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1  GENERAL PART 

1.1 INTRODUCTION 

1.1.1 The 2C-series-Phenethylamine Derived Designer Drugs  

 

Consumption of drugs of abuse is a widespread problem in societies all over the world. 

Especially, so-called designer drugs are becoming more and more popular among 

young people. The most frequently abused drugs are amphetamine, methamphetamine 

and their derivatives, such as 3,4-methylenedioxyamphetamine (MDA), 3,4-methylene-

dioxymethamphetamine (MDMA, “Ecstasy”), para-methoxyamphetamine (PMA), and 

para-methoxymethamphetamine (PMMA). However, during the 1990s, the illicit drug 

market for recreational drugs changed considerably with several new types of drugs 

appearing on the drug scene. Information about these new drugs is readily available 

and they can even easily be purchased via the internet.1  

One of these new classes of drugs of abuse are the so-called 2Cs. Typical 2Cs are 4-

bromo-2,5-dimethoxy-β-phenethylamine (2C-B), 4-iodo-2,5-dimethoxy-β-

phenethylamine (2C-I), 2,5-dimethoxy-4-methyl-β-phenethylamine (2C-D), 4-ethyl-2,5-

dimethoxy-β-phenethylamine (2C-E), 4-ethylthio-2,5-dimethoxy-β-phenethylamine 

(2C-T-2), and 2,5-dimethoxy-4-propylthio-β-phenethylamine (2C-T-7). Their chemical 

structures are shown in Fig. 1.  
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Fig. 1: Chemical structures of phenethylamine-derived designer drugs. 
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They all have in common a phenethylamine backbone with two methoxy groups in 

positions 2 and 5 of the aromatic ring and further contain different lipophilic 4-

substituents.  

Introducing new substituents allows the drug abusers to create “legal” products which 

are not scheduled as controlled substances. Most of the 2Cs were synthesized by 

Alexander Shulgin and described in his compilation “PIHKAL”.2 This work contains the 

structures of the 2Cs, their hallucinogenic potency, effects, dosage and their synthesis. 

Because of this it is relatively easy for the illicit drug producers to manufacture a new 2C 

entity when another one is scheduled. Although many 2Cs were first synthesized during 

the 1970s and 1980s and appeared on the illicit drug market, they gained increasing 

popularity in the 1990s after the publication of “PIHKAL”. 2C-B was one of the first 

compounds of the 2C type entering the illicit drug market in the mid 1980s,3 followed by 

the S-alkyl compounds 2C-T-2 and 2C-T-7 and the iodo analogue 2C-I in the 1990s.4 

They were sold in so-called “smart shops” alone or in mixture with other designer drugs 

in form of tablets, powder or liquid preparations. This trend was accompanied by 

seizures by the police of tablets containing 2Cs or combinations of them with other 

drugs.5-10 During 2000 and 2001 fatalities after the consumption of 2C-T-7 were 

reported. Because of these increasing problems with the 2Cs, many of them were 

scheduled in most countries.4,11 At present, new members of the 2C series, such as 

2C-D and 2C-E, which are not scheduled are entering the illicit drug market, as 

indicated by seizures and experience reports on so-called drug information web sites 

(http//:www.erowid.org, http//:www.lycaeum.org; October 2006). 

Only little information is available on pharmacological and toxicological properties of the 

members of the 2C-series, but it is known, that they show affinity to 5-HT2 receptors, 

and act as agonists or antagonists at different receptor subtypes.12-18 For 2C-B, partial 

agonism at α1-adrenergic receptors was described.19,20 Because of these properties, 

radioactive 2C-I was synthesized as a label for the 5-HT2 receptor and as a potential 

brain scanning agent for nuclear medicine.12,21 The chemical structure responsible for 

hallucinogen-like activity comprises a primary amine functionality separated from the 

phenyl ring by two carbon atoms ("2C"), the presence of methoxy groups in position 2 

and 5 of the aromatic ring, and a hydrophobic 4-substituent (alkyl, halogen, alkylthio, 

etc.).15 Furthermore, several quantitative structure-activity relationships (QSAR) studies 

were published about hallucinogenic β-phenethylamines.22-29 Using the results of these 
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analyses, predictions of the hallucinogenic potency of new β-phenethylamines should 

be possible. 

For some 2Cs, analytical data are available.3,30-37 Screening for and validated 

quantification of several 2Cs in human blood plasma has been published using gas 

chromatography-mass spectrometry (GC-MS).38 Furthermore, a GC-MS procedure was 

presented for detection of 2C parent compounds in urine.39 However, for developing 

toxicological screening procedures, especially in urine, it is a prerequisite to know the 

metabolism of the compounds in question, especially if they are excreted in urine 

primarily or even exclusively in form of metabolites. Furthermore, data on the 

metabolism are needed for toxicological risk assessment, because the metabolites may 

play a major role in the toxicity of a drug. Some studies have been published about the 

metabolism of psychoactive phenethylamines.40-47 For 2C-B, Kanamori et al. 

investigated qualitative and quantitative metabolism in rat urine and qualitative 

metabolism in rat hepatocytes.42,44,47 De Boer et al. reported the only available human 

data of metabolites of 2C-B in human urine, but only in form of preliminary data.41 

Carmo et al. studied 2C-B metabolism in hepatocytes of six species including humans 

as well as in mice.45,48 For 2C-T-2, Lin et al. described qualitative metabolism in rats.43 

 

 

1.1.2 The Cytochrome P450 System 

 
Most drugs are metabolized by a variety of enzymes, and these metabolic processes 

can generally produce metabolites that are usually less toxic than the parent compound. 

The metabolites may also be more reactive, producing toxic effects. The metabolic 

profiling of drugs is, therefore, necessary to assess their effects and toxicity.49 

Cytochrome P450 (CYP) enzymes are responsible for oxidative and, to a minor extent, 

reductive metabolic transformations of drugs, environmental chemicals and natural 

compounds. Over its long history of more than 3.5 billion years, the CYP superfamily of 

enzymes has developed remarkable versatility. The primary catalytic function of CYPs 

was identified as transfer of one oxygen atom from molecular oxygen into various 

substrates (Fig. 2). A coenzyme, cytochrome P450 oxidoreductase (OR), is essential for 

CYP catalytic function, and cytochrome b5 can stimulate catalytic activities of some 

enzymes.50  
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Fig. 2: The cytochrome P450 redox cycle. 

Single electron shifts are frequently responsible for the formation of reactive 

intermediates or allow the leakage of free radicals capable of causing toxicity. When a 

CYP enzyme activity is modified by induction or inhibition, the biological activity of the 

xenobiotic substrate can be altered considerably. Such effects are called drug-drug, 

drug-chemical or chemical-chemical-interactions. Such interactions can modify the 

disposition of xenobiotics.51-53 CYPs are heme-containing, membrane-bound enzymes 

(“heme-thiolate proteins”) detected in both prokaryotes and eukaryotes. The enzymes 

were given their names because their complexes with carbon monoxide under reductive 

conditions show an absorbance maximum at about 450 nm. In mammals the enzymes 

can be identified in nearly every tissue, being most abundantly present in the liver. The 

CYP superfamily has been classified in different families in accordance to the degree of 

homology of amino acid sequence in their protein structures. CYP enzymes having 

≤ 40% homology in their amino acid sequence are classified in different families which 

are designated by Arabic numbers, for example, CYP1. Each family is further divided 

into subfamilies of enzymes. The enzymes within a mammalian subfamily have ≥ 55% 

sequence homology and are designated by capital letters, for example, CYP1A. An 
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Arabic number is used for designating individual enzymes within a subfamily, for 

example, CYP1A2.51 In humans, 18 CYP families with 43 subfamilies and 57 CYP 

isoenzymes are known so far, of which only 3 families with 7 subfamilies and 12 CYP 

isoenzymes are relevant for drug metabolism (Fig. 3),54 namely CYP1A1, CYP1A2, 

CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, 

CYP3A4, and CYP3A5.55 

 

Fig. 3: Cytochrome P450s found in humans and their relevance in xenobiotic metabolism.  
Modified according to ref55. 

Polymorphisms of clinical 
relevance 
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The remainder is responsible for the transformation of endogenous biomolecules, for 

which reason they are called “housekeeping enzymes”. Fig. 4 illustrates the 

abundances of CYPs in human liver and their importance in xenobiotic metabolism. 

Some CYP genes are polymorphically expressed, leading to variabilities in patterns of 

drug metabolism  

 

 

Fig. 4: Relative quantities of CYPs in human liver and their relevance in drug metabolism. Left side: 
human CYP-expression in the liver. Right side: involvement in xenobiotics metabolism. 

 
 

1.1.3 Monoamine oxidases 

 
Although the substrates of the monoamine oxidase (MAO) are primarily endogenous 

compounds, MAO can also contribute to the metabolism of xenobiotics, especially if 

these xenobiotics contain a primary amine function as in the case of the 2Cs. 

The human monoamine oxidase catalyzes the oxidation of primary, secondary, and 

some tertiary amines to their corresponding protonated imines with concomitant 

reduction of O2 to hydrogen peroxide.56 The dissociated imine product is then 

nonenzymatically hydrolyzed to the corresponding aldehyde (Fig. 5). Monoamine 

oxidases are flavoproteins localized to the outer mitochondrial membranes of mammals, 

birds, fish, and a variety of lower animals and some fungi.56 In humans and other 

mammals two isoforms, MAO-A and MAO-B, are expressed. The amino acid sequences 

of the two human isoforms are 71% identical, and each contains a flavin adenine 
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dinucleotide (FAD) cofactor covalently attached to a conserved cysteinyl residue via an 

8-α-S-thioether linkage.56 In humans, most tissues express both isoenzymes. The 

highest MAO levels are present in the liver and the placenta and the lowest in spleen. 

MAO isozymes are also present in most areas of the human brain. MAO-B appears to 

be predominantly localized in serotonergic neurons whereas dopaminergic neurons 

contain MAO-A.57 MAO-A and MAO-B have received extensive attention as targets of 

antidepressants. MAO-B inhibitors are currently used synergistically with L-DOPA 

therapy in the treatment of Parkinson’s disease.56  

 

 

Fig. 5: Oxidation of amines by MAO-bound FAD. Modified according to ref57. 

 

Human liver derived enzyme preparations, e.g. human liver microsomes or human liver 

mitochondria, contain a natural mixture of CYPs or MAOs. Chemical inhibitors, 

immunochemical inhibitors, and/or correlation analyses with marker activities must be 

used to obtain information on which enzymes are performing specific 

biotransformations. In contrast, only a single active CYP or MAO is present in 

preparations of cDNA-expressed enzymes. Inhibitors and correlation analyses are not 

needed, because the mentioned assignments can be performed by direct incubation of 

the drug with a panel of individual CYPs or MAOs. However, the balance of enzymes, 

present in vivo, is lost.50 Bacteria, yeast, baculovirus and several mammalian cells have 

been used to produce a wide range of catalytically active CYPs and MAOs. The 

baculovirus system offers high-level expression of both the CYP and OR or the MAO, 

and are therefore advantageous for metabolism studies of all kinds, especially for low 

turnover substrates. The development of the cDNA-bearing virus is relatively time-
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consuming and labor-intensive, but baculovirus infected insect cell microsomes are 

commercially available. However, because the enzymes are produced transiently in the 

insect host cells, exact harvest time can have a pronounced effect on the activity of the 

final preparation.58  

Identification of the human enzymes involved in the metabolism of specific drugs is 

becoming an increasingly important aspect of drug development. Such identifications 

should consider two processes involving the new drug: metabolism and inhibition. The 

identification of enzymes involved in metabolism of the new drug allows prediction, 

based on knowledge of the ability of co-administered drugs to inhibit the same 

enzymes, of which co-administered drugs may inhibit the metabolism of the new drug. 

