Elektrokardiographische Einleitungsmuster spontaner ventrikulärer Tachyarrhythmien bei Patienten mit implantierbarem Cardioverter-Defibrillator

Dissertation

zur Erlangung des Grades eines Doktors der Medizin
der Medizinischen Fakultät
der UNIVERSITÄT DES SAARLANDES

2006

vorgelegt von
Markus Steuer
geb. am 25. Apr. 1973 in Merzig
Meinen Eltern und Michaela in tiefer Dankbarkeit gewidmet
Inhaltsverzeichnis

1 Zusammenfassung... 1

2 Einleitung.. 5
 2.1 Ventrikuläre Tachyarrhythmien.. 5
 2.2 Implantierbarer Cardioverter-Defibrillator... 8
 2.3 Fragestellung... 11

3 Material und Methodik... 13
 3.1 Patienten.. 13
 3.2 Arrhythmien... 14
 3.3 Messungen.. 15
 3.3.1 Endokardial abgeleitete Episoden-EKGs... 16
 3.3.2 Endokardial abgeleitete Ruhe-EKGs... 18
 3.3.3 Peripher abgeleitete Ruhe-EKGs.. 18
 3.4 Statistik... 19

4 Ergebnisse... 21
 4.1 Ventrikuläre Tachyarrhythmien [VTAs]... 21
 4.2 VTA-einleitende ventrikuläre Extrasystolen... 24
 4.3 VTA-Einleitungsmuster... 27
 4.4 Elektrophysiologische Parameter vor VTAs... 35
 4.5 Kardiale Grunderkrankung... 37
 4.6 R-auf-T-Phänomen.. 40
 4.6.1 Häufigkeit... 40
 4.6.2 Elektrophysiologische Charakteristika... 42
 4.6.3 VTA-einleitende VES... 43
 4.6.4 VTA-Einleitungsmuster... 45
 4.6.5 Patienten.. 46
Abkürzungen

DCM Dilatative Kardiomyopathie
EKG Elektrokardiogramm
ELM Einleitungs muster
HF Herzfrequenz
HRV Herzfrequenzvariabilität
ICD Implantierbarer Cardioverter-Defibrillator
KHK Koronare Herzkran kheit
LVEF Linksventrikuläre Ejektionsfraktion
LZ-EKG Langzeit-EKG
MVT monomorphe VT
PVT polymorphe VT
VES Ventrikuläre Extrasystole
VT Ventrikuläre Tachykardie
VTA Ventrikuläre Tachyarrhythmie
1. Zusammenfassung

Der implantierbare Defibrillator hat sich als fester Bestandteil im Spektrum der Behandlungsoptionen bei ventrikulären Tachyarrhythmien etabliert. Moderne implantierbare Defibrillatorsysteme ermöglichen neben der Erkennung und Terminierung von malignen ventrikulären Tachyarrhythmien auch eine fortlauende numerischen und graphischen Arrhythmiedokumentation und Speicherung im Langzeitverlauf. Durch die Untersuchung der gespeicherten Arrhythmie-Episoden können so wichtige Erkenntnisse über die zeitliche Verteilung von Rezidivarrhythmien, die Umstände ihres Entstehens und die elektrokardiographischen Auslösemuster gewonnen werden.

Die überwiegend monomorphen ventrikulären Tachykardien (78\%) waren überwiegend durch zeitlich oder morphologisch abgrenzbare ventrikuläre Extrasystolen eingeleitet. Die einleitenden Extrasystolen erwiesen sich gemessen an der nachfolgenden Tachykardie als überwiegend morphologisch unähnlich (64\%). Die Vorzeitigkeit der einleitenden Extrasystolen korrelierte umgekehrt proportional mit der Frequenz
der nachfolgenden Tachykardie (p < 0,01), d. h. später einfallende VES leiteten
schnellere Tachyarrhythmien ein. Ein Zusammenhang zwischen den Einleitungsmus-
tern differenziert nach der Einteilung "unvermittelter Tachykardiebeginn", "Einleitung
durch eine singuläre Extrasystole" oder "Einleitung durch mehrere Extrasystolen" und
der Morphologie oder Frequenz der nachfolgenden Tachykardien ließ sich nicht auf-
zeigen. Die Anzahl der individuell auftretenden Einleitungsmuster korrelierte signifi-
kant mit der Anzahl von Rezidivarrhythmien (p < 0,01). Im Vergleich mit Ruhebedin-
gungen war vor Beginn der Tachykardien die Herzfrequenz signifikant erhöht (p <
0,01), die Herzfrequenzvariabilität signifikant erniedrigt (p = 0,009) und ventrikuläre
Extrasystolen traten gehäuft auf (p < 0,001). Die genannten Zusammenhänge waren
unabhängig von der kardialen Grunderkrankung. Ein R-auf-T-Phänomen war nur bei
15 % der Tachyarrhythmien nachweisbar und nahm individuell mit der Anzahl der
Rezidivarrhythmien nicht an Häufigkeit zu. Die meisten R-auf-T-Extrasystolen traten
vor polymorphen ventrikulären Tachykardien auf (p = 0,027) und fielen in den abstei-
genden Schenkel der T-Welle ein. Das R-auf-T-Phänomen war häufiger bei Patienten
mit koronarer Herzkrankheit zu finden, löste jedoch im Vergleich mit später einfall-
lenden Extrasystolen nicht häufiger Tachykardien aus (p = 0,58). Die Einleitungsmus-
ter nach der o.g. Einteilung waren bei R-auf-T-eingeleiteten Episoden in vergleichba-
erer Häufigkeit zu finden wie bei durch später einfallende Extrasystolen eingeleiteten
Tachyarrhythmien.

Demnach konnte gezeigt werden, dass Einleitungsmuster spontaner ventrikulärer
Tachyarrhythmien bei Patienten mit implantiertem Defibrillator bezogen auf ihre Häu-
figkeit bei einzelnen Patienten und bezogen auf die Morphologie und Frequenz der
nachfolgenden Tachyarrhythmie weder patientenspezifische noch arrhythmiespezifi-
sche Phänomene darstellen. Monomorphe ventrikuläre Tachykardien werden über-
wiegend durch morphologisch unähnliche ventrikuläre Extrasystolen eingeleitet, was
einen elektrischen Ursprung der einleitenden Extrasystole fern des zugrundeliegen-
den Reentrykreislaufs nahelegt. Das R-auf-T-Phänomen tritt häufiger bei Patienten
mit koronarer Herzkrankheit auf, ist jedoch selten und klinisch von untergeordneter
Bedeutung. Die elektrophysiologischen Veränderungen vor dem Tachykardiebeginn
zeigen, dass einem erhöhten Sympathikotonus in der Entstehung von Rezidi-
varrhythmien bei Defibrillatoreinträgern im Gegensatz zur kardialen Grundkrankheit
eine hohe Bedeutung zukommt.
The implantable cardioverter-defibrillator (ICD) has been established as indispensable tool in the treatment of malignant ventricular tachyarrhythmias. Modern implantable defibrillator systems allow a consecutive numerical and graphical documentation and storage of tachyarrhythmias. By analysis of stored arrhythmia episodes the temporal arrhythmia distributions, the circumstances of their development and the electrocardiographic patterns of initiation can be studied.

The object of the present study was an analysis of the electrocardiographic patterns of initiation of spontaneous ventricular tachyarrhythmias in patients with implanted cardioverter-defibrillator. Forty-seven consecutive patients with recurrence of ventricular tachyarrhythmias after device implantation were studied. The average left ventricular ejection of these patients was significantly reduced (32 ± 13 %). Two-hundred-and-eighty-seven ICD-stored arrhythmic episodes were analysed retrospectively. The corresponding electrocardiograms were printed out and were classified by the initiation patterns of the tachyarrhythmias by number and morphology of the initiating ventricular premature contractions (VPCs). Special attention was focused on the R-on-T-phenomenon defined as occurrence of the initiating VPC during the T-Wave of the previous sinus beat. Potential relationship between the initiation patterns and the morphology and frequency of the following tachycardia and the cardiac disease as well as the electrophysiological changes before the occurrence of tachyarrhythmias (heart rate, heart rate variability, QT-intervals) were evaluated.

Predominantly monomorphic ventricular tachycardias (78%) were registered. These were predominantly initiated by temporally or morphologically circumscribed VPCs. Most of the initiating VPCs were dissimilar to the following tachycardia (64%). The prematurity of the initiating VPCs correlated inversely with the rate of the following tachycardias (p < 0,01) i.e. later occurring VPCs initiated faster tachyarrhythmias. A relationship between the initiation patterns differentiated as “sudden beginning of tachycardia”, “introduction by a single VPC” or “introduction by several VPCs” and the morphology or frequency of following tachycardias has not been found. The number of individually occurring initiation patterns correlated significantly with the arrhythmia recurrences during long-term follow-up (p < 0.01). Compared to resting conditions the heart rate was significantly increased (p < 0.01), the heart rate variability was significantly reduced (p = 0.009) and VPCs occurred more frequently before
spontaneous recurrences of tachyarrhythmias \((p < 0.001) \). Findings were independent of the cardiac disease. The R-on-T-phenomenon was present only in 15% of tachyarrhythmias and did not occur more frequently in patients with higher arrhythmia recurrence. Most R-on-T-VPCs occurred before polymorphic ventricular tachycardias \((p = 0.027) \) and in the descending limb of the T-wave. The R-on-T-phenomenon was more frequently found in patients with coronary artery disease, however, in comparison with later occurring VPCs R-on-T-VPCs did not initiate more frequently tachyarrhythmias \((p = 0.58) \). The frequency distribution of the above defined initiation patterns was comparable in R-on-T-initiated episodes and those initiated by later coupled VPCs.

In summary it could be shown that, corresponding to the frequency in individual patients and corresponding to the rate and morphology of following arrhythmias, initiation patterns of spontaneous ventricular tachyarrhythmias do not represent patient-specific or arrhythmia-specific phenomena in patients with implanted defibrillators. Monomorphic ventricular tachycardias are initiated predominantly by morphologically dissimilar VPCs suggesting an electrical origin of the initiating VPC far from the underlying reentry-circuit. The R-on-T-phenomenon seems to occur more frequently in patients with coronary artery disease, however, it is rare and clinically of inferior significance. The electrophysiological changes before initiation of tachycardias prove that in contrast to the cardiac disease sympatho-adrenergic activation is of high importance in the context of spontaneous arrhythmia recurrence in ICD-recipients.
2. Einleitung

2.1 Ventrikuläre Tachyarrhythmien

Unter ventrikulären Tachyarrhythmien (VTAs) werden ventrikuläre Tachykardie, Kammerflimmern und Kammerflattern subsumiert.

Ventrikuläre Tachykardien

Abb. 1 ICD-Originalregistrierung (endokardiales Elektrokardiogramm) einer monomorphen VT.
Abb. 2 ICD-Originalregistrierung (endokardiales Elektrokardiogramm) einer polymorphen VT.

