmikroskopie (engl.: scanning near-field optical microscopy, SNOM) ... 13

2.3 Ziele .. 15

3. MATERIAL UND METHODEN .. 16

3.1 Chromosomenpräparation .. 16

3.1.1 Chromosomenpräparation aus menschlichen Lymphozyten 16

3.1.1.1 Colcemidbehandlung .. 17

3.1.1.2 Hypotonie .. 17

3.1.1.3 Fixierung ... 18

3.1.1.4 Auftropfen der Mitosen ... 18

3.1.2 Chromosomenpräparation aus der Zelllinie Colo 320 DM 19

3.1.2.1 Arbeitsbedingungen für die Zellkultur .. 19

3.1.2.2 Zellkultivierung ... 20

3.1.2.3 Unterkultivierung .. 20

3.1.2.4 Metaphasen-Präparation ... 21

3.2 Polymerase-Ketten-Reaktion (engl.: polymerase chain reaction, PCR) 22

3.2.1 Prinzip der PCR ... 22

3.2.1.1 Reaktionsansatz .. 24

3.2.1.2 PCR-Programm .. 25

3.2.2 Verifizierung der PCR-Produkte mittels Gelelektrophorese 26

3.2.2.1 Herstellung des Agarosegels ... 26

3.2.2.2 Auftragen der Proben ... 26

3.2.2.3 Darstellung der PCR-Produkte .. 26

3.2.3 Herstellung der Sonden ... 31

3.2.3.1 Aufreinigen der PCR-Produkte ... 31

3.2.3.2 Markierung der PCR-Produkte .. 32
3.3 Fluoreszenz in situ-Hybridisierung (FISH) ... 34
 3.3.1 Prinzip .. 34
 3.3.2 Protokolle ... 36
 3.3.2.1 Grundprotokoll ... 36
 3.3.2.2 Variationen ... 39

3.4 Fluoreszenzmikroskopie ... 41

3.5 SNOM ... 41
 3.5.1 Funktionsprinzip ... 41
 3.5.2 Darstellung der Chromosomen ... 44
 3.5.3 Manipulation/Extraktion chromosomaler DNA .. 45

3.6 Verwendete Materialien .. 46
 3.6.1 Zellmaterial .. 46
 3.6.2 Chemikalien ... 46
 3.6.3 Puffer und Lösungen ... 47

4. ERGEBNISSE ... 49
 4.1 Auswertung der FISH-Experimente mittels Fluoreszenzmikroskopie 49
 4.1.1 Zentromersonde gegen Chromosom 1 .. 49
 4.1.2 Sondenmix gegen alle Zentromere ... 51
 4.1.3 c-myc-Sonde .. 52
 4.1.4 Mittels PCR hergestellte Sonden der Länge 1031, 718, 485, 243bp 53

 4.2 Auswertung der FISH-Experimente mittels SNOM 57
 4.2.1 Zentromersonde gegen Chromosom 1 .. 57
 4.2.2 Sondenmix gegen alle Zentromere ... 62
 4.2.3 c-myc-Sonde .. 64
 4.2.4 Mittels PCR hergestellte Sonden der Länge 1031, 718, 485, 243bp 65
 4.2.5 Manipulation/Extraktion chromosomaler DNA .. 67

 4.3 Vergleich der Auswertungen der FISH-Experimente mittels
 Fluoreszenzmikroskopie und mittels SNOM .. 69
5. DISKUSSION .. 70

5.1 Methodische Aspekte ... 70
 5.1.1 Probenherstellung .. 70
 5.1.2 PCR ... 71
 5.1.3 FISH .. 72
 5.1.3.1 Zentromersonde gegen Chromosom 1 .. 72
 5.1.3.2 Sondenmix gegen alle Zentromere ... 72
 5.1.3.3 c-myc-Sonde ... 73
 5.1.3.4 Mittels PCR hergestellte Sonden der Länge 1031, 718, 485, 243bp 74
 5.1.4 SNOM .. 74

5.2 Ergebnisse .. 78
 5.2.1 Abbilden ... 78
 5.2.2 Manipulation/Extraktion chromosomaler DNA .. 82

5.3 Wertung und Ausblick .. 83

6. ABKÜRZUNGSVERZEICHNIS ... 90

7. LITERATURVERZEICHNIS ... 92

8. DANK .. 102

9. LEBENSLAUF .. 103
1. Zusammenfassung

In der vorliegenden Arbeit wurde zunächst untersucht, ob mittels eines kommerziell erworbenen optischen Rasternahfeldmikroskops das Abbilden chromosomaler DNA im optischen und topographischen Modus möglich ist oder ob Veränderungen des Setups vorgenommen werden müssen. Weiterhin wurde überprüft, ob in Fluoreszenz in situ-Hybridisierungen eingesetzte DNA-Sonden optisch und topographisch dargestellt werden können, bis zu welcher kleinsten Größe Zielsequenzen nachgewiesen werden können und ob die Abbildungen mit denen aus der konventionellen Fluoreszenzmikroskopie korrelieren. Abschließend wurde untersucht, ob das optische Rasternahfeldmikroskop auch zur Manipulation/Extraktion chromosomaler DNA geeignet ist.

Initial wurden Fluoreszenz in situ-Hybridisierungen mit einer Zentromersonde gegen Chromosom 1, welche mit einer großen Zielsequenz von 440kb-1,51Mb hybridisiert, durchgeführt. Es zeigte sich, dass das vorliegende Setup des optischen Rasternahfeldmikroskops im Allgemeinen nicht für die zu untersuchenden Proben geeignet war. Durch Veränderungen bei der Positionierung der Mikroskopspitze, der Detektionseinrichtung und der Abstandsregelung konnte das Setup so umgerüstet werden, dass die optische und topographische Abbildung von Metaphasechromosomen sowie der Zentromersonde gegen Chromosom 1 gelang. Im Gegensatz zur konventionellen Fluoreszenzmikroskopie zeigten sich im Zentromerbereich zwei Signale, was für Telomersonden bereits beschrieben ist.

Durch den Einsatz eines Sondenmix gegen alle Zentromere wurde das Auffinden von Sonden, die ebenfalls eine große Zielsequenz im Bereich mehrerer hundert kb bis ca. 5Mb haben, erleichtert. Im Vergleich zu fluoreszenzmikroskopischen Aufnahmen waren bei der Rasternahfeld-Analyse einige Zentromersignale in zwei oder mehrere kleine Teile aufgetrennt. Außerdem kamen mit dieser Technik auch wenig intensive Sondensignale zur Darstellung.

Mit der c-myc-Sonde konnte eine Sonde abgebildet werden, die mit einer mittelgroßen Zielsequenz von 80kb hybridisiert.

Kleinere, mittels Polymerase-Ketten-Reaktion selbst hergestellte Sonden, die eine Länge von 1031, 718, 485, 243bp besaßen, konnten dagegen nicht nachgewiesen werden, was möglicherweise durch eine verminderte Hybridisierungseffizienz der Fluoreszenz in situ-Hybridisierungen bedingt war. Mit diesem Ansatz konnte folglich
die untere Nachweigrenze hinsichtlich der Auflösung des optischen Rasternahfeldmikroskops nicht bestimmt werden.

Es konnte gezeigt werden, dass mit dem optischen Rasternahfeldmikroskop neben dem abbildenden Modus auch die Manipulation chromosomaler DNA möglich ist. Der Beweis der Extraktion konnte bisher jedoch nicht erbracht werden.

Summary

This study was aimed at investigating whether a commercial scanning near-field optical microscope (SNOM) was suitable for displaying chromosomal DNA in the optical and topographic mode, or if technological changes in the setup must be conducted. Furthermore, this study determined if DNA probes used in fluorescence in situ hybridization (FISH) could be displayed optically and topographically. This study was also aimed at identifying the smallest size target sequences that can be detected, and aimed at determining if SNOM images correlate with those of a conventional fluorescence microscope. Finally, it was investigated whether the SNOM was suited for manipulation and extraction of chromosomal DNA.

Initially, FISH was performed with a centromere probe against chromosome 1, which contains a large target sequence ranging from 440kb to 1.51Mb. It was shown that the actual SNOM setup was not suitable for displaying the probes. After modifications were conducted in the positioning of the microscope tip, the detection device and the distance regulation, the setup could be used to display metaphase chromosomes and the centromere probe against chromosome 1 in optical and topographic mode. In contrast to conventional fluorescence microscopy, two distinct signals were detected in the centromere region, which has already been described for telomere probes. By application of a probe mix against all human centromeres, locating of these probes, sized several hundred kb to about 5Mb, was facilitated. In comparison to fluorescence micrographs, some centromere signals were split into two or more small signals when applying the SNOM setup. Furthermore, using this technique, less intense signals could be detected. By using the c-myc probe, midsized target sequences of 80kb were also displayed. However, small probes with lengths of 1031, 718, 485 and 243bp respectively, produced by polymerase chain reaction (PCR), could not be detected which maybe was caused by a low hybridization efficiency of the FISH-experiments. Thus, using this approach it was not possible to determine the detection limit in regard to the resolution of the SNOM.

It was shown that using the SNOM, in addition to its optical use, manipulation of chromosomal DNA was achievable, although the evidence of extraction could not be supplied yet.

The SNOM constitutes a promising tool for medical and biological research by enabling the display of optical and topological information of chromosomal DNA and
target sequences. Also, manipulation of chromosomal DNA in the nanometer range is feasible. Thereby, SNOM can become a link between molecular cytogenetic and molecular biology. Further technical advancements may lead to simpler operability, improved resolution, and possibilities of novel applications.
2. Einleitung

2.1 Fluoreszenz in situ-Hybridisierung (FISH)

Die Identifikation und das Kartieren von Genen sind in der Molekularbiologie, der zytogenetischen Forschung und der medizinischen Diagnostik von besonderer Wichtigkeit.

Die Anwendungsmöglichkeiten der FISH sind vielfältig: Fragestellungen der biologischen und medizinischen Grundlagenforschung ebenso wie spezielle klinische Probleme in den verschiedensten Bereichen der Medizin können mit der FISH angegangen werden - angefangen von der prä- und postnatalen Chromosomenanalyse über die molekulare Pathologie und Hämatologie bis hin zur Erforschung genetisch bedingter Erkrankungen.
Hierfür stehen mittlerweile verschiedene Sondentypen zur Verfügung. Mit chromosomen- oder chromosomenarm-spezifischen Sonden („Painting Sonden“) können in der prä- und postnatalen Zytogenetik Markerchromosomen identifiziert werden. Außerdem können multiple Chromosomenrearrangements (PAI et al., 1980; STANKIEWICZ et al., 1997), strahlenbedingte Chromosomenschäden sowie Translokationen, die mit der klassischen Bänderungsmethode nicht zu erkennen sind, sogenannte kryptische Translokationen, nachgewiesen werden (LEDBETTER, 1992). Für die Darstellung von Telomertranslokationen hingegen sind die chromosomen- oder chromosomenarm-spezifischen Sonden nicht geeignet. Dies gelingt mit Subtelomer- bzw. Telomersonden, mit denen auch kleinere Deletionen der Schlusssequenz sichtbar gemacht werden können. Chromosomenveränderungen in den Subtelomerrregionen werden bei Patienten mit mentaler Retardierung, Dysmorpheiezeichen sowie Entwicklungsverzögerungen beobachtet. Zentromersonden ermöglichen die Identifizierung von Markerchromosomen in Metaphasechromosomen. Ferner werden sie beim pränatalen Schnelltest an Interphasezellen zur Markierung der Chromosomen 18, X und Y eingesetzt, wodurch numerische Aberrationen, wie das Klinefelter-Syndrom (47,XXY), das Turner-Syndrom (45,X0) und das Edwards-Syndrom (Trisomie 18) erkannt werden können. „Dual color/dual fusion“-Sonden stellen eine Mischung zweier Einzelsonden (grün und rot) dar, die jeweils einen bestimmten Bruchpunkt überspannen, so dass bei einer stattgefundenen Translokation das Fusionssignal auf beiden translozierten Chromosomen zu finden ist. Sind diese Translokationen spezifisch für eine Erkrankung, kann dadurch die Diagnose gesichert werden. Dies ist bei der chronisch myeloischen Leukämie der Fall, bei der mehr als 90% der Patienten eine Translokation t(9;22) des c-abl-Protoonkogens von Chromosom 9 zu Chromosom 22 in die Region des bcr-Gens aufweisen. Mit einer „Dual color/dual fusion“-Sonde kann auch die reziproke Translokation beim Burkitt-Lymphom t(8;14) nachgewiesen werden. „Dual color/break apart“-Sonden sind Zweifarbensonden, deren Genregionen im Bruchpunktbereich zweifarbig markiert sind. Im Falle einer Translokation werden die beiden Farben getrennt, womit z.B. 11q23 Anomalien der akuten lymphatischen Leukämie sichtbar gemacht werden können. Mit Locus-spezifischen Sonden können Amplifikationen von Onkogenen (z.B. Her2/neu) sowie Deletionen von Tumorsuppressorgen (z.B. p53) erkannt werden. Auch können Mikrodeletions-Syndrome, wie das DiGeorge Syndrom (SCHMICKEL,

Die Beispiele belegen, dass die FISH eine ergänzende Methode zur klassischen zytogenetischen Diagnostik darstellt und darüber hinaus eine Präzisierung chromosomaler Aberrationen erlaubt. Dennoch scheinen die Grenzen der FISH noch nicht erreicht, da es mittlerweile mit gentechnischen Methoden prinzipiell möglich ist, jede DNA-Sequenz zu klonieren und somit auch kleinste Sonden herzustellen. Jedoch wird die Darstellung kleinster Sonden und damit die Auswertung der FISH-Experimente durch die Auflösung limitiert.

Somit kann die Auflösung im Vergleich zur klassischen Chromosomenpräparation an Metaphasechromosomen durch die Anwendung anderer Präparationstechniken verbessert werden. Als nachteilig erweist sich dabei aber, dass dies teilweise mit einem deutlich erhöhten Präparationsaufwand, einer unpräzisen Abstandsbestimmung sowie dem Verlust der Telomer-Zentromer Orientierung verbunden ist, was die physikalische Feinkartierung erschwert.

Folglich wäre eine Auflösungsverbesserung wünschenswert, die nicht mit diesen Nachteilen behaftet ist und zusätzlich eine Auflösung unter 1kb ermöglicht. Dadurch könnten auch kleinste Deletionen und DNA-Amplifikationen, die bislang fluoreszenzmikroskopisch nicht darstellbar sind, nachgewiesen werden.

Daher wurde in der vorliegenden Arbeit ein anderer Ansatz gewählt, um eine Verbesserung der Auflösungsgrenze zu erreichen. Es wurde eine andere Mikroskopiertechnik, die optische Rasternahfeldmikroskopie (engl.: scanning near-field optical microscopy, SNOM) benutzt, die bislang vorwiegend in der Physik eingesetzt wurde.
2.2 Optische Rasternahfeldmikroskopie (SNOM)

Die SNOM gehört zur Gruppe der Rastersondenmikroskopie (engl.: scanning probe microscopy, SPM), zu der auch die Rastertunnelmikroskopie (engl.: scanning tunneling microscopy, STM) und die Rasterkraftmikroskopie (engl.: atomic force microscopy, AFM) gezählt werden. Gemeinsam ist diesen Mikroskopietechniken, dass eine scharfe Spitze verwendet wird, die gegenüber der Probenoberfläche verschoben wird, was mit Piezoelementen gesteuert wird.

Benutzt man herkömmliche optische Mikroskope, so erreicht man eine Auflösung, die von der Wellenlänge (λ) des benutzten Lichts abhängig ist. Die Auflösungsgrenze liegt bei ca. der halben Wellenlänge ($\lambda/2$), auch als Abbé’sches-Diffraktionslimit bezeichnet. Grundlage hierfür ist die Heisenberg’sche Unschärferelation. Theoretisch wäre zwar eine örtliche Auflösung von 200-250nm möglich, doch wird in der Praxis die Grenze von 0,5μm nur mit konfokalen Mikroskopen mit Ölimmersionsobjektiven unterschritten.

Dadurch wird eine Subwellenlängenauflösung erreicht, die die Möglichkeit bietet, Untersuchungen im Nanometerbereich anzustellen.