This information can also be used to predict individual variability based on known 

metabolic polymorphisms.50  

 

 

 

 

1.2 AIMS AND SCOPES 

In clinical cases where an unknown substance was ingested (e.g. poisonings), the 

identity of this substance has to be clarified to be able to start suitable medical 

treatment and to make statements on the clinical outcome. Also in forensic cases, 

intake of an illegal drug has to be proven. Usually, a general unknown screening is 

performed in urine, where the concentrations of the parent compound/and or its 

metabolites are higher than in blood or plasma and the taken drugs or toxicants can be 

detected for several hours or even days after ingestion, in contrast to blood analysis 

which covers only a few hours.59,60 Knowledge about metabolic steps is a prerequisite 

for developing toxicological screening procedures, especially, if the compounds are 

excreted in urine only in form of their metabolites. 

The knowledge of the involvement of particular isoenzymes such as CYP or MAO in the 

biotransformation of a new drug is a prerequisite to predict possible drug-drug-

interactions, inter-individual variations in pharmacokinetic profiles and increased 

appearance of side effects and serious poisonings.61 However, such risk assessment is 
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typically performed for substances intended for therapeutic use, but not for drugs of the 

illicit market. In addition, there is good evidence that genetic variations in drug 

metabolism have important behavioral consequences that can alter the risk of drug 

abuse and dependence.62 The 2Cs were not yet investigated in any of these respects, 

so that the aims of the presented studies were: 

• Investigation of the metabolism of the 2Cs 

• Development of toxicological analysis procedures 

• Identification of MAO and CYP isoenzymes involved in one of the major metabolic 

steps (deamination).  

 

 

 

 

 

 





2 PUBLICATIONS TO THE RESULTS 

The results of the studies were published in the following papers: 
 

2.1 NEW DESIGNER DRUG 2,5-DIMETHOXY-4-PROPYLTHIO-β-PHENETHYLAMINE 

(2C-T-7): STUDIES ON ITS METABOLISM AND TOXICOLOGICAL DETECTION IN 

RAT URINE USING GAS CHROMATOGRAPHY/MASS SPECTROMETRY63 

 
 
 
 
 
 
JOURNAL OF MASS SPECTROMETRY 
J. Mass Spectrom. 2005; 40: 105–116 
Published online inWiley InterScience (www.interscience.wiley.com).  
DOI: 10.1002/jms.784 
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2.2 NEW DESIGNER DRUG 2,5-DIMETHOXY-4-ETHYLTHIO-β-PHENETHYLAMINE 

(2C-T-2): STUDIES ON ITS METABOLISM AND TOXICOLOGICAL DETECTION IN 

RAT URINE USING GAS CHROMATOGRAPHY/MASS SPECTROMETRY64 

 
 
 
 
 
 
JOURNAL OF MASS SPECTROMETRY 
J. Mass Spectrom. 2005; 40: 1157–1172 
Published online 22 July 2005 in Wiley InterScience (www.interscience.wiley.com).  
DOI: 10.1002/jms.890 
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2.3 NEW DESIGNER DRUG 4-IODO-2,5-DIMETHOXY-β-PHENETHYLAMINE (2C-I): 

STUDIES ON ITS METABOLISM AND TOXICOLOGICAL DETECTION IN RAT URINE 

USING GAS CHROMATOGRAPHY/MASS SPECTROMETRY65 

 
 
 
 
 
 
JOURNAL OF MASS SPECTROMETRY 
J. Mass Spectrom. 2006; 41: 872–886 
Published online inWiley InterScience 
(www.interscience.wiley.com)  
DOI: 10.1002/jms.1045 
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2.4 STUDIES ON THE METABOLISM AND TOXICOLOGICAL DETECTION OF THE 

DESIGNER DRUG 4-ETHYL-2,5-DIMETHOXY-β-PHENETHYLAMINE (2C-E) IN 

RAT URINE USING GAS CHROMATOGRAPHIC-MASS SPECTROMETRIC 

TECHNIQUES66 
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Studies on the metabolism and toxicological detection of the designer drug
4-ethyl-2,5-dimethoxy-�-phenethylamine (2C-E) in rat urine using gas

chromatographic–mass spectrometric techniques�
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Abstract

The phenethylamine-derived designer drug 4-ethyl-2,5-dimethoxy-�-phenethylamine (2C-E) was found to be mainly metabolized in rats
by O-demethylation, N-acetylation, hydroxylation of the ethyl side chain at C2′ or at C1′ followed by oxidation at C1′ to the correspond-
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ng ketone, by deamination followed by reduction to the corresponding alcohols or by oxidation to the corresponding acids, and finally
ombinations of these steps. Most of the metabolites were excreted in conjugated form. The authors’ systematic toxicological analysis
STA) procedure using full-scan GC–MS allowed the detection of an intake of a dose of 2C-E in rat urine that corresponds to a common
rug users’ dose. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of 2C-E in human
rine.

2006 Elsevier B.V. All rights reserved.

eywords: 4-Ethyl-2,5-dimethoxy-�-phenethylamine; 2C-E; Designer drug; Metabolism; GC–MS

. Introduction

The members of the so-called 2C-series [1] belong to a class
f substances abused as designer drugs that are all phenethy-
amine derivatives. �-Phenethylamine itself is not a common
rug of abuse, because it is rapidly metabolized [2], but other
ompounds of this type like 3,4,5-trimethoxy-�-phenethyl-
mine (mescaline), 4-bromo-2,5-dimethoxy-�-phenethylamine
2C-B), 4-iodo-2,5-dimethoxy-�-phenethylamine (2C-I), 4-
thylthio-2,5-dimethoxy-�-phenethylamine (2C-T-2), or 2,5-
imethoxy-4-propylthio-�-phenethylamine (2C-T-7) have obvi-
usly psychoactive properties and are often abused [1]. 2C-E
as described in Alexander Shulgin’s compilation “PIHKAL”

s a hallucinogenic substance [2]. Further data are very lim-
ted, but descriptions and experience reports on internet web

� This paper was presented at the 43rd International Meeting of the Interna-
ional Association of Forsenic Toxicologists, Seoul, South Korea, 29 August–2
eptember 2005.
∗ Corresponding author. Tel.: +49 6841 16 26050; fax: +49 6841 16 26051.

sites (http://www.erowid.org, http://www.lycaeum.org; Febru-
ary 2006) indicate that 2C-E plays a role among drug abusers.
Furthermore, 2C-E was identified in several countries on the
illicit drug market [3,4]. Lood and Eklund reported that they
could identify 2C-E (parent drug) in urine samples of three
males [5]. In most countries with exception of Sweden, 2C-E
is not a controlled substance. This fact may enhance the spread-
ing among drug abusers, because the more popular members of
the 2C-series like 2C-B or 2C-T-7 are all scheduled now in many
countries.

Only little information is available on pharmacological and
toxicological properties of the members of the 2C-series, but it
is known, that they show affinity to 5-HT2 receptors, acting as
agonists or antagonists at different receptor subtypes [6–12]. For
2C-B, partial agonism at �1-adrenergic receptors was described
[13,14]. The chemical structure responsible for hallucinogen-
like activity comprises a primary amine functionality separated
from the phenyl ring by two carbon atoms (“2C”), the pres-
ence of methoxy groups in positions 2 and 5 of the aromatic
ring, and a hydrophobic 4-substituent (alkyl, halogen, alkylthio,
etc.) [9]. For some of the substances that belong to the 2C-
E-mail address: hans.maurer@uniklinikum-saarland.de (H.H. Maurer). series, analytical data are available [15–23]. Screening for and

570-0232/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
oi:10.1016/j.jchromb.2006.03.001
CHROMB-14439; No. of Pages 15
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validated quantification of 2C-E itself in human blood plasma
has been published using gas chromatography–mass spectrom-
etry (GC–MS) [24]. Furthermore, a GC–MS procedure was
presented for detection of 2C-E parent compound in urine [5].
However, for developing toxicological screening procedures,
especially in urine, it is a prerequisite to know the metabolism
of the compounds in question, especially if they are excreted
in urine primarily or even exclusively in form of metabolites.
Furthermore, data on the metabolism are needed for toxicolog-

ical risk assessment, because the metabolites may play a major
role in the toxicity of a drug. Some studies have been published
about the metabolism of psychoactive phenethylamines [25–35].
The aim of the study presented here was to identify the 2C-E
metabolites in rat urine using GC–MS in the electron ioniza-
tion (EI) and positive-ion chemical ionization (PICI) modes. In
addition, the detectability of 2C-E and its metabolites within the
authors’ systematic toxicological analysis (STA) procedure in
urine by GC–MS was studied [25,26,36,37].

F
t

ig. 1. EI and PICI mass spectra, RIs, structures and predominant fragmentation patt
rifluoroacetylation, or propionylation. The numbers of the spectra correspond to thos
erns of 2C-E and its metabolites after acetylation, methylation plus acetylation,
e of the structures and peaks shown in Figs. 2 and 3.
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Fig. 1. (Continued )

2. Experimental

2.1. Chemicals and reagents

2C-E HCl was provided by Dejachem (Schwendi, Germany)
for research purposes. N-Methyl-bis(trifluoroacetamide) was
obtained from Fluka (Taufkirchen, Germany). All other chem-
icals and biochemicals were obtained from Merck (Darmstadt,
Germany). All chemicals and biochemicals were of analytical
grade.

2.2. Urine samples

The investigations were performed using urine of male Wis-
tar rats (about one year old and 400 g body mass (BM), Ch.
River, Sulzfleck, Germany) for toxicological diagnostic reasons
according to the corresponding German law. They were admin-
istered a single 20 mg/kg BM dose for metabolism studies or a
0.3 mg/kg BM dose for the STA study in aqueous suspension
by gastric intubation (n = 2 for each dose). Urine was collected
separately from the faeces over a 24 h period. All samples were
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directly analyzed. Blank rat urine samples were collected before
drug administration to check whether they were free of interfer-
ing compounds.