Pathophysiologie ventrikulärer Tachykardien

MVTs liegt eine kreisende Erregung (Reentry) im Kammermyokard zugrunde, die von einem pathologisch verändertem Myokardareal ausgeht. Hierbei wird die Erregungswelle im Myokard an bestimmten Stellen kritisch verzögert, so dass sie in Verbindung mit dem Vorhandensein von unidirektionalen Leitungsblockierungen immer wieder auf bereits wieder erregbare Myokardareale trifft (Abb. 3).

Damit ein Reentry-Kreis geschlossen werden kann, müssen folgende Voraussetzungen erfüllt sein:

1. unterschiedliche Refraktärzeiten und Leitungseigenschaften von Myokardarealen mit einer verzögerten Leitung der Erregungswelle in den am Erregungskreis beteiligten Strukturen.
2. unidirektionale Leitungsbloque rungen, d.h. eine verzögerte oder blockierte Leitungsfähigkeit im Muskelgewebe nur in einer Erregungsrichtung.

PVTs liegen multiple Reentry-Kreise zugrunde, die unterschiedlichen Zentren des Kammermyokards entspringen. Sie gehen häufiger in Kammerflimmern über als MVTs und sind daher vergleichsweise gefährlicher.

Die Mechanismen, die zur Auslösung von VTAs beitragen, sind nur teilweise bekannt. Folgende Faktoren sind in diesem Zusammenhang von Bedeutung:

2. Das vegetative Nervensystem scheint eine wichtige Rolle bei der Entstehung von VTAs zu spielen. Diese Annahme wird durch den Nachweis von Veränderungen vegetativ beeinflussbarer Parameter vor dem Auftreten von VTAs gestützt. Solche Veränderungen konnten gezeigt werden für die Herzfrequenz (SHUSTERMAN et al., 1998; STEIN et al., 1998; NEMEC et al., 1999; DIEM et al., 2002; COPIE et al., 2003), die Herzfrequenzvariabilität (HUIKURI et al., 1993; SKINNER et al., 1993; FEI et al., 1994b; HUIKURI et al., 1996; SHUSTERMAN et al., 1998; MÄKIKALLIO et al., 1999; LOMBARDI et al., 2000), und das QT-Intervall (FEI, CAMM, 1995; DIEM et al., 2002).
Kammerflimmern
Kammerflimmern stellt ein chaotisches Nebeneinander einer Vielzahl von unkoordinierten elektrischen Erregungsfronten der Herzkammern dar und führt zu einem mechanischen Herzstillstand (Abb. 4). Der Übergang von PVTs in Kammerflimmern ist fließend.

Abb. 4 ICD-Originalregistrierung (endokardiales Elektrokardiogramm) von Kammerflimmern.

2.2 Implantierbarer Cardioverter-Defibrillator
Historischer Hintergrund und Entwicklung
von zunehmender wissenschaftlicher und klinischer Bedeutung (LUCERI et al., 1988; GROSS et al., 1991; HOOK et al., 1991; TOFLER et al., 1995; AURICCHIO et al., 1996; MITCHELL et al., 2002). Moderne ICDs ermöglichen insbesondere auch die Speicherung endokardial abgeleiteter Elektrokardiogramme der Arrhythmieepisoden (NEUZNER et al., 1993). Die Analyse dieser Speicherelektrokardiogramme erlaubt neue Einsichten in die Entstehungsmechanismen ventrikulärer Tachyarrhythmien.

Funktionen des implantierbaren Cardioverter-Defibrillators

Neuere Geräte bieten die Möglichkeit einer Speicherung episodenbezogener, endokardialer über die Defibrillations- und Stimulationselektroden abgeleiteter Elektrokardiogramme. Die Speicherung von endokardialen Elektrogrammen ermöglicht die Klassifikation der registrierten Herzrhythmusstörung, insbesondere eine Differenzierung von ventrikulären und supraventrikulären Tachykardien. Eine kritische Bewertung der registrierten Arrhythmien sowie der abgegebenen Therapie ist hierdurch in den meisten Fällen möglich (NEUNZNER et al., 1993). Die Speicherung des episodenbezogenen EKGs liefert überdies Informationen über die Zeit unmittelbar vor dem Einsetzen der VTA.
Bei den in dieser Untersuchung verwendeten Systemen werden 3 Abschnitte von jeweils 10 Sekunden beim Auftreten von VTAs gespeichert. Die ersten 10 s zeigen den spontanen Übergang vom Sinusrhythmus in die VTA. Im zweiten Abschnitt wird die VTA bis zur Therapieabgabe dokumentiert und der dritte Abschnitt zeichnet den Zeitraum unmittelbar nach der Therapieabgabe auf (Abb. 5).

Abb. 5 Beispiel einer ICD-registrierten VTA mit episodenbezogenen numerischen Daten wie Datum und Uhrzeit der Arrhythmie, Herzfrequenzen und Zyklusintervallen in Millisekunden (a) sowie endokardial abgeleitetes EKG (Schockelektroden) vor (b) während (c) und nach einer VTA (d).

Aus dem Ausdruck des episodenbezogenen EKGs können die Art der dokumentierten Tachyarhythmie und die Herzzyklen vor und nach der Arrhythmie nach Form und Dauer analysiert werden. Die Anzahl und Morphologie von tachykardieauslösenden VES lässt sich feststellen und, ob diese der nachfolgenden VTA ähneln oder nicht.
2.3 Eigene Fragestellungen

In der vorliegenden Arbeit wurden anhand ICD-gespeicherter endokardialer Elektrogramme spontaner Rezidivrhythmen die Einleitungsmuster von VTAs analysiert.

Im Einzelnen sollten Antworten auf die folgenden Fragen gefunden werden:

(1) Wie sind spontane VTA-Rezidive bei Patienten mit ICD nach Morphologie und Herzfrequenz charakterisiert?

(2) Wie stellt sich die Morphologie der VTAs im Vergleich zur VTA-auslösenden VES dar?

(3) Gibt es Zusammenhänge zwischen der Vorzeitigkeit der VTA-einleitenden VES und der Herzfrequenz und Morphologie nachfolgender VTAs?

(4) Unterscheiden sich die Einleitungsmuster (unvermittelter VTA-Beginn oder Einleitung durch eine singuläre oder mehrere VES) von monomorphen und polymorphen VTAs und beeinflusst das VTA-Einleitungsmuster die Frequenz der nachfolgenden VTAs?

(5) Gibt es individuell wiederkehrende, typische Einleitungsmuster?

(6) Wie oft treten Einleitungsmuster ohne nachfolgende VTA auf und wie unterscheiden sich Einleitungsmuster mit und ohne VTA-Einleitung?

(7) Verändern sich die elektrophysiologischen Parameter QT-Intervall, Herzfrequenz, Herzfrequenzvariabilität und Anzahl der VES vor spontanen VTAs?

(8) Gibt es Unterschiede zwischen Patienten mit koronarer Herzkrankeit und dilatativer Kardiomyopathie?

(9) Wie häufig sind Einleitungsmuster mit R-auf-T-Phänomen, wie sind diese morphologisch charakterisiert und welche Bedeutung kommt ihnen im Hinblick auf
Auslösewahrscheinlichkeit und Morphologie nachfolgender VTAs zu? Gibt es Unterschiede zwischen Patienten mit und ohne R-auf-T-induzierten VTAs?
3. Material und Methodik

3.1 Patienten

Kardiale Grundkrankheit
Sechsunddreißig Patienten (77%) litten unter einer koronaren Herzkrankheit, wovon 34 Patienten (94%) einen Myokardinfarkt überlebt hatten. Eine idiopathische dilative Kardiomyopathie lag bei 8 Patienten (17%) vor und 2 Patienten (4%) wiesen eine arrhythmogene rechtsventrikuläre Dysplasie auf. Ein Patient (2%) litt an einer sekundären dilativen Kardiomyopathie nach Myokarditis.

Herzfunktion
Zur Beurteilung der Herzfunktion wurde die invasiv, im Rahmen einer bei allen Patienten vor Geräteimplantation durchgeführten Linksherzkatheteruntersuchung gemessene, linksventrikuläre Ejektionsfraktion (LVEF) herangezogen. Die durchschnittliche LVEF der 47 Patienten betrug 32 ± 13% (normal: ≥ 60%). Es handelt sich also um ein Untersuchungskollektiv mit im Mittel deutlich eingeschränkter LVEF.

Indikationen zum Einbau des ICDs
Nach dokumentiertem Kammerflimmern wurde der ICD bei 9 Patienten (19%) implantiert. Bei 21 Patienten (45%) wurde das Gerät aufgrund von hämodynamisch kompromittierenden Kammertachykardien implantiert und bei 17 Patienten (36%) waren beide Tachyarrhythmien dokumentiert.

Gerätetypen
Alle untersuchten Patienten trugen ICDs neuerer Generation, die eine Speicherung episodenbezogener intrakardial über die Defibrillationselektroden abgeleiteter Elektrokardiogramme ermöglichen.
Verwendet wurden Defibrillatoren der Firma CPI Inc., MN, USA. Dabei wurden Speicher-EKGS der folgenden Gerätetypen analysiert: Ventak PRx (n=136, 47%), Ventak Mini (n=153, 53 %). Die vergleichsweise hohe Anzahl von benötigten Defibrillatoren lässt sich mit den notwendigen Wechseln der Geräte aufgrund einer Erschöpfung der geräteinternen Batterien erklären.

Der Papierausdruck wurde mit dem integrierten Drucker des Programmiergerätes (Typ 2901) der Firma CPI Inc., MN, USA durchgeführt.

Antiarrhythmika
Zur antiarrhythmischen Therapie wurden ausschließlich Amiodarone und Betablocker eingesetzt.

3.2 Arrhythmien
Retrospektiv analysiert wurden die ICD-gespeicherten Rezidivarrhythmien (Episoden), die im Rahmen der regelmäßigen dreimonatigen Nachuntersuchungen aller Patienten vollständig auf Disketten übertragen worden waren. Zur Bewertung wurden die Episoden ausgedruckt (Papiervorschub 50 mm/s) und pro Patient maximal 20 konsekutive Episoden berücksichtigt. Von der Analyse ausgeschlossen wurden Episoden, denen kein Sinusrhythmus sondern ein Vorhofflimmern vorausging. VTAs mit gleich geformten Kammerkomplexen wurden zur Gruppe der MVTs, VTAs mit variabel geformten Kammerkomplexen zur Gruppe der PVTs gezählt. Episoden von Kammerflimmern definiert als feinschlägige Erregungswellen mit einer Frequenz von > 300 / min wurden nicht mit in die Analyse aufgenommen.
3.3 Messungen

Die endokardial abgeleiteten Episoden-EKGs wurden von den verwendeten Aggregaten in 3 Zeitabschnitten gespeichert (Abb. 6).