Ein weiterer Vorteil der SNOM ist, dass ein präparativer Aufwand, wie z.B. die spezielle Vorbehandlung der Objekträger mit einer Goldbedampfung oder die Fixierung des zu untersuchenden Materials, nicht nötig ist. Dadurch kann im Gegensatz zur Elektronenmikroskopie Material zerstörungsfrei erforscht werden.

In der Vergangenheit wurde die SNOM überwiegend zur Untersuchung spezieller physikalischer Fragestellungen eingesetzt. Ferner wurde aber auch die prinzipielle Eignung der SNOM für biologische Anwendungen gezeigt. Einige Beispiele dafür sind im Folgenden aufgelistet:

- Untersuchung intrazellulärer Strukturen (BETZIG et al., 1993; MURAMATSU et al., 1996)
- Darstellung der Struktur von Myofibrillen (SEIBEL, POLLACK, 1997)
- Darstellung ungefärbter Bakterien (BEN-AMI et al., 1998)
- Nachweis von Partikeln des Tabakmosaikvirus (KELLER et al., 1998)
- Untersuchung von mit Plasmodium falciparum infizierten Erythrozyten (ENDERLE et al., 1997)
- Untersuchung von Lipiden (HORIUCHI et al., 1999)
- Charakterisierung von Zelloberflächen (KIRSCH et al., 1998; SUBRAMANIAM et al., 1998; JENEI et al., 1999; NAGY et al., 1999)
- Untersuchung von Drosophila-Chromosomen (KIRSCH et al., 1998; JENEI et al., 1999)
2.3 Ziele

In der vorliegenden Arbeit sollte die Anwendung des SNOM im Vergleich zur konventionellen Fluoreszenzmikroskopie bei der Auswertung von FISH-Experimenten untersucht werden.

Im Detail sollten folgende Fragestellungen beantwortet werden:

1. Ist das kommerziell erworbene SNOM im vorliegenden Setup prinzipiell zum Abbilden chromosomaler DNA geeignet oder müssen Modifizierungen des Setups vorgenommen werden?
2. Können in der FISH eingesetzte DNA-Sonden, die mit großen Zielsequenzen hybridisieren, im topographischen und optischen Modus dargestellt werden? Wie ist die Korrelation des topographischen und des optischen Modus?
3. Ist reproduzierbares Arbeiten möglich?
4. Können DNA-Sonden, die mit mittelgroßen Zielsequenzen hybridisieren, topographisch und optisch dargestellt werden? Korrelieren der topographische und der optische Modus?
5. Können mit dem SNOM auch DNA-Sonden topographisch und optisch nachgewiesen werden, die mit Zielsequenzen hybridisieren, die kleiner als die bislang mittels konventioneller Fluoreszenzmikroskopie nachweisbaren sind? Korrelieren der topographische und der optische Modus? Bis zu welcher kleinsten Größe können diese Zielsequenzen in FISH-Experimenten dargestellt werden?
6. Korrelieren die SNOM-Abbildungen mit denen aus der konventionellen Fluoreszenzmikroskopie?
7. Ist das SNOM auch zur Manipulation/Extraktion chromosomaler DNA geeignet?

3. Material und Methoden

3.1 Chromosomenpräparation

Vor der Durchführung der FISH musste zuerst das Ausgangsmaterial, die Chromosomen, gegen die hybridisiert werden sollte, gewonnen werden. Hierzu dienten im Rahmen der Versuche zwei unterschiedliche Zelltypen. Zum einen wurden Metaphasechromosomen aus menschlichen Blutlymphozyten präpariert, zum anderen aus der Zelllinie Colo 320 DM. Diese stammt von einem Colon-Karzinom ab und enthält Double minutes (DM), wobei es sich um extrachromosomale DNA handelt.

Prinzipiell bestehen zwei Möglichkeiten der Zellgewinnung: Entweder wird das gesamte Zellmaterial zur Mitosengewinnung herangezogen, was bei der Chromosomenpräparation aus menschlichen Blutlymphozyten so gehandhabt wurde, oder nur ein Teil der mitotischen Zellen zur Mitosengewinnung benutzt und der andere Teil zur Weiterkultivierung verwendet. Dies war bei der Chromosomenpräparation aus der Zelllinie Colo 320 DM der Fall.

3.1.1 Chromosomenpräparation aus menschlichen Lymphozyten

Bei der Präparation von Metaphasechromosomen aus menschlichen Lymphozyten wurde dem Probanden Blut aus der Arteria brachialis entnommen. 0,8ml des Blutes, 8ml RPMI Nährmedium (+ 10% FCS, 1% Penicillin/Streptomycin) und 0,4ml Phytohämagglutinin wurden in eine Kulturschale gegeben und diese in den mit 5% CO₂ begasten 37°C warmen Brutschrank (Fa. Heraeus) gestellt. Durch die Zugabe des Mitogens Phytohämagglutinin wird die Teilung der T-Zell-Fraktion der Lymphozyten durch Permeabilitätsveränderungen der Zellmembran stimuliert, während die B-Zell-Fraktion und andere kernhaltige Zellen unbeeinflusst bleiben.
3.1.1.1 Colcemidbehandlung
72h später wurde Colcemid (Endkonzentration 0,1 μg/ml) unter der Sterilbank in das Röhrchen gegeben und hierdurch ein Mitosearrest erreicht. Die Dauer der Colcemidbehandlung musste optimiert werden, um eine gute Beurteilung der Metaphasen mit dem Fluoreszenzmikroskop zu gewährleisten. Ziel war es, eine große Anzahl von Metaphasen, die einen optisch gut auswertbaren Kondensationsgrad aufwiesen, zu erhalten. War die Anzahl an Metaphasechromosomen zu gering, musste die Colcemidbehandlung verlängert werden; waren die Chromosomen zu stark kondensiert, musste sie verkürzt werden. Es zeigte sich, dass eine Colcemidbehandlung von 30min eine hohe Dichte an Metaphasen mit Chromosomen eines mittleren Kondensationsgrades lieferte. Nach der Colcemidbehandlung erfolgte für 30min die Inkubation bei 37°C im Brutschrank. Um die Mitosen zu gewinnen, wurde der Ansatz anschließend in Zentrifugengrörhrchen umgefüllt und für 10min bei 1000U/min zentrifugiert. Der Überstand wurde abgesaugt und verworfen. Als nächster Schritt fand die Hypotoniebehandlung statt.

3.1.1.2 Hypotonie
3.1.1.3 Fixierung
Nach jeder Zugabe wurde direkt suspendiert. Eine Blasenbildung war auch hier wieder zu vermeiden. Für mindestens 1h lagerten die Röhrchen bei -20°C. Im Anschluss wurde erneut 10min lang bei 1000U/min zentrifugiert und der Überstand verworfen.

3.1.1.4 Auftropfen der Mitosen
Das Pellet wurde in dem zugegebenen Fixans suspendiert und auf Glasobjekträger aufgetropft, wodurch es zum Platzen der Kernmembran und zur Spreitung der Chromosomen der mitotischen Zellen kommt. Wurden die Mitosen nicht direkt im Anschluss an die Präparation aufgetropft, so konnten sie im Kühlschrank bei 4°C gelagert werden. Diese Zellen mussten dann vor dem Auftropfen zuerst 10min bei 1000U/min zentrifugiert und das Pellet anschließend erneut im Fixans suspendiert werden.
Für die Technik des Auftropfens wurden verschiedene Bedingungen ausgetestet; die Objektträgervorbehandlung, die Auftropfhohe und das Pipettenmaterial wurden variiert.
Die Mitosen wurden nach dem Auftropfen an der Luft angetrocknet und zum vollständigen Trocknen auf eine 80°C heiße Heizplatte gelegt. Mit einem Mikroskop (Axiovert 25, Zeiss) wurde die Qualität der Präparation überprüft.
Die Qualität der Präparate wurde mit Hilfe folgender Kriterien beurteilt:

- Anzahl der Mitosen
- Spreitung der Mitosen
- Vorhandensein von Hüllen
- Kondensationsgrad und Fixierungszustand der Chromosomen
- Verunreinigung des Präparates durch Zellbestandteile

Ziel war eine möglichst hohe Anzahl gut gespreiteter und fixierter Mitosen auf einem möglichst sauberen Objektträger.

3.1.2 Chromosomenpräparation aus der Zelllinie Colo 320 DM

3.1.2.1 Arbeitsbedingungen für die Zellkultur

3.1.2.2 Zellkultivierung
Als Ausgangsmaterial diente die Zelllinie Colo 320 DM (Passage 10), die in flüssigem Stickstoff gelagert worden war. Angesetzt wurde die Zellkultur durch Zugabe des Mediums RPMI 1640 (+ 10% FCS, 1% Penicillin/Streptomycin, 1% NEA). Das Medium wurde langsam zu den eingefrorenen Zellen hinzupipettiert, bis diese aufgetaut waren. Danach wurden die Zellen bei 1200U/min 3min lang abzentrifugiert und der Überstand verworfen. Das Pellet wurde mit 7ml Medium wieder aufgenommen. Je 3.5ml wurden anschließend in zwei kleine Kulturschalen (25cm² Greiner T25) gegeben und kultiviert. Die Zellkultivierung erfolgte unter Standardbedingungen (5% CO₂, 37°C).

3.1.2.3 Unterkultivierung
Nach 28 Tagen war der Zellrasen nahezu konfluent, so dass die erste Unterkultivierung notwendig wurde. Hierzu wurde das Medium abpipettiert, die Kulturschale zweimalig mit 5ml sterilen PBS gespült, welches verworfen wurde. Danach wurden 3ml 37°C warmes Trypsin (0,25%) in die Kulturschale dazugegeben, um die adhäsanten Zellen vom Boden abzulösen. Anschließend wurde für 5min bei 37°C inkubiert.

3.1.2.4 Metaphasen-Präparation

Die folgenden Schritte entsprachen vom Ablauf her denen der bereits bei der Chromosomenpräparation aus den menschlichen Blutlymphozyten beschriebenen (s. 3.1.1.1-3.1.1.4, S.17, 18), wobei hier eine Hypotoniezeit von 12min das beste Ergebnis lieferte. Die Zentrifugation erfolgte mit 1200U/min über 7min, fixiert wurde zweimal. Die zweite Fixierung dauerte über Nacht. Auch hier wurden die Zellen direkt im Anschluss aufgetropft.
3.2 Polymerase-Ketten-Reaktion (engl.: polymerase chain reaction, PCR)

3.2.1 Prinzip der PCR

Zu Beginn der PCR wird bei 94°C eine 5-minütige Denaturierung durchgeführt, die gewährleisten soll, dass die gesamte DNA vollständig denaturiert wird. Danach folgen drei Hauptschritte, die n-mal (n=Anzahl der Zyklen) durchlaufen werden:

- die Denaturierung
- das Annealing
- die Synthese

Nach Abschluss der gewünschten Synthese werden die neu entstandenen Stränge wieder denaturiert und die Temperatur anschließend auf die Annealingtemperatur gesenkt. Die Primer können wieder binden und es erfolgt eine erneute Synthese. Bei n-Zyklen entstehen so 2^n Kopien der Matrizen-DNA. Am Ende der Kettenreaktion dient ein 5-minütiger Syntheseschritt dazu, alle begonnenen Polymerisationen fertigzustellen.

Abb. 1: Prinzip der PCR
3.2.1.1 Reaktionsansatz

Zuerst wurde für jedes Primerpaar die Annealingtemperatur gesucht, welche umso höher liegt, je höher der GC-Basengehalt der Primer ist. Es wurde ein Thermocycler (Perkin Elmer, Gene Amp PCR System 2400) verwendet, der einen Temperaturgradienten besaß. 9 verschiedene Temperaturen konnten gleichzeitig eingestellt werden:

- 51,7°C
- 53,2°C
- 54,5°C
- 56,0°C
- 57,5°C
- 59,1°C
- 60,4°C
- 61,5°C
- 62,4°C

Es wurden 4 verschiedene Primerpaare (alle MWG-Biotech GmbH) eingesetzt, die sich innerhalb des c-myc Onkogens anlagern und PCR-Produkte mit einer Länge von 1031, 718, 485 und 243bp liefern sollten.

Primerpaar 1031: MYC 1031-A: 5´-CTC TGG AAC AGG CAG ACA CA-3´
MYC 1031-B: 5´-TGC CTC TCG CTG GAA TTA CT-3´
Primerpaar 718: MYC 718-A: 5´-TGG AAA ACC AGG TAA GCA CC-3´
MYC 718-B: 5´-GAT TCC AGG AGA ATC GGA CA-3´
Primerpaar 475: MYC 475-A: 5´-GTC TTA GGT AAG AAT TGG CA-3´
MYC 475-B: 5´-CGT TAG AAA GGT CTC TGG AC-3´
Primerpaar 243: MYC 243-A: 5´-GGC ATT TAA ATT TCG GCT CA-3´
MYC 243-B: 5´-GAT TCC AGG AGA ATC GGA CA-3´

Für jedes Primerpaar wurde der folgende Reaktionsansatz 9-mal hergestellt. Um eine Verunreinigung des Reaktionsansatzes mit Fremd-DNA zu vermeiden, wurde unter der Sterilbank pipettiert. Die Reagenzien wurden auf Eis gelagert. Zuerst wurden die DNA, der Puffer (10xPCR-Puffer, Pharmacia Biotech), das H₂O und die Nukleotide (Pharmacia Biotech) in ein PCR-Gefäß (Biozym)
zusammenpipettiert und durchmischt. Danach wurden die Primerpaare und zum Schluss die Taq-Polymerase (Pharmacia Biotech) hinzugefügt.

Tabelle 1: Pipettierschema für Mastermix 1

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td>1 µl</td>
</tr>
<tr>
<td>Puffer</td>
<td>5 µl</td>
</tr>
<tr>
<td>H₂Odd</td>
<td>36,5 µl</td>
</tr>
<tr>
<td>Nukleotide</td>
<td>5 µl</td>
</tr>
<tr>
<td>Primer A</td>
<td>1 µl (20 µM)</td>
</tr>
<tr>
<td>Primer B</td>
<td>1 µl (20 µM)</td>
</tr>
<tr>
<td>Taq-Polymerase</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>Σ</td>
<td>50 µl</td>
</tr>
</tbody>
</table>

Der gesamte Ansatz wurde kurz mit dem Vortexgerät durchmischt. Anschließend wurden die PCR-Gefäße in den Thermocycler gestellt und die PCR gestartet.

3.2.1.2 PCR-Programm

Beginn: Denaturierung 94°C 5min

30 Zyklen

1. Schritt: Denaturierung 94°C 30-60s
2. Schritt: Annealing 45-65°C 30-60s
3. Schritt: Synthese 72°C 30-120s

Ende: Synthese 72°C 5min

So konnten für jedes der 4 Primerpaare 9 verschiedene Annealingtemperaturen simultan getestet werden. Welche Annealingtemperatur das beste Ergebnis lieferte, konnte mit der Gelelektrophorese überprüft werden.
3.2.2 Verifizierung der PCR-Produkte mittels Gelelektrophorese

3.2.2.1 Herstellung des Agarosegels
Hierzu wurden 1,5g Agarose in 100ml 1xTAE-Puffer mit Hilfe eines Mikrowellenofens gelöst, so dass ein 1,5%-iges Agarosegel entstand. Die Entstehung von Schlieren wurde durch Schütteln vermieden. Das Gel wurde in die zuvor gründlich gereinigte Elektrophoresekammer (Easy Cast Elektrophoresis System, Owl Scientific) möglichst ohne Luftblasenbildung gegossen, eine Spacerleiste für die Slots eingelegt und die Polymerisation des Gels abgewartet.

3.2.2.2 Auftragen der Proben

3.2.2.3 Darstellung der PCR-Produkte
Um die PCR-Produkte sichtbar zu machen, wurden die Gele mit Ethidiumbromid (EtBr, c=0,005%) in einer Wanne gefärbt. Später wurde zwecks einer einfacheren Handhabung EtBr in gleicher Konzentration direkt bei der Herstellung des Agarosegels dazugegeben. Zur Dokumentation wurden die Gele unter UV-Licht fotografiert.

Neben der Annealingtemperatur sind für die Herstellung spezifischer PCR-Produkte die eingesetzte Menge an DNA und Primer entscheidend, weshalb diese optimiert werden mussten. Dazu wurden die ursprünglichen Primer- und DNA-Mengen zunächst auf 1:10 verdünnt, wodurch ein leichteres Pipettieren ermöglicht wurde.
Somit entsprach in den folgenden Mastermixen die in 10μl enthaltene DNA- bzw. Primermenge der ursprünglichen in 1μl enthaltenen Menge.