2.3. Sample preparation for metabolism studies

A 5 ml portion of urine was adjusted to pH 5.2 with acetic
acid (1 mol/l) and incubated at 50 ◦C for 1.5 h with 100 �l of a
mixture (100,000 Fishman units/ml) of glucuronidase (EC no.
3.2.1.31) and arylsulfatase (EC no. 3.1.6.1) from Helix Pomatia,
L. Then pH was adjusted to 8–9 with 1 ml of 37% hydrochloric

acid, 2 ml of 2.3 mol/l aqueous ammonium sulfate and 1.5 ml
of 10 mol/l aqueous sodium hydroxide and the sample was
extracted with 5 ml of a dichloromethane–isopropanol–ethyl
acetate mixture (1:1:3; v/v/v). After phase separation by cen-
trifugation, the organic layer was carefully evaporated to dryness
at 56 ◦C under a stream of nitrogen. The residue was deriva-
tized by one of the following three procedures. Acetylation
was conducted with 100 �l of an acetic anhydride–pyridine
mixture (3:2; v/v), propionylation with 100 �l of a propionic
anhydride–pyridine mixture (3:2; v/v), or trifluoroacetylation
with 50 �l of N-methyl-bis(trifluoroacetamide) for 5 min under



D.S. Theobald, H.H. Maurer / J. Chromatogr. B xxx (2006) xxx–xxx 5

Fig. 1. (Continued )

microwave irradiation at approximately 440 W. After careful
evaporation, the corresponding residue was dissolved in 100 �l
of methanol (acetylation and propionylation) or 50 �l of ethyl
acetate (trifluoroacetylation). Aliquots (2 �l) of the derivatized
extracts each were injected into the GC–MS.

Another urine sample was worked up as described in the
following. A 1 ml portion of urine was adjusted to pH 5.2 with
acetic acid (1 mol/l) and incubated at 50 ◦C for 1.5 h with 100 �l
of a mixture (100,000 Fishman units/ml) of glucuronidase (EC
no. 3.2.1.31) and arylsulfatase (EC no. 3.1.6.1). The sample was
then diluted with 2 ml of water and loaded on a solid-phase
extraction (SPE) cartridge (Isolute Confirm HCX, 130 mg, 3 ml),
previously conditioned with 1 ml of methanol and 1 ml of water.
After passage of the sample, the cartridge was washed with 1 ml
of water and 1 ml of 0.01 mol/l hydrochloric acid. The retained
non-basic compounds were eluted into a 1.5 ml reaction vial
with 1 ml of methanol and gently evaporated under a stream of
nitrogen at 56 ◦C. After evaporation, the residue was dissolved

in 50 �l of methanol and derivatized with 100 �l of a solution
of diazomethane in diethyl ether, synthesized according to the
procedure of McKay et al. [38]. The reaction vial was sealed
and left at room temperature for 30 min. Thereafter, the mixture
was gently evaporated to dryness under a stream of nitrogen at
56 ◦C. After evaporation to dryness, the sample was acetylated
as described above. The final residue was dissolved in 50 �l of
methanol and 2 �l were injected into the GC–MS. All work-
up procedures were additionally performed without enzymatic
hydrolysis to study which metabolites of 2C-E were excreted as
glucuronides/sulfates.

2.4. Sample preparation for toxicological analysis

The urine samples (5 ml) were divided into two aliquots.
One aliquot was refluxed with 1 ml of 37% hydrochlo-
ric acid for 15 min. Following hydrolysis, the sample was
mixed with 2 ml of 2.3 mol/l aqueous ammonium sulfate and
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1.5 ml of 10 mol/l aqueous sodium hydroxide to obtain a pH
value of 8–9. Before extraction, the other aliquot of native
urine was added. This mixture was extracted with 5 ml of
a dichloromethane–isopropanol–ethyl acetate mixture (1:1:3;
v/v/v). After phase separation by centrifugation, the organic
layer was transferred into a glass flask and evaporated to dry-
ness. The residue was derivatized by acetylation with 100 �l
of an acetic anhydride–pyridine mixture (3:2; v/v) for 5 min
under microwave irradiation at about 440 W. After evapora-
tion of the derivatization mixture, the residue was dissolved
in 100 �l of methanol and 2 �l were injected into the GC–MS
system.

2.5. GC–MS apparatus

The extracts were analyzed using a Hewlett Packard (Agi-
lent, Waldbronn, Germany) 5890 Series II gas chromatograph
combined with a HP 5989B MS Engine mass spectrometer for
the metabolism studies or using a Hewlett Packard (Agilent,
Waldbronn, Germany) 5890 Series II gas chromatograph com-
bined with a HP 5972A MSD mass spectrometer for STA. For
both apparatus, a HP MS ChemStation (DOS series) was used
with HP G1034C software version C03.00. The GC conditions
were as follows: splitless injection mode; column, HP-1 capil-
lary (12 m × 0.2 mm I.D.), cross linked methyl silicone, 330 nm
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film thickness; injection port temperature, 280 ◦C; carrier gas,
helium; flow-rate 1 ml/min; column temperature, programmed
from 100 to 310 ◦C at 30◦/min, initial time 3 min, final time
8 min. The MS conditions for both apparatus were as follows:
full-scan mode, m/z 50–800 u; EI mode, ionization energy, 70 eV,
and for the HP 5989B MS Engine in the PICI mode using
methane: ionization energy, 230 eV; ion source temperature,
220 ◦C; capillary direct interface, heated at 280 ◦C.

2.6. GC–MS method for STA

For toxicological detection of acetylated 2C-E and its
metabolites, mass chromatography with the selected ions m/z

192, 251, 178 and 237 was used. The identity of the peaks in the
mass chromatograms was confirmed by computerized compari-
son of the mass spectra underlying the peaks (after background
subtraction) with reference spectra recorded during this study.

3. Results and discussion

3.1. Identification of metabolites

The urinary metabolites of 2C-E were separated by GC and
identified by EI and PICI MS after gentle enzymatic hydrolysis,
extraction, acetylation, trifluoroacetylation, propionylation
or methylation plus acetylation. Acetylation was chosen as
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derivatization step, because due to the authors’ experiences
it is considered as a versatile method for elucidation of the
structures of metabolites [25,26,37]. Furthermore, acetylation
is the standard derivatization step in the authors’ STA. However,
using acetylation as derivatization procedure, metabolically
N-acetylated metabolites cannot be differentiated from acetyl
derivatives. For this particular question, the presence of
N-acetylated metabolites was confirmed in urine extracts after
trifluoroacetylation. Unfortunately, the trifluoroacetyl deriva-
tives of some compounds in question could not be detected,
probably because of incomplete derivatization or hydrolysis
of the trifluoroacetyl esters. Therefore, propionylation was
performed to detect these compounds. For detection of acidic
metabolites, the urine samples were extracted by SPE, after

enzymatic cleavage of conjugates, followed by methylation and
acetylation.

The postulated structures of the (derivatized) metabolites
were deduced from the fragments detected in the EI mode which
were interpreted in correlation to those of the parent compound
according to the rules described by, e.g. McLafferty and Turecek
[39] and Smith and Busch [40]. In order to verify the molecular
mass of the postulated metabolites, PICI mass spectra were
recorded, because they contain abundant peaks of the protonated
molecule [M + H]+ with adduct ions typical for PICI using
methane as reagent gas ([M + C2H5]+ and [M + C3H5]+). The
EI and PICI mass spectra of the parent compound, the retention
indices (RI), the structures and predominant fragmentation
patterns of 2C-E and its metabolites after derivatization are
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shown in Fig. 1. In the following, the mass spectra numbers in
Fig. 1 are given in parentheses. Besides acetylated 2C-E (1),
the following metabolites could be identified in the acetylated
urine sample: N-acetyl-acetoxy-4-ethyl-methoxy-�-phenethyl-
amine isomer 1 (2), N-acetyl-acetoxy-4-ethyl-methoxy-�-
phenethylamine isomer 2 (3), N-acetyl-4-(2′-acetoxyethyl-)-
acetoxy-methoxy-�-phenethylamine isomer 1 (4), N-acetyl-
4-(2′-acetoxyethyl-)-acetoxy-methoxy-�-phenethylamine iso-
mer 2 (5), N-acetyl-4-(1′-acetoxyethyl-)-2,5-dimethoxy-
�-phenethylamine (6), N-acetyl-4-(2′-acetoxyethyl)-2,5-
dimethoxy-�-phenethylamine (7), N-acetyl-�-acetoxy-4-ethyl-
2,5-dimethoxy-�-phenethylamine (8), N-acetyl-5-hydroxy-2-
methoxy-4-(2′-oxoethyl)-�-phenethylamine (9), N-acetyl-5-

acetoxy-2-methoxy-4-(2′-oxoethyl)-�-phenethylamine (10), 4-
ethyl-2,5-dimethoxy-�-phenylethyl acetate (11), acetoxy-
4-ethyl-methoxy-�-phenylethyl acetate isomer 1 (12), and
acetoxy-4-ethyl-methoxy-�-phenylethyl acetate isomer 2 (13).
In the sample worked-up by SPE, methylation and acetylation,
the following compounds could be detected: N-acetyl-2,
5-dimethoxy-4-methylcarboxymethyl-�-phenethylamine (14),
methyl (4-ethyl-2,5-dimethoxyphenyl)acetate (15), methyl
(acetoxy-4-ethyl-methoxyphenyl)acetate isomer 1 (16), methyl
(acetoxy-4-ethyl-methoxyphenyl)acetate isomer 2 (17), methyl
[4-(1′-acetoxyethyl)-2,5-dimethoxyphenyl]acetate (18), methyl
[4-(2′-acetoxyethyl)-2,5-dimethoxyphenyl]acetate (19), and
methyl [4-(1′-oxoethyl)-2,5-dimethoxyphenyl]acetate (20).
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For confirmation whether the N-acetyl derivatives were
formed by metabolism or by derivatization, the urine extracts
were analyzed after trifluoroacetylation. The following
metabolites in question could be identified: N-acetyl-2C-
E (1), trifluoroacetylated 2C-E (21), N-acetyl-4-ethyl-
trifluoroacetoxy-methoxy-�-phenethylamine isomer 1 (22),
N-trifluoroacetyl-4-ethyl-trifluoroacetoxy-methoxy-�-pheneth-
ylamine isomer 1 (23), N-acetyl-4-ethyl-trifluoroacetoxy-
methoxy-�-phenethylamine isomer 2 (24), N-trifluoroacetyl-
4-ethyl-trifluoroacetoxy-methoxy-�-phenethylamine isomer 2
(25), N-acetyl-trifluoroacetoxy-methoxy-4-vinyl-�-phenethyla-
mine isomer 1 (26), N-acetyl-trifluoroacetoxy-methoxy-4-
vinyl-�-phenethylamine isomer 2 (27), N-trifluoroacetyl-4-(2′-
trifluoroacetoxyethyl-)-trifluoroacetoxy-methoxy-�-phenethyl-

amine (28), N-acetyl-N-trifluoroacetyl-4-(2′-trifluoracetoxy-
ethyl-)-2,5-dimethoxy-�-phenethylamine (29), N-trifluoroace-
tyl-4-(2′-trifluoroacetoxyethyl)-2,5-dimethoxy-� -phenethyla-
mine (30), and N-acetyl-5-trifluoroacetoxy-2-methoxy-4-
(2′-oxoethyl)-�-phenethylamine (31). In the propionylated
samples, the following compounds could be detected: N-acetyl-
2,5-dimethoxy-4-(1′ -propionyloxyethyl)-� -phenethylamine
(32) and N-acetyl-4-ethyl-2,5-dimethoxy-�-propionyloxy-�-
phenethylamine (33). Only those compounds are shown, that
allowed differentiation between metabolically N-acetylated
metabolites and the free amines.