Zeitabschnitt 1:

Zeitabschnitt 2:

Zeitabschnitt 3:

Abb. 6 Endokardial abgeleitetes Episoden-EKG. Zeitabschnitt 1: Übergang des Sinusrhythmus in die VT; Zeitabschnitt 2: VT; Zeitabschnitt 3: Zeitraum unmittelbar nach Therapieabgabe.
3.3.1 Endokardial abgeleitete Episoden-EKGs

Zur Untersuchung der VTA-Entstehung wurde im Zeitabschnitt 1 (Abb. 6) des endokardial abgeleiteten ICD-gespeicherten Episoden-EKGs nach folgenden Kriterien differenziert:

- Sinusfrequenz vor den VTAs (Schläge / min)
Alle RR-Intervalle (Abb. 7) vor VTAs wurden mit einem handelsüblichen EKG-Lineal vermessen. Anschließend wurden Mittelwerte und Standardabweichungen errechnet. Aus den gemittelten RR-Intervallen in ms (RR) wurden nach der Formel:

\[HF = \frac{60000}{RR} \]

die Herzfrequenzen pro Minute (HF) vor der VTA berechnet.

- Herzfrequenzvariabilität (HRV) vor VTAs

Abb. 7 RR-Intervall und QT-Intervall im EKG.

- Herzfrequenzvariabilität (HRV) vor VTAs
- QT-Intervalle vor VTAs
Sämtliche QT-Intervalle (Abb. 7) wurden ebenfalls manuell ausgemessen und anschließend rechnerisch gemittelt. Das QT-Intervall, das die Erregungsrückbildung beschreibt, ist im Kontext der Arrhythmogenese von Bedeutung, da eine Verlängerung des QT-Intervalls das Auftreten von VTAs begünstigen kann. Die QT-Intervalle wurden daher vermessen und das frequenzkorrigierte QT-Intervall (QTc) berechnet. QTc berücksichtigt die physiologischen QT-Anpassung an die instantane Herzfrequenz. Verwendet wurde die Formel von Bazett:

\[QTc = \frac{QT}{\sqrt{RR}} \]

- Einleitungsmuster
 - unmittelbarer VTA-Beginn (S-VTA) oder
 - VTA-Einleitung durch singuläre VES (S-VES-VTA) bzw.
 - VTA-Einleitung durch mindestens 2 VES (S-Coup-VTA)

- Vorzeitsindex (VI) zur Unterscheidung von früher und später einfallenden VES nach der Formel:

\[VI = \frac{S - VES}{R – R\,\text{mean}} \]

(S - VES = Intervall zwischen vorhergehendem Sinusschlag (S) und der VES in ms, R – R mean = gemitteltes Intervall zwischen den vorhergehenden Sinusschlägen in ms.

Beispiel: S - VES = 400 ms, R – R mean = 800 ms: \[VI = \frac{400\,\text{ms}}{800\,\text{ms}} = 0,5 \]
- R-auf-T-Phänomen
Ein R-auf-T-Phänomen liegt vor, wenn eine VES in die T-Welle des vorausgehenden Sinusschläges (Normalschlag) einfällt.
Zur Beschreibung der VTA-Frequenz wurde der geräteintern berechnete Zahlenwert aus der Mittelung der registrierten RR-Intervalle übernommen.

3.3.2 Endokardial abgeleitete Ruhe-EKGs
Um potenzielle Veränderungen des QT-Intervalls vor spontanen VTA-Episoden zu erkennen, konnten zum Vergleich mit den Episoden-EKGs nicht die unter 3.3.3 erwähnten ambulanten Ruhe-EKGs herangezogen werden, da die QT-Zeit vom Ableitungsort abhängt. Es wurden zum Vergleich mit den Episoden-EKGs daher ebenfalls endokardiale, ICD-gespeicherte Ruhe-EKGs analysiert, die bei Funktionstests der Geräte abgeleitet worden waren. Ausgewertet wurden hierbei nur EKGs, in denen mindesten 3 Sinusschläge und eine eindeutig abgrenzbare T-Welle zu bestimmen waren. Bei 35 Patienten (73%) standen solche Episoden zur Verfügung.
Die QTc-Intervalle wurden wie unter 3.3.1 erklärt berechnet mit den QTc-Intervallen der Episoden-EKGs verglichen.

3.3.3 Peripher abgeleitete Ruhe-EKGs
3.4 Statistik

Die gemessenen Parameter werden als Mittelwerte ± Standardabweichung angegeben. Bei unsymmetrischer Verteilung wurden Mediane ermittelt. Im statistischen Vergleich galt ein p-Wert von ≤ 0,05 als signifikant.

p^* zeigt an, dass Arrhythmieepisoden und nicht Patienten verglichen wurden. Die Beobachtungen sind in diesen Fällen nicht unabhängig voneinander und der p-Wert ist von eingeschränkter Aussagekraft.

Die statistische Auswertung erfolgte mit der Microsoft Excel 97-Tabellenkalkulation und SPSS 11.5 für Windows.

Entsprechend den analysierten Datenreihen wurden parametrische sowie nichtparametrische Tests angewendet.

(1) Vergleich von 2 Stichproben

Der Mann-Whitney U-Test wurde zum Vergleich stetiger Parameter bei 2 unabhängigen Stichproben verwendet, während bei paaren Stichproben der Wilcoxon-Vorzeichen-Rang-Test zur Anwendung kam.

(2) Vergleich von mehr als 2 Stichproben

(3) Zusammenhang zwischen 2 stetigen Parametern

Das Verfahren der linearen Regression wurde zur Prüfung auf einen Zusammenhang zwischen 2 Messreihen mit einer abhängigen und einer unabhängigen Variablen angewendet und der Rangkorrelationskoeffizient von Spearman gebildet.

(4) Graphische Darstellung

Um Häufigkeitsverteilungen graphisch darzustellen wurden Kreis- und Säulendiagramme erstellt. Streudiagramme mit Regressionslinien dienten der Darstellung von Verteilungen und Korrelationen 2 stetiger Parameter.
Ich danke Herrn Dr. rer. med. Georg vom Institut für medizinische Biometrie, Epidemiologie und medizinische Informatik der Universität des Saarlandes für die Beratung hinsichtlich der statistischen Auswertung der Daten.
4. Ergebnisse

4.1 Ventrikuläre Tachyarrhythmien

Die 47 untersuchten Patienten erlebten während des Nachbeobachtungszeitraumes (52 ± 28 Monate) zwischen einer bis 235 ICD-dokumentierte VTA-Episoden. Um den Episoden einzelner Patienten nicht zu viel Gewicht einzuräumen wurden pro Patient maximal 20 Episoden berücksichtigt (Tab. 1).

Tab. 1 Anzahl der Episoden pro Patient (2,4 ± 3,3; 1-20; Median = 1)

| Episoden (n) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
|--------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|
| Patienten (n)| 15| 3 | 6 | 3 | 3 | 1 | 1 | 1 | 0 | 3 | 1 | 3 | 1 | 0 | 0 | 2 | 0 | 1 | 0 | 3 |

Morphologie

Insgesamt wurden 287 VTAs analysiert, von denen 225 als monomorphe ventrikuläre Tachykardie und 62 als polymorphe ventrikuläre Tachykardie, klassifiziert wurden (Abb. 8).

Abb. 8 Morphologie der analysierten VTAs. MVT = monomorphe ventrikuläre Tachykardie; PVT = polymorphe ventrikuläre Tachykardie
Frequenz
Bei einem Vergleich der Frequenzen von MVTs und PVTs erwiesen sich die PVTs als signifikant schneller (MVT-Frequenz 170 ± 35 / min vs. PVT-Frequenz 199 ± 47 / min, p* < 0,001).

Um mögliche Unterschiede der Frequenzen von MVTs und PVTs bei einzelnen Patienten zu untersuchen, wurden die VT-Frequenzen bei allen Patienten, die mindestens eine MVT und PVT hatten (n = 16), intraindividuell verglichen. Signifikant unterschiedliche Frequenzen fanden sich hierbei nicht (MVT-Frequenz 177 ± 31 / min vs. PVT-Frequenz 181 ± 26 / min, p = 0,68) (Tab. 2). Dieser Vergleich zeigt eine teilweise Patientenabhängigkeit der VT-Frequenz, die sich bei Patienten mit VTAs unterschiedlicher Morphologie auf einem individuell ähnlichen Niveau bewegt.
Tab. 2 Intraindividueller Vergleich der gemittelten Frequenzen von MVTs und PVTs

<table>
<thead>
<tr>
<th>Patient</th>
<th>MVTs</th>
<th>PVTs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>HF (/min)</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>191</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>206</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>169</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>213</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>172</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>206</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>154</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>188</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>184</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>104</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>236</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>152</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>186</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>146</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>170</td>
</tr>
</tbody>
</table>

Mittelwert ± SD
MVTs: 177 ± 31
PVTs: 181 ± 26

MVT = monomorphe ventrikuläre Tachykardie; PVT = polymorphe ventrikuläre Tachykardie, HF = Herzfrequenz
4.2 VTA-einleitende ventrikuläre Extrasystolen

Morphologie
Beim Vergleich der Morphologie der VTA-einleitenden VES und der nachfolgenden VTAs wurden nur MVTs analysiert, da bei PVTs aufgrund ihrer definitionsgemäß unterschiedlichen VES-Komplexe die Ähnlichkeit zur einleitenden VES kein Unterscheidungskriterium darstellen kann.

In den 225 untersuchten MVTs zeigten sich bei 82 Episoden ähnliche und bei 143 unähnliche einleitende VES (Abb. 9).

Abb. 9 Häufigkeit morphologisch ähnlicher und unähnlicher MVT-einleitender VES.
Vorzeitigkeit
Wie in Kap. 3 erläutert wurde zur Unterscheidung von früher und später einfallenden VES der Vorzeitigkeitsindex (VI) berechnet.

VI der einleitenden VES und Frequenz der nachfolgenden VTA
Bei Analyse aller Episoden (MVTs und PVTs, n = 287) ergibt sich eine schwache positive Korrelation zwischen dem VI der VES und der Herzfrequenz der nachfolgenden Tachykardie (\(r_s = 0,34, \quad p^* < 0,001 \)) (Abb. 10). Dies bedeutet, dass später einfallende VES eher schnellere Tachyarrhythmien auslösen. Bei Betrachtung der MVTs alleine war diese Beziehung stärker ausgeprägt (\(r_s = 0,41, \quad p^* < 0,001 \)), während zwischen den PVTs und dem VI keine Korrelation mehr nachweisbar war (\(r_s = 0,12, \quad p^* = 0,36 \)) (Abb. 10).
Abb. 10 Lineare Regression zwischen der VTA-Frequenz (abhängige Variable) und dem Vorzeitigkeitsindex (VI) der einleitenden VES (unabhängige Variable).
VI der einleitenden VES und Morphologie der nachfolgenden VTA
Der mittlere VI lag für MVTs bei $0,73 \pm 0,17$, für PVTs bei $0,74 \pm 0,2$ ($p^* = 0,62$). Die Vorzeitigkeit der VTA-einleitenden VES scheint demnach mit der Morphologie der nachfolgenden VTA in keinem Zusammenhang zu stehen. Wurden die einleitenden VES bei MVTs und PVTs, nur durch das Zeitkriterium abgegrenzt, war der mittlere VI ebenfalls vergleichbar ($0,71 \pm 0,17$ vs. $0,75 \pm 0,20$, $p^* = 0,23$).