Für jedes Primerpaar wurden 4 Mastermixe angesetzt:

Mastermix 1:
entsprach dem in Tab. 1 angegebenen Ansatz

Mastermix 2:
Es wurde nur 1/10 der ursprünglichen DNA-Menge eingesetzt, d.h. 1μl (siehe Tab. 2). Die Mengen an Primer, Nukleotiden, Taq-Polymerase und Puffer blieben konstant. Das Ausgangsvolumen von 50μl wurde durch Anpassen der Wassermenge auf 18,5μl eingestellt.

<table>
<thead>
<tr>
<th>Tabelle 2: Pipettierschema für Mastermix 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
</tr>
<tr>
<td>Puffer</td>
</tr>
<tr>
<td>H₂O</td>
</tr>
<tr>
<td>Nukleotide</td>
</tr>
<tr>
<td>Primer A</td>
</tr>
<tr>
<td>Primer B</td>
</tr>
<tr>
<td>Taq-Polymerase</td>
</tr>
<tr>
<td>Σ</td>
</tr>
</tbody>
</table>
Material und Methoden

Mastermix 3:
7/10 der ursprünglichen Primermenge wurde eingesetzt, d.h. 7 μl (siehe Tab. 3). Bis auf die Wassermenge blieben die Mengen der anderen Bestandteile des Ansatzes unverändert.

Tabelle 3: Pipettierschema für Mastermix 3

<table>
<thead>
<tr>
<th></th>
<th>10 μl</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td></td>
</tr>
<tr>
<td>Puffer</td>
<td>5 μl</td>
</tr>
<tr>
<td>H₂Odd</td>
<td>15,5 μl</td>
</tr>
<tr>
<td>Nukleotide</td>
<td>5 μl</td>
</tr>
<tr>
<td>Primer A</td>
<td>7 μl</td>
</tr>
<tr>
<td>Primer B</td>
<td>7 μl</td>
</tr>
<tr>
<td>Taq-Polymerase</td>
<td>0,5 μl</td>
</tr>
<tr>
<td>Σ</td>
<td>50 μl</td>
</tr>
</tbody>
</table>

Mastermix 4:
Sowohl die eingesetzte DNA- als auch die Primermenge wurden verändert, nämlich auf 1/10 der ursprünglichen DNA- und auf 7/10 der ursprünglichen Primermenge (siehe Tab. 4). Dadurch musste die Wassermenge auf 24,5 μl angepasst werden. Die anderen Bestandteile blieben gleich.

Tabelle 4: Pipettierschema für Mastermix 4

<table>
<thead>
<tr>
<th></th>
<th>1 μl</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
<td></td>
</tr>
<tr>
<td>Puffer</td>
<td>5 μl</td>
</tr>
<tr>
<td>H₂Odd</td>
<td>24,5 μl</td>
</tr>
<tr>
<td>Nukleotide</td>
<td>5 μl</td>
</tr>
<tr>
<td>Primer A</td>
<td>7 μl</td>
</tr>
<tr>
<td>Primer B</td>
<td>7 μl</td>
</tr>
<tr>
<td>Taq-Polymerase</td>
<td>0,5 μl</td>
</tr>
<tr>
<td>Σ</td>
<td>50 μl</td>
</tr>
</tbody>
</table>
Danach wurde mit jedem Mastermix eine PCR mit einer Annealingtemperatur von 55,0°C durchgeführt. Die optimale Menge an DNA und Primer wurden auch hier wieder durch Überprüfung mit der Gelelektrophorese bestimmt. Mastermix 2 lieferte für alle Primerpaare das beste PCR-Ergebnis, was auf Abb. 3 zu sehen ist.

Abb. 3 zeigt das Agarosegel mit den PCR-Produkten der 4 Mastermixe für die 4 Primerpaare. Auf der ersten Bahn links oben und auf der ersten Bahn links unten kommt der Molekulargewichtsmarker zur Darstellung. Oben folgen die PCR-Produkte der 4 Mastermixe des Primerpaares 243, eine freie Bahn und anschließend die PCR-Produkte der 4 Mastermixe des Primerpaares 718. Unten sind neben dem Molekulargewichtsmarker die PCR-Produkte der 4 Mastermixe des Primerpaares 485, eine freie Bahn und danach die PCR-Produkte des Primerpaares 1031 abgebildet. Mastermix 2 (Bahnen 3 und 8 oben und unten) liefert für alle 4 Primerpaare das beste PCR-Produkt, wobei die Mastermixe des Primerpaares 485 schwierig zu beurteilen sind.
Da die Überprüfung mit der Gelelektrophorese ergab, dass Mastermix 2 für alle Primerpaare das beste PCR-Ergebnis lieferte, wurde dieser Ansatz für die folgenden PCR übernommen.

3.2.3 Herstellung der Sonden

Hierzu wurden die im Kühlschrank gelagerten restlichen 25µl PCR-Produkt des ursprünglichen 50µl Ansatzes weiterverarbeitet.

3.2.3.1 Aufreinigen der PCR-Produkte

Aufgereinigt wurde mit Hilfe des Qiaquick PCR Purification Kit (Qiagen). Zu einem Volumen PCR-Produkt wurden 5 Volumen eines PB-Puffers gegeben, das Ganze durchmischt und in eine Spin-Säule pipettiert, die in ein Sammelröhrchen gestellt wurde. Der PB-Puffer gewährleistete mit einem speziellen Salzgehalt und einem pH≤ 7,5, dass die PCR-Produkte während des folgenden Zentrifugiervorgangs an eine Silicium-Gel-Membran binden konnten, die sich in der Spin-Säule befand. Zentrifugiert wurde für 30-60s bei 13 000U/min. Der Durchfluss wurde verworfen. Zum Waschen wurden 0,75ml PE-Puffer in die Spin-Säule gegeben, wieder für 30-60s zentrifugiert und der Durchfluss mit den Verunreinigungen verworfen. Verbliebener PE-Puffer wurde in einem anschließenden einminütigen Zentrifugiervorgang entfernt.

Abb. 4 zeigt auf Bahn 1 den Molekulargewichtsmarker. Auf den Bahnen 2-5 sind die PCR-Produkte der 4 Mastermixe des Primerpaares 485 abgebildet, beginnend mit Mastermix 1. Mastermix 2 zeigt von allen Mastermixen die sauberste Bande.
Danach wurde die Spin-Säule in ein neues, sauberes 1,5ml Sammelröhrchen gestellt. Um die gebundenen PCR-Produkte aus der Silicium-Gel-Membran herauszuwaschen, wurden 50µl EB-Puffer in die Spin-Säule pipettiert und für 1min zentrifugiert. Der EB-Puffer besaß im Gegensatz zum PB-Puffer einen niedrigen Salzgehalt und einen pH von 8,5.

Die aufgereinigten PCR-Produkte wurden in einer Vakuumzentrifuge (Appligene) getrocknet. Für die abschließende Markierung mit einem Nick Translations Mix wurde ein Volumen von 16µl mit H₂Odd eingestellt.

3.2.3.2 Markierung der PCR-Produkte

Für die Markierung wurde ein gebrauchsfertiger Nick Translations Mix (Boehringer Mannheim) mit Biotin als markierendem Hapten verwendet. Er enthielt DNase I, DNA-Polymerase I, 0,25mM dATP, 0,25mM dCTP, 0,25mM dGTP, 0,17mM dTTP und 0,08mM Biotin-16-dUTP in einem optimierten Pufferkonzentrat mit 50% Glycerin. Das vorgegebene molare Verhältnis von Biotin-16-dUTP zu dTTP garantiert, dass jedes 20.-25. Nukleotid der neu synthetisierten DNA markiert ist. Diese Haptendichte liefert die ideale Sensitivität für die immunologische Detektionsreaktion.

Während der folgenden Pipettierschritte waren die benutzten Reagenzien auf Eis gestellt. Zu den 16µl, die am Ende des oben beschriebenen Aufreinigens vorlagen und die das PCR-Produkt in H₂Odd enthielten, wurden 4µl des Biotin-Nick Translations Mix hinzupipettiert. Anschließend erfolgte die Inkubation bei 15°C über
90min. Die Reaktion wurde durch Zugabe von 1µl 0,5M EDTA (pH 8,0) und 10min Erhitzen auf 65°C gestoppt. Damit war die eigentliche Markierung abgeschlossen. Gefällt wurde die markierte Sonde durch Zugabe von 2µl 3M Na-Acetat und 60µl eiskaltem 100%-igem Ethanol. Der Ansatz wurde mit dem Vortexgerät durchmischt, für 30min bei -20°C inkubiert und danach bei 4°C während 30min mit 14 000U/min zentrifugiert. Der Überstand wurde verworfen und das Pellet mit der markierten Sonde mittels einer Vakuumzentrifuge getrocknet. Die Sonde wurde in 10µl 50%igem Formamid, 2xSSC (pH 7,0) aufgenommen, 30min mit dem Vortexgerät durchmischt und schließlich wieder kurz zentrifugiert. Somit entstand für jedes Primerpaar eine Sonde der entsprechenden Länge, die in einer FISH eingesetzt werden konnte.
3.3 Fluoreszenz in situ-Hybridisierung (FISH)

3.3.1 Prinzip

Die FISH ermöglicht es, DNA-Bereiche auf den Chromosomen mit Hilfe von Sonden darzustellen. Bei den Sonden handelt es sich um Nukleinsäuren in Form von DNA oder RNA. Die Sonden lagern sich mit dem komplementären DNA-Abschnitt des Chromosoms zusammen. Voraussetzung für das Binden der Sonden ist, dass der DNA-Doppelstrang der Ziel- und Sonden-DNA zuerst in zwei Einzelstränge aufgetrennt wird, was durch Hitzedenaturierung geschieht. Damit die Morphologie der Präparate beim Denaturieren nicht zerstört wird, gibt man Formamid hinzu, was pro zugegebenem Prozentpunkt die Schmelztemperatur um 0,72°C absenkt. Die Bindung der Sonden an die Ziel-DNA kommt durch Basenpaarung zustande und es entsteht ein neuer Doppelstrang. Die neu gebildeten Hybride sind umso stabiler, je größer die Übereinstimmung der Basensequenz zwischen der Sonde und der Ziel-DNA ist, d.h. je spezifischer die Sonde ist. Außer den spezifisch gebundenen Sondenmolekülen entstehen immer auch unspezifische Bindungen, die weniger stabil sind. Diese sollen mittels Stringenzwaschungen gelöst werden. Anschließend erfolgt die Detektion der Sonden.

Handelt es sich um Sonden, die durch eingebaute Fluoreszenzfarbstoffe direkt markiert sind, so können diese unmittelbar nach der Hybridisierung mit einem Fluoreszenzmikroskop sichtbar gemacht werden. Handelt es sich dagegen um Sonden, die durch an sie gekoppelte Haptene, wie z.B. Biotin oder Digoxigenin markiert sind, so müssen zuerst diese Reportermoleküle detektiert werden. Hierfür werden spezifische Bindungspartner benutzt, die wiederum mit einem Fluoreszenzfarbstoff gekoppelt sind, welcher dann mit einem Fluoreszenzmikroskop betrachtet werden kann. Ist das Fluoreszenzsignal zu schwach, so kann es verstärkt werden. Der für die Detektion verwendete spezifische Bindungspartner wird hierbei mit einem zweiten für ihn spezifischen Bindungspartner markiert. An diesen zweiten ist wieder ein Hapten gekoppelt, welches anschließend detektiert werden kann. Zur besseren Lokalisierung der Sonden kann die DNA der Chromosomen mit DAPI gegengefärbt werden.
Die FISH wurde mit verschiedenen Sonden durchgeführt, für die unterschiedliche Protokolle etabliert werden mussten. In einem ersten Schritt wurden Sonden eingesetzt, die mit großen Zielsequenzen hybridisieren.

Die hierbei initial benutzte Sonde (α-satellite DNA probe for chromosome 1, Locus D1Z5, Oncor) hybridisiert mit der Zentromerregion des größten Chromosoms, Chromosom 1, und besitzt eine Zielsequenz von 440kb bis 1,51Mb (WEVRICK, WILLARD, 1989). Später wurde ein Sondenmix verwendet, der mit den Zentromerregionen aller Metaphasechromosomen (All human Centromeres, α-satellite, Oncor) hybridisiert, und dessen Zielsequenzen ebenfalls im Bereich mehrerer hundert kb bis ca. 5Mb liegen (WAYE et al., 1987; WEVRICK, WILLARD, 1989; LEE et al., 1997). Sowohl für die FISH-Experimente mit der Zentromersonde gegen Chromosom 1 als auch für die FISH-Experimente mit dem Sondenmix gegen alle Zentromere wurden Metaphasechromosomen aus menschlichen Lymphozyten benutzt.

In einem zweiten Schritt wurde eine c-myc-Sonde (Oncor) eingesetzt, die mit einer mittelgroßen Zielsequenz von 80kb hybridisiert. Die Zielsequenz umfasst das c-myc Onkogen der Zelllinie Colo 320 DM und flankierende Sequenzen.
Abschließend wurden die mittels PCR hergestellten Sonden verwendet, die mit Zielsequenzen von 1031, 718, 475 sowie 273bp innerhalb des c-myc Onkogens hybridisieren.

Als Substrat für die FISH-Experimente mit der c-myc-Sonde und den mittels PCR hergestellten Sonden dienten die Metaphasechromosomen der Zelllinie Colo 320 DM.

3.3.2 Protokolle

Die FISH-Experimente wurden nach folgendem Grundprotokoll durchgeführt, wobei für die verschiedenen Sonden Variationen eingeführt wurden.

3.3.2.1 Grundprotokoll

Chromosomenvorbehandlung

Die Objektträger mit den aufgetropften Mitosen wurden 10min in eine Küvette mit 1xPBS gestellt. Danach wurde ein RNA-Verdau vorgenommen, der Hybridisierungen der Sonde mit RNA vermeiden sollte. Hierfür wurden 60µl 2xSSC, das RNase in einer Endkonzentration von 100µg/ml enthielt, pro Objektträger aufpipettiert, ein großes Deckglas (24mm x 60mm) aufgelegt und für 1h bei dem Wirkoptimum des Enzmys, 37°C, im Brutschrank inkubiert. Anschließend wurden die Deckgläser entfernt, die Objektträger in 2xSSC gegeben und bei Raumtemperatur 2x5min inkubiert. Für weitere 5min wurden die Objektträger in 37°C warmes 2xSSC überführt, um sie auf den folgenden bei 37°C stattfindenden 5-minütigen Verdau mit 0,4% Pepsin in 0,01M HCL (pH 2,0) vorzubereiten. Der Verdau sollte die Zugänglichkeit der Ziel-DNA verbessern. Nach dem Verdau wurden die Objektträger bei Raumtemperatur für 2x5min in 1xPBS gestellt.

Nachfixierung

Die Nachfixierung erfolgte mit 4% Paraformaldehyd in 1xPBS. Sie dauerte 5min unter Einsatz eines Schüttlers (Celloshaker, Variospeed, Renner GmbH).

Dann wurden die Präparate für 10min mit 1xPBS-Tween 20 (0,1%) bei Raumtemperatur gewaschen, mit einer aufsteigenden Alkoholreihe (je 5min 70%, 80%, 96% Ethanol) dehydriert und luftgetrocknet.
Denaturierung

Bevor die Hybridisierung erfolgen konnte, musste die Doppelhelix der Ziel-DNA zunächst in zwei Einzelstränge aufgetrennt werden, was durch Denaturierung geschah. Hier kamen im Laufe der Versuche zwei unterschiedliche Verfahren zum Einsatz. Zum einen wurde eine Codenaturierung, zum anderen eine getrennte Denaturierung von Ziel-DNA und Sonden-DNA vorgenommen.

Codenaturierung

10 µl Hybridisierungsmix wurden pro Objektträger aufpipettiert, ein kleines Deckglas (18mm x 18mm) unter Vermeidung von Blasenbildung aufgelegt, mit Fotokleber (Fixogum, Marabuwerke) verschlossen und während 5min auf einer 72°C heißen Heizplatte codenaturiert.