Unfortunately, PICI mass spectra of certain compound could
not be recorded due to their low concentrations in the sample
(nos. 11, 28 and 32). Characteristic fragmentation patterns in the
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EI spectra consisted of, e.g. the loss of acetamide or trifluoroac-
etamide, loss of the methyl moieties or the benzyl cleavage, as
described for other members of the 2C-series elsewhere [25,26].
The loss of two methyl moieties can alternatively be seen as a
neutral loss of CH2O from one methoxy group [26]. To differen-
tiate between the positions of the hydroxy group in the molecule,
the fragmentation patterns were interpreted as follows. Hydroxy
moiety at the position 2’ of the ethyl group (mass spectra nos.
4, 5, 7, 19, 29 and 30 in Fig. 1) may lead to neutral loss of water
or, due to derivatization, to loss of acetic acid (loss of m/z 60)
or trifluoroacetic acid (loss of m/z 114). Location at the 1’ posi-
tion (mass spectra nos. 6, 18 and 32) may lead to radical loss of
acetic acid (loss of m/z 59), trifluoroacetic acid (loss of m/z 113)
or propionic acid (loss of m/z 73), because the remaining pos-
itive charge at C1′ can be stabilized by the ring system, which
is not the case if the charge is located at C2′. Location of the
hydroxy group at the �-position (mass spectra nos. 8 and 33)

may lead to a loss of m/z 42 or 56, respectively, because after the
loss of acetamide, a conjugated double bond system is formed,
which enables the neutral or radical loss of acetic acid or propi-
onic acid, respectively. Therefore, only the loss of an acetyl or
propionyl moiety can be seen.

Under the conditions of the GC injection port, the formation
of artifacts could be observed, namely the hydroxy metabolites
showed the loss of acetic acid or trifluoroacetic acid, respec-
tively (data/mass spectra not shown). Unfortunately, in the case
of the metabolites nos. 26 and 27 in Fig. 1, only these artifacts
could be detected, but their origin of the corresponding hydroxy
metabolites is obvious.

Based on these identified metabolites, the following
metabolic pathways could be postulated (Fig. 2): O-dealkylation
of the parent compound in position 2 or 5, followed by
N-acetylation and hydroxylation at C2′, or by deamination
with oxidation to the corresponding acid or reduction to the
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corresponding alcohol. Second pathway was N-acetylation of
the parent compound followed on the one hand by hydroxy-
lation at position C1′ of the ethyl side chain with subsequent
dealkylation and oxidation to the corresponding ketone and fol-
lowed on the other hand by �-hydroxylation. A third pathway
was the hydroxylation of the parent compound at position C2′
of the ethyl side chain followed by N-acetylation and oxidation
of the hydroxy group to the corresponding acid. A further path-
way was the deamination of the parent compound followed by
reduction to the corresponding alcohol or by oxidation to the
corresponding acid. The latter was hydroxylated at position C2′
or C1′ followed by oxidation to the corresponding ketone.

A common metabolic step was the O-demethylation in posi-
tion 2 or 5 of the aromatic ring. However, although in the
most cases two isomers were detected, the exact position of
the resulting hydroxy group could not be determined by means
of GC–MS. An exception was the O-demethyl-oxo-N-acetyl

metabolite (mass spectra nos. 9, 10 and 31). It was obvious that
this metabolite showed good chromatographic properties in the
underivatized form, furthermore it showed incomplete deriva-
tization in the acetylated and trifluoroacetylated sample. Based
on these findings and the fragmentation pattern, the structure
shown in the mass spectra no. 9 in Fig. 1 was postulated. This
structure contains the hydroxy group in position 5 that is able to
form a hydrogen bond to the oxo function forming a stable six
ring. This hydroxy group should be less polar than a hydroxy
function in position 2 leading to the observed chromatographic
properties. Furthermore, it should not be as reactive as a hydroxy
function in position 2 due to the hydrogen bond. Therefore, the
underivatized metabolite was detected.

Most of the metabolites were excreted in conjugated form.
Such conjugation was concluded because the peak areas of
these metabolites were more abundant after glucuronidase and
sulfatase hydrolysis. The metabolites that were conjugated by
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Fig. 2. Proposed scheme for metabolism of 2C-E in rats. The numbering of the compounds corresponds to that of the mass spectra in Fig. 1. The compound in
parentheses are assumed intermediates. Compounds excreted as glucuronides/sulfates are marked by G/S.

glucuronidation/sulfation are indicated in Fig. 2. However, con-
jugation could not be examined for all metabolites, because
many metabolites with an aliphatic hydroxy group formed arti-
facts, as mentioned above.

3.2. Detection by GC–MS within the STA

Acid hydrolysis has proven to be very efficient and fast
for cleavage of conjugates [36]. However, some compounds
were found to be altered or destroyed during hydrolysis [36].
Therefore, an aliquot of unhydrolyzed urine was added to
the hydrolyzed aliquot before extraction. This modified sam-
ple preparation was a compromise between the necessity of a
quick cleavage of conjugates and the detectability of compounds
destroyed during acid hydrolysis. Although the modification of
the STA procedure led to lower extract concentrations of com-
pounds excreted in conjugated form, this modified procedure
was sufficient, because of the high sensitivity of modern GC–MS
apparatus [36].

The samples were extracted at pH 8–9, because metabolic
formation of aromatic hydroxy groups may lead to phenolbases
that are best extracted at this pH. Using a more alkaline pH
for extraction leads to decreased extraction efficacies of such
hydroxy metabolites which are often excreted for a longer period
of time than the parent compounds [36]. Derivatization of the
e

w
m

2C-E and its metabolites were separated by GC and identi-
fied by full-scan MS. Mass chromatography with the ions m/z
192, 251, 178 and 237 was used to indicate the presence of the
N-acetyl-O-demethyl and N-acetyl O-demethyl-oxo metabolite
of 2C-E, as well as, to a minor extent, to indicate the pres-
ence of acetylated 2C-E itself. Fig. 3 shows typical reconstructed
mass chromatograms with the given ions of an acetylated extract
of a rat urine sample collected over 24 h after application of

Fig. 3. Typical reconstructed mass chromatograms with the given ions of an
a
0
l
c

xtracts was indispensable for sensitive detection.
The extraction efficacy determined for 2C-E after STA

orking-up was 108 ± 19.6% (mean ± S.D., n = 5) at 1000 ng/
l of urine.
cetylated extract of a rat urine sample collected over 24 h after intake of
.3 mg/kg BM of 2C-E. They indicate the presence of 2C-E and its metabo-
ites. The merged ion chromatograms can be differentiated by their colors on a
olor screen.
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Fig. 4. Mass spectrum underlying the marked peak in Fig. 3, the reference spectrum, the structure, and the hit list found by computer library search.

0.3 mg/kg BM of 2C-E which corresponded to a common users’
dose of about 10–25 mg. As exemplified in Fig. 4 for peak 2
in Fig. 3, the identity of peaks in the mass chromatograms
was confirmed by computerized comparison of the underly-
ing mass spectrum with reference spectra recorded during this
study (Fig. 1). The selected ions m/z 192 and 251 were used for
indication of acetylated 2C-E itself and detection of its N-acetyl-
O-desalkyl-oxo metabolite, the ions m/z 178 and 237 were used
for indicating the presence of the N-acetyl-O-desalkyl metabo-
lites. Ion m/z 192 is a characteristic fragment resulting from
loss of acetamide, ion m/z 251 is the molecular ion of this com-
pound. The fragment ions m/z 178 and 237 result from loss of
the acetyl moiety and from additional loss of acetamide, respec-
tively. Although interferences by biomolecules or other drugs
cannot be entirely excluded, they are rather unlikely, because
their mass spectra and/or their RIs should be different. The RIs
were recorded during the GC–MS procedure and calculated in
correlation with the Kovats’ indices [41] of the components of
a standard solution of typical drugs which is measured daily for
testing the GC–MS performance [42]. The limit of detection of
2C-E was 10 ng/ml of urine (signal-to-noise S/N > 3). For lack of
authentic human urine samples, a comparison of the metabolites
found in rat and human urine after administration of 2C-E was

not yet possible. However, according the earlier studies [43–47]
good agreement has been reported for the metabolic pathways
between rat and human.

4. Conclusions

The metabolism studies presented here showed that 2C-E
was extensively metabolized. The suggested metabolic path-
ways were similar to those of other members of the 2C-series.
O-Demethylation and N-acetylation were also main metabolic
steps for 2C-B, 2C-I, 2C-T-2 and mescaline. Deamination was
detected also for 2C-B, 2C-I, 2C-T-2, 2C-T-7 and mescaline.
Hydroxylation of the side chain in position 4 was also detected
for 2C-T-2 and 2C-T-7. The authors’ STA procedure allowed
the detection of an intake of a dose of 2C-E in rat urine that
corresponds to a common drug users’ dose. The target analytes
were found to be the N-acetyl-O-demethyl metabolites of 2C-E,
the N-acetyl-O-demethyl-oxo metabolite as well as acetylated
2C-E itself. As shown for many lipophilic compounds, their
metabolites should become the major analytes in late phase of
excretion. The authors’ experience in metabolism and analyti-
cal studies on rats and humans support the assumption that the
metabolites found in rat urine should also be present in human
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urine. Therefore, it can be concluded that the procedure should
also be applicable for human urine screening for 2C-E in clinical
or forensic cases.
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bstract

The phenethylamine-derived designer drug 4-bromo-2,5-dimethoxy-�-phenethylamine (2C-B) is known to be extensively metabolized in various
pecies including humans. In rat urine, 2C-B was found to be excreted mainly via its metabolites. In the current study, the toxicological detection

f these metabolites in the authors’ systematic toxicological analysis (STA) procedure was examined. The STA procedure using full-scan GC–MS
llowed proving an intake of a common drug abusers’ dose of 2C-B by detection of the O-demethyl deaminohydroxy and two isomers of the
-demethyl metabolites in rat urine. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of 2C-B

n human urine.
2006 Elsevier B.V. All rights reserved.
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. Introduction

4-Bromo-2,5-dimethoxy-�-phenethylamine (2C-B, Nexus,
enus, Bromo, Erox, Bees) is a hallucinogenic drug that was
rst synthesized in 1974 by Shulgin and Carter [1]. It belongs

o the so-called 2C-series, which are phenethylamine deriva-
ives having in common two methoxy groups in position 2 and

of the ring and one lipophilic substituent in position 4. The
allucinogenic properties of the 2C-drugs seem to be mediated
y agonistic and/or antagonistic effects on various serotoniner-
ic and �1-adrenergic receptors [2–10]. In the mid 1980s, 2C-B
ppeared on the illicit drug market [11] and gained increasing
opularity in the 1990s, when it was sold in so-called smart
hops via the internet [12]. Since that time, 2C-B was iden-
ified in drugs seized in the illicit drug market all over the

orld [12–15]. Common drug abusers’ doses for 2C-B ranged

rom 4 to 30 mg [14]. In 1998, it was the third most reported
rug of ring substituted phenethylamines in England and Wales

∗ Corresponding author. Tel.: +49 68411626050; fax: +49 68411626051.
E-mail address: hans.maurer@uniklinikum-saarland.de (H.H. Maurer).
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570-0232/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
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ollowing MDMA and MDEA [11]. Consequently, 2C-B was
cheduled in the lists of controlled substances in many countries
12]. Further evidence about its popularity among drug abusers
an be found on internet web sites (http://www.erowid.org/,
ttp://www.lycaeum.org/; June 2006) where experience reports
nd descriptions of 2C-B have been published.