4.3 VTA-Einleitungsmuster
Von den 287 analysierten VTAs zeigten 129 Episoden (45%) einen unvermittelten Beginn der VTA, 101 (35%) eine Induktion durch eine singuläre VES und 57 (20%) eine Einleitung durch zwei oder mehrere VES.
Die Verteilung der Einleitungsmuster bei MVTs und PVTs ist in Tab. 3 dargestellt.

<table>
<thead>
<tr>
<th>Einleitungsmuster</th>
<th>MVTs (n = 225)</th>
<th>PVTs (n = 62)</th>
<th>p^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-VTA (n (%))</td>
<td>77 (34%)</td>
<td>52 (84%)</td>
<td>< 0,001</td>
</tr>
<tr>
<td>S-VES-VTA (n (%))</td>
<td>93 (41%)</td>
<td>8 (13%)</td>
<td></td>
</tr>
<tr>
<td>S-Coup-VTA (n (%))</td>
<td>55 (25%)</td>
<td>2 (3%)</td>
<td></td>
</tr>
</tbody>
</table>

ELM = Einleitungsmuster; MVT = monomorphe ventrikuläre Tachykardie; PVT = polymorphe ventrikuläre Tachykardie; S-VTA = unvermittelter Beginn der VTA; S-VES-VTA = VTA-Einleitung durch singuläre VES; S-Coup-VTA = VTA-Einleitung durch mindestens zwei VES

Die Analyse der Einleitungsmuster, die wie in Kap. 3 erläutert, nach dem zeitlichen Auftreten und der Morphologie der einleitenden VES im Verhältnis zur nachfolgenden VTA klassifiziert wurden, zeigte bei PVTs häufiger als bei MVTs einen unvermittelten Tachykardiebeginn ($p^* < 0,001$) (Tab. 3). Da bei PVTs die Abgrenzung der einleitenden VES von der nachfolgenden VTA jedoch nur nach der Zeit erfolgen kann (die Morphologie der Kammerkomplexe ist hier per definitionem unterschiedlich), ist dieses Ergebnis zu erwarten. Es wurden daher in einer weiteren Analyse sowohl bei MVTs als auch bei PVTs die einleitenden VES von der nachfolgenden VTA nur nach
dem Zeitkriterium abgegrenzt. Hierbei zeigte sich sowohl bei MVTs als auch bei PVTs am häufigsten ein unvermittelte Beginn der VTA (Tab. 4).

Tab 4 Einleitungsmuster klassifiziert ausschließlich nach der zeitlichen Abgrenzung der einleitenden VES von der nachfolgenden VTA

<table>
<thead>
<tr>
<th>ELM-Morphologie</th>
<th>MVTs (n = 225)</th>
<th>PVTs (n = 62)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-VTA (n (%))</td>
<td>200 (89%)</td>
<td>52 (84%)</td>
<td>0,54</td>
</tr>
<tr>
<td>S-VES-VTA (n (%))</td>
<td>21 (9%)</td>
<td>8 (13%)</td>
<td></td>
</tr>
<tr>
<td>S-Coup-VTA (n (%))</td>
<td>4 (2%)</td>
<td>2 (3%)</td>
<td></td>
</tr>
</tbody>
</table>

ELM = Einleitungsmuster; MVT = monomorphe ventrikuläre Tachykardie; PVT = polymorphe ventrikuläre Tachykardie; S-VTA = unvermittelte Beginn der VTA; S-VES-VTA = VTA-Einleitung durch singuläre VES; S-Coup-VTA = VTA-Einleitung durch mindestens zwei VES

Da der Einfluss des einzelnen Patienten auf die Ergebnisse der Analyse mit der Anzahl seiner Episoden zunimmt, wurden die Einleitungsmuster in Patientengruppen nach Anzahl der Episoden gestaffelt untersucht. Die Eingruppierung nach vergleichbarer Episodenanzahl verbessert die statistische Aussagekraft der Analyse. Es wurden drei Patientengruppen mit jeweils ähnlicher Episodenanzahl gebildet. Zur Abgrenzung von der VES von der nachfolgenden VTA wurde nur das Zeitkriterium angewendet, um wie bereits erläutert die Einleitungsmuster bei MVTs und PVTs nach identischen Kriterien zu klassifizieren. Hierbei zeigte sich eine vergleichbare Verteilung der Einleitungsmuster bei MVTs und PVTs in allen Patientensubgruppen (Tab. 5).
Tab. 5 Einleitungsmuster nach Episodenhäufigkeit gestaffelt

<table>
<thead>
<tr>
<th>ELM-Morphologie</th>
<th>MVTs</th>
<th>PVTs</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Episoden</td>
<td>Episoden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n)</td>
<td>(%)</td>
<td>(n)</td>
</tr>
<tr>
<td>S-VTA</td>
<td>57</td>
<td>93</td>
<td>23</td>
</tr>
<tr>
<td>S-VES-VTA</td>
<td>4</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>S-Coup-VTA</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

b 90 Episoden von 8 Patienten mit je 10-15 Episoden

<table>
<thead>
<tr>
<th>ELM-Morphologie</th>
<th>MVTs</th>
<th>PVTs</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Episoden</td>
<td>Episoden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n)</td>
<td>(%)</td>
<td>(n)</td>
</tr>
<tr>
<td>S-VTA</td>
<td>66</td>
<td>88</td>
<td>14</td>
</tr>
<tr>
<td>S-VES-VTA</td>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>S-Coup-VTA</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

c 110 Episoden von 6 Patienten mit je 16-20 Episoden

<table>
<thead>
<tr>
<th>ELM-Morphologie</th>
<th>MVTs</th>
<th>PVTs</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Episoden</td>
<td>Episoden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n)</td>
<td>(%)</td>
<td>(n)</td>
</tr>
<tr>
<td>S-VTA</td>
<td>77</td>
<td>87</td>
<td>15</td>
</tr>
<tr>
<td>S-VES-VTA</td>
<td>12</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>S-Coup-VTA</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ELM = Einleitungsmuster; MVT = monomorphe ventrikuläre Tachykardie; PVT = polymorphe ventrikuläre Tachykardie; S-VTA = unvermittelte Beginn der VTA; S-VES-VTA = VTA-Einleitung durch eine VES; S-Coup-VTA = VTA-Einleitung durch mindestens zwei VES
Einleitungsmuster und Herzfrequenz der nachfolgenden VTA

Im Hinblick auf einen möglichen Zusammenhang zwischen dem Einleitungsmuster der VTAs und der VTA-Frequenz wurde die VTA-Frequenz nach Einleitungsmuster gestaffelt errechnet. Bei unmittelbarem VTA-Beginn war die mittlere Herzfrequenz 177 ± 39 / min, bei Einleitung durch eine VES 169 ± 38 / min und bei Einleitung durch mehr als eine VES 183 ± 34 / min (p* = 0,069). Auf einen Zusammenhang zwischen der Art der VTA-Einleitung und der VTA-Frequenz kann demnach nicht rückgeschlossen werden.

Individuelle Häufigkeit

Zur Klärung der Frage, ob die Einleitungsmuster der VTAs individuell unterschiedlich verteilt sind, wurden bei allen Patienten mit mindestens 3 Episoden (n = 29) die Häufigkeit der verschiedenen Einleitungsmuster analysiert (Tab. 6).
Tab. 6 Einleitungsmuster der VTAs bei Patienten mit mindestens 3 Rezidivarrhythmien

<table>
<thead>
<tr>
<th>Patient</th>
<th>Episoden (n)</th>
<th>Einleitungsmuster (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S-VTA</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>67</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>43</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>19</td>
<td>11</td>
<td>36</td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>33</td>
</tr>
<tr>
<td>21</td>
<td>12</td>
<td>42</td>
</tr>
<tr>
<td>22</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>23</td>
<td>13</td>
<td>46</td>
</tr>
<tr>
<td>24</td>
<td>16</td>
<td>31</td>
</tr>
<tr>
<td>25</td>
<td>16</td>
<td>38</td>
</tr>
<tr>
<td>26</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>27</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>28</td>
<td>20</td>
<td>65</td>
</tr>
<tr>
<td>29</td>
<td>20</td>
<td>65</td>
</tr>
</tbody>
</table>

S-VT = unvermittelter VTA-Beginn; S-VES-VTA = Einleitung durch eine VES; S-Coup-VTA = Einleitung der VTA durch mehr als eine VES
Im Mittel wiesen diese Patienten 2,2 ± 0,7 Einleitungsmuster auf. Um die individuelle Verteilung der VTA-Einleitungsmuster untersuchen zu können wurden zwei Patientengruppen mit jeweils ähnlicher Patientenzahl gebildet. Die Grenze zur Bildung ähnlich großer Patientengruppen lag demnach bei 8 Episoden pro Patient. Ein Vergleich der Patienten mit bis zu 8 Episoden mit Patienten, die mehr als 8 Episoden erlebten, ergab, dass die Anzahl der Einleitungsmuster mit der Anzahl der dokumentierten Episoden steigt (Tab. 7). Bei den ersteren fanden sich zumeist zwei Einleitungsmuster, dagegen zeigten Patienten mit mehr als 8 Episoden signifikant häufiger 3 Einleitungsmuster ($p = 0,016$).

Tab. 7 VTA-Einleitungsmuster und Anzahl dokumentierter Episoden bei Patienten mit mindestens 3 Rezidivarrhythmien ($n = 29$)

<table>
<thead>
<tr>
<th>Patienten (n)</th>
<th>Episoden (n)</th>
<th>Patienten (n) mit</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤ 8</td>
<td>1 ELM</td>
<td>2 ELM</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>> 8</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

ELM = Einleitungsmuster

Demnach hängt im Einzelfall die Anzahl der auftretenden Einleitungsmuster von der Anzahl der Rezidivarrhythmien ab. Dieses Ergebnis bestätigt sich bei linearer Regression der Episodenanzahl (unabhängige Variable) und der Anzahl der gefundenen Einleitungsmuster (abhängige Variable) (Abb. 11).

Da die Klassifikation der Einleitungsmuster (ELM) wie bereits ausgeführt teilweise von der Morphologie der VTAs abhängt wurde untersucht ob sich der mittlere Anteil an MVTs und PVTs bei den Patienten mit bis zu 8 und > 8 Episoden unterscheidet. Es zeigte sich jedoch, dass die Morphologieverteilung in beiden Gruppen vergleichbar war (66% vs. 82% MVTs, $p = 0,26$; 34% vs. 18% PVTs, $p = 0,26$).
Einleitungsmuster (n)
3, 5, 3, 0, 2, 5, 2, 0, 1, 5, 1, 0, 0, 5

Episoden (n)
0, 10, 20, 30

Abb. 11 Lineare Regression der Episodenanzahl (unabhängige Variable) und Anzahl der Einleitungsmuster (abhängige Variable).