Getrennte Denaturierung

Bei der getrennten Denaturierung wurden 100 µl eines Denaturierungsmix (70% Formamid in 2xSSC, pH 7,0) auf den Objektträger mit der Ziel-DNA aufgebracht, ein großes Deckglas aufgelegt, mit Fotokleber verschlossen und für 2min auf einer 70°C heißen Heizplatte denaturiert. Anschließend wurden die Deckgläser entfernt und mit einer eiskalten aufsteigenden Alkoholreihe (je 3min 70%, 80%, 96% Ethanol) dehydriert.

Getrennt davon wurden pro Objektträger 10 µl Hybridisierungsmix in ein Sicherheitseppendorfgefäss pipettiert und dieses für 5min in ein 37°C warmes Wasserbad gegeben. Der Hybridisierungsmix wurde kurz mit dem Vortexgerät durchmischt und anzentrifugiert. Die Denaturierung erfolgte während 5min im 70°C heißen Wasserbad. Sofort danach wurde der Hybridisierungsmix wieder anzentrifugiert und auf Eis gestellt.

Der Objektträger mit der denaturierten Ziel-DNA und ein kleines Deckglas wurden auf eine 37°C warme Heizplatte gelegt. 10 µl des Hybridisierungsmix mit der darin enthaltenen, nun denaturierten Sonde bzw. dem denaturierten Sondenmix wurden direkt vom Eis auf den Objektträger aufpipettiert, das Deckglas unter Vermeidung von Blasenbildung aufgelegt und mit Fotokleber verschlossen.
Hybridisierung

Die Hybridisierung fand über Nacht in einer feuchten Kammer im 37°C warmen Brutschrank statt. Am nächsten Tag wurde der Fotokleber mit einer Pinzette entfernt, das Deckglas vorsichtig in 2xSSC abgelöst.

Stringenzwaschung

Um die unspezifischen Hybride abzuwaschen, musste die Stringenzwaschung optimiert werden. Anschließend wurden die Objektträger in 4xSSC-Tween 20 (0,05%) gestellt, da die späteren Waschschritte mit dem gleichen Puffer erfolgten. Unspezifische Bindungsstellen wurden mit 4xSSC, 0,5% Blockierungsreagenz 30min lang geblockt. Hierfür wurden 75µl pro Objektträger aufgetragen und dieser mit einem großen Deckglas versehen. Das Blocken erfolgte in einer feuchten Kammer im Brutschrank bei 37°C.

Detektion

Zur Detektion des Haptens Biotin, mit dem die Sonde gegen das Zentromer von Chromosom 1, der Sondenmix gegen alle Zentromere und die mittels PCR hergestellten Sonden markiert waren, wurde Streptavidin eingesetzt. Streptavidin wird von *Streptomyces avidinii* produziert und ist ein tetramereres Protein mit 4 Bindungsstellen für Biotin. An das verwendete Streptavidin war Fluoresceinisothiocyanat (FITC) als Fluoreszenzfarbstoff gekoppelt. Streptavidin-FITC (Vector) wurde in 4xSSC-Blockierungsreagenz im Verhältnis 1:200 gelöst. Jeweils 100µl wurden pro Objektträger aufpipettiert und ein großes Deckglas aufgelegt. Die Inkubation erfolgte für 30min im 37°C warmen Brutschrank. Um ein Ausbleichen des FITC zu vermeiden, wurden die folgenden Schritte - soweit möglich - unter Lichtausschluss durchgeführt. Überschüssiges, nicht spezifisch gebundenes Streptavidin wurde in anschließenden Waschschritten entfernt. Hierzu wurden die Objektträger nach Entfernen des Deckglases für 3x5min in 4xSSC-Tween 20 (0,05%) bei Raumtemperatur gestellt.

Amplifikation

Wurde amplifiziert, so geschah dies mit einem Antikörper gegen Streptavidin, der seinerseits wieder biotinyliert war (Anti-Streptavidin, biotinyliert, Vector). Er wurde im Verhältnis 1:400 in 4xSSC-Blockierungsreagenz gelöst. 100µl wurden pro
Objektträger aufpipettiert und dieser mit einem großen Deckglas versehen. Die Inkubation erfolgte für 30 min im 37°C warmen Brutschrank. Ungebundene Antikörper wurden durch 3x5-minütiges Waschen mit 4xSSC-Tween 20 (0,05%) bei Raumtemperatur entfernt.

Danach wurde wieder eine Detektion mit Streptavidin-FITC durchgeführt, wobei jetzt nicht das Biotin der Sonde, sondern das Biotin des Anti-Streptavidins detektiert wurde. Dadurch erhöht sich die Anzahl der FITC-Moleküle und das Signal wird stärker. Anschließend erfolgte ein erneutes 3x5-minütiges Waschen mit 4xSSC-Tween 20 (0,05%) bei Raumtemperatur. Es konnte mehrfach amplifiziert werden.

Um die Präparate optisch besser beurteilen zu können, erfolgte die DNA-Gegenfärbung durch Inkubation mit 240ng DAPI/ml 2xSSC für 10 min. Zum Schluss wurden die Präparate mit einer aufsteigenden Alkoholreihe (je 5 min 70%, 80%, 96% Ethanol) dehydriert und bei Raumtemperatur getrocknet.

3.3.2.2 Variationen

Zentromersonde gegen Chromosom 1

Der Hybridisierungsmix musste selbst hergestellt werden und setzte sich aus 20% Sonde (c=2-5ng/μl), 60% Formamid in 2xSSC zusammen. Die Stringenzwaschung erfolgte mit 50% Formamid, 2xSSC (pH 7,0) bei 37°C für 3x5 min, in weiteren Versuchen wurde der Formamidanteil auf 60% erhöht.

Sondenmix gegen alle Zentromere

Es lag ein gebrauchsfertiger Hybridisierungsmix vor, der neben den Sonden 50% Formamid und 2xSSC enthielt. Im Verlauf wurde die von der Fa. Oncor empfohlene Sondenmenge verdoppelt und auch eine Hybridisierungszeit von 3,5h getestet. Für die Stringenzwaschung wurden die zwei der Fa. Oncor angegebenen Methoden ausprobiert. Methode I empfahl eine Waschung mit 1xSSC bei 72°C für 5 min, Methode II eine Waschung mit 65% Formamid, 2xSSC (pH 7,0) bei 43°C für 15 min und anschließend eine Waschung mit 2xSSC (pH 7,0) bei 37°C für 8 min. Bei der Detektion wurde das Lösungsverhältnis von Streptavidin-FITC in 4xSSC-Blockierungsreagenz bis auf 1:100 gesteigert. Ebenso wurde bei der Amplifikation das Lösungsverhältnis von Anti-Streptavidin in 4xSSC-Blockierungsreagenz bis auf
1:100 erhöht. Zudem wurden bei der Detektion und der Amplifikation jeweils Inkubationszeiten von 15min getestet.

c-myc-Sonde
Zur Chromosomenvorbehandlung wurden die Objekträger für 30min in 37°C warmes 2xSSC (pH 7,0) gestellt. Danach wurden die Präparate in einer aufsteigenden Alkoholreihe (je 2min 70%, 80%, 95% Ethanol) dehydriert. Die Denaturierung der Ziel-DNA wurde wie bei der getrennten Denaturierung durchgeführt. Die c-myc-Sonde (c=50-100ng/μl), die in einem gebrauchsfertigen Hybridisierungsmix vorlag, der neben der Sonde 50% Formamid, 2xSSC und Blockierungs-DNA enthielt, wurde entsprechend den Herstellerangaben nicht hitzedenaturiert, sondern lediglich für 5min bei 37°C erwärmt und kurz mit dem Vortexgerät durchmischt. Die zwei empfohlenen Stringenzwaschungen wurden ausprobiert. Zunächst wurde mit 2xSSC bei 72°C für 5min gewaschen. Später wurde eine Alternativwaschung mit 50% Formamid, 2xSSC (pH 7,0) bei 43°C für 15min, gefolgt von 2xSSC (pH 7,0) bei 37°C für 8min, durchgeführt. Da die c-myc-Sonde mit Digoxigenin markiert war, wurde ein aus der Maus gewonnener monoklonaler FITC-markierter Anti-Digoxigenin-Antikörper (Dianova) zur Detektion benutzt. Er wurde in 0,5% Blockierungsreagenz-TN-Puffer im Verhältnis 1:100 gelöst. Amplifiziert wurde mit einem digoxigenierten Anti-Maus-Antikörper (Dianova), der mit 0,5% Blockierungsreagenz-TN-Puffer im Verhältnis 1:100 gemischt wurde. Bei der zweiten Detektion wurde Anti-Digoxigenin-FITC im Verhältnis 1:25 mit 0,5% Blockierungsreagenz-TN-Puffer eingesetzt. Die Waschungen wurden mit TN-Puffer/0,05%Tween durchgeführt.

Mittels PCR hergestellte Sonden der Länge 1031, 718, 485, 243bp
Die Chromosomenvorbehandlung erfolgte analog zu der FISH mit der c-myc-Sonde. Denaturiert wurde für 10min auf einer 80°C heißen Heizplatte. Die Stringenzwaschung wurde zunächst mit 2xSSC bei 72°C für 5min, im Verlauf entsprechend oben beschriebener Methode II (s. 3.3.2.2 Sondenmix gegen alle Zentromere) durchgeführt, wobei auch Formamidanteile von 55% und 60% getestet wurden. Ferner fanden die Waschungen mit 4xSSC-Tween 20 (0,05%) bei Raumtemperatur und bei 42°C statt. Initial wurde auf eine Amplifikation verzichtet, später wurde 2-, 4- und 6-mal amplifiziert.
3.4 Fluoreszenzmikroskopie

3.5 SNOM

3.5.1 Funktionsprinzip

Wie in der Einleitung beschrieben (s. 2.2, S.13, 14) ermöglicht die SNOM durch das Arbeiten im Nahfeld eine Auflösung, die nicht mehr von der Wellenlänge des benutzten Lichtes, sondern von der Größe der Lichtquelle und ihrem Abstand zur Oberfläche des zu untersuchenden Materials abhängig ist.

Während die Nahfeld-Spitze die Probenoberfläche im Nahfeld scannt, wird der Abstand zwischen beiden konstant gehalten. Dies kann mit verschiedenen Verfahren erfolgen. Meist wird jedoch der hier benutzte Rückkopplungsschaltkreis verwendet, der die Dämpfung von Scherkräften zwischen Spitze und Probe misst (BETZIG et al.,
Material und Methoden

Somit liefert die SNOM nicht nur eine optische Auflösung weit unter der Diffraktionsgrenze, sondern gleichzeitig auch topographische Informationen.

Abb 6: schematischer Aufbau der SNOM-Anordnung
Zur Untersuchung der Präparate diente ein kommerziell erhältliches SNOM (Aurora, ThermoMicroscopes, Sunnyvale, USA). Der Illuminations- und Transmissions-Modus wurden angewendet. Im Verlauf der Arbeit wurden Modifizierungen vorgenommen, die im Folgenden genannt sind.

Über eine Glasfaser wurde Laserlicht, das von einem luftgekühlten 488nm Argonlaser (Uniphase, San Jose, USA) stammte, in die Nahfeld-Spitze geleitet. Die Spitzen wurden durch Ziehen kommerzieller „single-mode“ Glasfasern (F-SA, Newport, Irvine, USA) hergestellt. So entstanden sehr feine Spitzen, die anschließend mit Aluminium in einer UHV-Kammer bedampft wurden. Die Öffnung der Spitzen war mit 50nm kleiner als die Wellenlänge des eingesetzten Argonlasers, der die Fluoreszenzfarbstoffe anregte. Das resultierende Fluoreszenzlicht wurde von einem 0,7NA Objektiv (60x, Nikon, Japan) gebündelt und gelangte anschließend in einen Photonen Detektor. Um auch schwache Fluoreszenzsignale nachweisen zu können, wurde der Standard PMT Detektor durch eine Silicon Avalanche Photon
Material und Methoden

3.5.2 Darstellung der Chromosomen

Da mit der SNOM aufgrund des begrenzten Scan-Bereiches keine Übersichtsdarstellung möglich ist, mussten die interessierenden Strukturen zunächst mit einem Objektiv und einer CCD Kamera gesucht werden. Danach wurde die Nahfeld-Spitze über diesem Areal positioniert.

Für den Nachweis der zentromerspezifischen Sonde auf Chromosom 1 musste dieses zuerst identifiziert werden. Dazu wurde das Areal mit der Metaphase komplett topographisch gescannt. Der Anregungslaser blieb währenddessen ausgeschaltet. War Chromosom 1 sicher identifiziert, so wurde der Anregungslaser zur Detektion des Fluoreszenzsignals eingeschaltet.

Für den Nachweis der Zentromersonden gegen alle Chromosomen wurde ebenso wie für den Nachweis der c-myc-Sonde und der mittels PCR hergestellten Sonden nur die Mitose eingestellt, die Detektion erfolgte direkt im Anschluss. Um eine ausreichende Signalstärke zu erhalten, wurde über jedem Pixel 10ms lang gemessen und integriert. Folglich dauert das Anfertigen eines 30µm x 30µm großen Bildes mit einer Auflösung von 500pixel x 500pixel ca. 42min.
3.5.3 Manipulation/Extraktion chromosomaler DNA

Hinsichtlich der Manipulation, die letztendlich die gezielte Isolierung und Extraktion chromosomaler DNA erlauben sollte, wurden erste Erfahrungen, die mittels AFM erarbeitet wurden, benutzt: Zur Dissektion eines Chromosoms wurde eine AFM-Spitze zwischen dem Anfangs- und Endpunkt eines Schnittes hin und her bewegt. Die Kraft wurde dabei ausgehend von 2μN bei jeder Bewegung um 4μN erhöht, bis 40μN erreicht waren. In der Folge wurden die Kräfte ermittelt, die zur Manipulation am Chromosom nötig sind. Hierzu wurden mit FMR-W-Spitzen der Fa. Nanoworld (K=2,8N/m, fR=75kHz) unterschiedliche Kräfte auf die Chromosomenoberfläche ausgeübt. Drückte die Spitze mit einer Kraft von 2,2μN auf die Chromosomenoberfläche, resultierte eine Eindringtiefe von ca. 40nm; eine Kraft von 3,1μN führte zu einem Eindringen bis in eine Tiefe von ca. 100nm.

Die gemachten Erfahrungen wurden auf das SNOM übertragen. Durch vertikales Eintauchen der SNOM-Spitze in das Chromosom wurde versucht, chromosomale DNA zu manipulieren. Die Extraktion sollte durch Hängenbleiben der DNA in der Öffnung der SNOM-Spitze erfolgen. Daher wurden die SNOM-Spitzen vor und nach der Manipulation mit einem REM abgebildet, um zu überprüfen, ob DNA hängen geblieben war. Ferner wurde eine DOP-PCR durchgeführt, welche die Amplifikation unbekannter DNA-Sequenzen ermöglicht. Hiermit sollte die DNA direkt nachgewiesen werden.
3.6 Verwendete Materialien

3.6.1 Zellmaterial
humane Lymphozyten eines gesunden männlichen Spenders
humane Colon-Karzinom Zelllinie Colo 320 DM

3.6.2 Chemikalien
Die verwendeten Chemikalien sind in alphabetischer Reihenfolge aufgelistet.

<table>
<thead>
<tr>
<th>Chemikalie</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarose</td>
<td>Peqlab</td>
</tr>
<tr>
<td>Blockierungsreagenz</td>
<td>Boehringer Mannheim</td>
</tr>
<tr>
<td>Bromphenolblau</td>
<td>Roth</td>
</tr>
<tr>
<td>Colcemid</td>
<td>Serva</td>
</tr>
<tr>
<td>DABCO</td>
<td>Sigma</td>
</tr>
<tr>
<td>DAPI</td>
<td>Sigma</td>
</tr>
<tr>
<td>dATP</td>
<td>Pharmacia Biotech</td>
</tr>
<tr>
<td>dCTP</td>
<td>Pharmacia Biotech</td>
</tr>
<tr>
<td>dGTP</td>
<td>Pharmacia Biotech</td>
</tr>
<tr>
<td>dTTP</td>
<td>Pharmacia Biotech</td>
</tr>
<tr>
<td>EDTA</td>
<td>Roth</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>Merck</td>
</tr>
<tr>
<td>EtBr</td>
<td>Sigma</td>
</tr>
<tr>
<td>FCS</td>
<td>PAA</td>
</tr>
<tr>
<td>Fixogum</td>
<td>Marabuwerke</td>
</tr>
<tr>
<td>Formamid</td>
<td>Roth</td>
</tr>
<tr>
<td>Glycerin</td>
<td>Roth</td>
</tr>
<tr>
<td>HCL</td>
<td>Roth</td>
</tr>
<tr>
<td>H2Odd</td>
<td>Delta Pharma</td>
</tr>
<tr>
<td>Methanol</td>
<td>Merck</td>
</tr>
<tr>
<td>Na-Acetat</td>
<td>Merck</td>
</tr>
<tr>
<td>Na3Citrat·2H2O</td>
<td>Roth</td>
</tr>
</tbody>
</table>
Material und Methoden

3.6.3 Puffer und Lösungen

Die Auflistung wurde in alphabetischer Reihenfolge erstellt.