The metabolism of 2C-B has been extensively studied
n rats [16–18], mice [19], and in hepatocytes from vari-
us species including humans [20,21]. Preliminary data are
lso available on excretion of 2C-B metabolites in human
rine [22]. All these metabolism studies showed that major
etabolic steps of 2C-B were O-demethylation of the par-

nt compound, N-acetylation, and deamination with oxidation
o the corresponding acids or reduction to the correspond-
ng alcohols and combinations of these steps. Theobald et al.
ould further identify a deaminohydroxy-side chain hydroxy,
O-demethyl deaminohydroxy-side chain hydroxy, and a O-

emethyl deaminohydroxy-side chain oxo metabolite [23],

hich is in accordance with the data found for the iodo ana-

ogue 2C-I [16].
In clinical and forensic toxicology, such drugs of abuse must

e analyzed for monitoring an abuse or a poisoning. Some stud-

the toxicological detection of the designer drug 4-bromo-2,5-
raphy–mass spectrometry, Journal of Chromatography B (2006),
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Fig. 1. Typical reconstructed mass chromatograms with the given ions of an acetylated extract of a rat urine sample collected over 24 h after intake of 0.3 mg/kg BM
of 2C-B (upper part). They indicate the presence of 2C-B metabolites. EI mass spectra, RIs, structures and predominant fragmentation patterns of 2C-B metabolites
included in the STA procedure after acetylation (lower part). The numbers of the spectra correspond to those of the peaks in the upper part. Selected ions are
underlined.

Please cite this article as: Denis S. Theobald et al., Studies on the toxicological detection of the designer drug 4-bromo-2,5-
dimethoxy-�-phenethylamine (2C-B) in rat urine using gas chromatography–mass spectrometry, Journal of Chromatography B (2006),
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es have been published on the detection of 2C-B itself in blood
nd/or urine [24–27]. However, as shown by the metabolism
tudies, 2C-B itself was excreted into urine only to a very small
xtent, whereas the metabolites played the main role in the excre-
ion process. Ingestion of other compounds of the 2C-series
ould be screened for by the authors’ systematic toxicological
nalysis (STA) procedure in urine by GC–MS and this STA pro-
edure allows simultaneous detection of about 2000 other drugs,
oisons and/or their metabolites [16,23,28–33]. Therefore, the
im of this study was to investigate the detectability of these
ajor 2C-B metabolites as target analytes within the authors’
TA procedure.

. Experimental

.1. Chemicals and reagents

2C-B tartrate was provided by Hessisches Landeskrimi-
alamt (Wiesbaden, Germany) for research purposes. All chem-
cals and biochemicals were obtained from Merck (Darmstadt,
ermany) and were of analytical grade.

.2. Urine samples

The investigations were performed using urine of male Wis-
ar rats (about one year old and 400 g body mass (BM), Ch.
iver, Sulzfleck, Germany) for toxicological diagnostic reasons
ccording to the corresponding German law. They were admin-
stered a single 0.3 mg/kg BM dose for the STA study in aqueous
uspension by gastric intubation (n = 2). Urine was collected sep-
rately from the faeces over a 24-h period. The samples were
irectly analyzed. Blank rat urine samples were collected before
rug administration to check whether they were free of interfer-
ng compounds.

.3. Sample preparation for toxicological analysis

A 5-ml portion of urine was worked-up as previ-
usly described for 2C-E [32]. After acidic hydrolysis, the
iquid–liquid extract was derivatized by acetylation. Aliquots
2 �l) were injected into the GC/MS system.

.4. GC–MS apparatus and method

A Hewlett Packard (Agilent, Waldbronn, Germany) 5890
eries II gas chromatograph combined with a HP 5972A MSD
ass spectrometer was used under the condition described

or 2C-E [32]. The GC conditions were as follows: splitless
njection mode; column, HP-1 capillary (12 m × 0.2 mm I.D.),
ross linked methyl silicone, 330 nm film thickness; injec-
ion port temperature, 280 ◦C; carrier gas, helium; flow-rate
ml/min; column temperature, programmed from 100 to 310 ◦C

t 30◦/min, initial time 3 min, final time 8 min. The MS condi-
ions were as follows: full-scan mode, m/z 50–800 u; EI mode,
onization energy, 70 eV; ion source temperature, 220 ◦C; capil-
ary direct interface, heated at 280 ◦C.

A

G

Please cite this article as: Denis S. Theobald et al., Studies on
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For toxicological detection of acetylated 2C-B metabolites,
ass chromatography with the selected ions m/z 228, 287,

nd 288 was used. The identity of the peaks in the mass
hromatograms was confirmed by computerized comparison of
he mass spectra underlying the peaks (after background sub-
raction) with reference spectra recorded during the previous

etabolism study [23,34].

. Results and discussion

Using the STA procedure, the most abundant isomer of
isacetylated deamino hydroxy O-demethyl 2C-B as well as
he bisacetylated two isomers of O-demethyl 2C-B were found
o be the target analytes. The latter could also be formed
y monoacetylation of the corresponding N-acetyl conjugates
17,23]. They could be detected by mass chromatography with
he ions m/z 228, 287, and 288. Fig. 1 (upper part) shows typi-
al reconstructed mass chromatograms with the given ions of an
cetylated extract of a rat urine sample collected over 24 h after
pplication of 0.3 mg/kg BM of 2C-B which corresponded to a
ommon abusers’ dose of about 20 mg. The lower part of Fig. 1
hows the EI mass spectra, the retention indices (RI), the struc-
ures and the predominant fragmentation patterns of the three
arget analytes. In poisoning cases, 2C-B and most of the other

etabolites should also be detectable using the reference spectra
ublished elsewhere [23,34], because they were detected in rat
rine after a 20-fold higher dose.

Although interferences by biomolecules or other drugs can-
ot be entirely excluded, they are rather unlikely, because their
ass spectra and/or their RIs should be different. In addition,

he characteristic bromine isotope clusters in the EI mass spectra
f 2C-B facilitate its unambiguous identification.

For lack of authentic human urine samples, a comparison of
he metabolites found in rat and human urine after administration
f 2C-B was not yet possible. However, in other studies good
orrespondence has been reported for the metabolic pathways as
ell as for the detectability between rats and humans [35–39].
inally, de Boer et al. [22] have reported detection of O-demethyl
C-B in human urine.

. Conclusions

The authors’ STA procedure allowed proving an intake of
common drug abusers’ dose of 2C-B in rat urine by detec-

ion of its major metabolites. Earlier studies and the authors’
xperience in metabolism and analytical studies on rats and
umans support the assumption that the metabolites found in
at urine should also be present in human urine. Therefore, it
an be concluded that the procedure should also be applica-
le for human urine screening for 2C-B in clinical or forensic
oxicology.
cknowledgements

The authors thank Dr. Frank T. Peters, Andreas H. Ewald,
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a b s t r a c t

In recent years, several compounds of the phenethylamine-type (2C-series) have entered

the illicit drug market as designer drugs. In former studies, the qualitative metabolism of

frequently abused 2Cs (2C-B, 2C-I, 2C-D, 2C-E, 2C-T-2, 2C-T-7) was studied using a rat model.

Major phase I metabolic steps were deamination and O-demethylation. Deamination to the

corresponding aldehyde was the reaction, which was observed for all studied compounds.

Such reactions could in principal be catalyzed by two enzyme systems: monoamine oxidase

(MAO) and cytochrome P450 (CYP). The aim of this study was to determine the human MAO

and CYP isoenzymes involved in this major metabolic step and to measure the Michaelis–

Menten kinetics of the deamination reactions. For these studies, cDNA-expressed CYPs and

MAOs were used. The formation of the aldehyde metabolite was measured using GC–MS

after extraction. For all compounds studied, MAO-A and MAO-B were the major enzymes

involved in the deamination. For 2C-D, 2C-E, 2C-T-2 and 2C-T-7, CYP2D6 was also involved,

but only to a very small extent. Because of the isoenzymes involved, the 2Cs are likely to be

susceptible for drug–drug interactions with MAO inhibitors.

# 2006 Elsevier Inc. All rights reserved.

avai lab le at www.sc iencedi rec t .com

journal homepage: www.e lsev ier .com/ locate /b iochempharm
1. Introduction

The members of the so-called 2C-series belong to a class of

designer drugs that are all phenethylamine derivatives. Their

chemical structures comprise a primary amine functionality

separated from the phenyl ring by two carbon atoms (‘‘2C’’),

the presence of methoxy groups in positions 2 and 5 of the
* Corresponding author. Tel.: +49 6841 1626050; fax: +49 6841 1626051.
E-mail address: hans.maurer@uniklinikum-saarland.de (H.H. Mau

Abbreviations: 2C-B, 4-bromo-2,5-dimethoxy-b-phenethylamine; 2C-I, 4
b-phenethylamine; 2C-E, 4-ethyl-2,5-dimethoxy-b-phenethylamine; 2C-T-2,
propylthio-b-phenethylamine; 5-HT, 5-hydroxy tryptamine (serotonin); MA
constant; Vmax, maximal turnover rate; PAR, peak area ratio; SIM, selected-io
chromatography–mass spectrometry; APCI, atmospheric pressure chemical io
detection
0006-2952/$ – see front matter # 2006 Elsevier Inc. All rights reserved
doi:10.1016/j.bcp.2006.09.022
aromatic ring, and a lipophilic substituent in position 4 of the

aromatic ring (alkyl, halogen, alkylthio, etc.) [1]. Typical 2Cs

are 4-bromo-2,5-dimethoxy-b-phenethylamine (2C-B), 4-iodo-

2,5-dimethoxy-b-phenethylamine (2C-I), 2,5-dimethoxy-4-

methyl-b-phenethylamine (2C-D), 4-ethyl-2,5-dimethoxy-b-

phenethylamine (2C-E), 4-ethylthio-2,5-dimethoxy-b-phe-

nethylamine (2C-T-2), and 2,5-dimethoxy-4-propylthio-b-
rer).

-iodo-2,5-dimethoxy-b-phenethylamine; 2C-D, 2,5-dimethoxy-4-methyl-
4-ethylthio-2,5-dimethoxy-b-phenethylamine; 2C-T-7, 2,5-dimethoxy-4-
O, monoamine oxidase; CYP, cytochrome P450; Km, Michaelis–Menten
n monitoring; EI, electron ionization; IS, internal standard; LC–MS, liquid
nization; HPLC-UV, high performance liquid chromatography ultra violet

.

mailto:hans.maurer@uniklinikum-saarland.de
http://dx.doi.org/10.1016/j.bcp.2006.09.022
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Fig. 1 – Chemical structures of the studied members of the

2C-series.
phenethylamine (2C-T-7) [2–5]. Their chemical structures are

depicted in Fig. 1.