VTA-einleitende und nicht-VTA-einleitende VES

Wegen der besseren Abgrenzbarkeit der Einleitungssequenzen (nach Zeit und Morphologie) wurde die Analyse der Häufigkeit und Komplexität von VTA-einleitenden und nicht-VTA-einleitenden VES auf MVTs beschränkt. Nicht-MVT-einleitende und MVT-einleitende VES waren am häufigsten singuläre VES. Im Gegensatz zu den nicht-MVT-einleitenden VES traten dagegen bei den MVT-einleitenden VES Salven und Tripletts deutlich häufiger auf (28% vs. 10%, \(p^* < 0,001 \)). Anzahl und Häufigkeit der VES vor MVTs werden in Tabelle 8 dargestellt.
Tab 8 Nicht-VTA-einleitende und VTA-einleitende VES vor MVTs

<table>
<thead>
<tr>
<th>Einleitungsmuster</th>
<th>nicht-MVT-einleitende VES (n = 133)</th>
<th>MVT-einleitende VES (n = 161)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>singuläre VES (n (%))</td>
<td>104 (78%)</td>
<td>94 (58%)</td>
<td></td>
</tr>
<tr>
<td>Couplet (n (%))</td>
<td>16 (12%)</td>
<td>23 (14%)</td>
<td><0,001</td>
</tr>
<tr>
<td>Triplett / Salve (n (%))</td>
<td>13 (10%)</td>
<td>44 (28%)</td>
<td></td>
</tr>
</tbody>
</table>

ELM = Einleitungsmuster; MVT = monomorphe ventrikuläre Tachykardie; PVT = polymorphe ventrikuläre Tachykardie; singuläre VES = einzelne ventrikuläre Extrasystole; Couplet = zwei aufeinanderfolgende ventrikuläre Extrasystolen; Triplett = drei aufeinanderfolgende ventrikuläre Extrasystolen; Salve = mehr als drei aufeinanderfolgende ventrikuläre Extrasystolen
4.4 Elektrophysiologische Parameter vor VTAs

QT-Intervall
Zur korrekten Bestimmung des QT-Intervalls ist eine eindeutige Abgrenzung der T-Welle von der isoelektrischen Linie erforderlich. Dies war bei 210 der 287 Episoden (73%) möglich. Die übrigen Episoden wurden bei der Bewertung des QT-Intervalls nicht berücksichtigt. Die analysierten Episoden stammen von 35 Patienten. Das mittlere QTc-Intervall betrug 0,48 ± 0,08 sec vor VTAs und 0,48 ± 0,08 sec unter Ruhebedingungen (p = 0,99). Eine Veränderung des QTc-Intervalls vor VTAs war demnach nicht festzustellen.

Herzfrequenz
Bei allen 47 Patienten wurden die Sinusfrequenzen vor VTAs mit den Sinusfrequenzen aus den Ruhe-EKGs der drei letzten ambulanten Untersuchungen verglichen. Die mittlere HF vor VTAs betrug 87 ± 17 / min, wohingegen unter Ruhebedingungen eine HF von 67 ± 11 / min errechnet wurde. Die HF vor VTAs war demnach signifikant höher als die durchschnittliche Sinusfrequenz unter Ruhebedingungen (p < 0,001).

HRV
Die HRV unter Ruhebedingungen wurde auf Basis von 10 RR-Intervallen aus den jeweils drei letzten ambulanten Ruhe-EKGs errechnet und für die VTA-Episoden auf Grundlage aller verfügbaren RR-Intervalle vor VTAs für jeden der 47 Patienten bestimmt. Die HRV betrug 14 ± 13,5 ms vor VTAs und 20 ± 14,6 ms unter Ruhebedingungen (p = 0,009) (Abb. 12). Demnach war die HRV vor VTAs signifikant niedriger als in Ruhe.
Abb. 12 HRV vor VTAs (HRVonset) und unter Ruhebedingungen (HRVruhe).

VES
Als Zeitfenster wurden bei der Ruhe-EKG Analyse die ersten 7 Sekunden gewählt weil dieser Zeitraum in den Episoden-EKGs der durchschnittlichen Sinusrhythmuszeit vor VTAs entsprach. Unter Ruhebedingungen fanden sich 0,28 ± 0,89 VES (Median 0), während die VES-Häufigkeit vor VTAs 1,01 ± 1,09 (Median 0,75) betrug (p < 0,001). Demnach war die Häufigkeit von VES vor VTAs im Vergleich zur VES-Häufigkeit unter Ruhebedingungen signifikant höher.
4.5 Kardiale Grundkrankung

Von den 47 untersuchten Patienten litten 36 (77%) an einer koronaren Herzkrankheit (KHK), 9 (19%) an einer dilatativen Kardiomyopathie (DCM) und 2 (4%) an einer rechtsventrikulären Dysplasie.

Tab. 9 Klinische Parameter bei Patienten mit KHK und DCM

<table>
<thead>
<tr>
<th></th>
<th>Patienten mit KHK (n = 36)</th>
<th>Patienten mit DCM (n = 9)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter (Jahre)</td>
<td>62 ± 10</td>
<td>58 ± 11</td>
<td>0,26</td>
</tr>
<tr>
<td>Geschlecht m / w (n (%))</td>
<td>33(92) / 3(8)</td>
<td>7(78) / 2(22)</td>
<td>0,24</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>30 ± 10</td>
<td>32 ± 14</td>
<td>0,94</td>
</tr>
<tr>
<td>Betablocker (n (%))</td>
<td>27 (75)</td>
<td>3 (33)</td>
<td>0,02</td>
</tr>
<tr>
<td>Amiodarone (n (%))</td>
<td>21 (58)</td>
<td>5 (56)</td>
<td>0,9</td>
</tr>
</tbody>
</table>

KHK = koronare Herzkrankheit; DCM = dilatatative Kardiomyopathie; LVEF(%) = linksventrikuläre Ejektionsfraktion

VTA-Morphologie

Patienten mit KHK erlebten 72 ± 36% MVTs (Median 90) und 28 ± 36% PVTs (Median 10), Patienten mit DCM 76 ± 43% MVTs (Median 100) und 24 ± 43% PVTs (Median 0) (p = 0,44). Die Morphologie der Rezidiv-VTAs erscheint demnach nicht abhängig von der kardialen Grundkrankheit.
Herzfrequenz vor VTAs

Die Herzfrequenz vor VTAs war im Vergleich zur Herzfrequenz in Ruhe bei Patienten mit KHK und DCM signifikant erhöht (Tab. 10).

Tab. 10 Elektrophysiologische Parameter in Ruhe und vor VTAs bei Patienten mit KHK und DCM

<table>
<thead>
<tr>
<th>Patienten mit</th>
<th>KHK (n = 36)</th>
<th>DCM (n = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ruhe</td>
<td>vor VTAs</td>
</tr>
<tr>
<td>HF (Schläge / min)</td>
<td>66 ± 10</td>
<td>84 ± 17</td>
</tr>
<tr>
<td>HRV (ms)</td>
<td>Median</td>
<td>19 ± 14</td>
</tr>
<tr>
<td>VES (n)</td>
<td>Median</td>
<td>0,2 ± 0,9</td>
</tr>
</tbody>
</table>

KHK = koronare Herzkrankheit; DCM = dilative Kardiomyopathie; VES = ventrikuläre Extrasystole, HF = Herzfrequenz, HRV = Herzfrequenzvariabilität

HRV

Patienten mit KHK zeigten im Gegensatz zu Patienten mit DCM vor VTAs eine signifikant niedrigere HRV als unter Ruhebedingungen (Tab. 10). Bei letzteren war die Reduktion der HRV vor VTAs geringer ausgeprägt.

VES

In beiden Gruppen war eine Zunahme der VES-Häufigkeit vor VTAs zu verzeichnen. Patienten mit KHK hatten im Vergleich zu Patienten mit DCM vor VTAs signifikant mehr VES als unter Ruhebedingungen (Tab. 10).

Einleitungsmuster

Um zu prüfen, ob die VTA-Einleitungsmuster mit der kardialen Grunderkrankung in Zusammenhang stehen, wurden die Häufigkeiten der Einleitungsmuster für Patienten mit KHK und DCM getrennt errechnet. Zur Gewährleistung der Gleichbehandlung
von MVTs und PVTs wurden wie oben ausgeführt abermals bei beiden VTA-Formen die Einleitungsmuster nur durch das Zeitkriterium von der nachfolgenden VTA abgegrenzt. Bei Patienten mit DCM wurden demnach VTAs häufiger durch mehrere VES eingeleitet (Tab. 11).

Tab. 11 Häufigkeit der nach dem Zeitkriterium abgrenzbaren Einleitungsmuster der VTAs von Patienten mit KHK und DCM

<table>
<thead>
<tr>
<th>ELM-Morphologie</th>
<th>Patienten mit</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KHK (n = 36)</td>
<td>DCM (n = 9)</td>
<td>p*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Episoden</td>
<td>Episoden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n)</td>
<td>(%)</td>
<td>(n)</td>
<td>(%)</td>
</tr>
<tr>
<td>S-VTA</td>
<td>233</td>
<td>88</td>
<td>13</td>
<td>76</td>
</tr>
<tr>
<td>S-VES-VTA</td>
<td>27</td>
<td>10</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>S-Coup-VTA</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

ELM = Einleitungsmuster; KHK = koronare Herzkrankheit; DCM = dilatative Kardiomyopathie; S-VTA = unvermittelter Beginn der VTA; S-VES-VTA = VTA-Einleitung durch eine VES; S-Coup-VTA = VTA-Einleitung durch mindestens zwei VES.
4.6 R-auf-T-Phänomen

4.6.1 Häufigkeit

Abb. 13 Häufigkeit von R-auf-T-Episoden

Individuelle Häufigkeit des R-auf-T-Phänomens

Individuell trat das R-auf-T-Phänomen unterschiedlich häufig auf (Tab. 12), wobei im intraindividuellen Vergleich VTAs ohne R-auf-T-Einleitung signifikant überwogen ($p = 0,008$).
Tab. 12 Individuelle R-auf-T-Häufigkeiten der 10 Patienten mit R-auf-T-induzierten VTAs

<table>
<thead>
<tr>
<th>Patienten</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>1-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Episoden (n)</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>12</td>
<td>4</td>
<td>8</td>
<td>18</td>
<td>20</td>
<td>10</td>
<td>9,4 ± 6</td>
</tr>
<tr>
<td>R-auf-T-Episoden (n)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>3,1 ± 2,3</td>
</tr>
<tr>
<td>R-auf-T-Episoden (%)</td>
<td>17</td>
<td>100</td>
<td>33</td>
<td>8</td>
<td>17</td>
<td>50</td>
<td>50</td>
<td>28</td>
<td>35</td>
<td>70</td>
<td>41 ± 26</td>
</tr>
</tbody>
</table>

Bei Betrachtung der Patienten mit mindestens 3 Episoden (alle außer Patient 2) zeigt sich keine signifikante Korrelation der Häufigkeit von R-auf-T-induzierten VTAs und der Episodenanzahl pro Patient ($r_s = 0,57$, $p^* = 0,11$) (Abb. 14). Mit steigender Episodenanzahl steigt demnach nicht unbedingt die Wahrscheinlichkeit für das Auftreten von R-auf-T-induzierten VTAs.