Antifade
2g DABCO in 90ml Glycerin bei 60°C lösen
10ml 1M Tris (pH 7,0)
100μl 20% NaN₃

Ladepuffer
0,25% Bromphenolblau
40% Glycerin
in 1xTAE-Puffer lösen
PBS
8,0g/l NaCl
0,2g/l KCl
1,15g/l Na₂HPO₄
0,2g/l KH₂PO₄
10 Tabletten PBS in 1l H₂O livelihood auflösen
pH 7,3

SSC 20x (Stammlösung)
3M NaCl
300mM Na₃Citrat·2H₂O
pH 7,0

TAE-Puffer
40mM Tris
40mM Essigsäure
1mM EDTA

TN-Puffer
0,1M Tris
0,15M NaCl
pH 7,6
4. Ergebnisse

4.1 Auswertung der FISH-Experimente mittels Fluoreszenzmikroskopie

Nach der erfolgreichen Chromosomenpräparation und der Herstellung kleiner Sonden mittels PCR wurden die FISH-Experimente mit den verschiedenen Sonden durchgeführt. Auch hier mussten die Versuchsbedingungen optimiert werden. Die Betrachtung der Metaphasechromosomen erfolgte mit einem Fluoreszenzmikroskop (Axioskop I, Zeiss). Mit Hilfe eines DAPI-Filters konnte die mit DAPI gegengefärbte DNA sichtbar gemacht werden. Im FITC-Filter kamen die grünen FITC Signale zur Darstellung.

4.1.1 Zentromersonde gegen Chromosom 1

Es wurde eine Codenaturierung durchgeführt. Eine Amplifikationsrunde war ausreichend, um das Signal deutlich erkennen zu können. Jedoch lagen bei der anfänglichen Stringenzwaschung mit 50% Formamid, 2xSSC bei 37°C für 3x5min noch viele unspezifische Signale vor (Abb. 8). Eine Erhöhung des Formamidanteils auf 60% hatte eine deutliche Reduzierung der unspezifischen Signale zur Folge, in einigen Versuchen verschwanden sie ganz (Abb. 9). Die im DAPI-Filter sichtbaren „Signale“ im Bereich der Zentromere kommen durch die höhere Affinität von DAPI zu AT-reichen Regionen zustande (SCHWEIZER, 1976). Das Zentromer ist eine AT-reiche Region, da es einen hohen Anteil an α-Satelliten-DNA besitzt, welche aus AT-reichen Monomeren besteht (MANUELIDIS, 1978; ALEXANDROV et al., 2001).
Abb. 8a und b zeigen fluoreszenzmikroskopische Aufnahmen einer Metaphase nach einer FISH mit der biotinylierten Zentromersonde gegen Chromosom 1. Die Stringenzwaschung erfolgte mit 50% Formamid, 2xSSC bei 37°C für 3x5min, die Detektion mit Streptavidin-FITC. Für Abb. 8a wurde ein DAPI-Filter benutzt, der die mit DAPI gegengefärbte DNA sichtbar macht. Für Abb. 8b wurde ein FITC-Filter eingesetzt, der die grünen FITC Signale erkennen lässt. In Abb. 8b sind neben den spezifischen Signalen im Bereich des Zentromers von Chromosom 1 (Pfeile) auch mehrere unspezifische Signale zu erkennen.

Abb. 9a und b zeigen fluoreszenzmikroskopische Aufnahmen einer Metaphase nach einer FISH mit der biotinylierten Zentromersonde gegen Chromosom 1. Die Stringenzwaschung wurde hier mit 60% Formamid, 2xSSC bei 37°C für 3x5min durchgeführt, die Detektion mit Streptavidin-FITC. Sind im DAPI-Filter in 9a noch mehrere „Signale“ im Bereich der Zentromere sichtbar, so kommen im FITC-Filter in 9b nur die Zentromersignale von Chromosom 1 zur Darstellung (Pfeile); unspezifische Signale sind nicht zu erkennen.
4.1.2 Sondenmix gegen alle Zentromere

Sämtliche getesteten Bedingungen (s. 3.3.2.1, S.36 und 3.3.2.2, S.39) lieferten einheitliche Ergebnisse. Die Signale kamen nach einer Amplifikation klar zur Darstellung. Jedoch waren nie alle Zentromere sichtbar markiert. Die Zahl der markierten Zentromere schwankte zwischen 25-35.

Abb. 10a und b zeigen fluoreszenzmikroskopische Aufnahmen einer Metaphase nach einer FISH mit dem biotinylierten Sondenmix gegen alle Zentromere. Die Stringenzwaschung erfolgte mit 65% Formamid, 2xSSC (pH 7,0) bei 43°C für 15min und anschließend mit 2xSSC (pH 7,0) bei 37°C für 8min. Detektiert wurde mit Streptavidin-FITC. Es wurde 1x amplifiziert. Für Abb. 10a wurde ein DAPI-Filter benutzt, der die mit DAPI gegengefärbte DNA sichtbar macht. Im FITC-Filter in Abb. 10b zeigen sich die grünen FITC-Signale im Zentromerbereich. Nicht alle Zentromere sind markiert.
4.1.3 c-myc-Sonde

Bei Hybridisierungen der c-myc-Sonde zeigten sich viele Signale, die außer auf dem erwarteten Genlocus 8q24 an mehreren Stellen der Chromosomen auftraten. Auch auf den außerhalb der Chromosomen gelegenen Double minutes waren Signale sichtbar (Abb. 11). Die Variation der Versuchsbedingungen (s. 3.3.2.2, S.40) lieferte keine Unterschiede.

4.1.4 Mittels PCR hergestellte Sonden der Länge 1031, 718, 485, 243bp

Mit der PCR wurden 4 verschiedene Produkte aus der c-myc Onkogensequenz amplifiziert mit Längen von 1031, 718, 485 und 243bp. Durch die anschließende Markierung mit Biotin entstanden so Sonden, die für eine FISH gegen die aus der Zelllinie Colo 320 DM préparierten Metaphasechromosomen eingesetzt werden konnten.

Initial wurde nicht amplifiziert (Abb. 12 und 13). Keine der 4 Sonden zeigte unter dem Fluoreszenzmikroskop spezifische Signale, weder auf den Chromosomen noch auf den Double minutes. Um die unspezifische Fluoreszenz auf den Chromosomen zu minimieren, wurden bei der Stringenzwaschung Veränderungen vorgenommen. Anstatt mit 2xSSC bei 72°C für 5min (Abb. 12) wurde mit 55% Formamid, 2xSSC bei 43°C für 15min, gefolgt von 2xSSC (pH 7,0) bei 37°C für 8min, gewaschen (Abb. 13). Die Veränderungen blieben ohne Auswirkung.

Außerdem wurde schrittweise amplifiziert. Für jede der 4 Sonden entstanden so FISH mit 2 (Abb. 14), 4 (Abb. 15 und 16) und 6 (Abb. 17) Amplifikationsrunden. Die Präparate lieferten ein einheitliches Bild: Spezifische Signale waren weder auf den Chromosomen noch auf den Double minutes zu erkennen, stattdessen zeigte sich eine unspezifische Fluoreszenzmarkierung der Chromosomen und der Double minutes. Eine Erhöhung des Formamidanteils auf 60% bei der Stringenzwaschung (Abb. 14, 15, 16, 17) brachte keine Verbesserung. Ferner wurden die Waschungen mit 4xSSC-Tween 20 (0,05%) anstatt bei Raumtemperatur (Abb. 12, 13, 14, 15, 17) bei 42°C (Abb. 16) ausgeführt, was auch zu keiner wesentlichen Veränderung führte. Im Folgenden sind die oben beschriebenen Variationsbedingungen und Ergebnisse anhand der beiden größeren Sonden (718, 1031bp) aufgezeigt. Auf die Darstellung der kleineren Sonden (485, 243bp) wurde verzichtet, da keine relevanten Unterschiede zu verzeichnen waren.

Abb. 13a und b zeigen fluoreszenzmikroskopische Aufnahmen einer Metaphase der Zelllinie Colo 320 DM nach einer FISH mit der selbst hergestellten biotinylierten Sonde mit einer Länge von 1031bp. Die Stringenzwaschung erfolgte mit 55% FA, 2xSSC bei 43°C über 15min und anschließend mit 2xSSC (pH 7,0) bei 37°C über 8min. Detektiert wurde mit Streptavidin-FITC. Es wurde nicht amplifiziert. Die Waschungen mit 4xSSC-Tween 20 (0,05%) wurden bei Raumtemperatur durchgeführt. Für Abb. 13a wurde ein DAPI-Filter benutzt, der die mit DAPI gegengefärbte DNA sichtbar macht. Für Abb. 13b wurde ein FITC-Filter verwendet. Es zeigen sich keine spezifischen Signale. Die Chromosomen sowie die Double minutes weisen eine unspezifische Fluoreszenzmarkierung auf. Die Änderung der Stringenzwaschung brachte keine Reduktion der unspezifischen Signale.
Abb. 14a und b zeigen fluoreszenzmikroskopische Aufnahmen zweier Metaphasen der Zelllinie Colo 320 DM nach einer FISH mit der selbst hergestellten biotinylierten Sonde mit einer Länge von 1031bp. Die Stringenzwaschung erfolgte mit 60% FA, 2xSSC bei 43°C über 15min und anschließend mit 2xSSC (pH 7,0) bei 37°C über 8min. Detektiert wurde mit Streptavidin-FITC. Es wurde 2x amplifiziert. Die Waschungen mit 4xSSC-Tween 20 (0,05%) wurden bei Raumtemperatur durchgeführt. Für Abb. 14a wurde ein DAPI-Filter benutzt, der die mit DAPI gegengefärbte DNA sichtbar macht. Für Abb. 14b wurde ein FITC-Filter verwendet. Es finden sich keine spezifischen Signale. Die Chromosomen sowie die Double minutes zeigen eine unspezifische Fluoreszenzmarkierung. Die Änderung der Stringenzwaschung lieferte keine Reduktion der unspezifischen Signale.

Abb. 15a und b zeigen fluoreszenzmikroskopische Aufnahmen einer Metaphase der Zelllinie Colo 320 DM nach einer FISH mit der selbst hergestellten biotinylierten Sonde mit einer Länge von 1031bp. Die Stringenzwaschung erfolgte mit 60% FA, 2xSSC bei 43°C über 15min und anschließend mit 2xSSC (pH 7,0) bei 37°C über 8min. Detektiert wurde mit Streptavidin-FITC. Es wurde 4x amplifiziert. Die Waschungen mit 4xSSC-Tween 20 (0,05%) wurden bei Raumtemperatur durchgeführt. Für Abb. 15a wurde ein DAPI-Filter verwendet, der die mit DAPI gegengefärbte DNA sichtbar macht. Für Abb. 15b wurde ein FITC-Filter benutzt. Es sind keine spezifischen Signale zu erkennen. Die Chromosomen sowie die Double minutes zeigen eine unspezifische Fluoreszenzmarkierung.
Abb. 16a und b zeigen fluoreszenzmikroskopische Aufnahmen von Metaphasen der Zelllinie Colo 320 DM nach einer FISH mit der selbst hergestellten biotinylierten Sonde mit einer Länge von 1031bp. Die Stringenzwaschung erfolgte mit 60% FA, 2xSSC bei 43°C über 15min und anschließend mit 2xSSC (pH 7,0) bei 37°C über 8min. Detektiert wurde mit Streptavidin-FITC. Es wurde 4x amplifiziert. Die Waschungen mit 4xSSC-Tween 20 (0,05%) wurden bei 42°C durchgeführt. Für Abb. 16a wurde ein DAPI-Filter verwendet, der die mit DAPI gegengefärbte DNA sichtbar macht. Für Abb. 16b wurde ein FITC-Filter benutzt. Es zeigen sich keine spezifischen Signale. Die Chromosomen sowie die Double minutes weisen eine unspezifische Fluoreszenzmarkierung auf.

Abb. 17a und b zeigen fluoreszenzmikroskopische Aufnahmen von Metaphasen der Zelllinie Colo 320 DM nach einer FISH mit der selbst hergestellten biotinylierten Sonde mit einer Länge von 1031bp. Die Stringenzwaschung erfolgte mit 60% FA, 2xSSC bei 43°C über 15min und anschließend mit 2xSSC (pH 7,0) bei 37°C über 8min. Detektiert wurde mit Streptavidin-FITC. Es wurde 6x amplifiziert. Die Waschungen mit 4xSSC-Tween 20 (0,05%) wurden bei Raumtemperatur durchgeführt. Für Abb. 17a wurde ein DAPI-Filter benutzt, der die mit DAPI gegengefärbte DNA sichtbar macht. Für Abb. 17b wurde ein FITC-Filter verwendet. Es lassen sich keine spezifischen Signale nachweisen. Die Chromosomen sowie die Double minutes zeigen eine unspezifische Fluoreszenzmarkierung.
4.2 Auswertung der FISH-Experimente mittels SNOM

Wie unter 3.4 (S.41) beschrieben, wurden die FISH-Experimente immer an mindestens zwei Präparaten parallel durchgeführt, d.h. die Auswertung der FISH-Experimente mittels SNOM erfolgte parallel zur Auswertung mit dem Fluoreszenzmikroskop an einem gleich behandelten Referenzpräparat.
Zunächst sollte geklärt werden, ob das kommerziell erworbene SNOM zum Abbilden chromosomaler DNA geeignet ist oder ob Modifizierungen vorgenommen werden müssen.
Es zeigte sich, dass das vorliegende Setup nicht für die zu untersuchenden Proben geeignet war. Es mussten Veränderungen bei der Positionierung der SNOM-Spitze, der Detektionseinrichtung sowie der Abstandsregelung durchgeführt werden. Außerdem wurde eine Kammer zur Integration der SNOM-Bestandteile konstruiert, die im Verlauf der Experimente an die Veränderungen angepasst wurde. Auch waren einige sicherheitsrelevante Modifikationen nötig.
Zur Untersuchung der Fragestellung, ob DNA-Sonden, die mit großen Zielsequenzen hybridisieren, im topographischen und optischen Modus dargestellt werden können und ob die Modi korrelieren, wurde initial eine Zentromersonde gegen Chromosom 1 und später ein Sondenmix gegen alle Zentromere benutzt.

4.2.1 Zentromersonde gegen Chromosom 1

Abb. 18a zeigt eine topographische, Abb. 18b eine optische Aufnahme von Chromosom 1 nach einer FISH mit der zentromerspezifischen Sonde gegen Chromosom 1. Es wurde 1x amplifiziert, die Stringenzwaschung erfolgte mit 60% Formamid. Chromosom 1 ist als eine annähernd zirkuläre Struktur mit der zentralen „Aufhellung“ in Abb. 18a zu erkennen. Helligkeitszunahmen in den topographischen Aufnahmen weisen auf einen Höhenanstieg hin. Die „Aufhellung“ in Abb. 18a kommt durch die Anlagerung der Zentromersonde zustande.
Auf der optischen Aufnahme in Abb. 18b ist das FITC-Fluoreszenzsignal der Sonde sichtbar. Es weist dort die höchste Intensität auf, wo sich in der topographischen Aufnahme die „Aufhellung“ befindet, nämlich im Zentromerbereich. Der Vergleich beider Aufnahmen zeigt, dass sie miteinander korrelieren. Daher kann die Aufhellung auf der topographischen Aufnahme sicher als angelagerte Sondenmoleküle
Ergebnisse

identifiziert und das Fluoreszenzsignal auf der optischen Aufnahme dem Zentromer zugeordnet werden.