Most of known members of the 2C-series were synthesized

and described by Shulgin during the 1970s and 1980s [1]. Since

the 1990s, they have entered the illicit drug market as

recreational drugs [3]. Later the 2Cs were sold in so-called

‘‘smart shops’’ and were mentioned in scene books and on so-

called drug information web sites (http://www.erowid.org,

http://www.lycaeum.org June 2006) [3]. Furthermore, seizures

by the police of tablets containing 2Cs or combinations of

them with other drugs were reported in recent years [6–11]. As

a consequence, several 2Cs have been scheduled in many

countries [12–14].

Only little information is available on pharmacological

properties of the 2Cs, but it is known, that the compounds of

the 2C-series show affinity to 5-HT2 receptors, acting as

agonists or antagonists at different receptor subtypes [15–23].

For 2C-B, partial agonism at the a1-adrenergic receptor was

described [24,25]. Little is known about the toxicology of these

compounds, but at least for 2C-T-7 fatal intoxications have

been reported during 2000/2001 [4,12,26].

In recent studies, the metabolism of several 2Cs was

studied mainly in rats [27–33], but also in humans [34], mice

[35], and hepatocytes of different species [36,37]. One major

metabolic step was the deamination of the parent compound

to the corresponding aldehyde. These aldehydes could not be

detected in urine, most probably because they were rapidly

reduced or oxidized to the respective alcohols and carboxylic

acids, which were present in urine.

The involvement of particular isoenzymes in the biotrans-

formation of a new therapeutic drug has to be thoroughly

investigated before it can be marketed. Such investigations

allow to predict possible drug–drug-interactions, inter-indivi-

dual variations in pharmacokinetic profiles and increased

appearance of side effects and serious poisonings [38]. Such

risk assessment is typically performed for substances

intended for therapeutic use, but not for drugs of the illicit

market. In addition, there is good evidence that genetic

variations in drug metabolism have important behavioral

consequences that can alter the risk of drug abuse and

dependence [39].

Regarding the above mentioned deamination reaction,

isoenzymes of the monoamine oxidase (MAO) and cyto-

chrome P450 (CYP) type might be able to catalyze this reaction.

MAO enzymes A and B are outer mitochondrial membrane-

bound flavoenzymes that can be found mainly in neuronal
and glia cells, but also in the liver. They catalyze the oxidation

of primary, secondary, and some tertiary amines to their

corresponding protonated imines with further non-enzymatic

hydrolysis of the imine products to the corresponding

aldehyde [40]. Their physiological substrates are neurotrans-

mitters such as dopamine or noradrenaline, which show

structural similarity to the 2Cs [41]. Consistently, phenethy-

lamine is a specific substrate for MAO-B [41]. CYP enzymes are

located in membranes, mainly the endoplasmic reticulum,

and can be found mainly in the liver. They are also able to

catalyze deamination via oxidation of the a-carbon atom next

to the nitrogen [42].

Therefore, isoenzymes of the MAO- and CYP-type were

studied concerning their ability to catalyze deamination of the

2Cs. Furthermore, the enzyme kinetics of these reactions was

measured and the kinetic data like Michaelis–Menten con-

stants (Km) and the maximal turnover rates (Vmax) were

determined.
2. Materials and methods

2.1. Materials

For research purposes, hydrochlorides of 2C-D and 2C-E

were provided by Dejachem (Schwendi, Germany), 2C-B

tartrate by Hessisches Landeskriminalamt (Wiesbaden,

Germany), 2C-I hydrochloride by Landeskriminalamt

Baden-Württemberg (Stuttgart, Germany), 2C-T-2 hydro-

chloride by Bundeskriminalamt (Wiesbaden, Germany), and

2C-T-7 hydrochloride by Bayerisches Landeskriminalamt

(Munich, Germany).

NADP+ was obtained from Biomol, isocitrate and isocitrate

dehydrogenase from Sigma, all other chemicals and reagents

from Merck. The following microsomes were from Gentest

and delivered by NatuTec: baculovirus-infected insect cell

microsomes containing 1 nmol/mL human cDNA-expressed

CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19,

CYP2D6, CYP2E1, or CYP3A4 (supersomes), baculovirus-

infected insect cell microsomes containing 5 mg/mL human

cDNA-expressed MAO-A or MAO-B (supersomes), wild-type

baculovirus-infected insect cell microsomes (control super-

somes). After delivery, the microsomes were thawed at 37 8C,

aliquoted, snap-frozen in liquid nitrogen and stored at �80 8C

until use.

2.2. Microsomal incubations

For the CYP enzymes, typical incubation mixtures (final

volume: 50 mL) consisted of 90 mM phosphate buffer (pH

7.4), 5 mM Mg2+, 5 mM isocitrate, 1.2 mM NADP+, 2 U/mL

isocitrate dehydrogenase, 200 U/mL superoxide dismutase,

and various concentrations of substrate at 37 8C. For the MAO

enzymes, typical incubation mixtures (final volume: 50 mL)

consisted of 100 mM phosphate buffer (pH 7.4), and various

concentrations of substrate at 37 8C. The substrate was

added after dilution of a 25 mM aqueous stock solution in

buffer. Reactions were started by addition of the ice-cold

microsomes and terminated with 5 mL of perchloric acid

60% (w/w).

http://www.erowid.org/
http://www.lycaeum.org/
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2.3. Initial screening studies

In order to investigate the involvement of particular MAOs or

CYPs in metabolism of the 2Cs, 250 mM of the respective 2C

compound (2C-B, 2C-I, 2C-D, 2C-E, 2C-T-2, or 2C-T-7) and

50 pmol/mL CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9,

CYP2C19, CYP2D6, CYP2E1, CYP3A4, 0.2 mg/mL MAO-A, or

0.2 mg/mL MAO-B were incubated for 30 min. For incubations

with CYP2A6 or CYP2C9, phosphate buffer was replaced with

45 mM or 90 mM Tris buffer, according to the Gentest

manuals.

2.4. Enzyme kinetic studies

Duration of and protein content for all incubations were in the

linear range of metabolite formation (data not shown). Kinetic

constants were derived from incubations (n = 2 each) with the

following 2C concentration ranges, incubation times and

protein concentrations: 5–600 mM 2C-B with 0.05 mg MAO-A/

mL for 30 min, 2–600 mM 2C-B with 0.05 mg MAO-B/mL for

30 min, 5–600 mM 2C-I with 0.05 mg MAO-A/mL for 30 min, 5–

600 mM 2C-I with 0.05 mg MAO-B/mL for 30 min, 10–600 mM 2C-

D with 0.05 mg MAO-A/mL for 30 min, 10–600 mM 2C-D with

0.05 mg MAO-B/mL for 30 min, 5–600 mM 2C-E with 0.1 mg

MAO-A/mL for 25 min, 5–1000 mM 2C-E with 0.05 mg MAO-B/

mL for 30 min, 5–600 mM 2C-T-2 with 0.05 mg MAO-A/mL for

30 min, 5–600 mM 2C-T-2 with 0.05 mg MAO-B/mL for 30 min,

1–600 mM 2C-T-7 with 0.05 mg MAO-A/mL for 30 min, 5–

600 mM 2C-T-7 with 0.03 mg MAO-B/mL for 30 min.

Apparent Km and Vmax values for single isoenzymes were

estimated by nonlinear curve fit according to the Michaelis–

Menten equation:

V ¼ Vmax � ½S�
Km þ ½S�

(1)

Unfortunately, no reference substances of the metabolites

were available. Therefore, only relative estimations of Vmax

values, expressed as dimensionless peak area ratios (PAR) per

minute and mg protein could be obtained.

2.5. Extraction of the metabolites

After termination of the incubation, the samples were

extracted with 50 mL cyclohexane containing 0.01 mM 2,5-

dimethoxybenzaldehyde as internal standard. The samples

were shaken for 2 min on a rotary shaker and centrifuged for

1 min. After centrifugation, the organic phases were trans-

ferred to autosampler vials. A 1 mL aliquot was directly

injected into the GC–MS apparatus and analyzed in the full

scan and selected-ion monitoring (SIM) mode.

2.6. Identification of the metabolites

The extracted aldehyde metabolites of the respective 2C

compounds were separated by GC and identified by electron

ionization (EI) mass spectrometry in the full scan mode by

their recorded mass spectra. The postulated structures of the

metabolites were deduced from the fragments detected in the

EI mode, which were interpreted in correlation to those of

other metabolites detected in previous studies [27,29–31,43,44].
The interpretations were according to the rules described by,

e.g. McLafferty and Turecek [45] and Smith and Busch [46].

2.7. Statistical analysis

All statistics were calculated using GraphPad Prism 3.02

software (San Diego, CA) designed for nonlinear curve fit

analysis. The Michaelis–Menten parameters Km and Vmax

were calculated by fitting kinetic data to a one-site binding

model.

2.8. GC–MS conditions and quantification in microsomal
incubation extracts

2.8.1. Apparatus

The samples were analyzed using a Hewlett Packard

(Agilent) HP 6890 Series GC system combined with an HP

5972 Series mass selective detector, an HP 6890 Series

injector and an HP Chem Station software G1701AA Version

A.03.00.

2.8.2. GC–MS conditions
GC conditions were as follows: splitless injection mode;

column, HP-5MS capillary (30 m � 0.25 mm i.d.), 5% phenyl

methyl siloxane, 250 nm film thickness; injection port tem-

perature, 280 8C; carrier gas, helium; flow rate, 0.6 mL/min;

column temperature, 50 8C for 3 min, then increased to 310 8C

at 40 8C/min and was held at this temperature for 1 min. MS

conditions were as follows: transfer line heater, 280 8C; source

temperature, 140 8C; EI mode; ionization energy, 70 eV;

selected-ion monitoring with the following program: solvent

delay, 4 min; m/z 166 for the internal standard 2,5-dimethox-

ybenzaldehyde, m/z 229 for 2C-B aldehyde, m/z 277 for 2C-I

aldehyde, m/z 165 for 2C-D aldehyde, m/z 179 for 2C-E

aldehyde, m/z 211 for 2C-T-2 aldehyde and m/z 225 for 2C-T-

7 aldehyde. For full-scan mode a range of m/z 50–800 was

detected. The PARs between the respective 2C compound and

2,5-dimethoxybenzaldehyde (IS) were determined.
3. Results

3.1. GC–MS procedures

The aldehyde metabolites were identified by their MS

fragmentation pattern in the full-scan mode. The EI mass

spectra, the structures and predominant fragmentation

patterns of them are shown in Fig. 2. As observed for many

other metabolites of the 2Cs [27–31], the benzyl cleavage

was the major fragmentation step, and the resulting m/z value

was chosen as target ion in the SIM procedure. Since the

extraction was done at acidic pH, the parent compounds

were not extracted and are therefore not present in the GC–MS

runs.