Abb. 14 Lineare Regression der Anzahl von R-auf-T-induzierten VTAs (abhängige Variable) und der Anzahl aller dokumentierten VTAs (unabhängige Variable)
4.6.2 Elektrophysiologische Charakteristika

Die Frequenz der R-auf-T-Episoden und der VTAs ohne R-auf-T-Induktion war ebenso wie die HRV vor VTA in beiden Episodengruppen vergleichbar. Die HF vor VTA war bei den R-auf-T-Episoden tendenziell niedriger (Tab. 13).

Tab. 13 HF und HRV vor VTAs und VTA-Frequenz von R-auf-T-induzierten-VTAs und nicht-R-auf-T-induzierten-VTAs

<table>
<thead>
<tr>
<th></th>
<th>R-auf-T-Episoden</th>
<th>nicht-R-auf-T-Episoden</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTA-Frequenz (/min)</td>
<td>175,8 ± 27,6</td>
<td>170,8 ± 38,3</td>
<td>0,68</td>
</tr>
<tr>
<td>HF vor VTA (/min)</td>
<td>73 ± 15,2</td>
<td>80,2 ± 18,7</td>
<td>0,064</td>
</tr>
<tr>
<td>HRV vor VTA (ms)</td>
<td>10,2 ± 10,7</td>
<td>13,7 ± 16,5</td>
<td>0,36</td>
</tr>
<tr>
<td>Median</td>
<td>8,2</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

VTA = ventrikuläre Tachyarrhythmie; R-auf-T-Episoden = R-auf-T-induzierte-VTAs; nicht-R-auf-T-Episoden = nicht-R-auf-T-induzierte-VTAs, HF = Herzfrequenz, HRV = Herzfrequenzvariabilität

Intraindividueller Vergleich der elektrophysiologischen Parameter vor VTA

Bei den 9 Patienten, die sowohl R-auf-T-eingeleitete VTAs als auch nicht-R-auf-T-eingeleitete VTAs erlebten (Tab. 12, Patienten 1 und 3-10), wurde intraindividuell die HF, HRV, das QT-Intervall und die VES-Anzahl vor VTA verglichen.

Die HF vor VTA war bei R-auf-T-vermittelten-VTAs und nicht-R-auf-T-vermittelten-VTAs vergleichbar (76,3 ± 11,7 / min vs. 77,2 ± 7,7 / min, p = 0,52). Dies galt auch für die HRV (9,1 ± 6,3 ms vs. 11,8 ± 8 ms, p = 0,44).

Das QTc-Intervall war bei R-auf-T-vermittelten-VTAs im Gegensatz zu nicht-R-auf-T-vermittelten-VTAs signifikant verlängert (0,57 ± 0,04 sec vs. 0,54 ± 0,04 sec, p = 0,015). Die VES-Anzahl hingegen war vor R-auf-T-vermittelten-VTAs und nicht-R-auf-T-vermittelten-VTAs vergleichbar (1,37 ± 2, Median 1 vs. 0,71 ± 0,64, Median 0,77, p = 0,78).
4.6.3 VTA-einleitende VES

Morphologie
Zwanzig der insgesamt 31 R-auf-T-einleiteten VTAs waren MVTs, die bezüglich der Morphologie ihrer einleitenden VES mit den 141 verbleibenden nicht-R-auf-T-einleiteten MVTs mit abgrenzbarem QT-Intervall verglichen werden konnten. Die einleitenden VES waren bei R-auf-T-induzierten-MVTs tendenziell häufiger ähnlich (Abb. 15).

Abb. 15 Häufigkeit von morphologisch ähnlichen und unähnlichen einleitenden VES bei R-auf-T-induzierten und nicht-R-auf-T-induzierten-MVTs. (VES = ventrikuläre Extrasystole)
Vorzeitigkeit

Die Vorzeitigkeit der R-auf-T-VES wurde nach dem Zeitpunkt, zu dem die VES in die T-Welle einfällt, differenziert. Bei 5 von 31 Episoden (16%) war dies im aufsteigenden Schenkel der Fall, 7 (23%) fielen im Gipfel der T-Welle ein und 19 (61%) traten im absteigenden Schenkel der T-Welle auf. Am häufigsten fiel die VES also in den absteigenden Schenkel der T-Welle ein (Abb. 16 und 17).

![Diagramm: Zeitpunkt des Einfalls der VES in die T-Welle]

Abb. 16 Vorzeitigkeit der einleitenden R-auf-T-VES, gemessen am Zeitpunkt des VES-Einfalls in die T-Welle. VES = ventrikuläre Extrasystole.

![Abbildungen A, B, C]

Induktionshäufigkeit

4.6.4 VTA-Einleitungsmuster

Tabelle 14 zeigt einen Vergleich der Induktionsmechanismen und Arrhythmiermorphologien von R-auf-T-induzierten-VTAs und nicht-R-auf-T-induzierten-VTAs. Bei dieser Analyse wurde zur Abgrenzung der Einleitungssequenzen von der nachfolgenden VTA, nur das Zeitkriterium verwendet, da die R-auf-T-Episoden überproportional häufiger polymorphe VTAs waren (35% PVTs vs. 18% bei den nicht-R-auf-T-induzierten-VTAs, p* = 0,027).
Tab. 14 Einleitungsmuster und Morphologie von R-auf-T-induzierten-VTAs und nicht-R-auf-T-induzierten-VTAs

<table>
<thead>
<tr>
<th></th>
<th>R-auf-T-Episoden (n = 31)</th>
<th>nicht-R-auf-T-Episoden (n = 172)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTA-Morphologie:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVTs (%)</td>
<td>65</td>
<td>82</td>
<td>0,027</td>
</tr>
<tr>
<td>PVTs (%)</td>
<td>35</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>VTA-Einleitungsmuster:</td>
<td></td>
<td></td>
<td>0,6</td>
</tr>
<tr>
<td>S-VTA (%)</td>
<td>94</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>S-VES-VTA (%)</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>S-Coup-VTA (%)</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

VTA = ventrikuläre Tachyarrhythmie; VT = ventrikuläre Tachykardie; R-auf-T-Episoden = R-auf-T-induzierte-VTAs; nicht-R-auf-T-Episoden = nicht-R-auf-T-induzierte-VTAs; VES = ventrikuläre Extrasystole; S-VTA = unvermittelter Beginn der VTA; S-VES-VTA = Einleitung der VTA durch singuläre VES; S-Coup-VTA = Einleitung der VTA durch mindestens zwei VES; MVT = monomorphe VT; PVT = polymorphe VT

4.6.5 Patienten

Tab. 15 Klinische Parameter der Patienten mit und ohne R-auf-T-induzierten-VTAs

<table>
<thead>
<tr>
<th></th>
<th>Patienten mit R-auf-T-Episoden (n = 10)</th>
<th>Patienten ohne R-auf-T-Episoden (n = 27)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter (Jahre)</td>
<td>57 ± 12</td>
<td>60 ± 14</td>
<td>0,37</td>
</tr>
<tr>
<td>Männer (%)</td>
<td>100</td>
<td>81</td>
<td>0,14</td>
</tr>
<tr>
<td>KHK (%)</td>
<td>100</td>
<td>70</td>
<td>0,052</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>32 ± 11</td>
<td>34 ± 15</td>
<td>0,95</td>
</tr>
<tr>
<td>ICD-Indikation</td>
<td>% VT vs. KF vs. VT/KF</td>
<td></td>
<td>0,089</td>
</tr>
<tr>
<td>Betablocker (n (%))</td>
<td>8 (80)</td>
<td>18 (67)</td>
<td>0,43</td>
</tr>
<tr>
<td>Amiodarone (n (%))</td>
<td>7 (70)</td>
<td>14 (52)</td>
<td>0,32</td>
</tr>
</tbody>
</table>

KHK = koronare Herzkrankheit; LVEF = linksventrikuläre Ejektionsfraktion; VT = ventrikuläre Tachykardie; KF = Kammerflimmern
5. Diskussion

In der vorliegenden Arbeit wurden anhand ICD-gespeicherter ventrikulärer Arrhythmieepisoden die Entstehungsmuster spontaner VTAs analysiert. Hierbei wurden die Einleitungsmuster der VTAs (Anzahl und Morphologie der einleitenden VES), die Morphologie der VTAs sowie Veränderungen wesentlicher elektrophysiologischer Parameter wie Herzfrequenz, HRV und QT-Intervalle unmittelbar vor dem Auftreten der VTAs analysiert. Besondere Beachtung fand das R-auf-T-Phänomen. In Subgruppenanalysen wurde die Bedeutung der kardialen Grunderkrankung hinterfragt.

5.1 Ventrikuläre Tachyarrhythmien

VTA-Morphologie

Die dokumentierten VTAs in der vorliegenden Untersuchung erwiesen sich überwiegender als MVTs (78%), während PVTs seltener klassifiziert wurden (22%). Diese Beobachtung deckt sich mit Ergebnissen anderer Untersucher, die sich auf Analysen von Holter-Langzeit-EKG-Messungen beziehen (KEMPF and JOSEPHSON, 1984; BAYÉS DE LUNA et al., 1988). Kempf und Josephson fanden 70% MVTs und 30% PVTs (KEMPF and JOSEPHSON, 1984). Zu einer ähnlichen Verteilung der VTA-Morphologien kamen auch Bayés de Luna und Kollegen (BAYÉS DE LUNA et al., 1988).

Übereinstimmend hiermit berichten Brady und Mitarbeiter über nur 38% PVTs auf von paramedizinischen Diensten abgeleiteten EKG-Rhythmusstreifen bei außerklinischen tachyarrhythmischen Herzstillständen (BRADY et al., 1999). Auch in methodisch vergleichbaren Analysen ICD-gespeicherter intrakardialer Elektrogramme waren Schockgaben am häufigsten zur Behandlung von MVTs erforderlich, während PVTs und Kammerflimmern selten dokumentiert wurden (NEUZNER et al., 1993; BÄNSCH et al., 2000; FREEDBERG et al., 2001; KLEIN et al., 2003; SCHUCHERT et al., 2005). Neuzner und Schuchert und Kollegen fanden in 67% der Fälle MVTs und Freedberg und Mitarbeiter berichteten von 68% MVTs bei Patienten mit ICD. In einer Analyse von Klein und Kollegen wurden sogar zu 97% MVTs identifiziert. Bänsch und Kollegen untersuchten periodische Arrhythmiehäufungen (Cluster-Arrhythmien) und berichteten hierbei über 70% MVTs.

Eine fälschlich zu hohe MVT-Rate in ICD-Studien wäre denkbar, da ICDs durch frühe Interventionen den möglichen Übergang von MVTs in PVTs blockieren können. Da LZ-EKG-Studien jedoch übereinstimmende Ergebnisse zeigen, erscheint dieser Ein-
wand unbegründet. Die mit der Literatur übereinstimmende Verteilung von MVTs und PVTs in der vorliegenden Untersuchung zeigt, dass normalverteilte VTAs eines typischen Patientenkollektivs von ICD-Trägern analysiert wurden.

VTA-Frequenz

Im intraindividuellen Vergleich der 16 Patienten die MVTs und PVTs erlebten, erweisen sich hingegen MVTs und PVTs als vergleichbar schnell (p = 0,68). Andere Studien mit intraindividuellem Vergleich der VTA-Frequenz liegen derzeit nicht vor. Demnach scheinen im untersuchten Patientenkollektiv im Wesentlichen patientenspezifische Faktoren und nicht die Morphologie der VTA die VTA-Frequenzen determiniert zu haben.