Die anderen Signale liegen an Orten, gegen die nicht hybridisiert wurde, und stammen wahrscheinlich von verbliebenen Farbstoffmolekülen oder unspezifisch gebundenen Sondenmolekülen.

Nur auf den beiden Chromosomen 1 dieser Mitose waren spezifische Zentromersignale (Pfeile) zu sehen, auf den anderen Chromosomen - wie erwartet - keine (nicht gezeigt).

Abb. 18a und b haben eine Scangröße von jeweils 7,3 μm x 7,3 μm bei einer Pixelauflösung von 500 x 500. Die Entfernung der einzelnen Rasterpunkte beträgt ca. 14nm. Für beide Aufnahmen wurde eine FWHM-Auflösung von weniger als 100nm erreicht. Das Anfertigen der Bilder dauerte ca. 42min.

Abb. 18c und 18d zeigen eine andere Perspektive. Im Vergleich zur Abb. 18a sind in der topographischen Abb. 18c zwei Erhöhungen im Zentromerbereich zu erkennen und die Schwesterchromatiden kommen besser zur Darstellung. In Korrelation zu den zwei Erhöhungen im Zentromerbereich sind in Abb. 18d zwei starke Fluoreszenzsignale zu sehen (Pfeile).
Abb. 18a-d zeigen SNOM-Aufnahmen von Chromosom 1 nach einer FISH mit der biotinylierten Zentromersonde gegen Chromosom 1, die mit Streptavidin-FITC detektiert wurde. Abb. 18a und c stellen die topographische, 18b und d die optische Aufnahme dar. Die zentrale „Aufhellung“ in 18a und c entspricht der am Zentromer gebundenen Sonde. Abb. 18b und d zeigen das FITC-Signal. Bei den anderen Signalen handelt es sich wahrscheinlich um verbliebene Farbstoffmoleküle. Abb. 18c und d repräsentieren eine andere Perspektive, die zwei Signale im Zentromerbereich erkennen lässt.
Neben den Erhöhungen im Zentromerbereich war in anderen SNOM-Aufnahmen oftmals eine weitere, zwischen den Chromatiden verlaufende Erhöhung zu sehen, die mittels konventioneller Mikroskopie nicht nachzuweisen war (Abb. 19).

Abb. 19a stellt eine topographische Aufnahme von Chromosom 1 dar. Außer den Erhöhungen im Zentromerbereich verläuft zwischen den Chromatiden eine weitere Erhöhung (Pfeil), die in 19b durch eine andere Perspektive besser zur Darstellung kommt.
Beim Suchen nach Chromosom 1 wurden im Rahmen der Scans auch topographische Aufnahmen von Kernen erstellt.

Abb. 20a zeigt eine topographische Aufnahme eines Kerns sowie mehrerer Chromosomen. Abb. 20b und 20c zeigen unterschiedliche Perspektiven einer topographischen Aufnahme eines anderen Kerns. Es sind 4 größere und eine kleinere Aufhellung zu sehen.
4.2.2 Sondenmix gegen alle Zentromere

Abb. 21a-e zeigen SNOM-Aufnahmen eines Mitoseausschnitts mit insgesamt 11 Chromosomen. Es wurde eine FISH mit dem für alle Zentromere spezifischen biotinylierten Sondenmix durchgeführt. Die Detektion erfolgte mit Streptavidin-FITC.

Abb. 21a stellt die topographische, 21b die optische Aufnahme dar. Abb. 21c zeigt die Mitose in einer anderen Perspektive. In Abb. 21d sind nur die Fluoreszenzsignale herausgearbeitet. In der Übereinanderprojektion in Abb. 21e weisen 8 der 11 Chromosomen Signale im Zentromerbereich auf. Einige dieser Signale sind in 2 oder sogar mehrere kleine Teile aufgetrennt. 3 Chromosomen weisen kein Signal auf, wobei das Zentromer des Chromosoms, das sich in der Mitte des linken Bildrandes befindet, außerhalb des hier gescannten Bereichs zu liegen scheint.
Insgesamt konnte anhand der Versuche mit der Zentromersonde gegen Chromosom 1 und dem Sondenmix gegen alle Zentromere gezeigt werden, dass mit dem modifizierten SNOM DNA-Sonden, die mit großen Zielsequenzen von mehreren hundert kb bis ca. 5Mb hybridisieren, optisch und topographisch dargestellt werden können. Außerdem konnte demonstriert werden, dass beide Modi korrelieren und reproduzierbares Arbeiten möglich ist.

In einem nächsten Schritt sollte überprüft werden, ob auch DNA-Sonden, die mit einer mittelgroßen Zielsequenz hybridisieren, topographisch und optisch dargestellt werden können und ob die Modi korrelieren. Hierfür wurde eine c-myc-Sonde eingesetzt.

4.2.3 c-myc-Sonde

Abb. 22 zeigt Chromosomen der Zelllinie Colo 320 DM nach einer FISH mit der c-myc-Sonde. Es wurde 1x amplifiziert. Bei den auf der topographischen Aufnahme in Abb. 22a zwischen den Chromosomen liegenden kleineren Strukturen handelt es sich um Double minutes (Pfeil). Fluoreszenzsignale befinden sich sowohl auf den Chromosomen als auch auf den Double minutes (Abb. 22b). Die Bilder haben eine Scangröße von je 25\(\mu\)m x 25\(\mu\)m. Bei einer Pixelauflösung von 500 x 500 beträgt die Entfernung der einzelnen Rasterpunkte 50nm. Es wurde eine FWHM-Auflösung von weniger als 100nm erzielt. Die Aufnahmedauer betrug ca. 42min.
Die Versuche mit der c-myc-Sonde belegen, dass das modifizierte SNOM für die
topographische und optische Darstellung von DNA-Sonden, die mit einer
mittelgroßen Zielsequenz von 80kb hybridisieren, geeignet ist und dass auch hier die
beiden Modi korrelieren.

Im Folgenden wurden die FISH-Experimente mit den mittels PCR hergestellten
Sonden untersucht. Mit Hilfe dieser Sonden sollte überprüft werden, ob mit dem
SNOM Zielsequenzen dargestellt werden können, die mit dem Fluoreszenzmikroskop
nicht sichtbar sind. Gleichzeitig sollte die untere Nachweissgrenze des SNOM
bestimmt werden.

4.2.4 Mittels PCR hergestellte Sonden der Länge 1031, 718, 485,
243bp

Weder auf den Double minutes noch auf den Chromosomen waren spezifische
Signale zu erkennen. Amplifikationsrunden bei der FISH führten zu einer Zunahme
der unspezifischen Signale und damit zu einem verstärkten Signalrauschen, welches
die Auswertung erschwerte. Spezifische Signale ließen sich jedoch weder optisch
noch topographisch nachweisen.

Abb. 23 zeigt exemplarisch Chromosomen und Double minutes (Pfeile) der Zelllinie
Colo 320 DM nach einer FISH mit der mittels PCR hergestellten Sonde der Länge
1031bp. Es wurde nicht amplifiziert. Die Chromosomen kommen auf der
topographischen Aufnahme (Abb. 23a) unscharf zur Darstellung. Ursächlich hierfür
ist die Einstellung der Regelparameter. Diese waren hier so eingestellt, dass die
SNOM-Spitze der weniger hohen Topographie der Double minutes besser folgte. Da
sich die Zielsequenz in x-facher Amplifikation auf den Double minutes befindet,
waren dort am ehesten Signale zu erwarten. Die optische Aufnahme (Abb. 23b) zeigt
ein Hintergrundrauschen und lässt keine spezifischen Signale erkennen. Die
Auswertung der FISH-Experimente mit den kleineren Sonden ergab keine relevanten
Unterschiede, weshalb auf eine Darstellung verzichtet wurde. Somit konnten mit dem
SNOM Zielsequenzen, die mit dem Fluoreszenzmikroskop nicht darstellbar sind,
ebenfalls nicht nachgewiesen werden. Eine erhöhte Sensitivität gegenüber der
Fluoreszenzmikroskopie konnte folglich nicht belegt werden. Die eigentliche untere
Nachweissgrenze des SNOM kann aufgrund des Größensprungs zwischen der
mittelgroßen Zielsequenz der c-myc-Sonde von 80kb und den kleinen Zielsequenzen
der mittels PCR hergestellten Sonden nicht sicher angegeben werden.
Die Bilder haben eine Scangröße von je 10μm x 10μm. Die Auflösung beträgt 500 x 500 Pixel, die Entfernung der einzelnen Rasterpunkte 20nm. Die FWHM-Auflösung lag unter 100nm. Das Scannen der Bilder dauerte ca. 42min.

Abschließend sollte untersucht werden, ob die Manipulation/Extraktion chromosomaler DNA mit dem modifizierten SNOM möglich ist.

Abschließend sollte untersucht werden, ob die Manipulation/Extraktion chromosomaler DNA mit dem modifizierten SNOM möglich ist.
4.2.5 Manipulation/Extraktion chromosomaler DNA

Abb. 24a zeigt ein Chromosom (Kantenlänge 4μm), welches mit der SNOM-Sonde manipuliert wurde, Abb. 24b zeigt die Ausschnittsvergrößerung. Auf Abb. 24c sind die Abmessungen der Indentation zu erkennen (Tiefe ca. 80nm, Durchmesser ca. 250nm).
Eine andere Möglichkeit der Manipulation besteht darin, statt einer Vertikalbewegung eine Horizontalbewegung mit der Spitze durchzuführen, was in Abb. 25 dargestellt ist.

Abb. 25 zeigt ein mittels SNOM-Spitze manipuliertes Chromosom.

Um zu überprüfen, ob DNA an der Spitze haften geblieben war, wurde diese mittels REM untersucht. Die REM zeigte hauptsächlich Veränderungen der Aluminiumbeschichtung, meistens in Form einer Absplitterung, wodurch die Identifikation verbliebener DNA unmöglich wurde. Der Versuch, die DNA mittels DOP-PCR nachzuweisen, war ebenfalls nicht erfolgreich. Bisher konnte der Beweis, dass die Extraktion chromosomaler DNA gelungen war, nicht erbracht werden.
4.3 Vergleich der Auswertungen der FISH-Experimente mittels Fluoreszenzmikroskopie und mittels SNOM

Initial zeigte sich, dass das kommerziell erworbene SNOM sich nicht für das Abbilden chromosomaler DNA und die Auswertung von FISH-Experimenten eignete. Durch Veränderungen am Setup gelang es, das SNOM so umzubauen, dass ein reproduzierbares Arbeiten möglich wurde. Zwar blieb die Handhabung des SNOM im Vergleich zur Fluoreszenzmikroskopie erschwert, jedoch wurde eine Auflösungsverbesserung erzielt und eine Auflösung <100nm möglich. Im Laufe der Versuche stellte sich heraus, dass vergleichende Untersuchungen nicht an denselben Chromosomenpräparaten vorgenommen werden konnten, da die Präparate nach der Untersuchung mit dem Fluoreszenzmikroskop für eine Auswertung mittels SNOM unbrauchbar wurden. Die in der folgenden Tabelle aufgelisteten und gegenübergestellten Ergebnisse beruhen daher auf der Untersuchung von Präparaten, die aus derselben Präparationsserie stammen.

Tabelle 5: Vergleich der Auswertungen der FISH-Experimente mittels Fluoreszenzmikroskopie und mittels SNOM

<table>
<thead>
<tr>
<th></th>
<th>Fluoreszenzmikroskopie</th>
<th>SNOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zentromersonde gegen Chromosom 1</td>
<td>immer ein Signal im Zentromerbereich</td>
<td>immer zwei Signale im Zentromerbereich</td>
</tr>
<tr>
<td>Sondenmix gegen alle Zentromere</td>
<td>ca. 25-35 Zentromere markiert</td>
<td>ca. 25-35 Zentromere markiert</td>
</tr>
<tr>
<td></td>
<td></td>
<td>einzelne Signale in 2 oder mehrere kleine Teile aufgetrennt</td>
</tr>
<tr>
<td>c-myc-Sonde</td>
<td>Signale auf 8q24 sowie anderen Chromosomen und auf den Double minutes</td>
<td>Signale auf 8q24 sowie anderen Chromosomen und auf den Double minutes</td>
</tr>
<tr>
<td>mittels PCR hergestellte Sonden der Länge 1031, 718, 485, 243bp</td>
<td>keine spezifischen Signale</td>
<td>keine spezifischen Signale</td>
</tr>
<tr>
<td>Topographie</td>
<td>nicht möglich</td>
<td>möglich</td>
</tr>
<tr>
<td></td>
<td></td>
<td>korreliert mit der optischen Darstellung und liefert zusätzliche Informationen</td>
</tr>
<tr>
<td>Manipulation chromosomaler DNA</td>
<td>nicht möglich</td>
<td>möglich</td>
</tr>
<tr>
<td>Extraktion chromosomaler DNA</td>
<td>nicht möglich</td>
<td>noch nicht gezeigt</td>
</tr>
</tbody>
</table>
5. Diskussion

5.1 **Methodische Aspekte**

5.1.1 Probenherstellung

5.1.2 PCR

Mit der PCR wurden Sonden hergestellt, die mit Zielsequenzen hybridisieren, die deutlich kleiner als die Zielsequenzen der Zentromersonde gegen Chromosom 1, des Sondenmix gegen alle Zentromere und der c-myc-Sonde sind. Durch immer kleiner werdende Zielsequenzen sollte überprüft werden, ob mit dem SNOM Zielsequenzen dargestellt werden können, die kleiner als die bislang mittels konventioneller Fluoreszenzmikroskopie nachweisbaren sind, und wo die untere Nachweisgrenze des SNOM liegt. Hierfür wurden Primerpaare verwendet, die PCR-Produkte mit einer Länge von 1031, 718, 485 und 243bp liefern sollten. Um spezifische PCR-Produkte zu erhalten, musste zunächst die Annealingtemperatur, später die Menge an Primer und DNA optimiert werden. Beim Finden der Annealingtemperatur war ein Thermocycler hilfreich, der die Einstellung eines Temperaturgradienten erlaubte. Zur Optimierung der Menge an Primer und DNA wurden verschiedene Mastermixe (s. 3.2.2.3, S.26) hergestellt. Die Auswertung mittels Gelelektrophorese ergab, dass alle Mastermixe für alle Primerpaare PCR-Produkte der erwarteten Größe lieferten. Mastermix 2 zeigte die schärfsten Banden, d.h. die wenigsten unspezifischen Produkte, und wurde deshalb für die nachfolgenden PCR übernommen.
5.1.3 FISH

5.1.3.1 Zentromersonde gegen Chromosom 1
Die FISH mit der zentromerspezifischen Sonde gegen Chromosom 1 zeigte unspezifische Signale (s. Abb. 8, S.50). Durch Erhöhung des Formamidanteils von 50% auf 60% bei der Stringenzwaschung konnten die unspezifischen Signale deutlich reduziert, teilweise sogar ganz vermieden werden (s. Abb. 9, S.50).

5.1.3.2. Sondenmix gegen alle Zentromere
Die fluoreszenzmikroskopische Auswertung der FISH zeigte, dass sich nicht auf allen Zentromeren Signale nachweisen ließen. Daher wurden - wie unter Material und Methoden beschrieben (s. 3.3.2.1, S.36 und 3.3.2.2, S.39) - bei der Denaturierung, der Hybridisierung, der Stringenzwaschung, der Detektion und der Amplifikation verschiedenste Bedingungen ausgetestet. Trotz all dieser Veränderungen gelang es nicht, alle Zentromere zu markieren. Die Anzahl der markierten Zentromere schwankte zwischen 25-35.
Hierfür können folgende Gründe in Frage kommen:
Einerseits ist nicht auszuschließen, dass die optimalen FISH-Bedingungen nicht gefunden wurden. Andererseits könnte der benutzte Sondenmix, der mit α-Satelliten-DNA hybridisiert, selbst ursächlich sein. Zwar ist α-Satelliten-DNA die häufigste Form repetitiver DNA in Zentromeren und kommt in jedem menschlichen Zentromer vor (WARBURTON, WILLARD, 1996), jedoch kann die Kopienzahl individuell beträchtlich variieren (YUROV et al., 1987). Im Zentromerbereich von Chromosom X beispielsweise finden sich Variationen zwischen 1,38Mb und 3,73Mb (MAHTANI, WILLARD, 1990), im Zentromerbereich von Chromosom 16 zwischen 430kb und 2Mb (GREIG et al., 1989; WEVRICK, WILLARD, 1989). Eine extreme Reduktion von α-Satelliten-DNA könnte in einem sehr schwachen bzw. nicht mehr nachweisbaren Fluoreszenzsignal resultieren, was für das Zentromer von Chromosom 21 (MIZUNOE, YOUNG, 1992; WEIER, GRAY, 1992; BOSSUYT et al., ...