The applied GC–MS conditions provided baseline separa-

tion of all aldehydes and the internal standard. The mass

fragmentograms in Fig. 3 show exemplarily the separation for

2C-T-7. The chosen target ions were selective for the analytes

under these conditions as proven with blank samples (control

microsomes without substrate and IS; data not shown).
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Fig. 2 – EI mass spectra, structures and predominant fragmentation patterns of the 2Cs’ aldehyde metabolites.
The ion m/z 166 for the internal standard was the molecular

ion of this compound, whereas the chosen target ion for the

respective aldehyde metabolite resulted from benzyl cleavage

of this compound.
3.2. Initial screening studies

The formation rates depicted in Fig. 4 show that among the

11 tested enzymes, MAO-A and B were the major enzymes
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Fig. 3 – Typical mass fragmentograms of a cyclohexane extract of an incubation mixture of 250 mM 2C-T-7 with cDNA-

expressed MAO-B with the following ions: m/z 166 or 225 for 2,5-dimethoxybenzaldehyde (IS) or 2C-T-7 aldehyde,

respectively.
involved in the deamination of the 2Cs. For 2C-D, 2C-E, 2C-T-2

and 2C-T-7, CYP2D6 was also involved, but only to a small

extent. The respective 2C aldehydes were not detectable in

incubations with the other cDNA-expressed CYPs or with

insect cell control microsomes.

3.3. Kinetic studies

All incubations were carried out at initial rate conditions, a

prerequisite for Michaelis–Menten kinetics. All of the kinetics

of the investigated reactions with single cDNA-expressed

MAOs showed a typical hyperbolic profile, as shown in Fig. 5.

The kinetic parameters (apparent Km and Vmax) for these

reactions are listed in Table 1. They were estimated using

Michaelis–Menten Eq. (1).

In general, Vmax values could only be expressed as arbitrary

units, because the metabolites could not be quantified without

reference substance. The Vmax values in Table 1 are expressed

as dimensionless PAR per min and mg MAO.
4. Discussion

In the current study, the isoenzyme dependency of one of the

major metabolic steps in the metabolism of six compounds of

the 2C-series was studied. The deamination reaction might

principally be catalyzed by MAO or CYP isoenzymes. There-

fore, MAO-A and MAO-B, as well as the most important CYPs

involved in drug metabolism were tested for their capability to

catalyze this reaction. The incubation procedure for the CYPs

was a well established and published method, which was

already used to study enzyme kinetics of other designer drugs

[47–54]. In the described assays, superoxide dismutase was

added to suppress the formation of reactive oxygen species.

The incubation procedure for the MAOs was close to the

manufacturers guidelines and to a published procedure [55],

but the final volume was reduced following the CYP procedure.

The best way to analyze the terminated incubation mixture

without loss of metabolites would be to inject it directly into a

liquid chromatography–mass spectrometry (LC–MS) system
[48–53]. However, preliminary studies with the model sub-

stances phenyl acetaldehyde and 2,5-dimethoxybenzalde-

hyde showed that the sensitivity of the LC–MS system

described in Refs. [48–53] was not that of the GC–MS, perhaps

because of incomplete ionization of the aldehydes. This was

shown in a dilution experiment, where low concentrations of

the aldehydes could not be detected with LC–MS but with GC–

MS. Furthermore, after incubation of the 2Cs with MAO, no

metabolites could be detected with LC–MS but with GC–MS

(data not shown). Therefore, GC–MS was chosen for detection

of the metabolites. Since it was not possible for GC–MS to

inject the terminated incubation mixture directly, an extrac-

tion step had to be added. For the choice of the best extracting

agent, several solvents were tested for their ability to extract

the aldehyde metabolites. Furthermore, solutions of the

model substances phenyl acetaldehyde and 2,5-dimethoxy-

benzaldehyde were extracted with several extracting agents.

Cyclohexane showed a recovery of nearly 100% for extraction

of the two model substances at acidic pH and was therefore

chosen for the extraction of the aldehyde metabolites. At more

basic pH, no aldehyde could be extracted perhaps due to the

formation of hydrates.

Another problem was the lack of reference standards for

the aldehyde metabolites. In extensive preliminary experi-

ments, it was tried to synthesize these reference standards.

But neither the Dess Martin oxidation of the parent com-

pounds at low temperature, nor other trials led to a satisfying

result. As no reference substances of the monitored metabo-

lites were available for their exact quantification, only PARs

could be determined instead of absolute metabolite concen-

trations. However, this did not affect the conclusions drawn

from the kinetic estimations [48–50,52]. Linearity of the mass

spectrometer response over the estimated concentration

range could be shown for phenyl acetaldehyde and 2,5-

dimethoxybenzaldehyde, which are structurally closely

related to the monitored metabolites (data not shown), so

one might reasonably assume linearity of the mass spectro-

meter response of the 2Cs’ aldehyde metabolites.

The initial screening studies with the two human hepatic

MAOs and nine most abundant human hepatic CYPs were
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Fig. 4 – Formation rates (V) of 2C deamination (250 mM 2C compound each) with 0.2 mg/mL MAO-A or MAO-B or 50 pmol/mL of

the given individual CYPs (V given as dimensionless PAR per min and mg protein) and with insect cell control microsomes.
performed to identify their possible role in 2C deamination.

According to the supplier’s recommendations, the incubation

conditions chosen were adequate to make a statement on a

general involvement of a particular MAO or CYP. The data
revealed that MAO-A and MAO-B were capable of catalyzing

the monitored reaction. For 2C-D, 2C-E, 2C-T-2 and 2C-T-7,

also CYP2D6 was involved, but with low formation rate. Only

the kinetic profiles of the reactions by MAO-A and MAO-B were
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Fig. 5 – Michaelis–Menten plots for 2C deamination catalyzed by MAO-A or MAO-B. Values represent the mean of duplicate

incubations. V given as dimensionless PAR per min and mg protein. Curves were calculated by nonlinear curve fit

according to Eq. (1) (one-site binding model).
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Fig. 5. (Continued ).
further investigated. Kinetic assays with these enzymes were

performed under initial rate conditions, a prerequisite for

Michaelis–Menten kinetics [56]. These conditions were chosen

according to previous experiments concerning the enzyme

concentration and time linearity. Furthermore, less than 20%

of substrate was metabolized in all incubations, as determined

with HPLC-UV after direct injection of the incubation mixtures

(data not shown). This method was used since the parent

compounds were not extracted at the acidic pH of the

incubation mixture and therefore were not present in the

GC–MS runs.

As expected, classical hyperbolic Michaelis–Menten plots

(Fig. 5) were found using cDNA-expressed MAOs. The
Table 1 – Kinetic data of 2C deamination catalyzed by MAO-A

Apparent Km (best fit
value � standard
error) for MAO-A

Apparent Km (be
value � stand
error) for MA

2C-B 43.8 � 8.7 63.8 � 7.7

2C-I 31.1 � 4.1 88.3 � 7.2

2C-D 41.3 � 3.6 96.9 � 9.7

2C-E 49.6 � 3.3 187.8 � 19.1

2C-T-2 38.8 � 2.7 146.0 � 13.0

2C-T-7 14.4 � 2.1 108.5 � 19.2

Units are: apparent Km in mM, Vmax in dimensionless PAR/min and mg p
apparent Km and Vmax values of the investigated MAOs were

calculated by nonlinear curve fit according to Eq. (1). The

apparent Km values listed in Table 1 show that all studied 2Cs

have a slightly higher affinity for MAO-A than for MAO-B.

Furthermore, the differences of the Km values between MAO-

A and B are getting greater by an increasing 4-substituent size.

These facts might be explained by the size of the binding

pockets of both, MAO-A and B. Miller et al. reported for several

4-substituted benzylamines, that increasing the 4-substitu-

ent size resulted in tighter binding to MAO-A [40]. For 4-

substituted phenethylamines, Nandigama et al. reported

similar results [57]. The reason for this might be a large

binding pocket for 4-substituents in the case of MAO-A,
and MAO-B

st fit
ard
O-B

Vmax (best fit
value � standard
error) for MAO-A

Vmax (best fit
value � standard
error) for MAO-B

2.3 � 0.1 1.7 � 0.1

2.5 � 0.1 4.6 � 0.1

1.7 � 0.04 2.3 � 0.1

0.7 � 0.01 4.3 � 0.2

1.5 � 0.03 4.3 � 0.2

3.4 � 0.1 4.5 � 0.3

rotein.
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whereas MAO-B should contain a small hydrophobic binding

pocket for 4-substituents [58]. Furthermore, MAO-B showed

in general with exception of 2C-B, increased Vmax value

compared to MAO-A for a single 2C compound. One might

speculate, that MAO-A has a higher affinity for the 2Cs than

MAO-B, but MAO-B has the higher capacity for the 2Cs

concerning the deamination reaction. However, statements

concerning the measured Vmax values are difficult, because

quantification of metabolites was not possible, as mentioned

before. As MAO-A and MAO-B are involved in one of the

major metabolic steps of the 2Cs, the 2Cs might be

susceptible for drug-drug interactions with MAO inhibitors

possibly leading to elevated plasma concentrations of the

2Cs, and therefore increasing the probability of toxic side

effects. Such inhibitors are used as antidepressants such as

tranylcypromine and moclobemide or as antiparkinsonians

such as selegiline. Amphetamine derivatives, which are

often abused together with the 2Cs are also known to be

potent MAO inhibitors [59,60]. Beside this, due to the

relatively high apparent Km values of the 2Cs, further studies

on their MAO inhibitory potential are required. Such

inhibition would lead to further interactions for example

with indirect sympathomimetics such as cocaine, or with

food ingredients such as tyramine. However, the question

whether drug interactions are of relevance for 2C pharma-

cokinetics and/or clinical outcome of intoxications cannot be

answered at the moment due to lack of sufficient authentic

human data.
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3 CONCLUSIONS 

The studies presented here showed that the phenethylamine-derived designer drugs 

2C-B, 2C-I, 2C-D, 2C-E, 2C-T-2 and 2C-T-7 were metabolized mainly by O-

demethylation and deamination with subsequent oxidation to the corresponding acid or 

reduction to the corresponding alcohol. Further steps were the side chain hydroxylation 

and in the case of the sulfur containing 2Cs, also the sulfoxidation. As metabolic phase 

II reactions partial glucuronidation or sulfatation and N-acetylation were observed. 

Furthermore, combinations of these steps as well as minor metabolites were also 

detected.63-68 

The developed screening procedures allowed the detection of the studied 2Cs in rat 

urine after administration of common drug abusers' doses mainly via their metabolites.  

In vitro studies showed that MAO-A and MAO-B were the major isoforms catalyzing the 

deamination of the 2Cs, although in some cases CYP2D6 was also involved for a very 

small amount. All studied 2Cs have a slightly higher affinity for MAO-A than for MAO-B, 

which can be explained by the size of the binding pocket of the enzyme for the 

4-substituent of the 2Cs.69 

This detailed knowledge of the metabolic steps of designer drugs is an important 

prerequisite for assessing possible interaction with other drugs or food ingredients as 

well as inter-individual pharmacogenetic differences. MAO-A and MAO-B are the major 

enzymes catalyzing the studied metabolic step, and these enzymes are targets for 

frequently used drugs such as antidepressants or antiparkinsonians. Therefore, it can 

be expected that drug-drug interactions with these compounds would be possible. 