5.2 VTA-einleitende ventrikuläre Extrasystolen

Morphologie

Bei MVTs war die VT-einleitende VES in 36% morphologisch ähnlich und in 64% der Fälle morphologisch unähnlich. Übereinstimmend hiermit berichten Saeed et al., dass nur 16% MVTs durch morphologisch ähnliche VES eingeleitet werden (SAEED et al., 2000). Roelke und Kollegen hingegen fanden bei Patienten mit KHK zu 48% morphologisch ähnliche einleitende VES (ROELKE et al., 1994) und in einer weiteren Untersuchung von Koronarkranken sogar wesentlich mehr ähnliche (71%) als unähnliche MVT-einleitende VES (ROELKE et al., 1993). Auch Meyerfeldt et al. berichten, dass in einem vergleichbaren Patientenkollektiv 68% MVTs durch morphologisch ähnliche VES eingeleitet wurden (MEYERFELDT et al., 1997).

Ein hoher Anteil morphologisch ähnlicher einleitender VES bei Patienten mit KHK könnte mit der kardialen Grundkrankheit in Zusammenhang stehen. Im Gegensatz zu anderen Herzkrankheiten können bei KHK durch Infarkte Narbenareale entstehen, die potentielle lokализierte arrhythmogene Foci darstellen. Von diesen Foci aus kön-
nen im Randbereich von Narbengewebe und vitalem Myokard VES entstehen, die MVTs in lokalen Reentrykreisen triggern, so dass die einleitende VES der nachfolgenden MVT ähnelt. Diffuse strukturelle Herzkrankheiten halten in der Regel multiple Ektopiezentren vor, von denen unterschiedliche VES-Morphologien und demnach häufiger unähnliche einleitende VES zu erwarten sind. Da fortgeschrittene Herzkrankheiten mit einer zunehmend diffusen Herzmuskelsschädigung einhergehen, könnte auch eine abnehmende LVEF die Häufigkeit morphologisch unähnlicher einleitende VES vor MVTs begünstigen. Da die LVEF der hier untersuchten Patienten deutlich erniedrigt war, könnte das Überwiegen der morphologisch unähnlichen MVT-induzierenden VES hierdurch mitbegründet sein.

Vorzeitigkeit

Die Analyse der Beziehung zwischen der Vorzeitigkeit der einleitenden VES und der Frequenz der nachfolgenden VTAs ergab für alle VTAs (MVTs und PVTs) sowie für MVTs alleine mit abnehmender Vorzeitigkeit eine signifikante Zunahme der VTA-Frequenz (p* < 0,001). Die Abgrenzung der einleitenden VES von den nachfolgenden VTAs erfolgte bei MVTs nach den Kriterien Zeit und Morphologie, während bei PVTs wegen der per definitionem variablen Morphologie nur nach der Zeit abgegrenzt werden konnte. Da das Zeitkriterium zur Abgrenzung einer einleitenden VES eine mindestens 50%ige Verzögerung im Vergleich zur nachfolgenden VTA fordert, wurden hierdurch bei PVTs früh einfallende VES systematisch ausgeschlossen. Dies erklärt, warum bei PVTs alleine kein Zusammenhang mehr zwischen der Vorzeitigkeit der einleitenden VES und der Frequenz der nachfolgenden VTA nachweisen war (p* = 0,36). Auch in anderen ICD-Studien konnte gezeigt werden, dass durch später einfallenden VES eingeleitete MVTs höherfrequent sind (SAEED et al., 2000; GORENEK et al., 2003). Leenhardt und Kollegen hingegen berichten bei ICD-gespeicherten Arrhythmieepisoden über ein signifikant kürzeres Kopplungsintervall der einleitenden VES vor schnelleren VTAs (LEENHARDT et al., 2002). In Langzeit-EKG-Untersuchungen wurden übereinstimmend frühe VES mit eher schnellere VTAs assoziiert gefunden (SWERDLOW et al., 1983; LICHSTEIN et al., 1980; BARDY, OLSON, 1990; VON OLSHAAUSEN et al., 1991). Die bisher publizierten Untersuchungen zur Beziehung zwischen der Vorzeitigkeit einleitender VES und der Frequenz nachfolgender VTAs bleiben demnach inkonsistent.

Der hier gefundene Zusammenhang zwischen früh einfallenden VES und niedrigeren Frequenzen nachfolgender MVTs könnte den folgenden elektrophysiologischen Hin-
tergrund haben. Eine langsame MVT-Frequenz nach einer früh einfallenden VES könnte mit einem höheren Anteil noch refraktären Myokards im zugrundeliegenden Reentry-Kreis zusammenhängen. Später einfallende VES treffen möglicherweise auf weniger refraktäres Myokard und triggern so eher schnellere MVTs. Die mittlere Vorzeitigkeit der einleitenden VES war bei MVTs und PVTs vergleichbar (p* = 0,23). Die Annahme, dass früh einfallende VES eher aggressive VTAs (also PVTs) einleiten, wird demnach durch die vorliegende Untersuchung nicht gestützt.

VTA-einleitende und nicht-VTA-einleitende VES

5.3 VTA-Einleitungsmuster

Einleitungs muster und VTA-Morphologie

Einleitungsmuster und VTA-Frequenz

Die mittleren VTA-Frequenzen bei Einleitung durch VES und unmittelbarem VTA-Beginn waren vergleichbar (p* = 0,069). Im Gegensatz hierzu berichten andere Untersucher über eine signifikant höhere MVT-Frequenz nach Einleitung durch VES (SAEED et al., 2000; GORENEK et al., 2003). Leenhardt und Mitarbeiter teilen zudem eine positive Korrelation zwischen der Anzahl einleitender VES und der Frequenz der nachfolgenden VTA mit (LEENHARDT et al., 2003).

ren Sympathikotonus wiederspiegeln und dieser mittelbar eine höhere Frequenz von VES-eingeleiteten VTAs erklären. Dieser Erklärungsansatz wird jedoch durch die Ergebnisse der vorliegenden Analyse nicht untermauert.

Individuelle Häufigkeit der Einleitungsmuster

Bei Analyse der Einleitungsmuster in Abhängigkeit von der Anzahl dokumentierter VTAs zeigte sich, dass die Anzahl der individuell auftretenden Einleitungssequenzen positiv mit der Menge der dokumentierten VTAs korrelierte ($p = 0,016$). Diese Beobachtung spricht dagegen, dass die Einleitungsmuster patiententypische Phänomene darstellen. Meyerfeld et al. hingegen beschreiben überwiegend patientenspezifische Einleitungsmuster bei ICD-Trägern (MEYERFELDT et al., 1997). In dieser Studie wurden jedoch nur monomorphe VTs untersucht und die Klassifikation der Einleitungsmuster war unterschiedlich zu der hier verwendeten Einteilung. Methodisch vergleichbare Voruntersuchungen zu diesem Thema sind bisher nicht verfügbar. Den vorliegenden Ergebnissen zufolge scheint die Anzahl der dokumentierten Einleitungs muster vom Ausmaß der elektrischen Instabilität abzuhängen, die sich ihrerseits in der Anzahl der dokumentierten spontanen VTAs widerspiegelt.

5.4 Veränderungen elektrophysiologischer Parameter vor VTAs

Herzfrequenz

In der vorliegenden Analyse war vor VTAs eine deutlich höhere durchschnittliche Herzfrequenz im Vergleich zur durchschnittlichen Ruheherzfrequenz nachweisbar ($p < 0,001$). Diese Beobachtung stimmt überein mit Ergebnissen anderer Untersucher (SHUSTERMAN et al., 1998; STEIN et al., 1998; NEMEC et al., 1999; DIEM et al., 2002; COPIE et al., 2003). In einer methodisch vergleichbaren Analyse von Diem und Kollegen wurde eine deutliche HF-Erhöhung vor VTA im Vergleich zu Nachuntersuchungen gefunden. Shusterman und Kollegen beschreiben eine signifikant höhere HF 30 Minuten vor Beginn der VT im Vergleich zu 2 Stunden vor VT. Einen signifikanten Anstieg der HF verzeichneten auch Copie und Mitarbeiter beim Vergleich der HF 0-2 Minuten vor VT mit der HF 8-10 Minuten vor VT.

Die erhöhte Herzfrequenz lässt auf eine Zunahme der Sympathikusaktivität vor VTA schließen. Ein hoher Sympathikotonus erleichtert die Arrhythmogenese. Chronische Herzerkrankungen, akute Myokardischämien und Störungen des Reizleitungssystems machen das Herz besonders empfindlich für sympathikoton getriggerte Ar-
rhythmien (DE SOYZA et al., 1974; SHENASA et al., 1993; STEIN et al., 1998; NEMEC et al., 1999). Da die hier untersuchten Patienten alle unter einer schweren Herzinsuffizienz litten und zudem die meisten eine koronare Herzkrankheit aufwiesen, kann angenommen werden, dass der erhöhte Sympathikotonus in der Arrhythmieentstehung keine unwesentliche Rolle gespielt hat. In Einzelfällen könnten auch tachykardie-assoziierte Myokardischämien von Bedeutung gewesen sein.

Herzfrequenzvariabilität

Die HRV unmittelbar vor den registrierten VTAs war im Vergleich zur HRV unter Ruhebedingungen signifikant erniedrigt. Auch Mani et al. fanden eine deutliche Verminde-
erung der HRV ab 100 sec vor VTAs (MANI et al., 1999) und Copie und Kollegen bestätigten diesen Befund bei Analyse der letzten 2 Minuten vor Beginn von VTAs (COPIE et al., 2003). Diese Beobachtungen stimmen überein mit Ergebnissen weiterer Untersucher (HUIKURI et al., 1993; SKINNER et al., 1993; HUIKURI et al., 1996; SHUSTERMAN et al., 1998; MÄKIKALLIO et al., 1999; LOMBARDI et al., 2000), die übereinstimmend berichten, dass die HRV vor spontanen ventrikulären Tachy-arrhythmien reduziert ist.

Die Herzfrequenz spiegelt den vegetativen Tonus, also das sympathovagale Gleichgewicht wider und wird primär von den schrittmacherkompetenten Sinusknotenzellen vorgegeben. Die Herzfrequenz ist vegetativ gesteuert und schwankt physiologischerweise von Schlag zu Schlag. Diese physiologischen Unregelmäßigkeiten liegen im Bereich von msec und werden wissenschaftlich in Form verschiedener mathematischer Parameter als HRV beschrieben. Die HRV kann im Kurzzeit- und Langzeitbereich mit Hilfe spezieller Computerprogramme quantifiziert werden. Der einfachste Parameter der HRV ist die Standardabweichung der konsekutiven RR-Intervalle (SDNN). Diese Standardabweichung ist hoch bei überwiegend vagalem Einfluss und niedrig unter hohem Sympathikotonus. Die erniedrigte HRV vor den dokumentierten VTAs in der vorliegenden Untersuchung (14 ± 13,5 msec vs. 20 ± 14,6 msec, p = 0,009) reflektiert also einen erhöhten Sympathikotonus.