5.1.3.3 c-myc-Sonde

Die FISH-Experimente mit der c-myc-Sonde zeigten Signale, die sowohl auf Chromosomen als auch auf dem außerhalb der Chromosomen gelegenen Double minutes lagen (s. Abb. 11, S.52). Bei den Double minutes handelt es sich um extrachromosomale, paarweise vorliegende Chromatinfragmente, die in Größe und Anzahl pro Zelle stark variieren. Sie enthalten zirkuläre DNA aus meist mehreren Kopien der amplifizierten Sequenz und werden bei Zellteilungen als azentrische Elemente zufällig verteilt. Double minutes sind bei der menschlichen Promyeloidzelllinie HL-60 (COLLINS, GROUDINE, 1982; DALLA-FAVERA et al., 1982), akuter myeloischer Leukämie (OHYASHIKI et al., 1987) sowie zahlreichen soliden Tumoren (BIGNER et al., 1990; BLOCK et al., 1999) beschrieben und scheinen mit einer schlechteren Prognose einherzugehen. Die Signale auf den Double minutes der Zelllinie Colo 320 DM waren zu erwarten, da c-myc amplifiziert auf den Double minutes vorliegt (ALITALO et al.,1983). Ferner sollten sich Signale auf dem Genlocus 8q24 zeigen. Jedoch waren in allen Versuchen immer mehrere Signale zu sehen, die sich außerhalb des Genlocus befanden. In der Literatur finden sich zwar Hinweise, dass c-myc auch auf Chromosom 9, 10 und 18 vorkommen kann (GOLOVLEVA et al., 2002), allerdings werden diese Amplifikationen nicht bei einer Zelllinie Colo 320 DM, sondern bei Zellen einer akuten myeloischen Leukämie beschrieben und die Amplifikationen liegen als homogen gefärbte Chromosomenregionen (homogeneously staining regions, HSRs) vor. HSRs stellen ausgedehnte intrachromosomale Chromosomensegmente dar, die zahlreiche, nacheinander angeordnete Kopien der amplifizierten DNA-Sequenz enthalten. Die auf den Chromosomen der Zelllinie Colo 320 DM zu beobachtenden Signale imponierten jedoch nicht als HSRs. Außerdem treten HSRs und Double minutes in der Regel nicht zusammen auf, wobei aber auch ein gleichzeitiges Auftreten bei einem Neuroblastom beschrieben ist (YOSHIMOTO et al., 1999). Da es sich bei c-myc um ein Onkogen handelt und Onkogene oft in
amplifizierter Form vorkommen, sind Amplifikationen auf anderen Chromosomen der Zelllinie Colo 320 DM prinzipiell denkbar, obwohl es in der Literatur diesbezüglich bislang keine Anhaltspunkte gibt. Letztlich kann nicht sicher beantwortet werden, ob die außerhalb des Genlocus 8q24 gelegenen Signale ebenfalls Amplifikationen von c-myc oder unspezifische Signale sind.

5.1.3.4 Mittels PCR hergestellte Sonden der Länge 1031, 718, 485, 243bp
Die mittels PCR hergestellten Sonden waren kleiner als das von SCHERTHAN et al. (1992) nach einmaliger Amplifikation noch nachweisbare single-copy Plasmid (3,65kb), so dass davon ausgegangen werden musste, dass die Sonden ohne Amplifikation mit dem Fluoreszenzmikroskop nicht zu detektieren sind. Da die Sonden jedoch mit Zielsequenzen auf dem c-myc Gen hybridisieren, welches amplifiziert auf den Double minutes der Zelllinie Colo 320 DM (ALITALO et al., 1983) vorliegt, wurde zunächst auf eine Amplifikationsrunde verzichtet. Keine Sonde lieferte spezifische Signale. Trotz vielfältiger Veränderungen bei der Stringenzwaschung und den Waschungen mit 4xSSC-Tween 20 (0,05%) ließen sich letztlich auch nach mehrfachen Amplifikationsrunden (max. 6) keine spezifischen Signale erkennen. Die Auswertbarkeit war dabei durch eine mit den Amplifikationsrunden steigende Anzahl unspezifischer Signale bzw. eine unspezifische Hintergrundmarkierung, welche bei Tumorzelllinien aufgrund eines vermehrten Proteindetritus häufig beobachtet wird, eingeschränkt.

5.1.4 SNOM
Mit dem Phasenkontrastobjektiv konnten die Probe und die Spitze konventionell abgebildet und die Positionierung der SNOM-Spitze optisch kontrolliert werden. Durch Verschieben des Probentisches gelang es, die Probe unter der SNOM-Spitze zu positionieren. Danach wurde die SNOM-Spitze ins Nahfeld eingebracht und die Probe gescannt. Da der maximale Scanbereich des SNOM 30μm x 30μm beträgt, erforderte das Abbilden einer kompletten Mitose je nach Spreitung 5-9 Scans. Daher wurden zunächst orientierende topographische Scans mit einer niedrigeren Auflösung von 100 x 100 Pixel durchgeführt, wodurch die Scandauer auf ein Fünftel reduziert werden konnte. Dennoch wurden zum Scannen der kompletten Mitose noch ca. 45-80min benötigt. Um das Ausbleichen der Fluoreszenzsignale zu minimieren, wurde der Anregungslaser während dieser Zeit ausgeschaltet.

Die initial eingesetzte Zentromersonde gegen Chromosom 1 sollte das Auffinden erleichtern, da Chromosom 1 in der Topographie sicher als das größte Chromosom identifiziert werden konnte. Erst nach der Identifizierung wurde der Anregungslaser zur Detektion des Fluoreszenzsignals eingeschaltet und das Chromosom mit einer höheren Pixelauflösung von 500 x 500 gescannt, was ca. 42min dauerte.

Da das Auffinden der Zentromersonde gegen Chromosom 1 schwierig war und zum Teil bis zu 2h erforderte, wurde auf einen Sondenmix gegen alle Zentromere gewechselt. Durch die höhere Anzahl vorhandener Zentromersignale konnte das Suchen nach Chromosom 1 umgangen werden. Nach Einstellen der Mitose konnte direkt mit einer Auflösung von 500 x 500 Pixel gescannt und direkt detektiert werden. Es resultierte ein schnelleres Auffinden der Fluoreszenzsignale, wodurch ein mögliches Ausbleichen reduziert wurde.

Bei der Auswertung der FISH-Experimente mit der c-myc-Sonde und den mittels PCR hergestellten Sonden konnte analog zu den Versuchen mit dem Sondenmix gegen alle Zentromere vorgegangen werden, da die Signale auf den Double minutes erwartet wurden, welche zahlreich in der Mitose vorhanden waren.

Eine hohe Signalstabilität und das schnelle Auffinden der interessierenden Region sind für die Qualität der Darstellung und damit auch für die sichere Beurteilung ein wesentlicher Faktor. Eine bessere praktische Handhabung und ein schnelleres Auffinden der zu untersuchenden Strukturen wird mit inversen Mikroskopen erreicht, bei denen ein konventionelles optisches Mikroskop in das SNOM integriert ist. Nachteil sind die hohen Kosten (Fa. Veeco, Preis ca. 220.000-250.000 Euro).
Da die Auflösung des SNOM durch das Arbeiten im Nahfeld umso höher ist, je kleiner die Lichtquelle und deren Abstand zur Probenoberfläche ist, kommen den verwendeten Spitzen, die die Größe der Lichtquelle definieren, und der Abstandsregelung eine große Bedeutung zu. Für die hohe Qualität einer Spitze sind ein hoher Lichtdurchsatz, eine definierte kreisförmige Öffnung am Spitzenende, kein seitliches Austreten von Licht durch den Metallfilm sowie eine hohe Festigkeit maßgebend. In der vorliegenden Arbeit wurden daher nur Spitzen benutzt, die durch adiabatisches Ziehen (BETZIG et al., 1991; VALASKOVIC et al., 1995) kommerzieller „single-mode“ Glasfasern (F-SA, Newport, Irvine, USA) hergestellt und anschließend in einer UHV-Kammer mit Aluminium bedampft wurden. Beim Bedampfen musste darauf geachtet werden, eine möglichst homogene Aluminiumschicht aufzutragen, um ein seitliches Austreten von Licht zu verhindern. Außerdem sollte die Schicht nicht über das Spitzenende hinausragen, da sich das Zentrum der Apertur sonst um einige nm verschiebt, was zu Fehlern in der optischen und topographischen Darstellung und letztlich zu Fehlinterpretationen der SNOM-Daten führen kann. Die gefertigten Spitzen wurden mit einem Rasterelektronenmikroskop (REM) überprüft. So konnten Spitzen hergestellt werden, deren Öffnungen bei ca. 50nm lagen.

Eine weitere Möglichkeit SNOM-Spitzen herzustellen, bietet die Mikrofrästechnik, die einen fokussierten Ionenstrahl nutzt (VEERMAN et al., 1998). Auch kann man winzige Glassplitter als tetraedische SNOM-Spitzen verwenden (KOGLIN et al., 1996).
Die Vielfalt der verschiedenen Verfahren zur Herstellung von SNOM-Spitzen verdeutlicht, dass im Streben um eine höhere Auflösung der Entwicklung noch besserer SNOM-Spitzen in Zukunft eine wichtige Rolle zukommt.

Auch bei der Detektionseinheit mussten Modifizierungen durchgeführt werden, weil der detektierbare Flux einen limitierenden Faktor für die minimale Spitzenöffnung und damit die Auflösung darstellt. Da das von den FISH-Präparaten transmittierte Licht nur eine sehr geringe Intensität besaß, kam eine „single-photon-counting“-taugliche Avalanchephotodiode zum Einsatz. Mit ihr wurde eine so hohe Detektor-empfindlichkeit erreicht, dass das transmittierte Licht nachgewiesen werden konnte.

Um die Integration der SNOM-Komponenten zu ermöglichen, musste die selbst entwickelte Kammer (Abb. 7, S.43) geringfügig modifiziert werden. Hierbei wurde auf eine einfach zu handhabende Dekontaminationsmöglichkeit geachtet, da speziell im Hinblick auf die Extraktion chromosomaler DNA eine möglichst DNA- und DNase-freie Umgebung von Bedeutung ist.
5.2 Ergebnisse

Mit dem modifizierten SNOM sollte überprüft werden, ob DNA-Sonden, die in FISH-Experimenten eingesetzt werden, topographisch und optisch dargestellt werden können und ob beide Abbildungs Modi korrelieren. Ausgehend von der Zentromersonde gegen Chromosom 1, die mit einer großen Zielsequenz hybridisiert, sollten die Zielsequenzen schrittweise reduziert und somit die untere Nachweissgrenze bestimmt werden. Weiterhin sollte untersucht werden, ob die Ergebnisse reproduzierbar sind und ob die mittels SNOM gemachten Abbildungen mit denen aus der konventionellen Fluoreszenzmikroskopie übereinstimmen oder das SNOM zusätzliche Informationen liefert. Abschließend sollte geklärt werden, ob das SNOM auch zur Manipulation oder Extraktion von DNA geeignet ist.

5.2.1 Abbilden

Durch die Auflösung im Nanometerbereich kamen im Zentromerbereich zwei Signale (s. Abb. 18, S.59) zur Darstellung. Denkbar wäre, dass es sich hierbei um jeweils ein Signal auf den beiden Schwesterchromatiden handelt, was mit der konventionellen Fluoreszenzmikroskopie nicht auflösbar ist. Durch die verdrehte Lage des in Abb. 18 dargestellten Chromosoms kommt es zum räumlichen Versatz der beiden Schwesterchromatiden. Die Signale scheinen hintereinander zu liegen.

Außerdem konnten in unseren Versuchen auch kleine Farbstoffmoleküle bzw. unspezifische Fluoreszenzsignale dargestellt werden (s. Abb. 18b, d, S.59), welche auf den fluoreszenzmikroskopischen Aufnahmen nicht zu sehen waren. Dies belegt das große Potential des SNOM, kleinste Mengen an Fluoreszenzfarbstoff zu detektieren.

Nach dem Nachweis der Zentromersonde gegen Chromosom 1 konnte auch mit dem Sondenmix gegen alle Zentomere gezeigt werden, dass das modifizierte SNOM zum Abbilden von DNA-Sonden, die mit großen Zielsequenzen hybridisieren, geeignet ist. Eine exakte Größenangabe der Zielsequenzen ist auch hier nicht möglich, da der Sondenmix ebenfalls mit α-Satelliten-DNA hybridisiert, welche in den einzelnen Zentromerregionen in einer Größenordnung von mehreren hundert kb bis ca. 5Mb vorkommt (WAYE et al., 1987; WEVRICK, WILLARD, 1989; LEE et al., 1997).

Diskussion

Dass auch mit dem SNOM nicht auf allen Zentromeren Signale darstellbar waren, ist möglicherweise einerseits darauf zurückzuführen, dass im Rahmen der FISH nicht alle Zentromere markiert wurden, zumal von Seiten des Herstellers eine eingeschränkte Sondenqualität eingeräumt wurde. Andererseits könnten durch eine extreme Reduktion von α-Satelliten-DNA (s. 5.1.3.2, S.72) oder einen geringen Anteil zum Sondenmix komplementärer Sequenzen sehr schwache Fluoreszenzsignale resultieren. Nicht auszuschließen ist, dass diese bis zum Auffinden der jeweiligen Zentromerregion schon verblasst waren, so dass der Nachweis mittels SNOM misslang.

Im Unterschied zu den fluoreszenzmikroskopischen Aufnahmen waren auf einigen Chromosomen die Fluoreszenzsignale in mehrere kleine Teile aufgetrennt (s. Abb. 21, S.63), was die hohe Auflösung des SNOM demonstriert. Durch die Auflösung im Nanometerbereich ist es vorstellbar, dass diese Substrukturen den Bindungsstellen des Sondenmix an komplementäre Sequenzen entsprechen, welche durch nicht komplementäre α-Satelliten-DNA unterbrochen werden. Außerdem könnten die Unterbrechungen auch durch Alu-Elemente entstehen, die in die α-Satelliten-DNA eingestreut sind (LEE, 1997). Alu-Elemente sind kurze, verstreut liegende, repetitive Elemente mit einer Durchschnittslänge von ca. 280bp und zählen zu den SINEs (short interspersed nuclear elements). Ferner könnten auch hier nicht
verdaute Proteine wie CENP-A, CENP-B bzw. α-Protein, die eine Bindungsaaffinität zu α-Satelliten-DNA besitzen, ein „homogenes Binden“ der Sonden verhindert haben. Da die Zentromer- und Perizentromerregion beim Human Genome Project (COLLINS et al., 1998) ausgespart wurden, ist der exakte Aufbau dieser Regionen noch nicht bekannt. Worum es sich bei den Substrukturen handelt, muss daher zurzeit offen bleiben.

Die Auswertung der FISH-Experimente mit der c-myc-Sonde belegt, dass das modifizierte SNOM DNA-Sonden, die mit mittelgroßen Zielsequenzen von 80kb hybridisieren, nachweisen kann. Die SNOM-Abbildungen zeigten Signale auf mehreren Chromosomen sowie auf den Double minutes und entsprachen damit den fluoreszenzmikroskopischen Aufnahmen. Im Gegensatz zu den SNOM-Darstellungen der Zentromersonde gegen Chromosom 1 und dem Sondenmix gegen alle Zentromere lieferten die SNOM-Aufnahmen der c-myc-Sonde keine zusätzlichen Informationen.

Ferner spielt die Problematik des Auffindens und des Ausbleichens gerade bei schwachen Fluoreszenzsignalen eine limitierende Rolle, weshalb eine hohe Signalstabilität von großer Bedeutung ist.