Whether these are of clinical relevance can not be concluded at the moment. Further 

studies on the pharmacology and toxicology of the metabolites together with well 

documented clinical data will be necessary. Furthermore, studies on the isoenzymes 

dependency of other metabolic steps, especially the O-demethylation are required. 

 

 

 



 



4 SUMMARY 

In the presented studies, metabolism and toxicological analysis in urine of the 

phenethylamine-derived designer drugs 2C-B, 2C-I, 2C-D, 2C-E, 2C-T-2 and 2C-T-7 

were investigated. Furthermore, MAO and CYP isoform dependence of one of the major 

metabolic steps was elucidated to predict possible drug-drug interactions and influence 

of genetic polymorphisms.63-69 

The qualitative metabolism was studied in Wistar rats, that were administered a high 

dose of the corresponding 2C compound. Urine was collected over 24 hours. After 

enzymatic cleavage of conjugates, acidic and basic liquid-liquid extraction as well as 

solid-phase extraction and derivatization of the extracts, metabolites could be identified 

by means of GC-MS.  

The 2Cs were mainly metabolized by O-demethylation in position 2 and 5 of the ring, 

respectively, by deamination followed by oxidation to the corresponding acid or 

reduction to the corresponding alcohol. Further metabolic steps were side chain 

hydroxylation and in the case of sulfur containing 2Cs, sulfoxidation. Metabolic phase II 

reactions were partial glucuronidation or sulfatation and N-acetylation. Combinations of 

these steps and minor metabolites could also be detected. 

The toxicological analysis was based on the results of the metabolism studies and 

focused on the detection of the parent compound and corresponding major metabolites 

in urine. The rats were administered the drug at a dose corresponding to a common 

drug abusers' dose. Sample preparation included acid hydrolysis for rapid cleavage of 

conjugates, liquid-liquid extraction and microwave-assisted acetylation. The analytes 

were separated by GC and the mass spectra, recorded in the full-scan mode, were 

electronically filed. The files allowed to trace certain mass fragments by extracting 

single ions from the full-scan chromatogram. If a peak for a fragment mass appeared, 

that was indicative for the presence of the analyte targeted, the full mass spectrum 

underlying this peak could be inspected. Comparison of this mass spectrum with a 

reference spectrum allowed to draw conclusions on the presence of the suspected 

analyte. 

The knowledge of the involvement of particular monoamine oxidase (MAO) or 

cytochrome P450 (CYP) in the biotransformation of a new drug allows to predict 

possible drug-drug interactions, inter-individual variations in pharmacokinetic profiles 
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and increased appearance of side effects and serious poisonings.61 In addition, there is 

good evidence that genetic variations in drug metabolism have important behavioral 

consequences that can alter the risk of drug abuse and dependence.62 Therefore, as a 

basis for further studies, those MAO and CYP isoforms were identified that were 

involved in the one of the major metabolic steps, namely the deamination reaction. For 

identification of the human MAO and CYP enzymes, in vitro experiments with 

microsomes of insect cells infected with baculoviruses were performed. The transfected 

DNA coded for individual human hepatic CYP isoforms. Maximal turnover rates of the 

substrates and Km values were determined from the cDNA-expressed MAO isoforms.  

MAO-A and MAO-B were the major enzymes involved in the deamination reaction. For 

2C-D, 2C-E, 2C-T-2 and 2C-T-7, CYP2D6 was also involved, but only to a small extent. 

All studied 2Cs have a slightly higher affinity for MAO-A than for MAO-B, which can be 

explained by the size of the binding pocket of the enzyme for the 4-substituent of the 

2Cs. 

As MAO-A and MAO-B are involved in one of the major metabolic steps of the 2Cs, the 

2Cs might be susceptible for drug-drug interactions with MAO inhibitors possibly leading 

to elevated plasma concentrations of the 2Cs, and therefore increasing the probability of 

toxic side effects. Such inhibitors are used as antidepressants or as antiparkinsonians. 

However, the question whether drug interactions are of relevance for 2C 

pharmacokinetics and/or clinical outcome of intoxications cannot be answered at the 

moment due to lack of sufficient authentic human data. 

Further studies on the pharmacology and toxicology of the metabolites together with 

well documented clinical data will be necessary. 
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6 ABBREVIATIONS 

2C-B 4-bromo-2,5-dimethoxy-β-phenethylamine 

2C-I 4-iodo-2,5-dimethoxy-β-phenethylamine 

2C-D 2,5-dimethoxy-4-methyl-β-phenethylamine 

2C-E 4-ethyl-2,5-dimethoxy-β-phenethylamine 

CYP cytochrome P450 

2C-T-2 4-ethylthio-2,5-dimethoxy-β-phenethylamine 

2C-T-7 2,5-dimethoxy-4-propylthio-β-phenethylamine 

GC-MS gas chromatography-mass spectrometry 

MAO monoamine oxidase 

FAD flavin adenine dinucleotide 

L-DOPA L-dihydroxy phenylalanine 

5-HT 5-hydroxytryptamine (serotonin) 

cDNA copy deoxyribonucleic acid 

Km substrate concentration at half of the maximal turnover rate 

MDA 3,4-methylenedioxyamphetamine 

MDMA 3,4-methylenedioxymethamphetamine 
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OR oxidoreductase 

PMA para-Methoxyamphetamine 

PMMA para-Methoxymethamphetamine 

Vmax maximal turnover rate 

 
 



7 ZUSAMMENFASSUNG 

Im Rahmen dieser Dissertation wurden der Metabolismus und die Nachweisbarkeit der 

neuen Designerdrogen des Phenethylamin-Typs 2C-B, 2C-I, 2C-D, 2C-E, 2C-T-2 und 

2C-T-7 im Urin untersucht. Darüber hinaus wurde die Monoaminoxidase und Cytochrom 

P450 Isoformenabhängigkeit eines Hauptmetabolismusschrittes untersucht.  

Die qualitativen Metabolismusuntersuchungen erfolgten an Wistar-Ratten, denen 

eine hohe Dosis der jeweiligen Substanz verabreicht wurde. Der 24-Stunden-

Sammelurin diente als Untersuchungsmaterial. Nach enzymatischer Konjugatspaltung, 

saurer und basischer flüssig-flüssig Extraktion bzw. Festphasenextraktion des Urins und 

anschließender Derivatisierung des Extraktes konnten Metaboliten mittels GC-MS 

identifiziert werden. 

Die 2Cs wurden hauptsächlich durch O-Demethylierung in Position 2 bzw. 5 des Ringes 

oder durch Deaminierung gefolgt von Oxidation zur entsprechenden Säure oder 

Reduktion zum entsprechenden Alkohol metabolisiert. Weitere Metabolismusschritte 

waren die Seitenkettenhydroxylierung und im Falle der Schwefel enthaltenden 2Cs, 

Sulfoxidation. Als Phase-II-Reaktionen konnten partielle Glucuronidierung oder 

Sulfatierung und N-Acetylierung gefunden werden. Kombinationen dieser Schritte 

konnten ebenso detektiert werden wie auch niedrig konzentrierte Metaboliten. 

Das toxikologische Nachweisverfahren basierte auf den Ergebnissen der 

Metabolismusuntersuchungen und konzentrierte sich auf die Detektion der 

Muttersubstanzen und/oder der jeweiligen Hauptmetaboliten im Urin. Dazu erhielten die 

Ratten eine Dosis der jeweiligen Substanz, die einer üblichen Dosierung bei 

Drogenkonsumenten entsprach. Die Probenvorbereitung umfasste eine saure 

Hydrolyse zur raschen Konjugatspaltung, Flüssig-Flüssig-Extraktion und 

mikrowellenunterstütze Acetylierung. Die Probe wurde gaschromatographisch 

aufgetrennt und die entsprechenden Massenspektren im full-scan Modus 

aufgezeichnet. Die elektronische Aufzeichnung ermöglichte es, den Verlauf bestimmter 

Massenfragmente nachträglich separat zu verfolgen. Trat ein Peak der für den Analyten 

charakteristischen Fragmentmasse auf, konnte anschließend das dem Peak 

unterliegende Massenspektrum mit dem Referenzmassenspektrum verglichen werden 

und somit eine eindeutige Aussage über die Präsenz des jeweiligen Metaboliten 

getroffen werden.  
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Die Kenntnis, welches der Monoaminoxidase oder der Cytochrom P450 Isoenzyme 

an der Biotransformation von Arzneistoffen oder Missbrauchsdrogen beteiligt ist, 

ermöglicht die Vorhersage potentieller Interaktionen mit anderen Arzneistoffen, 

pharmakogenetischer Unterschiede der Pharmakokinetik sowie von Nebenwirkungen 

und möglichen Vergiftungen. Darüber hinaus gibt es Hinweise dafür, dass ein inter-

individuell unterschiedlicher Metabolismus Einfluß auf Drogenmissbrauch sowie 

Drogenabhängigkeit hat. Als Basis für weitergehende Untersuchungen wurden die MAO 

und CYP-Isoformen identifiziert, die einen der wichtigsten Metabolismusschrittes 

katalysieren, der Deaminierung. Zur Identifizierung der humanen CYP-Enzyme wurden 

in vitro Versuche mit Mikrosomen von mit Viren infizierten Insektenzellen durchgeführt. 

Die transfizierte DNA codierte für einzelne humane hepatische CYP-Isoformen. 

Maximale Umsatzraten der Substrate (Vmax) und Km-Werte wurden von den cDNA-

exprimierten MAO-Isoformen bestimmt. 

Es stellte sich heraus, dass MAO-A und B die Enzyme waren, die hauptsächlich an der 

Deaminierung der 2Cs beteiligt sind. Bei 2C-D, 2C-E, 2C-T-2 und 2C-T-7 war auch 

CYP2D6 beteiligt, allerdings zu einem sehr geringen Anteil. Alle untersuchten 2Cs 

zeigen eine leicht höhere Affinität zu MAO-A als zu MAO-B. Dies kann mit der 

unterschiedlichen Größe der Bindungstasche der beiden Enzyme für den 

4-Substituenten der 2Cs erklärt werden. 

Da MAO-A und B an einem der Hauptmetabolismusschritte der 2Cs beteiligt sind, 

könnten die 2Cs Wechselwirkungen mit MAO-Hemmern zeigen, was möglicherweise zu 

erhöhten Plasmakonzentrationen der 2Cs und damit zu einer erhöhten 

Wahrscheinlichkeit toxischer Wirkungen führen könnte. Solche MAO-Hemmer werden 

therapeutisch als Antidepressiva oder auch Antiparkinsonmittel eingesetzt. Allerdings 

kann die Frage, ob Interaktionen relevant für die Pharmakokinetik und/oder das 

klinische Ergebnis von Intoxikationen sind, zur Zeit aufgrund fehlender Humandaten 

nicht beantwortet werden. 

Hierfür sind weitere klinische Studien zur Pharmakologie und Toxikologie der 

Metaboliten sowie gut dokumentierte klinische Falldaten notwendig. 
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