QTc-Intervall

Die Länge des QTc-Intervalls unmittelbar vor VTAs und unter Ruhebedingungen war vergleichbar (p = 0,99). Diem et al. fanden in einer ähnlichen Untersuchung bei Patienten mit ICD unmittelbar vor VTAs im Vergleich zur Nachuntersuchung paradoxerweise eine signifikante Verlängerung des QTc-Intervalls (DIEM et al., 2002), obwohl die HF im Sinne einer steigenden Sympathikusaktivität erhöht war. Die Länge des

Die in der vorliegenden Analyse, fehlende QTc-Intervallverkürzung vor VTAs kann demnach durch das Vorliegen schwerer struktureller Herzerkrankungen bei den untersuchten Patienten hinreichend erklärt werden. Die nicht verkürzten QT-Intervalle vor VTAs lassen jedoch nicht auf fehlende Veränderungen des autonomen Tonus rückschließen.

VES

Die VES-Rate vor VTAs war im Vergleich zur VES-Häufigkeit unter Ruhebedingungen signifikant erhöht (p < 0,001). Dieses Ergebnis stimmt mit Ergebnissen anderer Untersucher überein, die bei Patienten mit organischen Herzerkrankheiten übereinstimmend ebenfalls eine zunehmende Häufigkeit von VES vor VTs fanden (DE SOYZA et al., 1974; ROMANO et al., 1995; NEMEC et al., 1999).

In Anbetracht der zuvor diskutierten Veränderungen der Herzfrequenz und HRV kann angenommen werden, dass die erhöhte VES-Rate vor VTAs zumindest teilweise durch einen gesteigerten Sympathikotonus der untersuchten Patienten bedingt war. Beim Vorliegen einer schweren organischen Herzerkrankheit mit hochgradiger Einschränkung der linksventrikulären Funktion und dokumentierter Neigung zu spontanen ventrikulären Arrhythmien, wie im untersuchten Kollektiv, ist eine gesteigerte VES-Rate bei Sympathikusaktivierung zu erwarten. Dieses Phänomen spiegelt sich auch in Form der mehrfach dokumentierten Ziradianvariabilität von ventrikulären Extrasystolen bei Herzkranken wider, die durch eine gesteigerte VES-Rate in den Mor-
genstunden beim Übergang vom überwiegenden Vagotonus zum gesteigerten Sympathikotonus gekennzeichnet ist (RAEDER et al., 1988; LANZA et al., 1990; GILLIS et al., 1992; HOHNLOSER et al., 1993; ZEHENDER et al., 1992; GOLDSTEIN et al., 1996).

5.5 **Kardiale Grundkrankheit**

Die Morphologien der dokumentierten VTAs waren bei Patienten mit KHK und DCM vergleichbar \((p = 0,44)\). Cuesta und Mitarbeiter fanden ebenfalls keine Unterschiede in Bezug auf die Häufigkeit von VTAs unterschiedlicher Morphologie in Abhängigkeit von der kardialen Grundkrankheit. In Übereinstimmung mit den vorliegenden Daten überwogen auch in dieser Untersuchung bei allen Patientengruppen MVTs (CUESTA et al., 2003).

Die Abnahme der Herzfrequenzvariabilität und die Zunahme der VES-Häufigkeit vor VTAs erreichte bei Patienten mit DCM kein Signifikanzniveau; in Anbetracht der ge-

5.6 R-auf-T-Phänomen

In der vorliegenden Untersuchung zeigt sich, dass anhaltende VTAs nur selten durch ein R-auf-T-Phänomen induziert werden (15% der VTAs). Diese Beobachtung deckt sich mit Ergebnissen anderer Untersucher (WINKLE et al., 1977; CHOU, WENZKE, 1978; BOUDOULAS et al., 1979; TYE et al., 1979; KEMPF, JOSEPHSON, 1984; BARDY, OLSON, 1990; VON OLSHAUSEN et al., 1991; MARCHLINSKI et al., 1995). Die meisten R-auf-T-VES fielen in den absteigenden Schenkel der T-Welle ein, der die späte ventrikuläre Repolarisation repräsentiert. R-auf-T-VES waren der nachfolgenden VTA tendenziell häufiger ähnlich und gingen häufiger in PVTs über als später einfallende VES (p* = 0,027). Diese Unterschiede könnten die Folge unterschiedlicher elektrophysiologischer Mechanismen bei der VTA-Einleitung durch R-auf-T-VES und später gekoppelten VES sein (ROELKE et al., 1994; FRIES et al., 2003).

unabhängig ist. In ihrer Studie wurde jedoch die Vorzeitigkeit in Bezug auf die T-Welle, also das R-auf-T-Phänomen, nicht untersucht (TAYLOR et al., 2000).

Im intraindividuellen Vergleich der elektrophysiologischen Parameter vor VTAs waren die Herzfrequenz, die HRV und die VES-Anzahl bei R-auf-T-eingeleiteten VTAs und nicht-R-auf-T-eingeleiteten VTAs vergleichbar. Die Höhe des Sympathikotonus scheint demnach für das Auftreten des R-auf-T-Phänomens nicht ausschlaggebend. Hingegen erwiesen sich die QT-Intervalle vor R-auf-T-vermittelten VTAs als signifikant verlängert (p = 0,015). Diese Beobachtung ist möglicherweise einfach erklärt durch die bei langer Repolarisationsdauer steigende Wahrscheinlichkeit, dass eine VES mit der T-Welle zusammentrifft.
6. Limitationen

Auf folgende Limitationen der vorliegenden Untersuchungen soll hingewiesen werden:

Die relativ kleinen Patientenzahlen, besonders bei der Analyse von Untergruppen, und das nur kurze Zeitintervall, das vor VTAs zur Analyse zur Verfügung stand, stellen eine Einschränkung in der Interpretation der Ergebnisse dar.

Bei der Arrhythmieklassifikation kann, obwohl diese nach harten Kriterien bewertet wurden, nicht ausgeschlossen werden, dass einzelne Tachyarrhythmien nicht ventrikulären Ursprungs in die Untersuchungen mit aufgenommen wurden. In Anbetracht der Menge der registrierten Ereignisse ist hiervon jedoch kein messbarer Einfluss auf die Untersuchungsergebnisse zu erwarten.
7. **Literaturverzeichnis**

vagal influences on rate-dependent changes of QT interval in healthy subjects. Am J Cardiol 68:1188-1193

patients with implantable cardioverter-defibrillators. Am J Cardiol 91:752-755
22. Gardner PI, Ursell PC, Fenoglio JJ, Wit AL (1985) Electrophysiologic and anat-
omic basis for fractionated electrograms recorded from healed myocardial in-
farcts. Circulation 72:596-611
fects of left ventricular dysfunction on the circadian variation of ventricular prematu-
re complexes in healed myocardial infarction. Am J Cardiol 69:1009-1014
24. Goldstein S, Zoble RG, Akiyama T, Cohen JD, Lancaster S, Liebson PR, Rapap-
port E, Goldberg AD, Peters RW, Gillis AM, and the CAST Investigators (1996) Rela-
tion of the circadian ventricular ectopic activity to cardiac mortality. Am J
Cardiol 78:881-885
Unalir A, Ata N, Timuralp B (2003) Initiation of monomorphic ventricular tachy-
cardia: Electrophysiological, clinical features, and drug therapy in patients with
and onset mechanisms of ventricular tachyarrhythmias in patients with coronary
disease versus idiopathic dilated cardiomyopathy. PACE 23 (Pt.II):1939-1943
implantable cardioverter defibrillator patients. Pacing Clin Electrophysiol 14:250-
254
PRx pulse generator and Endotak nonthoracotomy lead system. Pacing Clin
Electrophysiol 15:671-677
ventricular repolarization to ventricular ectopic activity and modification by Sota-
lol. Am J Cardiol 71:475-478
30. Hook BG, Marchlinski FE (1991) Value of ventricular electrogram recordings in
the diagnosis of arrhythmias precipitating electrical device shock therapy. J Am
Coll Cardiol 17:985-990
31. Huikuri HV, Seppänen T, Koistinen MJ, Airaksinen KEJ, Ilkäheimo MJ, Castell-
before the spontaneous onset of life-threatening ventricular tacharrhythmias in
patients with prior myocardial infarction. Circulation 93:1836-1844

Cardiol 83:880-884

the initiation of ventricular tachycardia by analysis of stored ventricular electrograms. J Am Coll Cardiol 21:405A (abstract)

caused by reentry, triggered activity, and automaticity. Am Heart J 136:425-434

8. Publikation

9. Dank

An erster Stelle danke ich meinem verehrten Doktorvater Herrn Priv.-Doz. Dr. Roland Fries, Chefarzt der Gotthard-Schettler-Klinik (Schwerpunkt Kardiologie / Angiologie / Bad Schönborn) der mir immer unterstützend und mit wissenschaftlichem Rat zur Seite stand.

Für die exzellente und kritische statistische Beratung danke ich Herrn Dr. rer. med. Georg vom Institut für Medizinische Biometrie, Epidemiologie und Informatik der Universität des Saarlandes (Direktor Prof. Dr. U. Feldmann).

Dem ehemaligen Direktor der Klinik für Innere Medizin III (Kardiologie, Angiologie und internistische Intensivmedizin) des Universitätsklinikums des Saarlandes Herrn Prof. Dr. H. Schieffer und seinem Nachfolger Herrn Prof. Dr. M. Böhm danke ich für die Möglichkeit der Durchführung meiner Untersuchungen in Ihrer Abteilung.
10. Lebenslauf

Persönliche Daten

Name: Steuer
Vorname: Markus
Geburtsort: Merzig
Vater: Alois Steuer, Stellmacher
Mutter: Marga Steuer, Hausfrau
Familienstand: verheiratet

Werdegang

1979 – 1984 Grundschule Beckingen/Honzrath
1984 – 1989 Hauptschule Beckingen
1989 – 1990 Abschluß mittlere Reife an der Odilienschule Dillingen/Saar
1990 – 1993 Wirtschaftsgymnasium Saarbrücken
Juli 1993 Schulabschluß mit der Allgemeinen Hochschulreife
1994 – 2001 Studium der Medizin an der Universität des Saarlandes, Medizinische Fakultät Homburg/Saar und Johannes Gutenberg Universität Mainz
01/2002 – 06/2002 Arzt im Praktikum in der Abteilung für Innere Medizin im Elisabethkrankenhaus Trier, Chefarzt Prof. Dr. med. Krönig
07/2002 – 06/2003 Arzt im Praktikum in der Abteilung für Strahlentherapie im Mutterhaus der Borromäerinnen Trier, Chefarzt Dr. med. Dornoff
Juli 2003 Approbation als Arzt
seit 07/2003 Assistentarzt in der Abteilung für Innere Medizin im Caritaskrankenhaus Dillingen/Saar, Chefarzte Dr. med. Keck und Dr. med. Menges
17.10.2005 Anerkennung der Zusatzbezeichnung Notfallmedizin