Neben diesen möglichen Gründen kann aufgrund der fluoreszenzmikroskopischen Auswertung (s. 4.1.4, S.53) am ehesten davon ausgegangen werden, dass die für die sehr kurzen Sonden gewählten FISH-Bedingungen nicht optimal waren. Sollte die Frage nach der unteren Nachweisgrenze des SNOM erneut aufgegriffen werden, müsste zunächst eine Optimierung der FISH-Bedingungen im Vordergrund stehen.
5.2.2 Manipulation/Extraktion chromosomaler DNA

5.3 Wertung und Ausblick

Zu Beginn der Arbeit zeigte sich, dass das kommerziell erworbene SNOM nicht zum Abbilden chromosomaler DNA geeignet war und Modifizierungen vorgenommen werden mussten. Letztlich gelang es, das SNOM so umzurüsten, dass damit auch chromosomale DNA und FISH-Sonden dargestellt und untersucht werden konnten. Als nachteilig hat sich im Laufe der Arbeit die Handhabung des SNOM erwiesen, die z.T. unpraktikabel und sehr zeitaufwendig ist. So stellt das Auffinden der zu untersuchenden Strukturen ein Problem dar. Weitere Verbesserungen bei der exakten Positionierung der SNOM-Spitze sowie die Kombination mit in der Humangenetik verwendeten Erkennungsprogrammen könnten zukünftig das Auffinden der Signale und damit die Auswertung der FISH-Experimente erleichtern.

Mit dem Nachweis der Zentromersonde gegen Chromosom 1 und dem Nachweis mehrerer Zentromersonden des Sondenmix gegen alle Zentromere konnte gezeigt werden, dass sich das SNOM zum Abbilden von DNA-Sonden eignet, die mit Zielsequenzen von mehreren hundert kb bis ca. 5Mb hybridisieren. Dass hierbei keine exakten Größenangaben gemacht werden können, liegt an der Wahl der Sonden, die mit α-Satelliten-DNA hybridisieren. Die Zentromersonde gegen Chromosom 1 wurde gewählt, da zunächst die Auswertung von FISH-Experimenten mittels SNOM etabliert werden sollte. Einerseits werden Zentromersonden häufig in FISH-Experimenten eingesetzt, andererseits sollte die große Zielsequenz der Zentromersonde gegen Chromosom 1 sowie die Lokalisation auf dem größten Chromosom das Auffinden mittels SNOM erleichtern. Da sich jedoch herausstellte, dass das Auffinden dennoch erschwert war, wurde auf den Sondenmix gegen alle Zentromere gewechselt, welcher ebenfalls mit großen Zielsequenzen hybridisiert.

Durch die höhere Anzahl an Zentromersignalen wurde das Auffinden der Signale erleichtert.

Dadurch gelang es, die Auswertung von FISH-Experimenten sowohl im optischen als auch im topographischen Modus zu etablieren, was die Grundvoraussetzung für die nachfolgenden Experimente darstellte. Die Korrelation beider Modi konnte in allen Versuchen belegt werden. Anhand von Versuchsreihenholungen, die die gleichen Ergebnisse lieferten, konnte nachgewiesen werden, dass mit dem SNOM ein reproduzierbares Arbeiten gewährleistet ist.

Als nachteilig erwies sich, dass durch das Eindecken der Präparate eine vergleichende Auswertung am selben Präparat mittels Fluoreszenzmikroskopie und

Durch den Nachweis der c-myc-Sonde konnte gezeigt werden, dass mit dem SNOM auch mittelgroße Zielsequenzen von 80kb im optischen und topographischen Modus dargestellt werden können und dass beide Modi korrelieren.

Dagegen konnte die Frage, bis zu welcher kleinsten Größe Zielsequenzen mit dem SNOM nachweisbar sind, nicht beantwortet werden. Da sich in der Literatur diesbezüglich auch keine Untersuchungen anderer Gruppen finden, muss die Frage nach der Detektionsgrenze derzeit offen bleiben. Sollte zukünftig der Nachweis kleiner Zielsequenzen gelingen, könnte die Menge an Fluoreszenzmarker und die Anzahl der notwendigen Amplifikationen reduziert werden. Somit könnte eine präzisere Darstellung - was beim physikalischen Kartieren mittels FISH wünschenswert wäre - erreicht und andererseits Zeit bei der FISH eingespart werden.

Die Korrelation der SNOM-Abbildungen mit den Abbildungen der konventionellen Fluoreszenzmikroskopie konnte in allen Versuchen mit der Zentromersonde gegen Chromosom 1, dem Sondenmix gegen alle Zentromere, der c-myc-Sonde und den mittels PCR hergestellten Sonden belegt werden. Dass hierbei im Vergleich zur konventionellen Fluoreszenzmikroskopie eine höhere Auflösung erreicht wurde, zeigen die zwei Signale im Zentromerbereich von Chromosom 1 und die in mehrere kleine Teile aufgetrennten Zentromersignale des Sondenmix.

Somit steht die Möglichkeit, mit dem SNOM DNA im Nanometerbereich gezielt zu manipulieren bzw. zu extrahieren, zwar noch am Anfang, bietet jedoch neue Perspektiven. Die Erstellung bandenspezifischer Bibliotheken, das Anlegen von Genkarten sowie cytoogenetische Analysen für die Diagnostik erfordern eine Isolierung der DNA. Dies geschieht z.B. mit Hilfe der Mikrodissektion, bei der eine Glasspitze oder ein Laser verwendet werden. Ein fundamentales Problem bei der Mikrodissektion stellt die präzise Bestimmung des Ortes des zu extrahierenden
Materials dar. Normalerweise werden mit konventionellen Methoden der Mikrodissektion komplette Chromosomenbanden piezo-gesteuert extrahiert. Durch eine bessere Auflösung könnte einerseits Material präziser entnommen und andererseits die Menge des extrahierten Materials reduziert werden, was eine Verfeinerung der Analyse bedeuten würde.

Dank seiner hohen Auflösung und der Möglichkeit der topographischen Darstellung findet das SNOM mittlerweile neben den ursprünglichen Einsatzgebieten wie der Halbleitertechnologie sowie der Magnetooptik auch in vielen Bereichen der Grundlagenforschung, der Biologie, der Molekularbiologie, der Physiologie, der Pharmakologie und der Medizin eine Anwendung, was die folgenden Beispiele belegen.

Morphologieänderungen, welche mit Veränderungen der Topographie einhergehen, nachgewiesen werden.

Im medizinischen Bereich kam das SNOM bei der Erforschung der altersbedingten Maculadegeneration zum Einsatz (KROGMEIER et al., 2001). Studien mit konfokalen Mikroskopen hatten gezeigt, dass eine hohe Emissionsrate in den Lipofuszingranula mit dem Vorhandensein des Fluorophores AE2 einherging, was bei der altersbedingten Maculadegeneration eine wichtige Rolle zu spielen schien. Die Interpretation der Ergebnisse war aber aufgrund der wenigen Informationen über die Struktur der Granula schwierig. Mit Hilfe des SNOM konnten topographische Informationen gewonnen werden, die jedoch nicht mit den optischen korrelierten. Der Vergleich der Aufnahmen ergab, dass AE2 wohl doch nicht die Hauptkomponente des Lipofuszins darstellt.

In der onkologischen Therapie wird die Genterapie zukünftig eine große Rolle spielen, wobei der FISH bei der Erforschung genetischer Erkrankungen weiterhin eine große Bedeutung zukommt. Über die Identifizierung einzelner Gene hinausgehend, eröffnet sich mit der Kenntnis der DNA-Sequenz ein neues Forschungsfeld, nämlich die Untersuchung der von diesen Sequenzen kodierten Proteine. Die Identifizierung einzelner fluoreszenzmarkierter Proteine zur Untersuchung von Protein-Protein-Interaktionen ist auf molekularer Ebene mit der konventionellen Fluoreszenzmikroskopie jedoch wegen ihrer geringeren Auflösung nur bedingt möglich. GAO et al. (2001) gelang es mit Hilfe des SNOM, FITC- und Alpha RED-markiertes Streptavidin (60kDa) darzustellen. Hierdurch wird es möglich,
Diskussion

mittels verschieden markierter Proteine Interaktionen zwischen den Proteinen zu untersuchen.

eine größere Auflösung als die Standard-FISH. Die „nano-FISH“ benutzt solche DNA-
Fiber, um mit Hilfe des SNOM den Abstand unterschiedlich angefärbter Gene zu
einem Marker zu messen (YOSHINO et al., 2003). Auf diese Weise kann die
Lokalisation des Gens bestimmt werden. Diese scheint neben der DNA-Sequenz
eine entscheidende Rolle bei der Genexpression zu spielen. Außerdem kann mit
dem SNOM die Länge der Gene gemessen werden.
Die bestehenden breiten Anwendungsmöglichkeiten des SNOM scheinen noch nicht
ausgeschöpft. Durch den interdisziplinären Austausch von Erkenntnissen aus der
Biologie, Chemie, Physiologie, Pharmazie und Medizin werden sich auch zukünftig
noch weitere Einsatzfelder erschließen.
Für die medizinische und biologische Forschung stellt das SNOM ein
vielversprechendes Werkzeug dar. Da sich das SNOM nicht nur zum Abbilden im
Nanometerbereich eignet, sondern darüber hinaus auch die Manipulation von DNA in
diesem Maßstab erlaubt, kann es zum Bindeglied zwischen der molekularen
Zytogenetik und der Molekularbiologie werden. Dabei sind die Grenzen der
 Nahfeldmikroskopie noch nicht erreicht, insbesondere da die Weiterentwicklungen
der SNOM-Technik noch nicht abgeschlossen sind. Die Integration inverser
Mikroskope sowie Verbesserungen beim Spitzendesign und der Abstandsregelung
versprechen eine einfachere Handhabung und eine noch größere Auflösung. Somit
könnte die Manipulation/Extraktion chromosomaler DNA erleichtert werden, wodurch
sich neue Perspektiven eröfnen.
6. Abkürzungsverzeichnis

Abb. Abbildung
AFM atomic force microscopy, Rasterkraftmikroskopie
APD avalanche photon diode
bp Basenpaare
BACs bacterial artificial chromosomes
CCD Kamera charge coupled device Kamera
CENP A centromere protein A
CENP B centromere protein B
CGH comparative genomic hybridization
D/A Converter Digital/Analog Converter
DABCO 1,4 Diazobicyclo(2,2,2,)octan
DAPI 4,6 Diamidino-2-phenylinodl
dATP Desoxyadenosintriphosphat
dCTP Desoxycytidintriphosphat
dGTP Desoxyguanosintriphosphat
DM Double minutes
DNA desoxyribonucleic acid
DOP-PCR degenerate oligonucleotide primer-polymerase chain reaction
DS DNA Doppelstrang DNA
dTTP Desoxythymidintriphosphat
dUTP Desoxyuridintriphosphat
EDTA Ethylendiamin-tetraacetat
EtBr Ethidiumbromid
Fa. Firma
FCS fetal calf serum, fetales Kälberserum
FISH Fluoreszenz in situ-Hybridisierung
FITC Fluoresceinisothiocyanat
fR Resonanzfrequenz
FRET Fluoreszenz-Resonanz-Energie-Transfer
FWHM full-width-half-maximum, Halbwertsbreite des Intensitätspeaks
H2Odd Wasser, doppelt destilliert
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSRs</td>
<td>homogeneously staining regions, homogen gefärbte Chromosomenregionen</td>
</tr>
<tr>
<td>ISH</td>
<td>in situ-Hybridisierung</td>
</tr>
<tr>
<td>K</td>
<td>Federkonstante</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasen</td>
</tr>
<tr>
<td>KCl</td>
<td>Kaliumchlorid</td>
</tr>
<tr>
<td>LT-FISH</td>
<td>low temperature-FISH</td>
</tr>
<tr>
<td>Mb</td>
<td>Megabasen</td>
</tr>
<tr>
<td>Mg^{2+}</td>
<td>Magnesiumionen</td>
</tr>
<tr>
<td>NA</td>
<td>Numerische Apertur</td>
</tr>
<tr>
<td>NEA</td>
<td>non essential amino acids, nicht essentielle Aminosäuren</td>
</tr>
<tr>
<td>PACs</td>
<td>P1 derived artificial chromosomes</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline, Phosphat-gepufferte Salzlösung</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction, Polymerase-Ketten-Reaktion</td>
</tr>
<tr>
<td>PMT Detektor</td>
<td>Photo Multiplier Detektor</td>
</tr>
<tr>
<td>REM</td>
<td>Rasterelektronenmikroskopie</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid, Ribonukleinsäure</td>
</tr>
<tr>
<td>SINEs</td>
<td>short interspersed nuclear elements</td>
</tr>
<tr>
<td>SNOM</td>
<td>scanning near-field optical microscopy, scanning near-field optical scope</td>
</tr>
<tr>
<td>SPM</td>
<td>scanning probe microscopy, Rastersondenmikroskop</td>
</tr>
<tr>
<td>STM</td>
<td>scanning tunneling microscopy, Rastertunnelmikroskop</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TAE-Puffer</td>
<td>Tris Acetat EDTA-Puffer</td>
</tr>
<tr>
<td>TN-Puffer</td>
<td>Tris NaCl-Puffer</td>
</tr>
<tr>
<td>UHV-Kammer</td>
<td>Ultrahochvakuum-Kammer</td>
</tr>
<tr>
<td>UV-Licht</td>
<td>ultraviolette Licht</td>
</tr>
<tr>
<td>YACs</td>
<td>yeast artificial chromosomes</td>
</tr>
</tbody>
</table>
7. Literaturverzeichnis

8. Dank

An dieser Stelle möchte ich mich herzlich bei allen bedanken, die zum Entstehen und Gelingen dieser Arbeit beigetragen haben. Mein besonderer Dank gilt:

- Herrn Prof. Dr. Eckart Meese, Leiter des Instituts für Humangenetik, dass er mir die Anfertigung dieser Dissertation ermöglichte, außerdem für die Durchsicht der Arbeit sowie Tipps zur Verbesserung
- Herrn Dr. Rainer Hanselmann, unter dessen Betreuung diese Arbeit konzipiert und durchgeführt wurde
- Frau PD Dr. Yasmin Mehraein und Herrn Dr. Martin Oberringer für ihre ausdauernde Hilfe, Anregungen und Korrekturen. Sie waren stets Ansprechpartner bei aufgetretenen Problemen - dafür besonderen Dank.
- Herrn Dr. Hans-Peter Sattler für die Betreuung der Polymerase-Ketten-Reaktion
- Herrn Dr. Haibin Gao und Herrn Andreas Englisch für die Kooperation und die Einführung in die Rasternahfeldmikroskopie
- Fr. Martina Jennewein für die Unterstützung bei der Laborarbeit
- Caro, Uli und meinem Bruder Jens für die Hilfe bei aufgetretenen Computer-problemen
- Isa für das beharrliche Korrekturlesen, die Verbesserungsvorschläge sowie die jederzeitige Unterstützung und ihr Verständnis
- Meinen Eltern Marlene und Jürgen Niedereichholz, die mir das Studium und damit diese Arbeit überhaupt erst ermöglicht haben. Außerdem herzlichen Dank für das Korrekturlesen.

- Letztlich möchte ich mich bei allen bedanken, die diese Arbeit in irgendeiner Weise unterstützt haben.
9. Lebenslauf

Persönliche Daten

Name: Niedereichholz
Vorname: Markus
Geburtsdatum: 16.02.73
Geburtsort: Illingen
Familienstand: ledig
Konfession: römisch-katholisch
Eltern: Jürgen und Marlene Niedereichholz
Geschwister: Jens Niedereichholz

Bildungsgang

1979-1983 Grundschule Uchtelfangen
1983-1992 Abitur am Illtalgymnasium Illingen
1992-1993 Zivildienst beim Paritätischen Wohlfahrtsverband
1993 Beginn des Studiums der Humanmedizin an der Universität des Saarlandes
1996-1997 Université Louis Pasteur in Straßburg
1999-2000 Université Pierre et Marie Curie in Paris
2000 3. Staatsexamen an der Universität des Saarlandes
02.2001-08.2001 AiP in der Praxisklinik Rennbahn für Orthopädie und Sportmedizin (Muttenz-Basel, Schweiz)
11.2001-10.2002 AiP im DRK Krankenhaus Saarlouis, Abteilung für Innere Medizin
11.2002-01.2003 Assistenzarzt im DRK Krankenhaus Saarlouis, Abteilung für Innere Medizin
Seit 12.2005 Assistenzarzt in internistischer Gemeinschaftspraxis (Dr. Schwamborn/Hoch, Saarbrücken)